1
|
Koundinya N, Aguilar RM, Wetzel K, Tomasso MR, Nagarajan P, McGuirk ER, Padrick SB, Goode BL. Two ligands of Arp2/3 complex, yeast coronin and GMF, interact and synergize in pruning branched actin networks. J Biol Chem 2025; 301:108191. [PMID: 39826693 PMCID: PMC11872438 DOI: 10.1016/j.jbc.2025.108191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
The rapid turnover of branched actin networks underlies key in vivo processes such as lamellipodial extension, endocytosis, phagocytosis, and intracellular transport. However, our understanding of the mechanisms used to dissociate, or "prune," branched filaments has remained limited. Glia maturation factor (GMF) is a cofilin family protein that binds to the Arp2/3 complex and catalyzes branch dissociation. Here, we show that another ligand of Arp2/3 complex, Saccharomyces cerevisiae coronin (Crn1), enhances Gmf1-mediated debranching by 8- to 10-fold, and that these effects depend on Arp2/3-binding "C" and "A" motifs in Crn1. Further, we show that Crn1 directly binds with high affinity (KD = 1.4 nM) to S. cerevisiae GMF (Gmf1), and together they form a stable ternary Crn1-Gmf1-Arp2/3 complex in solution. Using single-molecule analysis, we show that Gmf1 binds transiently and multiple times to F-actin branch junctions prior to debranching. These and other results suggest a mechanism of mutual recruitment, in which Crn1 increases the on-rate of Gmf1 for branch junctions and Gmf1 blocks Crn1 binding to actin filament sides, increasing its availability to bind branch junctions. Taken together, these observations reveal an unanticipated mechanism in which two distinct ligands of the Arp2/3 complex bind to each other and synergize to prune actin branches.
Collapse
Affiliation(s)
- Neha Koundinya
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Rey M Aguilar
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Kathryn Wetzel
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Meagan R Tomasso
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Priyashree Nagarajan
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Emma R McGuirk
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Shae B Padrick
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA.
| |
Collapse
|
2
|
Mariano V, Kanellopoulos AK, Ricci C, Di Marino D, Borrie SC, Dupraz S, Bradke F, Achsel T, Legius E, Odent S, Billuart P, Bienvenu T, Bagni C. Intellectual Disability and Behavioral Deficits Linked to CYFIP1 Missense Variants Disrupting Actin Polymerization. Biol Psychiatry 2024; 95:161-174. [PMID: 37704042 DOI: 10.1016/j.biopsych.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND 15q11.2 deletions and duplications have been linked to autism spectrum disorder, schizophrenia, and intellectual disability. Recent evidence suggests that dysfunctional CYFIP1 (cytoplasmic FMR1 interacting protein 1) contributes to the clinical phenotypes observed in individuals with 15q11.2 deletion/duplication syndrome. CYFIP1 plays crucial roles in neuronal development and brain connectivity, promoting actin polymerization and regulating local protein synthesis. However, information about the impact of single nucleotide variants in CYFIP1 on neurodevelopmental disorders is limited. METHODS Here, we report a family with 2 probands exhibiting intellectual disability, autism spectrum disorder, spastic tetraparesis, and brain morphology defects and who carry biallelic missense point mutations in the CYFIP1 gene. We used skin fibroblasts from one of the probands, the parents, and typically developing individuals to investigate the effect of the variants on the functionality of CYFIP1. In addition, we generated Drosophila knockin mutants to address the effect of the variants in vivo and gain insight into the molecular mechanism that underlies the clinical phenotype. RESULTS Our study revealed that the 2 missense variants are in protein domains responsible for maintaining the interaction within the wave regulatory complex. Molecular and cellular analyses in skin fibroblasts from one proband showed deficits in actin polymerization. The fly model for these mutations exhibited abnormal brain morphology and F-actin loss and recapitulated the core behavioral symptoms, such as deficits in social interaction and motor coordination. CONCLUSIONS Our findings suggest that the 2 CYFIP1 variants contribute to the clinical phenotype in the probands that reflects deficits in actin-mediated brain development processes.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Human Genetics, KU Leuven, Belgium
| | | | - Carlotta Ricci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center, Polytechnic University of Marche, Ancona, Italy; Department of Neuroscience, Neuronal Death and Neuroprotection Unit, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| | | | - Sebastian Dupraz
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Frank Bradke
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Eric Legius
- Department of Human Genetics, KU Leuven, Belgium
| | - Sylvie Odent
- Service de Génétique Clinique, Centre Labellisé pour les Anomalies du Développement Ouest, Centre Hospitalier Universitaire de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS, UMR 6290, Université de Rennes, ERN-ITHACA, France
| | - Pierre Billuart
- Institut de Psychiatrie et de Neurosciences de Paris, Institut National de la Santé et de la Recherche Médicale U1266, Université de Paris Cité (UPC), Paris, France
| | - Thierry Bienvenu
- Institut de Psychiatrie et de Neurosciences de Paris, Institut National de la Santé et de la Recherche Médicale U1266, Université de Paris Cité (UPC), Paris, France
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
3
|
Wirshing AC, Rodriguez SG, Goode BL. Evolutionary tuning of barbed end competition allows simultaneous construction of architecturally distinct actin structures. J Cell Biol 2023; 222:213854. [PMID: 36729023 PMCID: PMC9929936 DOI: 10.1083/jcb.202209105] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
How cells simultaneously assemble actin structures of distinct sizes, shapes, and filamentous architectures is still not well understood. Here, we used budding yeast as a model to investigate how competition for the barbed ends of actin filaments might influence this process. We found that while vertebrate capping protein (CapZ) and formins can simultaneously associate with barbed ends and catalyze each other's displacement, yeast capping protein (Cap1/2) poorly displaces both yeast and vertebrate formins. Consistent with these biochemical differences, in vivo formin-mediated actin cable assembly was strongly attenuated by the overexpression of CapZ but not Cap1/2. Multiwavelength live cell imaging further revealed that actin patches in cap2∆ cells acquire cable-like features over time, including recruitment of formins and tropomyosin. Together, our results suggest that the activities of S. cerevisiae Cap1/2 have been tuned across evolution to allow robust cable assembly by formins in the presence of high cytosolic levels of Cap1/2, which conversely limit patch growth and shield patches from formins.
Collapse
Affiliation(s)
- Alison C.E. Wirshing
- https://ror.org/05abbep66Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Sofia Gonzalez Rodriguez
- https://ror.org/05abbep66Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Bruce L. Goode
- https://ror.org/05abbep66Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA,Correspondence to Bruce L. Goode:
| |
Collapse
|
4
|
Hogestyn JM, Salois G, Xie L, Apa C, Youngyunpipatkul J, Pröschel C, Mayer-Pröschel M. Expression of the human herpesvirus 6A latency-associated transcript U94A impairs cytoskeletal functions in human neural cells. Mol Cell Neurosci 2022; 123:103770. [PMID: 36055520 PMCID: PMC10124163 DOI: 10.1016/j.mcn.2022.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 12/30/2022] Open
Abstract
Many neurodegenerative diseases have a multifactorial etiology and variable course of progression that cannot be explained by current models. Neurotropic viruses have long been suggested to play a role in these diseases, although their exact contributions remain unclear. Human herpesvirus 6A (HHV-6A) is one of the most common viruses detected in the adult brain, and has been clinically associated with multiple sclerosis (MS), and, more recently, Alzheimer's disease (AD). HHV-6A is a ubiquitous viral pathogen capable of infecting glia and neurons. Primary infection in childhood is followed by the induction of latency, characterized by expression of the U94A viral transcript in the absence of viral replication. Here we examine the effects of U94A on cells of the central nervous system. We found that U94A expression inhibits the migration and impairs cytoplasmic maturation of human oligodendrocyte precursor cells (OPCs) without affecting their viability, a phenotype that may contribute to the failure of remyelination seen in many patients with MS. A subsequent proteomics analysis of U94A expression OPCs revealed altered expression of genes involved in tubulin associated cytoskeletal regulation. As HHV-6A seems to significantly be associated with early AD pathology, we extended our initially analysis of the impact of U94A on human derived neurons. We found that U94A expression inhibits neurite outgrowth of primary human cortical neurons and impairs synapse maturation. Based on these data we suggest that U94A expression by latent HHV-6A in glial cells and neurons renders them susceptible to dysfunction and degeneration. Therefore, latent viral infections of the brain represent a unique pathological risk factor that may contribute to disease processes.
Collapse
Affiliation(s)
- Jessica M Hogestyn
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Garrick Salois
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Li Xie
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Connor Apa
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Stem cell and Regenerative Medicine Institute, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Justin Youngyunpipatkul
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Stem cell and Regenerative Medicine Institute, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA,.
| |
Collapse
|
5
|
Kramer DA, Piper HK, Chen B. WASP family proteins: Molecular mechanisms and implications in human disease. Eur J Cell Biol 2022; 101:151244. [PMID: 35667337 PMCID: PMC9357188 DOI: 10.1016/j.ejcb.2022.151244] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in regulating actin cytoskeletal dynamics in a wide range of cellular processes. Genetic mutations or misregulation of these proteins are tightly associated with many diseases. The WASP-family proteins act by transmitting various upstream signals to their conserved WH2-Central-Acidic (WCA) peptide sequence at the C-terminus, which in turn binds to the Arp2/3 complex to stimulate the formation of branched actin networks at membranes. Despite this common feature, the regulatory mechanisms and cellular functions of distinct WASP-family proteins are very different. Here, we summarize and clarify our current understanding of WASP-family proteins and how disruption of their functions is related to human disease.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Hannah K Piper
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
6
|
Kasioulis I, Dady A, James J, Prescott A, Halley PA, Storey KG. A lateral protrusion latticework connects neuroepithelial cells and is regulated during neurogenesis. J Cell Sci 2022; 135:274540. [PMID: 35217862 PMCID: PMC8995095 DOI: 10.1242/jcs.259897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
Dynamic contacts between cells within the developing neuroepithelium are poorly understood but play important roles in cell and tissue morphology and cell signalling. Here, using live-cell imaging and electron microscopy we reveal multiple protrusive structures in neuroepithelial apical endfeet of the chick embryonic spinal cord, including sub-apical protrusions that extend laterally within the tissue, and observe similar structures in human neuroepithelium. We characterise the dynamics, shape and cytoskeleton of these lateral protrusions and distinguish them from cytonemes, filopodia and tunnelling nanotubes. We demonstrate that lateral protrusions form a latticework of membrane contacts between non-adjacent cells, depend on actin but not microtubule dynamics, and provide a lamellipodial-like platform for further extending fine actin-dependent filipodia. We find that lateral protrusions depend on the actin-binding protein WAVE1 (also known as WASF1): misexpression of mutant WAVE1 attenuated protrusion and generated a round-ended apical endfoot morphology. However, this did not alter apico-basal cell polarity or tissue integrity. During normal neuronal delamination, lateral protrusions were withdrawn, but precocious protrusion loss induced by mutant WAVE1 was insufficient to trigger neurogenesis. This study uncovers a new form of cell-cell contact within the developing neuroepithelium, regulation of which prefigures neuronal delamination. This article has an associated First Person interview with the first author of the paper.
Collapse
|
7
|
Hoeprich GJ, Sinclair AN, Shekhar S, Goode BL. Single-molecule imaging of IQGAP1 regulating actin filament dynamics. Mol Biol Cell 2021; 33:ar2. [PMID: 34731043 PMCID: PMC8886817 DOI: 10.1091/mbc.e21-04-0211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
IQGAP is a conserved family of actin-binding proteins with essential roles in cell motility, cytokinesis, and cell adhesion, yet there remains a limited understanding of how IQGAP proteins directly influence actin filament dynamics. To close this gap, we used single-molecule and single-filament total internal reflection fluorescence microscopy to observe IQGAP regulating actin dynamics in real time. To our knowledge, this is the first study to do so. Our results demonstrate that full-length human IQGAP1 forms dimers that stably bind to actin filament sides and transiently cap barbed ends. These interactions organize filaments into thin bundles, suppress barbed end growth, and inhibit filament disassembly. Surprisingly, each activity depends on distinct combinations of IQGAP1 domains and/or dimerization, suggesting that different mechanisms underlie each functional effect on actin. These observations have important implications for how IQGAP functions as an actin regulator in vivo and how it may be regulated in different biological settings.
Collapse
Affiliation(s)
- Gregory J Hoeprich
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Amy N Sinclair
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Shashank Shekhar
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA.,Present address: Departments of Physics and Cell Biology, Emory University, Atlanta, GA 30322
| | - Bruce L Goode
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
8
|
Mughees M, Bano F, Wajid S. Mechanism of WASP and WAVE family proteins in the progression of prostate cancer. PROTOPLASMA 2021; 258:683-693. [PMID: 33471226 DOI: 10.1007/s00709-021-01608-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed and third lethal cause of death from cancer in men worldwide. Despite the availability of vast treatment procedures, still the high occurrence of invasion and metastasis of PCa are reported in cancer patients. The WASP (Wiskott-Aldrich syndrome protein) and WAVE (WASP family verprolin homologous protein) family of proteins are actin cytoskeleton regulatory proteins, reported to enhance cancer cell invasion and migration in prostate cancer. Hence, this review sheds light on the studies that explored the potential role of WASP and WAVE family of proteins in invasion and metastasis of prostate cancer. The research articles explored for the completion of this review were mostly from PubMed and Google Scholar by using the appropriate keywords for indexing. The conserved function of WASP and WAVE protein family is to receive the upstream signals from the Rho GTPase family and transmit them to activate the Arp2/3 complex that leads to rapid actin polymerization at leading edge of cells, which is crucial for PCa metastasis. Therefore, targeting these proteins could reflect a very interesting therapeutic opportunity to combat prostate cancer.
Collapse
Affiliation(s)
- Mohd Mughees
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Faizia Bano
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
9
|
Tang Q, Schaks M, Koundinya N, Yang C, Pollard LW, Svitkina TM, Rottner K, Goode BL. WAVE1 and WAVE2 have distinct and overlapping roles in controlling actin assembly at the leading edge. Mol Biol Cell 2020; 31:2168-2178. [PMID: 32697617 PMCID: PMC7550694 DOI: 10.1091/mbc.e19-12-0705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SCAR/WAVE proteins and Arp2/3 complex assemble branched actin networks at the leading edge. Two isoforms of SCAR/WAVE, WAVE1 and WAVE2, reside at the leading edge, yet it has remained unclear whether they perform similar or distinct roles. Further, there have been conflicting reports about the Arp2/3-independent biochemical activities of WAVE1 on actin filament elongation. To investigate this in vivo, we knocked out WAVE1 and WAVE2 genes, individually and together, in B16-F1 melanoma cells. We demonstrate that WAVE1 and WAVE2 are redundant for lamellipodia formation and motility. However, there is a significant decrease in the rate of leading edge actin extension in WAVE2 KO cells, and an increase in WAVE1 KO cells. The faster rates of actin extension in WAVE1 KO cells are offset by faster retrograde flow, and therefore do not translate into faster lamellipodium protrusion. Thus, WAVE1 restricts the rate of actin extension at the leading edge, and appears to couple actin networks to the membrane to drive protrusion. Overall, these results suggest that WAVE1 and WAVE2 have redundant roles in promoting Arp2/3-dependent actin nucleation and lamellipodia formation, but distinct roles in controlling actin network extension and harnessing network growth to cell protrusion.
Collapse
Affiliation(s)
- Qing Tang
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Matthias Schaks
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Neha Koundinya
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| |
Collapse
|
10
|
Goode BL, Sweeney MO, Eskin JA. GMF as an Actin Network Remodeling Factor. Trends Cell Biol 2018; 28:749-760. [PMID: 29779865 DOI: 10.1016/j.tcb.2018.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 10/24/2022]
Abstract
Glia maturation factor (GMF) has recently been established as a regulator of the actin cytoskeleton with a unique role in remodeling actin network architecture. Conserved from yeast to mammals, GMF is one of five members of the ADF-H family of actin regulatory proteins, which includes ADF/cofilin, Abp1/Drebrin, Twinfilin, and Coactosin. GMF does not bind actin, but instead binds the Arp2/3 complex with high affinity. Through this association, GMF catalyzes the debranching of actin filament networks and inhibits actin nucleation by Arp2/3 complex. Here, we discuss GMF's emerging role in controlling actin filament spatial organization and dynamics underlying cell motility, endocytosis, and other biological processes. Further, we attempt to reconcile these functions with its earlier characterization as a cell differentiation factor.
Collapse
Affiliation(s)
- Bruce L Goode
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454 USA.
| | - Meredith O Sweeney
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454 USA
| | - Julian A Eskin
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454 USA
| |
Collapse
|
11
|
Popinako A, Antonov M, Dibrova D, Chemeris A, Sokolova OS. Analysis of the interactions between GMF and Arp2/3 complex in two binding sites by molecular dynamics simulation. Biochem Biophys Res Commun 2018; 496:529-535. [PMID: 29339159 DOI: 10.1016/j.bbrc.2018.01.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 12/17/2022]
Abstract
The Arp2/3 complex plays a key role in nucleating actin filaments branching. The glia maturation factor (GMF) competes with activators for interacting with the Arp2/3 complex and initiates the debranching of actin filaments. In this study, we performed a comparative analysis of interactions between GMF and the Arp2/3 complex and identified new amino acid residues involved in GMF binding to the Arp2/3 complex at two separate sites, revealed by X-ray and single particle EM techniques. Using molecular dynamics simulations we demonstrated the quantitative and qualitative changes in hydrogen bonds upon binding with GMF. We identified the specific amino acid residues in GMF and Arp2/3 complex that stabilize the interactions and estimated the mean force profile for the GMF using umbrella sampling. Phylogenetic and structural analyses of the recently defined GMF binding site on the Arp3 subunit indicate a new mechanism for Arp2/3 complex inactivation that involves interactions between the Arp2/3 complex and GMF at two binding sites.
Collapse
Affiliation(s)
- A Popinako
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of RAS, 33 Leninsky Ave, bld. 2, Moscow, 119071, Russia
| | - M Antonov
- M.K. Ammosov North-Eastern Federal University, 58 Belinskiy str, suite 312, Yakutsk, 677980, Republic of Sakha (Yakutia), Russia
| | - D Dibrova
- Lomonosov Moscow State University, Faculty of Biology, 1 Leninskie gory, bld 12, Moscow, 119234, Russia
| | - A Chemeris
- Lomonosov Moscow State University, Faculty of Biology, 1 Leninskie gory, bld 12, Moscow, 119234, Russia
| | - O S Sokolova
- Lomonosov Moscow State University, Faculty of Biology, 1 Leninskie gory, bld 12, Moscow, 119234, Russia.
| |
Collapse
|
12
|
Bieling P, Hansen SD, Akin O, Li TD, Hayden CC, Fletcher DA, Mullins RD. WH2 and proline-rich domains of WASP-family proteins collaborate to accelerate actin filament elongation. EMBO J 2017; 37:102-121. [PMID: 29141912 PMCID: PMC5753033 DOI: 10.15252/embj.201797039] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 02/04/2023] Open
Abstract
WASP‐family proteins are known to promote assembly of branched actin networks by stimulating the filament‐nucleating activity of the Arp2/3 complex. Here, we show that WASP‐family proteins also function as polymerases that accelerate elongation of uncapped actin filaments. When clustered on a surface, WASP‐family proteins can drive branched actin networks to grow much faster than they could by direct incorporation of soluble monomers. This polymerase activity arises from the coordinated action of two regulatory sequences: (i) a WASP homology 2 (WH2) domain that binds actin, and (ii) a proline‐rich sequence that binds profilin–actin complexes. In the absence of profilin, WH2 domains are sufficient to accelerate filament elongation, but in the presence of profilin, proline‐rich sequences are required to support polymerase activity by (i) bringing polymerization‐competent actin monomers in proximity to growing filament ends, and (ii) promoting shuttling of actin monomers from profilin–actin complexes onto nearby WH2 domains. Unoccupied WH2 domains transiently associate with free filament ends, preventing their growth and dynamically tethering the branched actin network to the WASP‐family proteins that create it. Collaboration between WH2 and proline‐rich sequences thus strikes a balance between filament growth and tethering. Our work expands the number of critical roles that WASP‐family proteins play in the assembly of branched actin networks to at least three: (i) promoting dendritic nucleation; (ii) linking actin networks to membranes; and (iii) accelerating filament elongation.
Collapse
Affiliation(s)
- Peter Bieling
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA .,Department of Bioengineering & Biophysics Program, University of California, Berkeley, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Scott D Hansen
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Orkun Akin
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Tai-De Li
- Department of Bioengineering & Biophysics Program, University of California, Berkeley, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Daniel A Fletcher
- Department of Bioengineering & Biophysics Program, University of California, Berkeley, CA, USA .,Chan Zuckerberg Biohub, San Francisco, CA, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - R Dyche Mullins
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
13
|
Hilliard TS, Miklossy G, Chock C, Yue P, Williams P, Turkson J. 15α-methoxypuupehenol Induces Antitumor Effects In Vitro and In Vivo against Human Glioblastoma and Breast Cancer Models. Mol Cancer Ther 2017; 16:601-613. [PMID: 28069875 DOI: 10.1158/1535-7163.mct-16-0291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 12/25/2016] [Accepted: 12/28/2016] [Indexed: 01/10/2023]
Abstract
Studies with 15α-methoxypuupehenol (15α-MP), obtained from the extracts of Hyrtios species, identified putative targets that are associated with its antitumor effects against human glioblastoma and breast cancer. In the human glioblastoma (U251MG) or breast cancer (MDA-MB-231) cells, treatment with 15α-MP repressed pY705Stat3, pErk1/2, pS147CyclinB1, pY507Alk (anaplastic lymphoma kinase), and pY478ezrin levels and induced pS10merlin, without inhibiting pJAK2 (Janus kinase) or pAkt induction. 15α-MP treatment induced loss of viability of breast cancer (MDA-MB-231, MDA-MB-468) and glioblastoma (U251MG) lines and glioblastoma patient-derived xenograft cells (G22) that harbor aberrantly active Stat3, with only moderate or little effect on the human breast cancer, MCF7, colorectal adenocarcinoma Caco-2, normal human lung fibroblast, WI-38, or normal mouse embryonic fibroblast (MEF Stat3fl/fl) lines that do not harbor constitutively active Stat3 or the Stat3-null (Stat3-/-) mouse astrocytes. 15α-MP-treated U251MG cells have severely impaired F-actin organization and altered morphology, including the cells rounding up, and undergo apoptosis, compared with a moderate, reversible morphology change observed for similarly treated mouse astrocytes. Treatment further inhibited U251MG or MDA-MB-231 cell proliferation, anchorage-independent growth, colony formation, and migration in vitro while only moderately or weakly affecting MCF7 cells or normal mouse astrocytes. Oral gavage delivery of 15α-MP inhibited the growth of U251MG subcutaneous tumor xenografts in mice, associated with apoptosis in the treated tumor tissues. Results together suggest that the modulation of Stat3, CyclinB1, Alk, ezrin, merlin, and Erk1/2 functions contributes to the antitumor effects of 15α-MP against glioblastoma and breast cancer progression. Mol Cancer Ther; 16(4); 601-13. ©2017 AACR.
Collapse
Affiliation(s)
- Tyvette S Hilliard
- Cancer Biology and Natural Products Program, University of Hawai'i Cancer Center, Honolulu, Hawaii
| | - Gabriella Miklossy
- Cancer Biology and Natural Products Program, University of Hawai'i Cancer Center, Honolulu, Hawaii
| | - Christopher Chock
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii
| | - Peibin Yue
- Cancer Biology and Natural Products Program, University of Hawai'i Cancer Center, Honolulu, Hawaii
| | - Philip Williams
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii
| | - James Turkson
- Cancer Biology and Natural Products Program, University of Hawai'i Cancer Center, Honolulu, Hawaii.
| |
Collapse
|
14
|
Finkenstaedt-Quinn SA, Qiu TA, Shin K, Haynes CL. Super-resolution imaging for monitoring cytoskeleton dynamics. Analyst 2016; 141:5674-5688. [PMID: 27549146 DOI: 10.1039/c6an00731g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cytoskeleton is a key cellular structure that is important in the control of cellular movement, structure, and sensing. To successfully image the individual cytoskeleton components, high resolution and super-resolution fluorescence imaging methods are needed. This review covers the three basic cytoskeletal elements and the relative benefits and drawbacks of fixed versus live cell imaging before moving on to recent studies using high resolution and super-resolution techniques. The techniques covered include the near-diffraction limited imaging methods of confocal microscopy and TIRF microscopy and the super-resolution fluorescence imaging methods of STORM, PALM, and STED.
Collapse
|
15
|
Cyclosporine A protects podocytes by regulating WAVE1 phosphorylation. Sci Rep 2015; 5:17694. [PMID: 26634693 PMCID: PMC4669497 DOI: 10.1038/srep17694] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/03/2015] [Indexed: 11/27/2022] Open
Abstract
Accumulating evidence suggests that podocytes are direct targets of many classic antiproteinuric drugs. The immunosuppressive drug cyclosporine A (CsA), which is a calcineurin inhibitor, is used to treat proteinuric kidney diseases. One novel mechanism by which CsA reduces proteinuria is by directly stabilizing the podocyte cytoskeleton. Previous studies showed that calcineurin can directly regulate WAVE1 within mouse striatal slices. In this study, WAVE1 was expressed in podocytes and was localized in the podocyte cell bodies and foot processes (FPs). WAVE1 expression increased in both in vivo and in vitro models of puromycin aminonucleoside (PAN)-induced podocyte injury. CsA restored WAVE1 expression and also partially rescued the disordered F-actin arrangement after PAN injury. Co-immunoprecipitation assays showed that calcineurin directly interacted with WAVE1 and regulated WAVE1 phosphorylation in podocytes. Synaptopodin is a well-characterized target of CsA. WAVE1 overexpression and synaptopodin knockdown experiments directly demonstrated that WAVE1 expression is not dependent on synaptopodin expression, and vice versa. Overexpression of WAVE1 using a WAVE1 plasmid disrupted F-actin structure and promoted podocyte migration compared with the empty vector group. Therefore, WAVE1 may be a novel molecular target for the maintenance of podocyte FPs and for antiproteinuric treatment in the future.
Collapse
|
16
|
Ridley AJ. Rho GTPase signalling in cell migration. Curr Opin Cell Biol 2015; 36:103-12. [PMID: 26363959 PMCID: PMC4728192 DOI: 10.1016/j.ceb.2015.08.005] [Citation(s) in RCA: 579] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/18/2015] [Accepted: 08/23/2015] [Indexed: 01/15/2023]
Abstract
Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family.
Collapse
Affiliation(s)
- Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
17
|
Abstract
Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family.
Collapse
Affiliation(s)
- Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
18
|
Rodal AA, Del Signore SJ, Martin AC. Drosophila comes of age as a model system for understanding the function of cytoskeletal proteins in cells, tissues, and organisms. Cytoskeleton (Hoboken) 2015; 72:207-24. [PMID: 26074334 DOI: 10.1002/cm.21228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 06/11/2015] [Accepted: 06/11/2015] [Indexed: 01/30/2023]
Abstract
For the last 100 years, Drosophila melanogaster has been a powerhouse genetic system for understanding mechanisms of inheritance, development, and behavior in animals. In recent years, advances in imaging and genetic tools have led to Drosophila becoming one of the most effective systems for unlocking the subcellular functions of proteins (and particularly cytoskeletal proteins) in complex developmental settings. In this review, written for non-Drosophila experts, we will discuss critical technical advances that have enabled these cell biological insights, highlighting three examples of cytoskeletal discoveries that have arisen as a result: (1) regulation of Arp2/3 complex in myoblast fusion, (2) cooperation of the actin filament nucleators Spire and Cappuccino in establishment of oocyte polarity, and (3) coordination of supracellular myosin cables. These specific examples illustrate the unique power of Drosophila both to uncover new cytoskeletal structures and functions, and to place these discoveries in a broader in vivo context, providing insights that would have been impossible in a cell culture model or in vitro. Many of the cellular structures identified in Drosophila have clear counterparts in mammalian cells and tissues, and therefore elucidating cytoskeletal functions in Drosophila will be broadly applicable to other organisms.
Collapse
Affiliation(s)
- Avital A Rodal
- Department of Biology, Brandeis University, Waltham, Massachusetts
| | | | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|