1
|
Bernstein EJ, Boin F, Elicker B, Luo Y, Ren Y, Zhang M, Varga J, Assassi S. FAM13A polymorphism is associated with a usual interstitial pneumonia pattern in patients with systemic sclerosis-associated interstitial lung disease. Rheumatology (Oxford) 2024:keae573. [PMID: 39418199 DOI: 10.1093/rheumatology/keae573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVES The MUC5B promoter single nucleotide polymorphism (SNP) rs35705950 has been associated with idiopathic pulmonary fibrosis (IPF) and rheumatoid arthritis (RA)-related interstitial lung disease (ILD), but not with systemic sclerosis (SSc)-ILD. We hypothesized that the MUC5B promoter polymorphism or other IPF susceptibility loci are associated with an increased risk for the uncommon SSc-usual interstitial pneumonia (UIP) endophenotype, rather than SSc-ILD in general. METHODS We performed a cross-sectional study of SSc-ILD patients from 4 US Scleroderma Programs to investigate the frequency of MUC5B rs35705950 and 12 additional IPF susceptibility loci. SSc-ILD patients were stratified by high resolution chest CT (HRCT) imaging findings into UIP and non-UIP groups. Analysis of HRCTs performed by a thoracic radiologist blinded to participants' characteristics classified each scan as definite UIP, probable UIP, indeterminate, or alternative diagnosis, according to American Thoracic Society criteria. RESULTS Four-hundred eighty-nine SSc-ILD patients were included; 80% were female and 75% were White. Twenty-three (4.7%) patients had a definite UIP pattern. The MUC5B SNP rs35705950 was not associated with a definite UIP pattern in SSc-ILD. In contrast, patients carrying 2 copies of the IPF risk gene FAM13A minor allele rs2609255 had significantly higher odds of a definite UIP pattern compared with the other patterns (OR 3.40, 95% CI 1.19-9.70), and compared with an alternative diagnosis (OR 3.65, 95% CI 1.25-10.65). CONCLUSION We demonstrated a novel association between FAM13A and SSc-UIP. Contrary to IPF and RA-ILD, the MUC5B promoter polymorphism was not associated with a definite UIP pattern in SSc-ILD.
Collapse
Affiliation(s)
- Elana J Bernstein
- Division of Rheumatology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Francesco Boin
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brett Elicker
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | - Yiming Luo
- Division of Rheumatology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Yawen Ren
- Division of Rheumatology, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Meng Zhang
- Division of Rheumatology, Department of Medicine, University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Shervin Assassi
- Division of Rheumatology, Department of Medicine, University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| |
Collapse
|
2
|
Howes A, Rogerson C, Belyaev N, Karagyozova T, Rapiteanu R, Fradique R, Pellicciotta N, Mayhew D, Hurd C, Crotta S, Singh T, Dingwell K, Myatt A, Arad N, Hasan H, Bijlsma H, Panjwani A, Vijayan V, Young G, Bridges A, Petit-Frere S, Betts J, Larminie C, Smith JC, Hessel EM, Michalovich D, Walport L, Cicuta P, Powell AJ, Beinke S, Wack A. The FAM13A Long Isoform Regulates Cilia Movement and Coordination in Airway Mucociliary Transport. Am J Respir Cell Mol Biol 2024; 71:282-293. [PMID: 38691660 PMCID: PMC11376246 DOI: 10.1165/rcmb.2024-0063oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/01/2024] [Indexed: 05/03/2024] Open
Abstract
Single nucelotide polymorphisms (SNPs) at the FAM13A locus are among the most commonly reported risk alleles associated with chronic obstructive pulmonary disease (COPD) and other respiratory diseases; however, the physiological role of FAM13A is unclear. In humans, two major protein isoforms are expressed at the FAM13A locus: "long" and "short," but their functions remain unknown, partly because of a lack of isoform conservation in mice. We performed in-depth characterization of organotypic primary human airway epithelial cell subsets and show that multiciliated cells predominantly express the FAM13A long isoform containing a putative N-terminal Rho GTPase-activating protein (RhoGAP) domain. Using purified proteins, we directly demonstrate the RhoGAP activity of this domain. In Xenopus laevis, which conserve the long-isoform, Fam13a deficiency impaired cilia-dependent embryo motility. In human primary epithelial cells, long-isoform deficiency did not affect multiciliogenesis but reduced cilia coordination in mucociliary transport assays. This is the first demonstration that FAM13A isoforms are differentially expressed within the airway epithelium, with implications for the assessment and interpretation of SNP effects on FAM13A expression levels. We also show that the long FAM13A isoform coordinates cilia-driven movement, suggesting that FAM13A risk alleles may affect susceptibility to respiratory diseases through deficiencies in mucociliary clearance.
Collapse
Affiliation(s)
| | - Clare Rogerson
- Immunoregulation Laboratory
- Crick-GSK Biomedical LinkLabs
| | | | | | | | - Ricardo Fradique
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Catherine Hurd
- Protein-Protein Interaction Laboratory
- Crick-GSK Biomedical LinkLabs
| | | | | | | | - Anniek Myatt
- Capgemini Engineering, Capgemini UK, Stevenage, United Kingdom; and
| | - Navot Arad
- Capgemini Engineering, Capgemini UK, Stevenage, United Kingdom; and
| | - Hikmatyar Hasan
- Capgemini Engineering, Capgemini UK, Stevenage, United Kingdom; and
| | - Hielke Bijlsma
- Capgemini Engineering, Capgemini UK, Stevenage, United Kingdom; and
| | | | - Vinaya Vijayan
- Development Digital and Tech, GSK, Collegeville, Pennsylvania
| | - George Young
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | | | | | | | | | | | - Edith M. Hessel
- Refractory Respiratory Inflammation Discovery Performance Unit, GSK R&D, Stevenage, United Kingdom
| | | | | | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
3
|
Werder RB, Zhou X, Cho MH, Wilson AA. Breathing new life into the study of COPD with genes identified from genome-wide association studies. Eur Respir Rev 2024; 33:240019. [PMID: 38811034 PMCID: PMC11134200 DOI: 10.1183/16000617.0019-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 05/31/2024] Open
Abstract
COPD is a major cause of morbidity and mortality globally. While the significance of environmental exposures in disease pathogenesis is well established, the functional contribution of genetic factors has only in recent years drawn attention. Notably, many genes associated with COPD risk are also linked with lung function. Because reduced lung function precedes COPD onset, this association is consistent with the possibility that derangements leading to COPD could arise during lung development. In this review, we summarise the role of leading genes (HHIP, FAM13A, DSP, AGER and TGFB2) identified by genome-wide association studies in lung development and COPD. Because many COPD genome-wide association study genes are enriched in lung epithelial cells, we focus on the role of these genes in the lung epithelium in development, homeostasis and injury.
Collapse
Affiliation(s)
- Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, Australia
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
4
|
Peris I, Romero-Murillo S, Vicente C, Narla G, Odero MD. Regulation and role of the PP2A-B56 holoenzyme family in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188953. [PMID: 37437699 DOI: 10.1016/j.bbcan.2023.188953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Protein phosphatase 2A (PP2A) inactivation is common in cancer, leading to sustained activation of pro-survival and growth-promoting pathways. PP2A consists of a scaffolding A-subunit, a catalytic C-subunit, and a regulatory B-subunit. The functional complexity of PP2A holoenzymes arises mainly through the vast repertoire of regulatory B-subunits, which determine both their substrate specificity and their subcellular localization. Therefore, a major challenge for developing more effective therapeutic strategies for cancer is to identify the specific PP2A complexes to be targeted. Of note, the development of small molecules specifically directed at PP2A-B56α has opened new therapeutic avenues in both solid and hematological tumors. Here, we focus on the B56/PR61 family of PP2A regulatory subunits, which have a central role in directing PP2A tumor suppressor activity. We provide an overview of the mechanisms controlling the formation and regulation of these complexes, the pathways they control, and the mechanisms underlying their deregulation in cancer.
Collapse
Affiliation(s)
- Irene Peris
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Silvia Romero-Murillo
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Carmen Vicente
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maria D Odero
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Gong L, Bates S, Li Y, Lin X, Wei W, Zhou X. AKT Phosphorylates FAM13A and Promotes Its Degradation via CUL4A/DDB1/DCAF1 E3 Complex. Am J Respir Cell Mol Biol 2023; 68:577-590. [PMID: 36749583 PMCID: PMC10174174 DOI: 10.1165/rcmb.2022-0362oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/07/2023] [Indexed: 02/08/2023] Open
Abstract
SNPs within FAM13A (family with sequence similarity 13 member A) gene are significantly associated with chronic obstructive pulmonary disease and lung function in genome-wide association studies (GWAS). However, how FAM13A protein is regulated under physiological and pathological conditions remains largely elusive. Herein, we report that FAM13A is phosphorylated at the serine 312 residue by AKT kinase after cigarette smoke extract treatment and thereby recognized by the CULLIN4A/DCAF1 (DDB1 and CUL4 associated factor 1) E3 ligase complex, rendering the ubiquitination-mediated degradation of FAM13A. More broadly, downregulation of FAM13A protein upon AKT activation, as a general cellular response to acute stress, was also detected in influenza- or naphthalene-injured lungs in mice. Functionally, reduced protein levels of FAM13A lead to accelerated epithelial cell proliferation in murine lungs during the recovery phase after injury. In summary, we characterized a novel molecular mechanism that regulates the stability of FAM13A protein, which enables the fine-tuning of lung epithelial repair after injury. These significant findings will expand our molecular understanding of the regulation of protein stability, which may modulate lung epithelial repair implicated in the development of chronic obstructive pulmonary disease and other lung diseases.
Collapse
Affiliation(s)
- Lu Gong
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - Samuel Bates
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - Yujun Li
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - Xin Lin
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
6
|
Higuchi T, Oka S, Furukawa H, Shimada K, Tsunoda S, Ito S, Okamoto A, Katayama M, Saisho K, Shinohara S, Matsui T, Migita K, Nagaoka S, Tohma S. Association of a FAM13A variant with interstitial lung disease in Japanese rheumatoid arthritis. RMD Open 2023; 9:rmdopen-2022-002828. [PMID: 36717188 PMCID: PMC9887688 DOI: 10.1136/rmdopen-2022-002828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Interstitial lung disease (ILD) occasionally occurs in rheumatoid arthritis (RA) and confers a dismal prognosis. We previously reported that a single-nucleotide variant (SNV) of MUC5B was associated with ILD in RA. However, the pathogenesis of ILD in Japanese patients with RA could not be explained solely by this SNV because its frequency is extremely low in the Japanese population. Here, we examined whether a different idiopathic pulmonary fibrosis susceptibility SNV might be associated with ILD in Japanese patients with RA. METHODS Genotyping of rs2609255 (G/T) in FAM13A was conducted in 208 patients with RA with ILD and 420 without chronic lung disease using TaqMan assays. RESULTS A significant association with usual interstitial pneumonia (UIP) in RA was detected for rs2609255 under the allele model (p=0.0092, Pc=0.0276, OR 1.53, 95% CI 1.12 to 2.11) and recessive model for the G allele (p=0.0003, Pc=0.0009, OR 2.63, 95% CI 1.59 to 4.32). FAM13A rs2609255 was significantly associated with UIP in male patients with RA (p=0.0043, OR 3.65, 95% CI 1.52 to 8.73) under the recessive model. CONCLUSIONS This study is the first to document an association of rs2609255 with ILD in Japanese patients with RA, implicating it in the pathogenesis of UIP, though studies on the function of rs2609255 are warranted.
Collapse
Affiliation(s)
- Takashi Higuchi
- Department of Clinical Research, National Hospital Organization Tokyo National Hospital, Kiyose, Japan,Department of Nephrology, Ushiku Aiwa General Hospital, Ushiku, Japan
| | - Shomi Oka
- Department of Clinical Research, National Hospital Organization Tokyo National Hospital, Kiyose, Japan,Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Hiroshi Furukawa
- Department of Clinical Research, National Hospital Organization Tokyo National Hospital, Kiyose, Japan .,Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Kota Shimada
- Department of Rheumatic Diseases, Tokyo Metropolitan Tama Medical Center, Fuchu, Japan,Department of Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Shinichiro Tsunoda
- Department of Nephrology, Sumitomo Hospital, Osaka, Japan,Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Satoshi Ito
- Department of Rheumatology, Niigata Rheumatic Center, Shibata, Japan
| | - Akira Okamoto
- Department of Rheumatology, National Hospital Organization Himeji Medical Center, Himeji, Japan
| | - Masao Katayama
- Department of Internal Medicine, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Koichiro Saisho
- Tanimura Hospital, Nobeoka, Japan,Department of Orthopedics/Rheumatology, National Hospital Organization Miyakonojo Medical Center, Miyakonojo, Japan
| | | | - Toshihiro Matsui
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan,Department of Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Kiyoshi Migita
- Department of Gastroenterology and Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan,Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Shouhei Nagaoka
- Department of Rheumatology, Yokohama Minami Kyosai Hospital, Yokohama, Japan
| | - Shigeto Tohma
- Department of Clinical Research, National Hospital Organization Tokyo National Hospital, Kiyose, Japan,Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| |
Collapse
|
7
|
Abstract
The lungs are continually subjected to noxious and inert substances, are immunologically active, and are in a constant state of damage and repair. This makes the pulmonary system particularly vulnerable to diseases of aging. Aging can be understood as random molecular damage that is unrepaired and accumulates over time, resulting in cellular defects and tissue dysfunction. The breakdown of cellular mechanisms, including stem cell exhaustion, genomic instability, telomere attrition, epigenetic alteration, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, altered intercellular communication, and changes in the extracellular matrix is thought to advance the aging process itself. Chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and cancers illustrate a pathologic breakdown in these mechanisms beyond normal aging. The immune system becomes less effective with advancing age. There is a low-level state of chronic inflammation termed inflammaging which is thought to be driven by immunosenescence, the changes in the innate and adaptive immune systems with advancing age that lead to dysregulation and decreased effectiveness of the immune system. These processes of aging lead to expected changes in the form and function of the respiratory system, most notably a loss of lung elasticity, decrease in respiratory muscle strength, increase in ventilation-perfusion mismatching, and stiffening of the vasculature. The astute clinician is aware of these expected findings and does not often attribute dyspnea to aging alone. Maintaining a low threshold to investigate for comorbid disease and understanding how pulmonary disease presents differently in the elderly than in younger adults can improve clinical outcomes. © 2022 American Physiological Society. Compr Physiol 12:3509-3522, 2022.
Collapse
Affiliation(s)
- Julia Budde
- New York City Health and Hospitals/Metropolitan Hospital, New York, New York, USA
| | | |
Collapse
|
8
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
9
|
Zhang X, Li TY, Xiao HM, Ehrlich KC, Shen H, Deng HW, Ehrlich M. Epigenomic and Transcriptomic Prioritization of Candidate Obesity-Risk Regulatory GWAS SNPs. Int J Mol Sci 2022; 23:1271. [PMID: 35163195 PMCID: PMC8836216 DOI: 10.3390/ijms23031271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Concern about rising rates of obesity has prompted searches for obesity-related single nucleotide polymorphisms (SNPs) in genome-wide association studies (GWAS). Identifying plausible regulatory SNPs is very difficult partially because of linkage disequilibrium. We used an unusual epigenomic and transcriptomic analysis of obesity GWAS-derived SNPs in adipose versus heterologous tissues. From 50 GWAS and 121,064 expanded SNPs, we prioritized 47 potential causal regulatory SNPs (Tier-1 SNPs) for 14 gene loci. A detailed examination of seven loci revealed that four (CABLES1, PC, PEMT, and FAM13A) had Tier-1 SNPs positioned so that they could regulate use of alternative transcription start sites, resulting in different polypeptides being generated or different amounts of an intronic microRNA gene being expressed. HOXA11 and long noncoding RNA gene RP11-392O17.1 had Tier-1 SNPs in their 3' or promoter region, respectively, and strong preferences for expression in subcutaneous versus visceral adipose tissue. ZBED3-AS1 had two intragenic Tier-1 SNPs, each of which could contribute to mediating obesity risk through modulating long-distance chromatin interactions. Our approach not only revealed especially credible novel regulatory SNPs, but also helped evaluate previously highlighted obesity GWAS SNPs that were candidates for transcription regulation.
Collapse
Affiliation(s)
- Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Tian-Ying Li
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China; (T.-Y.L.); (H.-M.X.)
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China; (T.-Y.L.); (H.-M.X.)
| | - Kenneth C. Ehrlich
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Melanie Ehrlich
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
- Tulane Cancer Center and Hayward Genetics Center, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Wang E, Zhang Y, Ding R, Wang X, Zhang S, Li X. miR‑30a‑5p induces the adipogenic differentiation of bone marrow mesenchymal stem cells by targeting FAM13A/Wnt/β‑catenin signaling in aplastic anemia. Mol Med Rep 2021; 25:27. [PMID: 34821370 PMCID: PMC8630822 DOI: 10.3892/mmr.2021.12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022] Open
Abstract
Aplastic anemia (AA) is a bone marrow failure syndrome with high morbidity and mortality. Bone marrow (BM)-mesenchymal stem cells (MSCs) are the main components of the BM microenvironment, and dysregulation of BM-MSC adipogenic differentiation is a pathologic hallmark of AA. MicroRNAs (miRNAs/miRs) are crucial regulators of multiple pathological processes such as AA. However, the role of miR-30a-5p in the modulation of BM-MSC adipogenic differentiation in AA remains unclear. The present study aimed to explore the effect of miR-30a-5p on AA BM-MSC adipogenic differentiation and the underlying mechanism. The levels of miR-30a-5p expression and family with sequence similarity 13, member A (FAM13A) mRNA expression in BM-MSCs were quantified using reverse transcription-quantitative (RT-q) PCR. The mRNA expression levels of adipogenesis-associated factors [fatty acid-binding protein 4 (FABP4), lipoprotein lipase (LPL), perilipin-1 (PLIN1), peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα)] were analyzed using RT-qPCR. Lipid droplet accumulation was evaluated using Oil Red O staining in BM-MSCs. The interaction between miR-30a-5p and the FAM13A 3′-untranslated region was identified by TargetScan, and a dual-luciferase reporter assay was used to confirm the interaction. The expression levels of FAM13A and Wnt/β-catenin pathway-related proteins were examined via western blotting. The results showed that miR-30a-5p expression levels were significantly elevated in BM-MSCs from patients with AA compared with those in control subjects (iron deficiency anemia). miR-30a-5p expression levels were also significantly increased in adipose-induced BM-MSCs in a time-dependent manner. miR-30a-5p significantly promoted AA BM-MSC adipogenic differentiation, and significantly enhanced the mRNA expression levels of FABP4, LPL, PLIN1, PPARγ and C/EBPα as well as lipid droplet accumulation. miR-30a-5p was also demonstrated to target FAM13A in AA BM-MSCs. FAM13A significantly reduced BM-MSC adipogenic differentiation by activating the Wnt/β-catenin signaling pathway. In conclusion, miR-30a-5p was demonstrated to serve a role in AA BM-MSC adipogenic differentiation by targeting the FAM13A/Wnt/β-catenin signaling pathway. These findings suggest that miR-30a-5p may be a therapeutic target for AA.
Collapse
Affiliation(s)
- Enbo Wang
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Yunyan Zhang
- Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Rongmei Ding
- Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Xiaohua Wang
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Shumin Zhang
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Xinghua Li
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| |
Collapse
|
11
|
Porro S, Genchi VA, Cignarelli A, Natalicchio A, Laviola L, Giorgino F, Perrini S. Dysmetabolic adipose tissue in obesity: morphological and functional characteristics of adipose stem cells and mature adipocytes in healthy and unhealthy obese subjects. J Endocrinol Invest 2021; 44:921-941. [PMID: 33145726 DOI: 10.1007/s40618-020-01446-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
The way by which subcutaneous adipose tissue (SAT) expands and undergoes remodeling by storing excess lipids through expansion of adipocytes (hypertrophy) or recruitment of new precursor cells (hyperplasia) impacts the risk of developing cardiometabolic and respiratory diseases. In unhealthy obese subjects, insulin resistance, type 2 diabetes, hypertension, and obstructive sleep apnoea are typically associated with pathologic SAT remodeling characterized by adipocyte hypertrophy, as well as chronic inflammation, hypoxia, increased visceral adipose tissue (VAT), and fatty liver. In contrast, metabolically healthy obese individuals are generally associated with SAT development characterized by the presence of smaller and numerous mature adipocytes, and a lower degree of VAT inflammation and ectopic fat accumulation. The remodeling of SAT and VAT is under genetic regulation and influenced by inherent depot-specific differences of adipose tissue-derived stem cells (ASCs). ASCs have multiple functions such as cell renewal, adipogenic capacity, and angiogenic properties, and secrete a variety of bioactive molecules involved in vascular and extracellular matrix remodeling. Understanding the mechanisms regulating the proliferative and adipogenic capacity of ASCs from SAT and VAT in response to excess calorie intake has become a focus of interest over recent decades. Here, we summarize current knowledge about the biological mechanisms able to foster or impair the recruitment and adipogenic differentiation of ASCs during SAT and VAT development, which regulate body fat distribution and favorable or unfavorable metabolic responses.
Collapse
Affiliation(s)
- S Porro
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - V A Genchi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Cignarelli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Natalicchio
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - L Laviola
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - S Perrini
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| |
Collapse
|
12
|
Ziółkowska-Suchanek I, Podralska M, Żurawek M, Łaczmańska J, Iżykowska K, Dzikiewicz-Krawczyk A, Rozwadowska N. Hypoxia-Induced FAM13A Regulates the Proliferation and Metastasis of Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2021; 22:ijms22094302. [PMID: 33919074 PMCID: PMC8122400 DOI: 10.3390/ijms22094302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Hypoxia in non-small cell lung cancer (NSCLC) affects cancer progression, metastasis and metabolism. We previously showed that FAM13A was induced by hypoxia in NSCLC but the biological function of this gene has not been fully elucidated. This study aimed to investigate the role of hypoxia-induced FAM13A in NSCLC progression and metastasis. Lentiviral shRNAs were used for FAM13A gene silencing in NSCLC cell lines (A549, CORL-105). MTS assay, cell tracking VPD540 dye, wound healing assay, invasion assay, BrdU assay and APC Annexin V staining assays were performed to examine cell proliferation ability, migration, invasion and apoptosis rate in NSCLC cells. The results of VPD540 dye and MTS assays showed a significant reduction in cell proliferation after FAM13A knockdown in A549 cells cultured under normal and hypoxia (1% O2) conditions (p < 0.05), while the effect of FAM13A downregulation on CORL-105 cells was observed after 96 h exposition to hypoxia. Moreover, FAM13A inhibition induced S phase cell cycle arrest in A549 cells under hypoxia conditions. Silencing of FAM13A significantly suppressed migration of A549 and CORL-105 cells in both oxygen conditions, especially after 72 and 96 h (p < 0.001 in normoxia, p < 0.01 after hypoxia). It was showed that FAM13A reduction resulted in disruption of the F-actin cytoskeleton altering A549 cell migration. Cell invasion rates were significantly decreased in A549 FAM13A depleted cells compared to controls (p < 0.05), mostly under hypoxia. FAM13A silencing had no effect on apoptosis induction in NSCLC cells. In the present study, we found that FAM13A silencing has a negative effect on proliferation, migration and invasion activity in NSCLC cells in normal and hypoxic conditions. Our data demonstrated that FAM13A depleted post-hypoxic cells have a decreased cell proliferation ability and metastatic potential, which indicates FAM13A as a potential therapeutic target in lung cancer.
Collapse
|
13
|
Salum KCR, Castro MCS, Nani ÂSF, Kohlrausch FB. Is individual genetic susceptibility a link between silica exposure and development or severity of silicosis? A systematic review. Inhal Toxicol 2020; 32:375-387. [PMID: 33006295 DOI: 10.1080/08958378.2020.1825569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Silicosis is a lung disease of fibrotic nature resulting from the inhalation and deposition of dust containing crystalline silica. Subjects exposed to the same environmental factors may show distinct radiological manifestations, and since silicosis is known as a multifactorial disease, it is plausible that individual genetic susceptibility may play a role in the pathology. This review of the literature aims to provide an assessment of the present data on the genetic association studies in silicosis and describe the genes that potentially might influence silicosis susceptibility in silica-exposed individuals. METHODS We accessed the database of PubMed for articles published in English about interindividual genetic susceptibility to silicosis using terms related to the subject matter. RESULTS Following the evaluation process, 28 studies were included in this systematic review, including 23 original studies and 5 meta-analyses. CONCLUSIONS Regardless of the advances in the knowledge of the importance of gene variations in silicosis, more studies need to be performed, in particular, special polygenic and genome-wide investigations.
Collapse
Affiliation(s)
- Kaio Cezar Rodrigues Salum
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcos Cesar Santos Castro
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense (UFF), Niterói, Brazil.,Hospital Universitário Antônio Pedro, Universidade Federal Fluminense (UFF), Niterói, Brazil.,Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | | | - Fabiana Barzotto Kohlrausch
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense (UFF), Niterói, Brazil
| |
Collapse
|
14
|
In Silico Analysis Identifies Differently Expressed lncRNAs as Novel Biomarkers for the Prognosis of Thyroid Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:3651051. [PMID: 32377223 PMCID: PMC7195652 DOI: 10.1155/2020/3651051] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Background Thyroid cancer (TC) is one of the most common type of endocrine tumors. Long noncoding RNAs had been demonstrated to play key roles in TC. Material and Methods. The lncRNA expression data were downloaded from Co-lncRNA database. The raw data was normalized using the limma package in R software version 3.3.0. The differentially expressed mRNA and lncRNAs were identified by the linear models for the microarray analysis (Limma) method. The DEGs were obtained with thresholds of ∣logFC∣ > 1.5 and P < 0.001. The hierarchical cluster analysis of differentially expressed mRNAs and lncRNAs was performed using CLUSTER 3.0, and the hierarchical clustering heat map was visualized by Tree View. Results In the present study, we identified 6 upregulated and 85 downregulated lncRNAs in TC samples. Moreover, we for the first time identified 16 downregulated lncRNAs was correlated to longer disease-free survival time in patients with TC, including ATP1A1-AS1, CATIP-AS1, FAM13A-AS1, LINC00641, LINC00924, MIR22HG, NDUFA6-AS1, RP11-175K6.1, RP11-727A23.5, RP11-774O3.3, RP13-895J2.2, SDCBP2-AS1, SLC26A4-AS1, SNHG15, SRP14-AS1, and ZNF674-AS1. Conclusions Bioinformatics analysis revealed these lncRNAs were involved in regulating the RNA metabolic process, cell migration, organelle assembly, tRNA modification, and hormone levels. This study will provide useful information to explore the potential candidate biomarkers for diagnosis, prognosis, and drug targets for TC.
Collapse
|
15
|
Fathzadeh M, Li J, Rao A, Cook N, Chennamsetty I, Seldin M, Zhou X, Sangwung P, Gloudemans MJ, Keller M, Attie A, Yang J, Wabitsch M, Carcamo-Orive I, Tada Y, Lusis AJ, Shin MK, Molony CM, McLaughlin T, Reaven G, Montgomery SB, Reilly D, Quertermous T, Ingelsson E, Knowles JW. FAM13A affects body fat distribution and adipocyte function. Nat Commun 2020; 11:1465. [PMID: 32193374 PMCID: PMC7081215 DOI: 10.1038/s41467-020-15291-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic variation in the FAM13A (Family with Sequence Similarity 13 Member A) locus has been associated with several glycemic and metabolic traits in genome-wide association studies (GWAS). Here, we demonstrate that in humans, FAM13A alleles are associated with increased FAM13A expression in subcutaneous adipose tissue (SAT) and an insulin resistance-related phenotype (e.g. higher waist-to-hip ratio and fasting insulin levels, but lower body fat). In human adipocyte models, knockdown of FAM13A in preadipocytes accelerates adipocyte differentiation. In mice, Fam13a knockout (KO) have a lower visceral to subcutaneous fat (VAT/SAT) ratio after high-fat diet challenge, in comparison to their wild-type counterparts. Subcutaneous adipocytes in KO mice show a size distribution shift toward an increased number of smaller adipocytes, along with an improved adipogenic potential. Our results indicate that GWAS-associated variants within the FAM13A locus alter adipose FAM13A expression, which in turn, regulates adipocyte differentiation and contribute to changes in body fat distribution.
Collapse
Affiliation(s)
- Mohsen Fathzadeh
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Jiehan Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Abhiram Rao
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Bioengineering Department, School of Engineering and Medicine, Stanford, CA, USA
| | - Naomi Cook
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Indumathi Chennamsetty
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Marcus Seldin
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Xiang Zhou
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Panjamaporn Sangwung
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | | | - Mark Keller
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Allan Attie
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Jing Yang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Ivan Carcamo-Orive
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Yuko Tada
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Aldons J Lusis
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Myung Kyun Shin
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Cliona M Molony
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Tracey McLaughlin
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald Reaven
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Stephen B Montgomery
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, California, CA, USA
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, California, CA, USA
| | - Dermot Reilly
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| | - Joshua W Knowles
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
Rinastiti P, Ikeda K, Rahardini EP, Miyagawa K, Tamada N, Kuribayashi Y, Hirata KI, Emoto N. Loss of family with sequence similarity 13, member A exacerbates pulmonary hypertension through accelerating endothelial-to-mesenchymal transition. PLoS One 2020; 15:e0226049. [PMID: 32053709 PMCID: PMC7018082 DOI: 10.1371/journal.pone.0226049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/23/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary hypertension is a progressive lung disease with poor prognosis due to the consequent right heart ventricular failure. Pulmonary artery remodeling and dysfunction are culprits for pathologically increased pulmonary arterial pressure, but their underlying molecular mechanisms remain to be elucidated. Previous genome-wide association studies revealed a significant correlation between the genetic locus of family with sequence similarity 13, member A (FAM13A) and various lung diseases such as chronic obstructive pulmonary disease and pulmonary fibrosis; however whether FAM13A is also involved in the pathogenesis of pulmonary hypertension remained unknown. Here, we identified a significant role of FAM13A in the development of pulmonary hypertension. FAM13A expression was reduced in the lungs of mice with hypoxia-induced pulmonary hypertension. We identified that FAM13A was expressed in lung vasculatures, especially in endothelial cells. Genetic loss of FAM13A exacerbated pulmonary hypertension in mice exposed to chronic hypoxia in association with deteriorated pulmonary artery remodeling. Mechanistically, FAM13A decelerated endothelial-to-mesenchymal transition potentially by inhibiting β-catenin signaling in pulmonary artery endothelial cells. Our data revealed a protective role of FAM13A in the development of pulmonary hypertension, and therefore increasing and/or preserving FAM13A expression in pulmonary artery endothelial cells is an attractive therapeutic strategy for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Pranindya Rinastiti
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Ikeda
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
- * E-mail:
| | - Elda Putri Rahardini
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuya Miyagawa
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoki Tamada
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuko Kuribayashi
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
| | - Ken-ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
17
|
Two-hybrid screening of FAM13A protein partners in lung epithelial cells. BMC Res Notes 2020; 12:804. [PMID: 31900205 PMCID: PMC6942259 DOI: 10.1186/s13104-019-4840-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Family with sequence similarity 13 member A (FAM13A) genetic variants have been associated with several chronic respiratory diseases including chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF) and lung cancer. The FAM13A protein includes a RhoGTPase activating protein (RhoGAP) domain known to participate in various cellular mechanisms including cell proliferation. While intensive genomic studies have been performed to reveal its involvement in lung diseases, the biological role of FAM13A protein is still not completely elucidated. RESULTS We therefore performed a two-hybrid screening to identify protein partners of FAM13A using a human lung cancer cDNA library. We identified several protein partners with a high confidence score. Researchers in the field of chronic lung diseases may benefit from this two-hybrid screening data which may reveal new research pathways to decipher.
Collapse
|
18
|
Yu Y, Mao L, Lu X, Yuan W, Chen Y, Jiang L, Ding L, Sang L, Xu Z, Tian T, Wu S, Zhuang X, Chu M. Functional Variant in 3'UTR of FAM13A Is Potentially Associated with Susceptibility and Survival of Lung Squamous Carcinoma. DNA Cell Biol 2019; 38:1269-1277. [PMID: 31539274 DOI: 10.1089/dna.2019.4892] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
FAM13A is associated with aging lung disease (primarily chronic obstructive pulmonary disorder and pulmonary fibrosis) and shows stable expression throughout lung development. However, a few systematic studies of FAM13A have been conducted to assess the pathogenesis of lung cancer, particularly susceptibility. We predicted that single-nucleotide polymorphisms (SNPs) in FAM13A may be associated with lung cancer development. We systematically selected five functional SNPs (rs2602120, rs3017895, rs9224, rs7657817, and rs3756050) and genotyped them with the Genesky proprietary improved Multiligase Detection Reaction multiplex SNP genotyping system in a case-control study of 626 lung cancer cases and 667 cancer-free controls. The functional effects of FAM13A and specific miRNAs (miRNA-22-5p and miRNA-1301-3p) were evaluated based on The Cancer Genome Atlas database. We found that rs9224 in the 3' untranslated region (UTR) of FAM13A was potentially associated with an increased risk of lung squamous carcinoma (LUSQ) (additive model: odds ratio = 1.47, 95% confidence interval = 1.04-2.07, p = 0.028). In addition, the results of expression quantitative trait loci analysis suggested that the rs9224 polymorphism affects the expression of FAM13A (p = 0.050) and miRNA-22-5p (p = 0.031) in LUSQ. Further, survival analysis indicated decreased overall survival in the presence of the variant alleles of rs9224 (p = 0.048). The present results indicate that variant genotypes of rs9224 in the FAM13A 3'UTR may modify LUSQ susceptibility by affecting the binding of miRNA-22-5p and predict a poor prognosis of patients with LUSQ.
Collapse
Affiliation(s)
- Yuhui Yu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Liping Mao
- Department of Oncology, The Sixth People's Hospital of Nantong, Nantong, China
| | - Xiao Lu
- Department of Oncology, Changshu No.1 People's Hospital, Suzhou, China
| | - Weiyan Yuan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yujia Chen
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Liying Jiang
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Ding
- Internal Medicine, Nantong Maternal and Child Health Hospital Affiliated to Nantong University, Nantong, China
| | - Lingli Sang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Zhengcheng Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Shuangshuang Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xun Zhuang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
19
|
Wei Y, Wang X, Zhang Z, Xie M, Li Y, Cao H, Zhao X. Role of Polymorphisms of FAM13A, PHLDB1, and CYP24A1 in Breast Cancer Risk. Curr Mol Med 2019; 19:579-588. [PMID: 31215377 DOI: 10.2174/1566524019666190619125109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 01/08/2023]
Abstract
Background:
Single-nucleotide polymorphisms (SNPs) are important
indicators of susceptibility to breast cancer.
Objective:
To assess the associations between SNPs in the FAM13A, PHLDB1, and
CYP24A1 gene and breast cancer risk in the Chinese Han population.
Methods:
We performed a case-control study including 379 female breast cancer
patients and 407 female healthy controls. The three SNPs were genotyped using Agena
MassARRAY platform. The χ2 test was used to compare alleles and genotypes
frequencies of polymorphisms between case and control groups. Genetic models
analyses to assess the associations between SNPs and breast cancer risk by computing
odds ratios (ORs) and 95% confidence intervals (CIs) using logistic regression.
RegulomeDB and HaploReg databases were used to calculate possible functional
effects of polymorphisms.
Results:
Overall analysis results showed that rs4809957 was associated with an
increased risk of breast cancer (allele A: OR = 1.27, 95% CI: 1.03-1.55, p = 0.024; AA
vs. GG: OR = 1.80, 95% CI: 1.15–2.82, p = 0.010; recessive model: OR = 1.70, 95% CI:
1.12–2.58, p = 0.012); and rs1059122 was found to be associated with a reduced breast
cancer risk in the recessive model (OR = 0.71, 95% CI: 0.51–0.98, p = 0.039).
Stratification analysis found significant associations between the three SNPs
(rs1059122, rs17748, and rs4809957) and breast cancer risk.
Conclusion:
Our results suggested that rs1059122 (FAM13A), rs17748 (PHLDB1), and
rs4809957 (CYP24A1) might contribute to breast cancer susceptibility in the Chinese
Han population. Future studies with large samples are required to confirm our findings,
as well as functional studies are needed to explore their function in the breast cancer
development.
Collapse
Affiliation(s)
- Ying Wei
- Department of Internal Medicine Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Xiaolin Wang
- Department of General Surgery, The Second Hospital of Yulin City Shaanxi Province, Yulin, Shaanxi 719000, China
| | - Zhe Zhang
- Department of General Surgery, The Second Hospital of Yulin City Shaanxi Province, Yulin, Shaanxi 719000, China
| | - Mingrui Xie
- Department of Internal Medicine Oncology, The Second Hospital of Yulin City Shaanxi Province, Yulin, Shaanxi 719000, China
| | - Yuyao Li
- Department of Internal Medicine Oncology, The Second Hospital of Yulin City Shaanxi Province, Yulin, Shaanxi 719000, China
| | - Hongxin Cao
- Department of Internal Medicine Oncology, The Second Hospital of Yulin City Shaanxi Province, Yulin, Shaanxi 719000, China
| | - Xinhan Zhao
- Department of Internal Medicine Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| |
Collapse
|
20
|
microRNA-328 in exosomes derived from M2 macrophages exerts a promotive effect on the progression of pulmonary fibrosis via FAM13A in a rat model. Exp Mol Med 2019; 51:1-16. [PMID: 31164635 PMCID: PMC6547742 DOI: 10.1038/s12276-019-0255-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 01/30/2023] Open
Abstract
Currently, exosome-enclosed microRNAs (miRs) in exhaled breath have potential for biomarker discovery in patients with pulmonary diseases. This study was performed to investigate the roles of M2 macrophage-derived exosomes expressing miR-328 in pulmonary fibrosis (PF). Microarray-based analysis was used to screen differentially expressed genes (DEGs) and regulatory miRs in PF. The miR-target relationship between FAM13A and miR-328 was confirmed. The expression of FAM13A and miR-328 was measured in PF rats, and gain- and loss-of-function assays were conducted to determine the regulatory effects of FAM13A and miR-328 on PF. In addition, exosomes derived from M2 macrophages were isolated and then cocultured with pulmonary interstitial fibroblasts to identify the role of these exosomes in PF. Furthermore, the effects of M2 macrophage-derived exosomes overexpressing miR-328 on pulmonary fibroblast proliferation and the progression of PF were assessed in vivo. miR-328 might perform a vital function in PF by regulating FAM13A. FAM13A expression was downregulated while miR-328 expression was upregulated in rats with PF, and a miR-target relationship between miR-328 and FAM13A was observed. Additionally, miR-328 overexpression and FAM13A silencing each were suggested to promote pulmonary interstitial fibroblast proliferation and the expression of Collagen 1A, Collagen 3A and α-SMA. Then, in vitro experiments demonstrated that M2 macrophage-derived exosomes overexpressing miR-328 contributed to enhanced pulmonary interstitial fibroblast proliferation and promoted PF. Furthermore, in vivo experiments confirmed the promotive effects of M2 macrophage-derived exosomes overexpressing miR-328 on the progression of PF. Collectively, the results showed that M2 macrophage-derived exosomes overexpressing miR-328 aggravate PF through the regulation of FAM13A. Studies in rats suggest that microRNAs, small molecules of ribonucleic acid, released by macrophage cells of the immune system can promote pulmonary fibrosis (PF), the formation of scar tissue in lungs. Gao-Feng Zhao, Li-Hua Xing and colleagues at The First Affiliated Hospital of Zhengzhou University in China investigated the role of microRNAs in rats with a form of PF that serves as a model for the disease in humans. Their findings confirm that specific microRNAs released in tiny membrane-bound sacs called exosomes interact with and inhibit a gene whose activity is known to be disrupted in PF. The protein encoded by this gene mediates crucial molecular signaling events in lung cells. Developing drugs that interfere with the activity of the microRNAs is a potential new treatment approach for PF.
Collapse
|
21
|
The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism. eNeuro 2019; 6:eN-NWR-0086-19. [PMID: 30993182 PMCID: PMC6464512 DOI: 10.1523/eneuro.0086-19.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022] Open
Abstract
During development the axons of neurons grow toward and locate their synaptic partners to form functional neural circuits. Axons do so by reading a map of guidance cues expressed by surrounding tissues. Guidance cues are expressed at a precise space and time, but how guidance cue expression is regulated, and in a coordinated manner, is poorly understood. Semaphorins (Semas) and Slits are families of molecular ligands that guide axons. We showed previously that fibroblast growth factor (Fgf) signaling maintains sema3a and slit1 forebrain expression in Xenopus laevis, and these two repellents cooperate to guide retinal ganglion cell (RGC) axons away from the mid-diencephalon and on towards the optic tectum. Here, we investigate whether there are common features of the regulatory pathways that control the expression of these two guidance cues at this single axon guidance decision point. We isolated the sema3a proximal promoter and confirmed its responsiveness to Fgf signaling. Through misexpression of truncated Fgf receptors (Fgfrs), we found that sema3a forebrain expression is dependent on Fgfr2-4 but not Fgfr1. This is in contrast to slit1, whose expression we showed previously depends on Fgfr1 but not Fgfr2-4. Using pharmacological inhibitors and misexpression of constitutively active (CA) and dominant negative (DN) signaling intermediates, we find that while distinct Fgfrs regulate these two guidance genes, intracellular signaling downstream of Fgfrs appears to converge along the phosphoinositol 3-kinase (PI3K)-Akt signaling pathway. A common PI3K-Akt signaling pathway may allow for the coordinated expression of guidance cues that cooperate to direct axons at a guidance choice point.
Collapse
|
22
|
Zhang Y, Wang S, Wang C, Xiao J, Zhang S, Zhou H. High expression of FAM13A was associated with increasing the liver cirrhosis risk. Mol Genet Genomic Med 2019; 7:e543. [PMID: 30604588 PMCID: PMC6418360 DOI: 10.1002/mgg3.543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
Aim Liver cirrhosis is a consequence of chronic liver disease, and it may be caused by multiple influences of both genetic and environmental factors. Family with sequence similarity 13 member A (FAM13A) has been previously associated with lung function in several lung diseases, including chronic obstructive pulmonary disease, asthma, lung cancer, and pulmonary fibrosis. The aim of this study was to explore whether FAM13A polymorphisms confer susceptibility to liver cirrhosis. Methods FAM13A expression was evaluated in liver cirrhosis tissues by immunohistochemistry staining. The relationship between FAM13A gene polymorphism and liver cirrhosis was determined by association analysis. The genotypes were assessed in the Agena MassARRAY platform. Statistical analysis was performed using chi‐squared test/Fisher's exact test, genetic model analysis, and haplotype analysis. Results The results showed that the expression of FAM13A is obvious higher in the liver cirrhosis tissue cells than in the normal liver tissue cells. Moreover, association analysis results indicated that the minor allele “A” of rs3017895 was positively associated with high risk of liver cirrhosis in the allele model by the chi‐squared test (OR = 1.32, 95%CI = 1.03–1.68, p = 0.028). Logistic regression analyses revealed that the risk of liver cirrhosis was significantly higher in subjects with the G/A‐G/G genotype of rs3017895 than those with A/A genotype under the dominant model and log additive model, and the T/A‐A/A genotype of rs1059122 was positively associated with higher liver cirrhosis than T/T genotype based on dominant model respectively. In addition, haplotype analysis showed that the G‐A haplotype of rs3017895‐rs1059122 of the FAM13A gene significantly increased the risk of liver cirrhosis. Conclusion Our findings demonstrated that the high expression of FAM13A may be associated with an increased risk of liver cirrhosis.
Collapse
Affiliation(s)
- Yingai Zhang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China.,Central Laboratory, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Shunlan Wang
- Central Laboratory, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Chan Wang
- Central Laboratory, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jingchuan Xiao
- Central Laboratory, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Shufang Zhang
- Central Laboratory, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Hailong Zhou
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
23
|
Inchingolo R, Varone F, Sgalla G, Richeldi L. Existing and emerging biomarkers for disease progression in idiopathic pulmonary fibrosis. Expert Rev Respir Med 2018; 13:39-51. [DOI: 10.1080/17476348.2019.1553620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Riccardo Inchingolo
- Pulmonary Medicine Unit, Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Varone
- Pulmonary Medicine Unit, Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giacomo Sgalla
- Pulmonary Medicine Unit, Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Richeldi
- Pulmonary Medicine Unit, Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
24
|
Aguero T, Jin Z, Owens D, Malhotra A, Newman K, Yang J, King ML. Combined functions of two RRMs in Dead-end1 mimic helicase activity to promote nanos1 translation in the germline. Mol Reprod Dev 2018; 85:896-908. [PMID: 30230100 DOI: 10.1002/mrd.23062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/14/2018] [Indexed: 12/31/2022]
Abstract
Dead-end1 (Dnd1) expression is restricted to the vertebrate germline where it is believed to activate translation of messenger RNAs (mRNAs) required to protect and promote that unique lineage. Nanos1 is one such germline mRNA whose translation is blocked by a secondary mRNA structure within the open reading frame (ORF). Dnd1 contains a canonical RNA recognition motif (RRM1) in its N-terminus but also contains a less conserved RRM2. Here we provide a mechanistic picture of the nanos1 mRNA-Dnd1 interaction in the Xenopus germline. We show that RRM1, but not RRM2, is required for binding nanos1. Similar to the zebrafish homolog, Xenopus Dnd1 possesses ATPase activity. Surprisingly, this activity appears to be within the RRM2, different from the C-terminal region where it is found in zebrafish. More importantly, we show that RRM2 is required for nanos1 translation and germline survival. Further, Dnd1 functions as a homodimer and binds nanos1 mRNA just downstream of the secondary structure required for nanos1 repression. We propose a model in which the RRM1 is required to bind nanos1 mRNA while the RRM2 is required to promote translation through the action of ATPase. Dnd1 appears to use RRMs to mimic the function of helicases.
Collapse
Affiliation(s)
- Tristan Aguero
- Department of Cell Biology University of Miami, Miller School of Medicine, Miami, Florida
| | - Zhigang Jin
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Dawn Owens
- Department of Cell Biology University of Miami, Miller School of Medicine, Miami, Florida
| | - Arun Malhotra
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Karen Newman
- Department of Cell Biology University of Miami, Miller School of Medicine, Miami, Florida
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Mary Lou King
- Department of Cell Biology University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
25
|
Tang J, Zhou H, Sahay K, Xu W, Yang J, Zhang W, Chen W. Obesity-associated family with sequence similarity 13, member A (FAM13A) is dispensable for adipose development and insulin sensitivity. Int J Obes (Lond) 2018; 43:1269-1280. [PMID: 30301961 PMCID: PMC6456441 DOI: 10.1038/s41366-018-0222-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/22/2018] [Accepted: 09/02/2018] [Indexed: 11/28/2022]
Abstract
Background Obesity and its associated morbidities represent the major and most rapidly expanding world-wide health epidemic. Recent genome-wide association studies (GWAS) reveal that single nucleotide polymorphism (SNP) variant in the Family with Sequence Similarity 13, Member A (FAM13A) gene is strongly associated with waist–hip ratio (WHR) with adjustment for body mass index (BMI) (WHRadjBMI). However, the function of FAM13A in adipose development and obesity remains largely uncharacterized. Methods The expression of FAM13A in adipose tissue depots were investigated using lean, genetic obese and high fat diet-induced obese (DIO) animal models and during adipocyte differentiation. Stromal vascular cells (SVCs) or 3T3-L1 cells with gain and loss of function of FAM13A were used to determine the involvement of FAM13A in regulating adipocyte differentiation. Adipose development and metabolic homeostasis in Fam13a−/− mice were characterized under normal chow and high fat diet feeding. Results Murine FAM13A expression was nutritionally regulated and dramatically reduced in epididymal and subcutaneous fat in genetic and diet-induced obesity. Its expression was enriched in mature adipocytes and significantly upregulated during murine and human adipogenesis potentially through a peroxisome proliferator-activated receptor-gamma (PPARγ)-dependent mechanism. However, Fam13a−/− mice only exhibited a tendency of higher adiposity and were not protected from DIO and insulin resistance. While Fam13a−/− SVCs maintained normal adipogenesis, overexpression of FAM13A in 3T3-L1 preadipocytes downregulated β-catenin signaling and rendered preadipocytes more susceptible to apoptosis. Moreover, FAM13A overexpression largely blocked adipogenesis induced by a standard hormone cocktail, but adipogenesis can be partially rescued by the addition of PPARγ agonist pioglitazone at an early stage of differentiation. Conclusions Our results suggest that FAM13A is dispensable for adipose development and insulin sensitivity. Yet the expression of FAM13A needs to be tightly controlled in adipose precursor cells for their proper survival and downstream adipogenesis. These data provide novel insights into the link between FAM13A and obesity.
Collapse
Affiliation(s)
- Jiazhen Tang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.,Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hongyi Zhou
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Khushboo Sahay
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Wenqiong Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.,Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
26
|
Therapeutic predictors of neoadjuvant endocrine therapy response in estrogen receptor-positive breast cancer with reference to optimal gene expression profiling. Breast Cancer Res Treat 2018; 172:353-362. [PMID: 30151737 DOI: 10.1007/s10549-018-4933-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/21/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Neoadjuvant endocrine therapy (NAET) for estrogen receptor-positive primary breast cancer causes adequate tumor shrinkage, and is expected to be helpful for breast-conserving surgery, but the adaptation criteria, especially in regard to treatment duration, have never been elucidated. Re-visiting past gene expression profiles, we explored the data for specialized pre-therapeutic predictors and validated the results using our in-house clinical cohorts. METHODS We sorted the genes related to a > 30% tumor volume reduction through NAET from a cDNA microarray data-set of GSE20181, then selected the top 40 genes. We validated these gene expression levels using pre-therapeutic biopsy samples obtained from patients treated with long-term NAET (over 4 months; N = 40). A short-term (2-8 weeks; N = 37) NAET cohort was also validated to clarify whether expression of these genes is also related to a rapid response of Ki67 and PEPI score. RESULTS In the long-term group, higher expression of KRAS, CUL2, FAM13A, ADCK2, and LILRA2 was significantly associated with tumor shrinkage, and KRAS, MMS19, and IVD were related to lower PEPI score (≤ 3). Meanwhile in the short-term group, none of these genes except CUL2 showed a direct correlation with Ki67 reduction or PEPI score. This suggested that tumor shrinkage by NAET might be induced by response to the hypoxic environment (CUL2, FAM13A, KRAS) and activation of tumor immune system (LILRA2), without involving inhibition of proliferation. CONCLUSION Expression of specific genes may allow selection of the most responsive patients for maximum tumor shrinkage with NAET.
Collapse
|
27
|
The rs2609255 polymorphism in the FAM13A gene is reproducibly associated with silicosis susceptibility in a Chinese population. Gene 2018; 661:196-201. [DOI: 10.1016/j.gene.2018.03.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
|
28
|
Zhang Y, Qiu J, Zhang P, Zhang J, Jiang M, Ma Z. Genetic variants in FAM13A and IREB2 are associated with the susceptibility to COPD in a Chinese rural population: a case-control study. Int J Chron Obstruct Pulmon Dis 2018; 13:1735-1745. [PMID: 29872291 PMCID: PMC5973397 DOI: 10.2147/copd.s162241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Genome-wide association studies identified several genomic regions associated with the risk of chronic obstructive pulmonary disease (COPD), including the 4q22 and 15q25 regions. These regions contain the FAM13A and IREB2 genes, which have been associated with COPD but data are lacking for Chinese patients. The objective of the study was to identify new genetic variants in the FAM13A and IREB2 associated with COPD in Northwestern China. Methods This was a case-control study performed in the Ningxia Hui Autonomous Region between January 2014 and December 2016. Patients were grouped as COPD and controls based on FEV1/FVC<70%. Seven tag single-nucleotide polymorphisms (SNPs) in the FAM13A and IREB2 genes were genotyped using the Agena MassARRAY platform. Logistic regression was used to determine the association between SNPs and COPD risk. Results rs17014601 in FAM13A was significantly associated with COPD in the additive (odds ratio [OR]=1.36, 95% confidence interval [CI]: 1.11-1.67, P=0.003), heterozygote (OR=1.76, 95% CI: 1.33-2.32, P=0.0001), and dominant (OR=1.67, 95% CI: 1.28-2.18, P=0.0001) models. Stratified analyses indicated that the risk was higher in never smokers. rs16969858 in IREB2 was significantly associated with COPD but in the univariate analysis only, and the multivariate analysis did not show any association. Conclusion The results suggest that the new variant rs17014601 in the FAM13A gene was significantly associated with COPD risk in a Chinese rural population. Additional studies are required to confirm the role of this variant in COPD development and progression.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jie Qiu
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Peng Zhang
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jin Zhang
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Min Jiang
- National Engineering Research Center for Beijing Biochip Technology, Sub-center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China
| | - Zhanbing Ma
- Department of Medical Genetic and Cell Biology, Ningxia Medical University, Yinchuan, People's Republic of China
| |
Collapse
|
29
|
Wardhana DA, Ikeda K, Barinda AJ, Nugroho DB, Qurania KR, Yagi K, Miyata K, Oike Y, Hirata KI, Emoto N. Family with sequence similarity 13, member A modulates adipocyte insulin signaling and preserves systemic metabolic homeostasis. Proc Natl Acad Sci U S A 2018; 115:1529-1534. [PMID: 29386390 PMCID: PMC5816206 DOI: 10.1073/pnas.1720475115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adipose tissue dysfunction is causally implicated in the impaired metabolic homeostasis associated with obesity; however, detailed mechanisms underlying dysregulated adipocyte functions in obesity remain to be elucidated. Here we searched for genes that provide a previously unknown mechanism in adipocyte metabolic functions and identified family with sequence similarity 13, member A (Fam13a) as a factor that modifies insulin signal cascade in adipocytes. Fam13a was highly expressed in adipose tissue, predominantly in mature adipocytes, and its expression was substantially reduced in adipose tissues of obese compared with lean mice. We revealed that Fam13a accentuated insulin signaling by recruiting protein phosphatase 2A with insulin receptor substrate 1 (IRS1), leading to protection of IRS1 from proteasomal degradation. We further demonstrated that genetic loss of Fam13a exacerbated obesity-related metabolic disorders, while targeted activation of Fam13a in adipocytes ameliorated it in association with altered adipose tissue insulin sensitivity in mice. Our data unveiled a previously unknown mechanism in the regulation of adipocyte insulin signaling by Fam13a and identified its significant role in systemic metabolic homeostasis, shedding light on Fam13a as a pharmacotherapeutic target to treat obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Donytra Arby Wardhana
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo, 6500017 Kobe, Japan
| | - Koji Ikeda
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan;
| | - Agian Jeffilano Barinda
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan
| | - Dhite Bayu Nugroho
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo, 6500017 Kobe, Japan
| | - Kikid Rucira Qurania
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo, 6500017 Kobe, Japan
| | - Keiko Yagi
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, 860-8556 Kumamoto, Japan
- Department of Immunology, Allergy and Vascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, 860-8556 Kumamoto, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, 860-8556 Kumamoto, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo, 6500017 Kobe, Japan
| | - Noriaki Emoto
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo, 6500017 Kobe, Japan
| |
Collapse
|
30
|
Mao Z, Liu C, Lin X, Sun B, Su C. PPP2R5A: A multirole protein phosphatase subunit in regulating cancer development. Cancer Lett 2018; 414:222-229. [DOI: 10.1016/j.canlet.2017.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
|
31
|
Brandsma CA, Timens W. The Translation from Risk Allele to Biological Function in Chronic Obstructive Pulmonary Disease. What's in It for FAM13A? Am J Respir Crit Care Med 2017; 194:130-2. [PMID: 27420356 DOI: 10.1164/rccm.201602-0249ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Corry-Anke Brandsma
- 1 Department of Pathology and Medical Biology and.,2 Groningen Research Institute for Asthma and COPD University of Groningen Groningen, the Netherlands
| | - Wim Timens
- 1 Department of Pathology and Medical Biology and.,2 Groningen Research Institute for Asthma and COPD University of Groningen Groningen, the Netherlands
| |
Collapse
|
32
|
FAM13A is a modifier gene of cystic fibrosis lung phenotype regulating rhoa activity, actin cytoskeleton dynamics and epithelial-mesenchymal transition. J Cyst Fibros 2017; 17:190-203. [PMID: 29239766 DOI: 10.1016/j.jcf.2017.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/04/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) lung disease severity is highly variable and dependent on several factors including genetic modifiers. Family with sequence similarity 13 member A (FAM13A) has been previously associated with lung function in the general population as well as in several chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), we examined whether FAM13A is a modifier gene of CF lung phenotype. We also studied how FAM13A may contribute to the physiopathological mechanisms associated with CF. METHODS We investigated the association of FAM13A with lung function in CF French patients (n=1222) by SNP-wise analysis and Versatile Gene Based Association Study. We also analyzed the consequences of FAM13A knockdown in A549 cells and primary bronchial epithelial cells from CF patients. RESULTS We found that FAM13A is associated with lung function in CF patients. Utilizing lung epithelial A549 cells and primary human bronchial epithelial cells from CF patients we observed that IL-1β and TGFβ reduced FAM13A expression. Knockdown of FAM13A was associated with increased RhoA activity, induction of F-actin stress fibers and regulation of epithelial-mesenchymal transition markers such as E-cadherin, α-smooth muscle actin and vimentin. CONCLUSION Our data show that FAM13A is a modifier gene of CF lung phenotype regulating RhoA activity, actin cytoskeleton dynamics and epithelial-mesenchymal transition.
Collapse
|
33
|
Ziółkowska-Suchanek I, Mosor M, Podralska M, Iżykowska K, Gabryel P, Dyszkiewicz W, Słomski R, Nowak J. FAM13A as a Novel Hypoxia-Induced Gene in Non-Small Cell Lung Cancer. J Cancer 2017; 8:3933-3938. [PMID: 29187867 PMCID: PMC5705994 DOI: 10.7150/jca.20342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/04/2017] [Indexed: 11/24/2022] Open
Abstract
Several genome-wide association studies (GWASs), have identified that FAM13A and IREB2 loci are associated with lung cancer, but the mechanisms by which these genes contribute to lung diseases susceptibility, especially in hypoxia context, are unknown. Hypoxia has been identified as a major negative factor for tumor progression in clinical observation. It has been suggested, that lower oxygen tension, may modulate the IREB2 and FAM13A activity. However, the role of these genes in hypoxia response has not been explained. To precise the role of these genes in hypoxia response, we analyzed the FAM13A and IREB2 expression, in lung cancer cells in vitro and lung cancer tissue fragments cultured ex vivo. Three cell lines: non-small cell lung cancer (A549, CORL-105), human lung fibroblasts (HL) and 37 lung cancer tissue fragments were analyzed. The expression of IREB2, FAM13A and HIF1α after sustained 72 hours of hypoxia versus normal oxygen concentration were analyzed by TaqMan® Gene Expression Assays and Western Blot. The expression of FAM13A was significantly up-regulated by hypoxia in two lung cancer cell lines (A549, CORL-105, P<0.001), both at the level of protein and mRNA, and in lung cancer tissue fragments (P=0.0004). The IREB2 was down-regulated after hypoxia in A549 cancer cells (P<0.001). Conclusions: We found that FAM13A overexpression in human lung cancer cell lines overlapped with hypoxia effect on lung cancer tissues. FAM13A is strongly induced by hypoxia and may be identified as a novel hypoxia-induced gene in non-small cell lung cancer.
Collapse
Affiliation(s)
| | - Maria Mosor
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Katarzyna Iżykowska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Piotr Gabryel
- Department of Thoracic Surgery, University of Medical Sciences, Szamarzewskiego 62, 60-569 Poznań
| | - Wojciech Dyszkiewicz
- Department of Thoracic Surgery, University of Medical Sciences, Szamarzewskiego 62, 60-569 Poznań
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.,Department of Biochemistry and Biotechnology, Poznan University of Life Sciences , Dojazd 11, 60-632 Poznan, Poland
| | - Jerzy Nowak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| |
Collapse
|
34
|
Koopmans T, Gosens R. Revisiting asthma therapeutics: focus on WNT signal transduction. Drug Discov Today 2017; 23:49-62. [PMID: 28890197 DOI: 10.1016/j.drudis.2017.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/20/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
Asthma is a complex disease of the airways that develops as a consequence of both genetic and environmental factors. This interaction has highlighted genes important in early life, particularly those that control lung development, such as the Wingless/Integrase-1 (WNT) signalling pathway. Although aberrant WNT signalling is involved with an array of human conditions, it has received little attention within the context of asthma. Yet it is highly relevant, driving events involved with inflammation, airway remodelling, and airway hyper-responsiveness (AHR). In this review, we revisit asthma therapeutics by examining whether WNT signalling is a valid therapeutic target for asthma.
Collapse
Affiliation(s)
- Tim Koopmans
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, The Netherlands.
| |
Collapse
|
35
|
Ascher K, Elliot SJ, Rubio GA, Glassberg MK. Lung Diseases of the Elderly: Cellular Mechanisms. Clin Geriatr Med 2017; 33:473-490. [PMID: 28991645 DOI: 10.1016/j.cger.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural lung aging is characterized by molecular and cellular changes in multiple lung cell populations. These changes include shorter telomeres, increased expression of cellular senescence markers, increased DNA damage, oxidative stress, apoptosis, and stem cell exhaustion. Aging, combined with the loss of protective repair processes, correlates with the development and incidence of chronic respiratory diseases, including idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease. Ultimately, it is the interplay of age-related changes in biology and the subsequent responses to environmental exposures that largely define the physiology and clinical course of the aging lung.
Collapse
Affiliation(s)
- Kori Ascher
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, 1600 Northwest 10th Avenue RMSB 7056 (D-60), Miami, FL 33136, USA
| | - Sharon J Elliot
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA
| | - Gustavo A Rubio
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA
| | - Marilyn K Glassberg
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, 1600 Northwest 10th Avenue RMSB 7056 (D-60), Miami, FL 33136, USA; DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA; Division of Pediatric Pulmonology, Department of Pediatrics, University of Miami Leonard M. Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA.
| |
Collapse
|
36
|
Hirano C, Ohshimo S, Horimasu Y, Iwamoto H, Fujitaka K, Hamada H, Hattori N, Shime N, Bonella F, Guzman J, Costabel U, Kohno N. FAM13A polymorphism as a prognostic factor in patients with idiopathic pulmonary fibrosis. Respir Med 2016; 123:105-109. [PMID: 28137485 DOI: 10.1016/j.rmed.2016.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/10/2016] [Accepted: 12/13/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Family with sequence similarity 13, member A (FAM13A) variants have been associated with susceptibility to chronic lung diseases. A recent genome-wide association study has shown an association between a polymorphism in FAM13A rs2609255 and idiopathic interstitial pneumonias in a Caucasian population. However, the relationship between rs2609255 polymorphism and prognosis in idiopathic interstitial pneumonias has not been investigated. METHODS Sixty-five patients with idiopathic pulmonary fibrosis (IPF) and 310 Japanese healthy volunteers were enrolled in this study. Genomic DNA was extracted from all subjects. rs2609255 was genotyped by a commercially available assay. The correlations between rs2609255 polymorphism and survival and the occurrence of acute exacerbation were evaluated. RESULTS The frequency of the minor G allele was significantly higher in IPF patients (59.2%) than in controls (41.9%; OR = 1.78, 95% CI; 1.29-2.44, p < 0.001). The rs2609255 major T allele was associated with lower diffusing capacity of carbon monoxide values and higher composite physiologic index after adjustment for age, sex and smoking (β = -7.20, p = 0.005 and β = 5.59, p = 0.009, respectively). In the Kaplan-Meier analysis, the T allele carriers showed a significantly increased mortality compared to the non-carriers (p < 0.05). In the multivariate Cox-proportional hazards analysis, the T allele of rs2609255 was independently associated with poor survival (hazard ratio, 5.37; p = 0.031; 95% confidence interval, 1.16-24.82). CONCLUSIONS FAM13A gene polymorphism showed a significant association with the susceptibility to IPF, with severity of lung function impairment and with poor prognosis.
Collapse
Affiliation(s)
- Chihiro Hirano
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan.
| | - Shinichiro Ohshimo
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan; Department of Emergency and Critical Care Medicine, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan.
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan.
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan.
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan.
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan.
| | - Francesco Bonella
- Interstitial and Rare Lung Disease Unit, Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany.
| | - Josune Guzman
- General and Experimental Pathology, Ruhr University Bochum, Germany.
| | - Ulrich Costabel
- Interstitial and Rare Lung Disease Unit, Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany.
| | - Nobuoki Kohno
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan; Hiroshima Cosmopolitan University, Hiroshima, Japan.
| |
Collapse
|
37
|
Eisenhut F, Heim L, Trump S, Mittler S, Sopel N, Andreev K, Ferrazzi F, Ekici AB, Rieker R, Springel R, Assmann VL, Lechmann M, Koch S, Engelhardt M, Warnecke C, Trufa DI, Sirbu H, Hartmann A, Finotto S. FAM13A is associated with non-small cell lung cancer (NSCLC) progression and controls tumor cell proliferation and survival. Oncoimmunology 2016; 6:e1256526. [PMID: 28197372 DOI: 10.1080/2162402x.2016.1256526] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/27/2016] [Accepted: 10/30/2016] [Indexed: 02/08/2023] Open
Abstract
Genome-wide association studies (GWAS) associated Family with sequence similarity 13, member A (FAM13A) with non-small cell lung cancer (NSCLC) occurrence. Here, we found increased numbers of FAM13A protein expressing cells in the tumoral region of lung tissues from a cohort of patients with NSCLC. Moreover, FAM13A inversely correlated with CTLA4 but directly correlated with HIF1α levels in the control region of these patients. Consistently, FAM13A RhoGAP was found to be associated with T cell effector molecules like HIF1α and Tbet and was downregulated in immunosuppressive CD4+CD25+Foxp3+CTLA4+ T cells. TGFβ, a tumor suppressor factor, as well as siRNA to FAM13A, suppressed both isoforms of FAM13A and inhibited tumor cell proliferation. RNA-Seq analysis confirmed this finding. Moreover, siRNA to FAM13A induced TGFβ levels. Finally, in experimental tumor cell migration, FAM13A was induced and TGFβ accelerated this process by inducing cell migration, HIF1α, and the FAM13A RhoGAP isoform. Furthermore, siRNA to FAM13A inhibited tumor cell proliferation and induced cell migration without affecting HIF1α. In conclusion, FAM13A is involved in tumor cell proliferation and downstream of TGFβ and HIF1α, FAM13A RhoGAP is associated with Th1 gene expression and lung tumor cell migration. These findings identify FAM13A as key regulator of NSCLC growth and progression.
Collapse
Affiliation(s)
- Felix Eisenhut
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Lisanne Heim
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Sonja Trump
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Susanne Mittler
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Nina Sopel
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Katerina Andreev
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Ralf Rieker
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Rebekka Springel
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Vera L Assmann
- Department of Immune Modulation, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Matthias Lechmann
- Department of Immune Modulation, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Sonja Koch
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Marina Engelhardt
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Christina Warnecke
- Department of Medicine 4, Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Denis I Trufa
- Department of Thoracic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Horia Sirbu
- Department of Thoracic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| |
Collapse
|
38
|
Genetic Predisposition to COPD: Are There Any Relevant Genes Determining the Susceptibility to Smoking? ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-981-10-0839-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
39
|
Miller S, Melén E, Merid SK, Hall IP, Sayers I. Genes associated with polymorphic variants predicting lung function are differentially expressed during human lung development. Respir Res 2016; 17:95. [PMID: 27473260 PMCID: PMC4966770 DOI: 10.1186/s12931-016-0410-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/20/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Recent meta-analyses of genome-wide association studies have identified single nucleotide polymorphisms (SNPs) within/near 54 genes associated with lung function measures. Current understanding of the contribution of these genes to human lung development is limited. We set out to further define i) the expression profile of these genes during human lung development using a unique set of resources to examine both mRNA and protein expression and ii) the link between key polymorphisms and genes using expression quantitative trait loci (eQTL) approaches. METHODS The mRNA expression profile of lung function associated genes across pseudoglandular and canalicular stages of lung development were determined using expression array data of 38 human fetal lungs. eQTLs were investigated for selected genes using blood cell and lung tissue data. Immunohistochemistry of the top 5 candidates was performed in a panel of 24 fetal lung samples. RESULTS Twenty-nine lung function associated genes were differentially expressed during lung development at the mRNA level. The greatest magnitude of effect was observed for 5 genes; TMEM163, FAM13A and HHIP which had increasing expression and CDC123 and PTCH1 with decreased expression across developmental stages. Focussed eQTL analyses investigating SNPs in these five loci identified several cis-eQTL's. Protein expression of TMEM163 increased and CDC123 decreased with fetal lung age in agreement with mRNA data. Protein expression in FAM13A, HHIP and PTCH1 remained relatively constant throughout lung development. CONCLUSIONS We have identified that > 50 % of lung function associated genes show evidence of differential expression during lung development and we show that in particular TMEM163 and CDC123 are differentially expressed at both the mRNA and protein levels. Our data provides a systematic evaluation of lung function associated genes in this context and offers some insight into the potential role of several of these genes in contributing to human lung development.
Collapse
Affiliation(s)
- S Miller
- Division of Respiratory Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
| | - E Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children's Hospital, Stockholm, Sweden
| | - S K Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - I P Hall
- Division of Respiratory Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - I Sayers
- Division of Respiratory Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
40
|
Hertz EPT, Kruse T, Davey NE, López-Méndez B, Sigurðsson JO, Montoya G, Olsen JV, Nilsson J. A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase. Mol Cell 2016; 63:686-695. [PMID: 27453045 DOI: 10.1016/j.molcel.2016.06.024] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/05/2016] [Accepted: 06/15/2016] [Indexed: 01/17/2023]
Abstract
Dynamic protein phosphorylation is a fundamental mechanism regulating biological processes in all organisms. Protein phosphatase 2A (PP2A) is the main source of phosphatase activity in the cell, but the molecular details of substrate recognition are unknown. Here, we report that a conserved surface-exposed pocket on PP2A regulatory B56 subunits binds to a consensus sequence on interacting proteins, which we term the LxxIxE motif. The composition of the motif modulates the affinity for B56, which in turn determines the phosphorylation status of associated substrates. Phosphorylation of amino acid residues within the motif increases B56 binding, allowing integration of kinase and phosphatase activity. We identify conserved LxxIxE motifs in essential proteins throughout the eukaryotic domain of life and in human viruses, suggesting that the motifs are required for basic cellular function. Our study provides a molecular description of PP2A binding specificity with broad implications for understanding signaling in eukaryotes.
Collapse
Affiliation(s)
- Emil Peter Thrane Hertz
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Thomas Kruse
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland
| | - Blanca López-Méndez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jón Otti Sigurðsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Guillermo Montoya
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
41
|
Jiang Z, Lao T, Qiu W, Polverino F, Gupta K, Guo F, Mancini JD, Naing ZZC, Cho MH, Castaldi PJ, Sun Y, Yu J, Laucho-Contreras ME, Kobzik L, Raby BA, Choi AMK, Perrella MA, Owen CA, Silverman EK, Zhou X. A Chronic Obstructive Pulmonary Disease Susceptibility Gene, FAM13A, Regulates Protein Stability of β-Catenin. Am J Respir Crit Care Med 2016; 194:185-97. [PMID: 26862784 PMCID: PMC5003213 DOI: 10.1164/rccm.201505-0999oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 01/21/2016] [Indexed: 12/28/2022] Open
Abstract
RATIONALE A genetic locus within the FAM13A gene has been consistently associated with chronic obstructive pulmonary disease (COPD) in genome-wide association studies. However, the mechanisms by which FAM13A contributes to COPD susceptibility are unknown. OBJECTIVES To determine the biologic function of FAM13A in human COPD and murine COPD models and discover the molecular mechanism by which FAM13A influences COPD susceptibility. METHODS Fam13a null mice (Fam13a(-/-)) were generated and exposed to cigarette smoke. The lung inflammatory response and airspace size were assessed in Fam13a(-/-) and Fam13a(+/+) littermate control mice. Cellular localization of FAM13A protein and mRNA levels of FAM13A in COPD lungs were assessed using immunofluorescence, Western blotting, and reverse transcriptase-polymerase chain reaction, respectively. Immunoprecipitation followed by mass spectrometry identified cellular proteins that interact with FAM13A to reveal insights on FAM13A's function. MEASUREMENTS AND MAIN RESULTS In murine and human lungs, FAM13A is expressed in airway and alveolar type II epithelial cells and macrophages. Fam13a null mice (Fam13a(-/-)) were resistant to chronic cigarette smoke-induced emphysema compared with Fam13a(+/+) mice. In vitro, FAM13A interacts with protein phosphatase 2A and recruits protein phosphatase 2A with glycogen synthase kinase 3β and β-catenin, inducing β-catenin degradation. Fam13a(-/-) mice were also resistant to elastase-induced emphysema, and this resistance was reversed by coadministration of a β-catenin inhibitor, suggesting that FAM13A could increase the susceptibility of mice to emphysema development by inhibiting β-catenin signaling. Moreover, human COPD lungs had decreased protein levels of β-catenin and increased protein levels of FAM13A. CONCLUSIONS We show that FAM13A may influence COPD susceptibility by promoting β-catenin degradation.
Collapse
Affiliation(s)
- Zhiqiang Jiang
- Channing Division of Network Medicine, Department of Medicine
| | - Taotao Lao
- Channing Division of Network Medicine, Department of Medicine
| | - Weiliang Qiu
- Channing Division of Network Medicine, Department of Medicine
| | - Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Kushagra Gupta
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Feng Guo
- Channing Division of Network Medicine, Department of Medicine
| | - John D. Mancini
- Channing Division of Network Medicine, Department of Medicine
| | | | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Peter J. Castaldi
- Channing Division of Network Medicine, Department of Medicine
- Division of General Internal Medicine, Department of Medicine, and
| | - Yang Sun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Jane Yu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Lester Kobzik
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | - Benjamin A. Raby
- Channing Division of Network Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Mark A. Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Pediatric Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| |
Collapse
|
42
|
Translating Lung Function Genome-Wide Association Study (GWAS) Findings. ADVANCES IN GENETICS 2016; 93:57-145. [DOI: 10.1016/bs.adgen.2015.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Maertens GN. B'-protein phosphatase 2A is a functional binding partner of delta-retroviral integrase. Nucleic Acids Res 2015; 44:364-76. [PMID: 26657642 PMCID: PMC4705670 DOI: 10.1093/nar/gkv1347] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 11/19/2015] [Indexed: 12/31/2022] Open
Abstract
To establish infection, a retrovirus must insert a DNA copy of its RNA genome into host chromatin. This reaction is catalysed by the virally encoded enzyme integrase (IN) and is facilitated by viral genus-specific host factors. Herein, cellular serine/threonine protein phosphatase 2A (PP2A) is identified as a functional IN binding partner exclusive to δ-retroviruses, including human T cell lymphotropic virus type 1 and 2 (HTLV-1 and HTLV-2) and bovine leukaemia virus (BLV). PP2A is a heterotrimer composed of a scaffold, catalytic and one of any of four families of regulatory subunits, and the interaction is specific to the B' family of the regulatory subunits. B'-PP2A and HTLV-1 IN display nuclear co-localization, and the B' subunit stimulates concerted strand transfer activity of δ-retroviral INs in vitro. The protein-protein interaction interface maps to a patch of highly conserved residues on B', which when mutated render B' incapable of binding to and stimulating HTLV-1 and -2 IN strand transfer activity.
Collapse
Affiliation(s)
- Goedele N Maertens
- Division of Infectious Diseases, St. Mary's campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
| |
Collapse
|
44
|
Increased Transcript Complexity in Genes Associated with Chronic Obstructive Pulmonary Disease. PLoS One 2015; 10:e0140885. [PMID: 26480348 PMCID: PMC4610675 DOI: 10.1371/journal.pone.0140885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies aim to correlate genotype with phenotype. Many common diseases including Type II diabetes, Alzheimer’s, Parkinson’s and Chronic Obstructive Pulmonary Disease (COPD) are complex genetic traits with hundreds of different loci that are associated with varied disease risk. Identifying common features in the genes associated with each disease remains a challenge. Furthermore, the role of post-transcriptional regulation, and in particular alternative splicing, is still poorly understood in most multigenic diseases. We therefore compiled comprehensive lists of genes associated with Type II diabetes, Alzheimer’s, Parkinson’s and COPD in an attempt to identify common features of their corresponding mRNA transcripts within each gene set. The SERPINA1 gene is a well-recognized genetic risk factor of COPD and it produces 11 transcript variants, which is exceptional for a human gene. This led us to hypothesize that other genes associated with COPD, and complex disorders in general, are highly transcriptionally diverse. We found that COPD-associated genes have a statistically significant enrichment in transcript complexity stemming from a disproportionately high level of alternative splicing, however, Type II Diabetes, Alzheimer’s and Parkinson’s disease genes were not significantly enriched. We also identified a subset of transcriptionally complex COPD-associated genes (~40%) that are differentially expressed between mild, moderate and severe COPD. Although the genes associated with other lung diseases are not extensively documented, we found preliminary data that idiopathic pulmonary disease genes, but not cystic fibrosis modulators, are also more transcriptionally complex. Interestingly, complex COPD transcripts are more often the product of alternative acceptor site usage. To verify the biological importance of these alternative transcripts, we used RNA-sequencing analyses to determine that COPD-associated genes are frequently expressed in lung and liver tissues and are regulated in a tissue-specific manner. Additionally, many complex COPD-associated genes are spliced differently between COPD and non-COPD patients. Our analysis therefore suggests that post-transcriptional regulation, particularly alternative splicing, is an important feature specific to COPD disease etiology that warrants further investigation.
Collapse
|
45
|
Abstract
COPD is a common complex disease characterized by progressive airflow limitation. Several genome-wide association studies (GWASs) have discovered genes that are associated with COPD. Recently, candidate genes for COPD identified by GWASs include CHRNA3/5 (cholinergic nicotine receptor alpha 3/5), IREB2 (iron regulatory binding protein 2), HHIP (hedgehog-interacting protein), FAM13A (family with sequence similarity 13, member A), and AGER (advanced glycosylation end product–specific receptor). Their association with COPD susceptibility has been replicated in multiple populations. Since these candidate genes have not been considered in COPD, their pathological roles are still largely unknown. Herein, we review some evidences that they can be effective drug targets or serve as biomarkers for diagnosis or subtyping. However, more study is required to understand the functional roles of these candidate genes. Future research is needed to characterize the effect of genetic variants, validate gene function in humans and model systems, and elucidate the genes’ transcriptional and posttranscriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, South Korea
| | - Sang Do Lee
- Department of Pulmonary and Critical Care Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
46
|
Ziółkowska-Suchanek I, Mosor M, Gabryel P, Grabicki M, Żurawek M, Fichna M, Strauss E, Batura-Gabryel H, Dyszkiewicz W, Nowak J. Susceptibility loci in lung cancer and COPD: association of IREB2 and FAM13A with pulmonary diseases. Sci Rep 2015; 5:13502. [PMID: 26310313 PMCID: PMC4550915 DOI: 10.1038/srep13502] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/29/2015] [Indexed: 12/23/2022] Open
Abstract
Genome-wide association studies have identified loci at 15q25 (IREB2) and 4q22 (FAM13A), associated with lung cancer (LC) and chronic obstructive pulmonary disease (COPD). The aim of our research was to determine the association of IREB2 and FAM13A SNPs with LC and severe/very severe COPD patients. We examined IREB2 variants (rs2568494, rs2656069, rs10851906, rs13180) and FAM13A (rs1903003, rs7671167, rs2869967) among 1.141 participants (468 LC, 149 COPD, 524 smoking controls). The frequency of the minor IREB2 rs2568494 AA genotype, was higher in LC vs controls (P = 0.0081, OR = 1.682). The FAM13A rs2869967 was associated with COPD (minor CC genotype: P = 0.0007, OR = 2.414). The rs1903003, rs7671167 FAM13A variants confer a protective effect on COPD (both P < 0.002, OR < 0.405). Haplotype-based tests identified an association of the IREB2 AAAT haplotype with LC (P = 0.0021, OR = 1.513) and FAM13A TTC with COPD (P = 0.0013, OR = 1.822). Cumulative genetic risk score analyses (CGRS), derived by adding risk alleles, revealed that the risk for COPD increased with the growing number of the FAM13A risk alleles. OR (95% CI) for carriers of ≥5 risk alleles reached 2.998 (1.8 to 4.97) compared to the controls. This study confirms that the IREB2 variants contribute to an increased risk of LC, whereas FAM13A predisposes to increased susceptibility to COPD.
Collapse
Affiliation(s)
| | - Maria Mosor
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, Poznań, Poland
| | - Piotr Gabryel
- Department of Thoracic Surgery, University of Medical Sciences, 62 Szamarzewskiego Street, 60-569 Poznań, Poland
| | - Marcin Grabicki
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznań University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poland
| | - Magdalena Żurawek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, Poznań, Poland
| | - Marta Fichna
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, Poznań, Poland.,Department of Endocrinology, Metabolism and Internal Diseases, Poznań University of Medical Sciences, 49 Przybyszewskiego Street, Poland
| | - Ewa Strauss
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, Poznań, Poland.,Laboratory for Basic Research and Translational Medicine in Vascular Diseases, Clinic of Internal and Vascular Surgery, Poznan University of Medical Sciences, Dluga ½ Street, 61-848 Poland
| | - Halina Batura-Gabryel
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznań University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poland
| | - Wojciech Dyszkiewicz
- Department of Thoracic Surgery, University of Medical Sciences, 62 Szamarzewskiego Street, 60-569 Poznań, Poland
| | - Jerzy Nowak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, Poznań, Poland
| |
Collapse
|