1
|
Huang J, Luo S, Shen J, Lee M, Chen R, Ma S, Sun LQ, Li JJ. Cellular polarity pilots breast cancer progression and immunosuppression. Oncogene 2025; 44:783-793. [PMID: 40057606 PMCID: PMC11913746 DOI: 10.1038/s41388-025-03324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Disrupted cellular polarity (DCP) is a hallmark of solid cancer, the malignant disease of epithelial tissues, which occupies ~90% of all human cancers. DCP has been identified to affect not only the cancer cell's aggressive behavior but also the migration and infiltration of immune cells, although the precise mechanism of DCP-affected tumor-immune cell interaction remains unclear. This review discusses immunosuppressive tumor microenvironments (TME) caused by DCP-driven tumor cell proliferation with DCP-impaired immune cell functions. We will revisit the fundamental roles of cell polarity (CP) proteins in sustaining mammary luminal homeostasis, epithelial transformation, and breast cancer progression. Then, the current data on CP involvement in immune cell activation, maturation, migration, and tumor infiltration are evaluated. The CP status on the immune effector cells and their targeted tumor cells are highlighted in tumor immune regulation, including the antigen presentation and the formation of immune synapses (IS). CP-regulated antigen presentation and delivery and the formation of IS between the immune cells, especially between the immune effectors and tumor cells, will be addressed. Alterations of CP on the tumor cells, infiltrated immune effector cells, or both are discussed with these aspects. We conclude that CP-mediated tumor aggressiveness coupled with DCP-impaired immune cell disability may decide the degree of immunosuppressive status and responsiveness to immune checkpoint blockade (ICB). Further elucidating the dynamics of CP- or DCP-mediated immune regulation in TME will provide more critical insights into tumor-immune cell dynamics, which is required to invent more effective approaches for cancer immunotherapy.
Collapse
Affiliation(s)
- Jie Huang
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, University of California Davis, Sacramento, California, USA
| | - Shufeng Luo
- Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Cancer Center, Central South University, China, Hunan, Changsha
| | - Juan Shen
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Maya Lee
- Department of Radiation Oncology, University of California Davis, Sacramento, California, USA
| | - Rachel Chen
- Department of Radiation Oncology, University of California Davis, Sacramento, California, USA
| | - Shenglin Ma
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lun-Quan Sun
- Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Cancer Center, Central South University, China, Hunan, Changsha.
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, California, USA.
- NCI-designated Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, California, USA.
| |
Collapse
|
2
|
Randriamanantsoa SJ, Raich MK, Saur D, Reichert M, Bausch AR. Coexisting mechanisms of luminogenesis in pancreatic cancer-derived organoids. iScience 2024; 27:110299. [PMID: 39055943 PMCID: PMC11269295 DOI: 10.1016/j.isci.2024.110299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/02/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Lumens are crucial features of the tissue architecture in both the healthy exocrine pancreas, where ducts shuttle enzymes from the acini to the intestine, and in the precancerous lesions of the highly lethal pancreatic ductal adenocarcinoma (PDAC), similarly displaying lumens that can further develop into cyst-like structures. Branched pancreatic-cancer derived organoids capture key architectural features of both the healthy and diseased pancreas, including lumens. However, their transition from a solid mass of cells to a hollow tissue remains insufficiently explored. Here, we show that organoids display two orthogonal but complementary lumen formation mechanisms: one relying on fluid intake for multiple microlumen nucleation, swelling and fusion, and the other involving the death of a central cell population, thereby hollowing out cavities. These results shed further light on the processes of luminogenesis, deepening our understanding of the early formation of PDAC precancerous lesions, including cystic neoplasia.
Collapse
Affiliation(s)
- Samuel J. Randriamanantsoa
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Chair for Cellular Biophysics E27, 85748 Garching, Germany
- Technical University of Munich, Center for Functional Protein Assemblies (CPA), 85748 Garching, Germany
- Technical University of Munich, Center for Organoid Systems and Tissue Engineering (COS), 85748 Garching, Germany
| | - Marion K. Raich
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Chair for Cellular Biophysics E27, 85748 Garching, Germany
- Technical University of Munich, Center for Functional Protein Assemblies (CPA), 85748 Garching, Germany
- Technical University of Munich, Center for Organoid Systems and Tissue Engineering (COS), 85748 Garching, Germany
| | - Dieter Saur
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Medical Clinic and Polyclinic II, 81675 Munich, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner site Munich, 69120 Heidelberg, Germany
| | - Maximilian Reichert
- Technical University of Munich, Center for Functional Protein Assemblies (CPA), 85748 Garching, Germany
- Technical University of Munich, Center for Organoid Systems and Tissue Engineering (COS), 85748 Garching, Germany
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Medical Clinic and Polyclinic II, 81675 Munich, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner site Munich, 69120 Heidelberg, Germany
- Technical University of Munich, Klinikum rechts der Isar, Medical Clinic and Polyclinic II, Translational Pancreatic Cancer Research Center, 81675 Munich, Germany
| | - Andreas R. Bausch
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Chair for Cellular Biophysics E27, 85748 Garching, Germany
- Technical University of Munich, Center for Functional Protein Assemblies (CPA), 85748 Garching, Germany
- Technical University of Munich, Center for Organoid Systems and Tissue Engineering (COS), 85748 Garching, Germany
| |
Collapse
|
3
|
Cai X, Warburton C, Perez OF, Wang Y, Ho L, Finelli C, Ehlen QT, Wu C, Rodriguez CD, Kaplan L, Best TM, Huang CY, Meng Z. Hippo-PKCζ-NFκB signaling axis: A druggable modulator of chondrocyte responses to mechanical stress. iScience 2024; 27:109983. [PMID: 38827404 PMCID: PMC11140209 DOI: 10.1016/j.isci.2024.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/04/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
Recent studies have implicated a crucial role of Hippo signaling in cell fate determination by biomechanical signals. Here we show that mechanical loading triggers the activation of a Hippo-PKCζ-NFκB pathway in chondrocytes, resulting in the expression of NFκB target genes associated with inflammation and matrix degradation. Mechanistically, mechanical loading activates an atypical PKC, PKCζ, which phosphorylates NFκB p65 at Serine 536, stimulating its transcriptional activation. This mechanosensitive activation of PKCζ and NFκB p65 is impeded in cells with gene deletion or chemical inhibition of Hippo core kinases LATS1/2, signifying an essential role of Hippo signaling in this mechanotransduction. A PKC inhibitor AEB-071 or PKCζ knockdown prevents p65 Serine 536 phosphorylation. Our study uncovers that the interplay of the Hippo signaling, PKCζ, and NFκB in response to mechanical loading serves as a therapeutic target for knee osteoarthritis and other conditions resulting from mechanical overloading or Hippo signaling deficiencies.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christopher Warburton
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Olivia F. Perez
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lucy Ho
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Christina Finelli
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Quinn T. Ehlen
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chenzhou Wu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos D. Rodriguez
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lee Kaplan
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Department of Orthopedics, University of Miami, Miami, FL, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL, USA
| | - Thomas M. Best
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Department of Orthopedics, University of Miami, Miami, FL, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL, USA
| | - Chun-Yuh Huang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL, USA
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Portela M, Mukherjee S, Paul S, La Marca JE, Parsons LM, Veraksa A, Richardson HE. The Drosophila tumour suppressor Lgl and Vap33 activate the Hippo pathway through a dual mechanism. J Cell Sci 2024; 137:jcs261917. [PMID: 38240353 PMCID: PMC10911279 DOI: 10.1242/jcs.261917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024] Open
Abstract
The tumour suppressor, Lethal (2) giant larvae [Lgl; also known as L(2)gl], is an evolutionarily conserved protein that was discovered in the vinegar fly Drosophila, where its depletion results in tissue overgrowth and loss of cell polarity. Lgl links cell polarity and tissue growth through regulation of the Notch and the Hippo signalling pathways. Lgl regulates the Notch pathway by inhibiting V-ATPase activity via Vap33. How Lgl regulates the Hippo pathway was unclear. In this current study, we show that V-ATPase activity inhibits the Hippo pathway, whereas Vap33 acts to activate Hippo signalling. Vap33 physically and genetically interacts with the actin cytoskeletal regulators RtGEF (Pix) and Git, which also bind to the Hippo protein (Hpo) and are involved in the activation of the Hippo pathway. Additionally, we show that the ADP ribosylation factor Arf79F (Arf1), which is a Hpo interactor, is involved in the inhibition of the Hippo pathway. Altogether, our data suggest that Lgl acts via Vap33 to activate the Hippo pathway by a dual mechanism: (1) through interaction with RtGEF, Git and Arf79F, and (2) through interaction and inhibition of the V-ATPase, thereby controlling epithelial tissue growth.
Collapse
Affiliation(s)
- Marta Portela
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3002, Australia
| | - Swastik Mukherjee
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Sayantanee Paul
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - John E. La Marca
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Blood Cells and Blood Cancer Division, Water and Eliza Hall Institute, Melbourne, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
- Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084, Australia
| | - Linda M. Parsons
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3002, Australia
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Helena E. Richardson
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, Department of Anatomy and Neuroscience, Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
5
|
Cai X, Warburton C, Perez OF, Wang Y, Ho L, Finelli C, Ehlen QT, Wu C, Rodriguez CD, Kaplan L, Best TM, Huang CY, Meng Z. Hippo Signaling Modulates the Inflammatory Response of Chondrocytes to Mechanical Compressive Loading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544419. [PMID: 37662374 PMCID: PMC10473729 DOI: 10.1101/2023.06.09.544419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Knee osteoarthritis (KOA) is a degenerative disease resulting from mechanical overload, where direct physical impacts on chondrocytes play a crucial role in disease development by inducing inflammation and extracellular matrix degradation. However, the signaling cascades that sense these physical impacts and induce the pathogenic transcriptional programs of KOA remain to be defined, which hinders the identification of novel therapeutic approaches. Recent studies have implicated a crucial role of Hippo signaling in osteoarthritis. Since Hippo signaling senses mechanical cues, we aimed to determine its role in chondrocyte responses to mechanical overload. Here we show that mechanical loading induces the expression of inflammatory and matrix-degrading genes by activating the nuclear factor-kappaB (NFκB) pathway in a Hippo-dependent manner. Applying mechanical compressional force to 3-dimensional cultured chondrocytes activated NFκB and induced the expression of NFκB target genes for inflammation and matrix degradation (i.e., IL1β and ADAMTS4). Interestingly, deleting the Hippo pathway effector YAP or activating YAP by deleting core Hippo kinases LATS1/2 blocked the NFκB pathway activation induced by mechanical loading. Consistently, treatment with a LATS1/2 kinase inhibitor abolished the upregulation of IL1β and ADAMTS4 caused by mechanical loading. Mechanistically, mechanical loading activates Protein Kinase C (PKC), which activates NFκB p65 by phosphorylating its Serine 536. Furthermore, the mechano-activation of both PKC and NFκB p65 is blocked in LATS1/2 or YAP knockout cells, indicating that the Hippo pathway is required by this mechanoregulation. Additionally, the mechanical loading-induced phosphorylation of NFκB p65 at Ser536 is blocked by the LATS1/2 inhibitor Lats-In-1 or the PKC inhibitor AEB-071. Our study suggests that the interplay of the Hippo signaling and PKC controls NFκB-mediated inflammation and matrix degradation in response to mechanical loading. Chemical inhibitors targeting Hippo signaling or PKC can prevent the mechanoresponses of chondrocytes associated with inflammation and matrix degradation, providing a novel therapeutic strategy for KOA.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
- These authors contributed equally to this work
| | - Christopher Warburton
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
- These authors contributed equally to this work
| | - Olivia F. Perez
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
- These authors contributed equally to this work
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
- These authors contributed equally to this work
| | - Lucy Ho
- Department of Biomedical Engineering, University of Miami, FL
| | | | - Quinn T. Ehlen
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
| | - Chenzhou Wu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
| | - Carlos D. Rodriguez
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
| | - Lee Kaplan
- Department of Biomedical Engineering, University of Miami, FL
- Department of Orthopedics, University of Miami, Miami, FL
- UHealth Sports Medicine Institute, University of Miami, Miami, FL
| | - Thomas M. Best
- Department of Biomedical Engineering, University of Miami, FL
- Department of Orthopedics, University of Miami, Miami, FL
- UHealth Sports Medicine Institute, University of Miami, Miami, FL
| | - Chun-Yuh Huang
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
- Department of Biomedical Engineering, University of Miami, FL
- UHealth Sports Medicine Institute, University of Miami, Miami, FL
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
6
|
Chen ACH, Lee YL, Ruan H, Huang W, Fong SW, Tian S, Lee KC, Wu GM, Tan Y, Wong TCH, Wu J, Zhang W, Cao D, Chow JFC, Liu P, Yeung WSB. Expanded Potential Stem Cells from Human Embryos Have an Open Chromatin Configuration with Enhanced Trophoblast Differentiation Ability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204797. [PMID: 36775869 PMCID: PMC10104645 DOI: 10.1002/advs.202204797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Human expanded potential stem cells (hEPSC) have been derived from human embryonic stem cells and induced pluripotent stem cells. Here direct derivation of hEPSC from human pre-implantation embryos is reported. Like the reported hEPSC, the embryo-derived hEPSC (hEPSC-em) exhibit a transcriptome similar to morula, comparable differentiation potency, and high genome editing efficiency. Interestingly, the hEPSC-em show a unique H3 lysine-4 trimethylation (H3K4me3) open chromatin conformation; they possess a higher proportion of H3K4me3 bound broad domain (>5 kb) than the reported hEPSC, naive, and primed embryonic stem cells. The open conformation is associated with enhanced trophoblast differentiation potency with increased trophoblast gene expression upon induction of differentiation and success in derivation of trophoblast stem cells with bona fide characteristics. Hippo signaling is specifically enriched in the H3K4me3 broad domains of the hEPSC-. Knockout of the Hippo signaling gene, YAP1 abolishes the ability of the embryo-derived EPSC to form trophoblast stem cells.
Collapse
Affiliation(s)
- Andy Chun Hang Chen
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Shenzhen Key Laboratory of Fertility RegulationReproductive Medicine CenterThe University of Hong Kong ‐ Shenzhen HospitalShenzhen518000China
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Shenzhen Key Laboratory of Fertility RegulationReproductive Medicine CenterThe University of Hong Kong ‐ Shenzhen HospitalShenzhen518000China
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Hanzhang Ruan
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Wen Huang
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Sze Wan Fong
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Siyu Tian
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Kai Chuen Lee
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Genie Minju Wu
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Yongqi Tan
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Timothy Chun Hin Wong
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Jian Wu
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Weiyu Zhang
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility RegulationReproductive Medicine CenterThe University of Hong Kong ‐ Shenzhen HospitalShenzhen518000China
| | - Judy Fung Cheung Chow
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Pengtao Liu
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongStem Cell and Regenerative Medicine ConsortiumHong KongHong Kong
| | - William Shu Biu Yeung
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Shenzhen Key Laboratory of Fertility RegulationReproductive Medicine CenterThe University of Hong Kong ‐ Shenzhen HospitalShenzhen518000China
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| |
Collapse
|
7
|
Amirifar P, Kissil J. The role of Motin family proteins in tumorigenesis-an update. Oncogene 2023; 42:1265-1271. [PMID: 36973516 DOI: 10.1038/s41388-023-02677-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
The Motin protein family consists of three members: AMOT (p80 and p130 isoforms), AMOT-like protein 1 (AMOTL1), and AMOT-like protein 2 (AMOTL2). The family members play an important role in processes such as cell proliferation, migration, angiogenesis, tight junction formation, and cell polarity. These functions are mediated through the involvement of the Motins in the regulation of different signal transduction pathways, including those regulated by small G-proteins and the Hippo-YAP pathway. One of the more characterized aspects of Motin family function is their role in regulating signaling through the Hippo-YAP pathway, and while some studies suggest a YAP-inhibitory function other studies indicate the Motins are required for YAP activity. This duality is also reflected in previous reports, often contradictory, that suggest the Motin proteins can function as oncogenes or tumor suppressors in tumorigenesis. In this review we summarize recent findings and integrate that with the existing work describing the multifunctional role of the Motins in different cancers. The emerging picture suggests that the Motin protein function is cell-type and context dependent and that further investigation in relevant cell types and whole organism models is required for the elucidation of the function of this protein family.
Collapse
Affiliation(s)
- Parisa Amirifar
- Department of Molecular Oncology, Cancer Biology Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Joseph Kissil
- Department of Molecular Oncology, Cancer Biology Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
8
|
Khalilimeybodi A, Fraley S, Rangamani P. Mechanisms underlying divergent relationships between Ca 2+ and YAP/TAZ signalling. J Physiol 2023; 601:483-515. [PMID: 36463416 PMCID: PMC10986318 DOI: 10.1113/jp283966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Yes-associated protein (YAP) and its homologue TAZ are transducers of several biochemical and biomechanical signals, integrating multiplexed inputs from the microenvironment into higher level cellular functions such as proliferation, differentiation and migration. Emerging evidence suggests that Ca2+ is a key second messenger that connects microenvironmental input signals and YAP/TAZ regulation. However, studies that directly modulate Ca2+ have reported contradictory YAP/TAZ responses: in some studies, a reduction in Ca2+ influx increases the activity of YAP/TAZ, while in others, an increase in Ca2+ influx activates YAP/TAZ. Importantly, Ca2+ and YAP/TAZ exhibit distinct spatiotemporal dynamics, making it difficult to unravel their connections from a purely experimental approach. In this study, we developed a network model of Ca2+ -mediated YAP/TAZ signalling to investigate how temporal dynamics and crosstalk of signalling pathways interacting with Ca2+ can alter the YAP/TAZ response, as observed in experiments. By including six signalling modules (e.g. GPCR, IP3-Ca2+ , kinases, RhoA, F-actin and Hippo-YAP/TAZ) that interact with Ca2+ , we investigated both transient and steady-state cell response to angiotensin II and thapsigargin stimuli. The model predicts that stimuli, Ca2+ transients and frequency-dependent relationships between Ca2+ and YAP/TAZ are primarily mediated by cPKC, DAG, CaMKII and F-actin. Simulation results illustrate the role of Ca2+ dynamics and CaMKII bistable response in switching the direction of changes in Ca2+ -induced YAP/TAZ activity. A frequency-dependent YAP/TAZ response revealed the competition between upstream regulators of LATS1/2, leading to the YAP/TAZ non-monotonic response to periodic GPCR stimulation. This study provides new insights into underlying mechanisms responsible for the controversial Ca2+ -YAP/TAZ relationship observed in experiments. KEY POINTS: YAP/TAZ integrates biochemical and biomechanical inputs to regulate cellular functions, and Ca2+ acts as a key second messenger linking cellular inputs to YAP/TAZ. Studies have reported contradictory Ca2+ -YAP/TAZ relationships for different cell types and stimuli. A network model of Ca2+ -mediated YAP/TAZ signalling was developed to investigate the underlying mechanisms of divergent Ca2+ -YAP/TAZ relationships. The model predicts context-dependent Ca2+ transient, CaMKII bistable response and frequency-dependent activation of LATS1/2 upstream regulators as mechanisms governing the Ca2+ -YAP/TAZ relationship. This study provides new insights into the underlying mechanisms of the controversial Ca2+ -YAP/TAZ relationship to better understand the dynamics of cellular functions controlled by YAP/TAZ activity.
Collapse
Affiliation(s)
- A. Khalilimeybodi
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093
| | - S.I. Fraley
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093
| | - P. Rangamani
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093
| |
Collapse
|
9
|
Tilston-Lunel AM, Varelas X. Polarity in respiratory development, homeostasis and disease. Curr Top Dev Biol 2023; 154:285-315. [PMID: 37100521 DOI: 10.1016/bs.ctdb.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The respiratory system is composed of a multitude of cells that organize to form complex branched airways that end in alveoli, which respectively function to guide air flow and mediate gas exchange with the bloodstream. The organization of the respiratory sytem relies on distinct forms of cell polarity, which guide lung morphogenesis and patterning in development and provide homeostatic barrier protection from microbes and toxins. The stability of lung alveoli, the luminal secretion of surfactants and mucus in the airways, and the coordinated motion of multiciliated cells that generate proximal fluid flow, are all critical functions regulated by cell polarity, with defects in polarity contributing to respiratory disease etiology. Here, we summarize the current knowledge of cell polarity in lung development and homeostasis, highlighting key roles for polarity in alveolar and airway epithelial function and outlining relationships with microbial infections and diseases, such as cancer.
Collapse
|
10
|
Yin N, Liu Y, Weems C, Shreeder B, Lou Y, Knutson KL, Murray NR, Fields AP. Protein kinase Cι mediates immunosuppression in lung adenocarcinoma. Sci Transl Med 2022; 14:eabq5931. [PMID: 36383684 PMCID: PMC11457891 DOI: 10.1126/scitranslmed.abq5931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent form of non-small cell lung cancer (NSCLC) and a leading cause of cancer death. Immune checkpoint inhibitors (ICIs) of programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) signaling induce tumor regressions in a subset of LUAD, but many LUAD tumors exhibit resistance to ICI therapy. Here, we identified Prkci as a major determinant of response to ICI in a syngeneic mouse model of oncogenic mutant Kras/Trp53 loss (KP)-driven LUAD. Protein kinase Cι (PKCι)-dependent KP tumors exhibited resistance to anti-PD-1 antibody therapy (α-PD-1), whereas KP tumors in which Prkci was genetically deleted (KPI tumors) were highly responsive. Prkci-dependent resistance to α-PD-1 was characterized by enhanced infiltration of myeloid-derived suppressor cells (MDSCs) and decreased infiltration of CD8+ T cells in response to α-PD-1. Mechanistically, Prkci regulated YAP1-dependent expression of Cxcl5, which served to attract MDSCs to KP tumors. The PKCι inhibitor auranofin inhibited KP tumor growth and sensitized these tumors to α-PD-1, whereas expression of either Prkci or its downstream effector Cxcl5 in KPI tumors induced intratumoral infiltration of MDSCs and resistance to α-PD-1. PRKCI expression in tumors of patients with LUAD correlated with genomic signatures indicative of high YAP1-mediated transcription, elevated MDSC infiltration and low CD8+ T cell infiltration, and with elevated CXCL5/6 expression. Last, PKCι-YAP1 signaling was a biomarker associated with poor response to ICI in patients with LUAD. Our data indicate that immunosuppressive PKCι-YAP1-CXCL5 signaling is a key determinant of response to ICI, and pharmacologic inhibition of PKCι may improve therapeutic response to ICI in patients with LUAD.
Collapse
Affiliation(s)
- Ning Yin
- Department of Cancer Biology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Yi Liu
- Department of Cancer Biology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Capella Weems
- Department of Cancer Biology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Barath Shreeder
- Department of Immunology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Keith L. Knutson
- Department of Immunology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Nicole R. Murray
- Department of Cancer Biology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Alan P. Fields
- Department of Cancer Biology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| |
Collapse
|
11
|
Ahmad US, Uttagomol J, Wan H. The Regulation of the Hippo Pathway by Intercellular Junction Proteins. Life (Basel) 2022; 12:1792. [PMID: 36362947 PMCID: PMC9696951 DOI: 10.3390/life12111792] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 08/24/2023] Open
Abstract
The Hippo pathway is an evolutionarily conserved pathway that serves to promote cell death and differentiation while inhibiting cellular proliferation across species. The downstream effectors of this pathway, yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), are considered vital in promoting the output of the Hippo pathway, with activation of upstream kinases negatively regulating YAP/TAZ activity. The upstream regulation of the Hippo pathway is not entirely understood on a molecular level. However, several studies have shown that numerous cellular and non-cellular mechanisms such as cell polarity, contact inhibition, soluble factors, mechanical forces, and metabolism can convey external stimuli to the intracellular kinase cascade, promoting the activation of key components of the Hippo pathway and therefore regulating the subcellular localisation and protein activity of YAP/TAZ. This review will summarise what we have learnt about the role of intercellular junction-associated proteins in the activation of this pathway, including adherens junctions and tight junctions, and in particular our latest findings about the desmosomal components, including desmoglein-3 (DSG3), in the regulation of YAP signalling, phosphorylation, and subcellular translocation.
Collapse
Affiliation(s)
- Usama Sharif Ahmad
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jutamas Uttagomol
- Oral Diagnosis Department, Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Hong Wan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
12
|
The Roles of Par3, Par6, and aPKC Polarity Proteins in Normal Neurodevelopment and in Neurodegenerative and Neuropsychiatric Disorders. J Neurosci 2022; 42:4774-4793. [PMID: 35705493 DOI: 10.1523/jneurosci.0059-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
Normal neural circuits and functions depend on proper neuronal differentiation, migration, synaptic plasticity, and maintenance. Abnormalities in these processes underlie various neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Neural development and maintenance are regulated by many proteins. Among them are Par3, Par6 (partitioning defective 3 and 6), and aPKC (atypical protein kinase C) families of evolutionarily conserved polarity proteins. These proteins perform versatile functions by forming tripartite or other combinations of protein complexes, which hereafter are collectively referred to as "Par complexes." In this review, we summarize the major findings on their biophysical and biochemical properties in cell polarization and signaling pathways. We next summarize their expression and localization in the nervous system as well as their versatile functions in various aspects of neurodevelopment, including neuroepithelial polarity, neurogenesis, neuronal migration, neurite differentiation, synaptic plasticity, and memory. These versatile functions rely on the fundamental roles of Par complexes in cell polarity in distinct cellular contexts. We also discuss how cell polarization may correlate with subcellular polarization in neurons. Finally, we review the involvement of Par complexes in neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. While emerging evidence indicates that Par complexes are essential for proper neural development and maintenance, many questions on their in vivo functions have yet to be answered. Thus, Par3, Par6, and aPKC continue to be important research topics to advance neuroscience.
Collapse
|
13
|
Sinclear CK, Maruyama J, Nagashima S, Arimoto‐Matsuzaki K, Kuleape JA, Iwasa H, Nishina H, Hata Y. Protein kinase Cα activation switches YAP1 from TEAD-mediated signaling to p73-mediated signaling. Cancer Sci 2022; 113:1305-1320. [PMID: 35102644 PMCID: PMC8990296 DOI: 10.1111/cas.15285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 12/30/2022] Open
Abstract
Yes-associated protein 1 (YAP1) interacts with TEAD transcription factor in the nucleus and upregulates TEAD-target genes. YAP1 is phosphorylated by large tumor suppressor (LATS) kinases, the core kinases of the Hippo pathway, at 5 serine residues and is sequestered and degraded in the cytoplasm. In human cancers with the dysfunction of the Hippo pathway, YAP1 becomes hyperactive and confers malignant properties to cancer cells. We have observed that cold shock induces protein kinase C (PKC)-mediated phosphorylation of YAP1. PKC phosphorylates YAP1 at 3 serine residues among LATS-mediate phosphorylation sites. Importantly, PKC activation recruits YAP1 to the cytoplasm even in LATS-depleted cancer cells and reduces the cooperation with TEAD. PKC activation induces promyelocytic leukemia protein-mediated SUMOylation of YAP1. SUMOylated YAP1 remains in the nucleus, binds to p73, and promotes p73-target gene transcription. Bryostatin, a natural anti-neoplastic reagent that activates PKC, induces YAP1/p73-mediated apoptosis in cancer cells. Bryostatin reverses malignant transformation caused by the depletion of LATS kinases. Therefore, bryostatin and other reagents that activate PKC are expected to control cancers with the dysfunction of the Hippo pathway.
Collapse
Affiliation(s)
- Caleb Kwame Sinclear
- Department of Medical BiochemistryGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Junichi Maruyama
- Laboratory for Integrated Cellular SystemsRIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Shunta Nagashima
- Department of Medical BiochemistryGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Kyoko Arimoto‐Matsuzaki
- Department of Medical BiochemistryGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Joshua Agbemefa Kuleape
- Department of Medical BiochemistryGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Hiroaki Iwasa
- Department of Molecular BiologySchool of MedicineInternational University of Health and WelfareNaritaJapan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative BiologyMedical Research InstituteTokyo Medical and Dental UniversityTokyoJapan
| | - Yutaka Hata
- Department of Medical BiochemistryGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan,Center for Brain Integration ResearchTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
14
|
Huo B, Song Y, Tan B, Li J, Zhang J, Zhang F, Chang L. TMT-based proteomics analysis of the effects of Qianjinweijing Tang on lung cancer. Biomed Chromatogr 2021; 35:e5116. [PMID: 33724505 DOI: 10.1002/bmc.5116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 11/08/2022]
Abstract
Qianjinweijing Tang (QJWJ) is a classic traditional Chinese formula that is often used in the treatment of treat lung cancer (LC). However, the underlying cellular mechanisms of the anticancer effects of QJWJ remain unclear. Cell viability was determined by MTS assay and levels of apoptosis measured by flow cytometry. Animal experiments were conducted to determine the effects of QJWJ on tumor growth in vivo. We used a proteomics approach to study the effects of QJWJ on LC cells and applied bioinformatics analysis to identify differentially expressed proteins that were validated by western blotting. QJWJ inhibited the proliferation of LC cells and induced apoptosis. The tumor growth delay effects of QJWJ were confirmed in vivo. We identified 104 differentially expressed proteins following QJWJ treatments of which 45 proteins were upregulated and 59 were downregulated. The levels of differentially expressed proteins were validated by western blotting. Our study indicated that QJWJ has anticancer effects in vivo and in vitro and that these effects are mediated by modulating the expression of tumor-related proteins.
Collapse
Affiliation(s)
- Bingjie Huo
- Department of Traditional Chinese Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Yanru Song
- Department of Traditional Chinese Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Bibo Tan
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Jianbo Li
- Department of Traditional Chinese Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Jie Zhang
- Department of Traditional Chinese Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Fengbin Zhang
- Department of Gastroenterology Pharmacology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Liang Chang
- HeBei University of Chinese Medicine, Shijiazhuang, Hebei, P. R. China
| |
Collapse
|
15
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. An overview of signaling pathways regulating YAP/TAZ activity. Cell Mol Life Sci 2021; 78:497-512. [PMID: 32748155 PMCID: PMC11071991 DOI: 10.1007/s00018-020-03579-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/07/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
YAP and TAZ are ubiquitously expressed homologous proteins originally identified as penultimate effectors of the Hippo signaling pathway, which plays a key role in maintaining mammalian tissue/organ size. Presently, it is known that YAP/TAZ also interact with various non-Hippo signaling pathways, and have diverse roles in multiple biological processes, including cell proliferation, tissue regeneration, cell lineage fate determination, tumorigenesis, and mechanosensing. In this review, we first examine the various microenvironmental cues and signaling pathways that regulate YAP/TAZ activation, through the Hippo and non-Hippo signaling pathways. This is followed by a brief summary of the interactions of YAP/TAZ with TEAD1-4 and a diverse array of other non-TEAD transcription factors. Finally, we offer a critical perspective on how increasing knowledge of the regulatory mechanisms of YAP/TAZ signaling might open the door to novel therapeutic applications in the interrelated fields of biomaterials, tissue engineering, regenerative medicine and synthetic biology.
Collapse
Affiliation(s)
- Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
- Faculty of Science and Technology, Sunway University, Selangor Darul Ehsan, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Dominique Aubel
- IUTA, Departement Genie Biologique, Universite, Claude Bernard Lyon 1, Villeurbanne Cedex, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zurich, Mattenstrasse 26, Basel, 4058, Switzerland.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
16
|
Biehler C, Wang LT, Sévigny M, Jetté A, Gamblin CL, Catterall R, Houssin E, McCaffrey L, Laprise P. Girdin is a component of the lateral polarity protein network restricting cell dissemination. PLoS Genet 2020; 16:e1008674. [PMID: 32196494 PMCID: PMC7112241 DOI: 10.1371/journal.pgen.1008674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/01/2020] [Accepted: 02/14/2020] [Indexed: 01/07/2023] Open
Abstract
Epithelial cell polarity defects support cancer progression. It is thus crucial to decipher the functional interactions within the polarity protein network. Here we show that Drosophila Girdin and its human ortholog (GIRDIN) sustain the function of crucial lateral polarity proteins by inhibiting the apical kinase aPKC. Loss of GIRDIN expression is also associated with overgrowth of disorganized cell cysts. Moreover, we observed cell dissemination from GIRDIN knockdown cysts and tumorspheres, thereby showing that GIRDIN supports the cohesion of multicellular epithelial structures. Consistent with these observations, alteration of GIRDIN expression is associated with poor overall survival in subtypes of breast and lung cancers. Overall, we discovered a core mechanism contributing to epithelial cell polarization from flies to humans. Our data also indicate that GIRDIN has the potential to impair the progression of epithelial cancers by preserving cell polarity and restricting cell dissemination.
Collapse
Affiliation(s)
- Cornélia Biehler
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
- axe oncologie du Centre de Recherche du Centre Hospitalier, Universitaire de Québec-UL, Québec, Canada
| | - Li-Ting Wang
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Myriam Sévigny
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
- axe oncologie du Centre de Recherche du Centre Hospitalier, Universitaire de Québec-UL, Québec, Canada
| | - Alexandra Jetté
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
- axe oncologie du Centre de Recherche du Centre Hospitalier, Universitaire de Québec-UL, Québec, Canada
| | - Clémence L. Gamblin
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
- axe oncologie du Centre de Recherche du Centre Hospitalier, Universitaire de Québec-UL, Québec, Canada
| | - Rachel Catterall
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Elise Houssin
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
- axe oncologie du Centre de Recherche du Centre Hospitalier, Universitaire de Québec-UL, Québec, Canada
| | - Luke McCaffrey
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Patrick Laprise
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
- axe oncologie du Centre de Recherche du Centre Hospitalier, Universitaire de Québec-UL, Québec, Canada
- * E-mail:
| |
Collapse
|
17
|
Cobbaut M, Karagil S, Bruno L, Diaz de la Loza MDC, Mackenzie FE, Stolinski M, Elbediwy A. Dysfunctional Mechanotransduction through the YAP/TAZ/Hippo Pathway as a Feature of Chronic Disease. Cells 2020; 9:cells9010151. [PMID: 31936297 PMCID: PMC7016982 DOI: 10.3390/cells9010151] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
In order to ascertain their external environment, cells and tissues have the capability to sense and process a variety of stresses, including stretching and compression forces. These mechanical forces, as experienced by cells and tissues, are then converted into biochemical signals within the cell, leading to a number of cellular mechanisms being activated, including proliferation, differentiation and migration. If the conversion of mechanical cues into biochemical signals is perturbed in any way, then this can be potentially implicated in chronic disease development and processes such as neurological disorders, cancer and obesity. This review will focus on how the interplay between mechanotransduction, cellular structure, metabolism and signalling cascades led by the Hippo-YAP/TAZ axis can lead to a number of chronic diseases and suggest how we can target various pathways in order to design therapeutic targets for these debilitating diseases and conditions.
Collapse
Affiliation(s)
- Mathias Cobbaut
- Protein Phosphorylation Lab, Francis Crick Institute, London NW1 1AT, UK;
| | - Simge Karagil
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
| | - Lucrezia Bruno
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK;
| | | | - Francesca E Mackenzie
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK;
| | - Michael Stolinski
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
| | - Ahmed Elbediwy
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
- Correspondence:
| |
Collapse
|
18
|
Catterall R, Lelarge V, McCaffrey L. Genetic alterations of epithelial polarity genes are associated with loss of polarity in invasive breast cancer. Int J Cancer 2019; 146:1578-1591. [PMID: 31577845 DOI: 10.1002/ijc.32691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022]
Abstract
Breast cancer remains a leading cause of cancer-related death for women. The stepwise development of breast cancer through preinvasive to invasive disease is associated with progressive disruption of cellular and tissue organization. Apical-basal polarity is thought to be a barrier to breast cancer development, but the extent and potential mechanisms that contribute to disrupted polarity are incompletely understood. To investigate the cell polarity status of invasive breast cancers, we performed multiplex imaging of polarity markers on tissue cores from 432 patients from a spectrum of grades, stages and molecular subtypes. Apical-basal cell polarity was lost in 100% of cells in all cases studied, indicating that loss of epithelial polarity may be a universal feature of invasive breast cancer. We then analyzed genomic events from the TCGA dataset for an 18-gene set of core polarity genes. Coamplification of polarity genes with established breast oncogenes was found, which is consistent with functional cooperation within signaling amplicons. Gene-expression levels of several polarity genes were significantly associated with survival, and protein localization of Par6 correlated with higher grade, nodal metastasis and molecular subtype. Finally, multiple hotspot mutations in protein-protein interaction domains critical for cell polarity were identified. Our data indicate that genomic events likely contribute to pervasive disruption of epithelial polarity observed in invasive breast cancer.
Collapse
Affiliation(s)
- Rachel Catterall
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Virginie Lelarge
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Luke McCaffrey
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Fomicheva M, Tross EM, Macara IG. Polarity proteins in oncogenesis. Curr Opin Cell Biol 2019; 62:26-30. [PMID: 31509786 DOI: 10.1016/j.ceb.2019.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 02/02/2023]
Abstract
Most human cancers arise from epithelial tissues, which are apical-basally polarized and possess intercellular adhesive junctions. Epithelial cells grow to characteristic densities, often from proliferative progenitors, which arrest as they mature. Homeostatic mechanisms can maintain this characteristic density if it is exceeded (crowding) or is too low (e.g. in response to wounding). During tumor initiation and progression this homeostatic mechanism is lost. Some aspects of cell polarity are also lost, although many carcinomas retain intercellular junctions and even apical domains. In other cases, and particularly in recurrent tumors, however, the cells become predominantly mesenchymal. A major question, still only incompletely answered, is whether the proteins that determine cell polarity function as tumor suppressors or tumor promoters. Here we discuss recent advances in understanding the role of polarity proteins and homeostasis in cancer.
Collapse
Affiliation(s)
- Maria Fomicheva
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37424, USA
| | - Erica M Tross
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37424, USA
| | - Ian G Macara
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37424, USA.
| |
Collapse
|
20
|
Kim KH, Chung C, Kim JM, Lee D, Cho SY, Lee TH, Cho HJ, Yeo MK. Clinical significance of atypical protein kinase C (PKCι and PKCζ) and its relationship with yes-associated protein in lung adenocarcinoma. BMC Cancer 2019; 19:804. [PMID: 31412817 PMCID: PMC6693135 DOI: 10.1186/s12885-019-5992-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 07/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein kinase C iota (PKCι) and protein kinase C zeta (PKCζ) are two atypical protein kinase (aPKC) enzymes that contribute to cell proliferation and cancer development. The Hippo/YAP pathway is commonly disrupted and upregulated in cancers. Herein, the expression patterns and clinical relevance of PKCι and PKCζ are evaluated in relation to YAP, a downstream effector of Hippo, in lung adenocarcinoma (LAC). The protein and mRNA expression levels of PKCι, PKCζ, YAP, and their phosphorylated forms, namely p-PKCι, p-PKCζ and p-YAP, are evaluated in relation to clinicopathological factors, including patient survival. METHODS A total of 200 primary LAC tissue samples were examined by immunohistochemistry for PKCι, p-PKCι, PKCζ, p-PKCζ, YAP, and p-YAP protein expression. Sixty pairs of LAC and non-neoplastic lung tissue samples were assessed for PRKCI, PRKCZ, and YAP mRNA levels. PKCι, p-PKCι, PKCζ, and p-PKCζ protein expression were evaluated by Western blot analysis in the PC9 and PC9/GR LAC cell lines with YAP modulation. RESULTS LAC demonstrated cytoplasmic PKCι, p-PKCι, PKCζ, and p-PKCζ immunostaining patterns. Positive aPKC protein expressions were related with poor patient survival. Especially, increased p-PKCι protein expression was significantly correlated with higher pathological stage and shortened overall survival. YAP overexpression contributes phosphorylation of PKCι and PKCζ protein expression in the LAC cell line. CONCLUSIONS PKCι and PKCζ are related to YAP in LAC. PKCι and PKCζ play distinct roles in LAC; specifically, p-PKCι overexpression is suggested to underlie factors that indicate a poor prognosis.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Department of Pathology, Chungnam National University School of Medicine, Munwha-ro 266, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Jin-Man Kim
- Department of Pathology, Chungnam National University School of Medicine, Munwha-ro 266, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Dahye Lee
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Sang Yeon Cho
- School of Medicine, Chungnam National University, Munwha-ro 266, Jung-gu, Daejeon, Republic of Korea
| | - Tae Hee Lee
- The Biobank of Chungnam National University Hospital, Munwha-ro 282, Jung-gu, Daejeon, Republic of Korea
| | - Hyun Jin Cho
- Department of Thoracic Surgery, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Min-Kyung Yeo
- Department of Pathology, Chungnam National University School of Medicine, Munwha-ro 266, Jung-gu, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
21
|
Erban T, Sopko B, Kadlikova K, Talacko P, Harant K. Varroa destructor parasitism has a greater effect on proteome changes than the deformed wing virus and activates TGF-β signaling pathways. Sci Rep 2019; 9:9400. [PMID: 31253851 PMCID: PMC6599063 DOI: 10.1038/s41598-019-45764-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Honeybee workers undergo metamorphosis in capped cells for approximately 13 days before adult emergence. During the same period, Varroa mites prick the defenseless host many times. We sought to identify proteome differences between emerging Varroa-parasitized and parasite-free honeybees showing the presence or absence of clinical signs of deformed wing virus (DWV) in the capped cells. A label-free proteomic analysis utilizing nanoLC coupled with an Orbitrap Fusion Tribrid mass spectrometer provided a quantitative comparison of 2316 protein hits. Redundancy analysis (RDA) showed that the combination of Varroa parasitism and DWV clinical signs caused proteome changes that occurred in the same direction as those of Varroa alone and were approximately two-fold higher. Furthermore, proteome changes associated with DWV signs alone were positioned above Varroa in the RDA. Multiple markers indicate that Varroa activates TGF-β-induced pathways to suppress wound healing and the immune response and that the collective action of stressors intensifies these effects. Furthermore, we indicate JAK/STAT hyperactivation, p53-BCL-6 feedback loop disruption, Wnt pathway activation, Wnt/Hippo crosstalk disruption, and NF-κB and JAK/STAT signaling conflict in the Varroa–honeybee–DWV interaction. These results illustrate the higher effect of Varroa than of DWV at the time of emergence. Markers for future research are provided.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia.
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia
| | - Klara Kadlikova
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia.,Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6-Suchdol, CZ-165 00, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec, CZ-25242, Czechia
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec, CZ-25242, Czechia
| |
Collapse
|
22
|
Wang P, Zhang H, Yang J, Li Z, Wang Y, Leng X, Ganapathy S, Isakson P, Chen C, Zhu T. Mu‐KRAS attenuates Hippo signaling pathway through PKCι to sustain the growth of pancreatic cancer. J Cell Physiol 2019; 235:408-420. [PMID: 31230347 DOI: 10.1002/jcp.28981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Peipei Wang
- Department of Immunology West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan China
| | - Hongmei Zhang
- Department of Immunology West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan China
| | - Jinhe Yang
- Department of Immunology West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan China
| | - Zongxian Li
- Department of Immunology West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan China
| | - Yiren Wang
- Department of Immunology West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan China
| | - Xiaohong Leng
- Department of Immunology West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan China
| | - Suthakar Ganapathy
- The Center of Drug Discovery Northeastern University Boston Massachusetts
| | - Pauline Isakson
- Clinical Immunology & Transfusion Medicine Sahlgrenska University Hospital Gothenburg Sweden
| | - Changyan Chen
- The Center of Drug Discovery Northeastern University Boston Massachusetts
| | - Tongbo Zhu
- Department of Immunology West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan China
| |
Collapse
|
23
|
Elbediwy A, Zhang Y, Cobbaut M, Riou P, Tan RS, Roberts SK, Tynan C, George R, Kjaer S, Martin-Fernandez ML, Thompson BJ, McDonald NQ, Parker PJ. The Rho family GEF FARP2 is activated by aPKCι to control tight junction formation and polarity. J Cell Sci 2019; 132:jcs223743. [PMID: 30872454 PMCID: PMC6503954 DOI: 10.1242/jcs.223743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/28/2019] [Indexed: 01/11/2023] Open
Abstract
The elaboration of polarity is central to organismal development and to the maintenance of functional epithelia. Among the controls determining polarity are the PAR proteins, PAR6, aPKCι and PAR3, regulating both known and unknown effectors. Here, we identify FARP2 as a 'RIPR' motif-dependent partner and substrate of aPKCι that is required for efficient polarisation and junction formation. Binding is conferred by a FERM/FA domain-kinase domain interaction and detachment promoted by aPKCι-dependent phosphorylation. FARP2 is shown to promote GTP loading of Cdc42, which is consistent with it being involved in upstream regulation of the polarising PAR6-aPKCι complex. However, we show that aPKCι acts to promote the localised activity of FARP2 through phosphorylation. We conclude that this aPKCι-FARP2 complex formation acts as a positive feedback control to drive polarisation through aPKCι and other Cdc42 effectors.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ahmed Elbediwy
- Epithelial Biology Laboratory, Francis Crick Institute, 1 Midland Road, London NE1 1AT, UK
| | - Yixiao Zhang
- Protein Phosphorylation Laboratory, Francis Crick Institute, 1 Midland Road, London NE1 1AT, UK
| | - Mathias Cobbaut
- Protein Phosphorylation Laboratory, Francis Crick Institute, 1 Midland Road, London NE1 1AT, UK
| | - Philippe Riou
- Protein Phosphorylation Laboratory, Francis Crick Institute, 1 Midland Road, London NE1 1AT, UK
| | - Ray S Tan
- Protein Phosphorylation Laboratory, Francis Crick Institute, 1 Midland Road, London NE1 1AT, UK
| | - Selene K Roberts
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | - Chris Tynan
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | - Roger George
- Structural Biology Team, Francis Crick Institute, 1 Midland Road, London NE1 1AT, UK
| | - Svend Kjaer
- Structural Biology Team, Francis Crick Institute, 1 Midland Road, London NE1 1AT, UK
| | - Marisa L Martin-Fernandez
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | - Barry J Thompson
- Epithelial Biology Laboratory, Francis Crick Institute, 1 Midland Road, London NE1 1AT, UK
| | - Neil Q McDonald
- Signalling and Structural Biology Laboratory, Francis Crick Institute, 1 Midland Road, London NE1 1AT, UK
| | - Peter J Parker
- Protein Phosphorylation Laboratory, Francis Crick Institute, 1 Midland Road, London NE1 1AT, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
24
|
Xu C, Tang HW, Hung RJ, Hu Y, Ni X, Housden BE, Perrimon N. The Septate Junction Protein Tsp2A Restricts Intestinal Stem Cell Activity via Endocytic Regulation of aPKC and Hippo Signaling. Cell Rep 2019; 26:670-688.e6. [PMID: 30650359 PMCID: PMC6394833 DOI: 10.1016/j.celrep.2018.12.079] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/24/2018] [Accepted: 12/17/2018] [Indexed: 01/23/2023] Open
Abstract
Hippo signaling and the activity of its transcriptional coactivator, Yorkie (Yki), are conserved and crucial regulators of tissue homeostasis. In the Drosophila midgut, after tissue damage, Yki activity increases to stimulate stem cell proliferation, but how Yki activity is turned off once the tissue is repaired is unknown. From an RNAi screen, we identified the septate junction (SJ) protein tetraspanin 2A (Tsp2A) as a tumor suppressor. Tsp2A undergoes internalization to facilitate the endocytic degradation of atypical protein kinase C (aPKC), a negative regulator of Hippo signaling. In the Drosophila midgut epithelium, adherens junctions (AJs) and SJs are prominent in intestinal stem cells or enteroblasts (ISCs or EBs) and enterocytes (ECs), respectively. We show that when ISCs differentiate toward ECs, Tsp2A is produced, participates in SJ assembly, and turns off aPKC and Yki-JAK-Stat activity. Altogether, our study uncovers a mechanism allowing the midgut to restore Hippo signaling and restrict proliferation once tissue repair is accomplished.
Collapse
Affiliation(s)
- Chiwei Xu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Hong-Wen Tang
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ruei-Jiun Hung
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Xiaochun Ni
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Benjamin E Housden
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Fahey-Lozano N, La Marca JE, Portela M, Richardson HE. Drosophila Models of Cell Polarity and Cell Competition in Tumourigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:37-64. [PMID: 31520348 DOI: 10.1007/978-3-030-23629-8_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell competition is an important surveillance mechanism that measures relative fitness between cells in a tissue during development, homeostasis, and disease. Specifically, cells that are "less fit" (losers) are actively eliminated by relatively "more fit" (winners) neighbours, despite the less fit cells otherwise being able to survive in a genetically uniform tissue. Originally described in the epithelial tissues of Drosophila larval imaginal discs, cell competition has since been shown to occur in other epithelial and non-epithelial Drosophila tissues, as well as in mammalian model systems. Many genes and signalling pathways have been identified as playing conserved roles in the mechanisms of cell competition. Among them are genes required for the establishment and maintenance of apico-basal cell polarity: the Crumbs/Stardust/Patj (Crb/Sdt/Patj), Bazooka/Par-6/atypical Protein Kinase C (Baz/Par-6/aPKC), and Scribbled/Discs large 1/Lethal (2) giant larvae (Scrib/Dlg1/L(2)gl) modules. In this chapter, we describe the concepts and mechanisms of cell competition, with emphasis on the relationship between cell polarity proteins and cell competition, particularly the Scrib/Dlg1/L(2)gl module, since this is the best described module in this emerging field.
Collapse
Affiliation(s)
- Natasha Fahey-Lozano
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - John E La Marca
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
26
|
Modulation of the Hippo pathway and organ growth by RNA processing proteins. Proc Natl Acad Sci U S A 2018; 115:10684-10689. [PMID: 30257938 DOI: 10.1073/pnas.1807325115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Hippo tumor-suppressor pathway regulates organ growth, cell proliferation, and stem cell biology. Defects in Hippo signaling and hyperactivation of its downstream effectors-Yorkie (Yki) in Drosophila and YAP/TAZ in mammals-result in progenitor cell expansion and overgrowth of multiple organs and contribute to cancer development. Deciphering the mechanisms that regulate the activity of the Hippo pathway is key to understanding its function and for therapeutic targeting. However, although the Hippo kinase cascade and several other upstream inputs have been identified, the mechanisms that regulate Yki/YAP/TAZ activity are still incompletely understood. To identify new regulators of Yki activity, we screened in Drosophila for suppressors of tissue overgrowth and Yki activation caused by overexpression of atypical protein kinase C (aPKC), a member of the apical cell polarity complex. In this screen, we identified mutations in the heterogeneous nuclear ribonucleoprotein Hrb27C that strongly suppressed the tissue defects induced by ectopic expression of aPKC. Hrb27C was required for aPKC-induced tissue growth and Yki target gene expression but did not affect general gene expression. Genetic and biochemical experiments showed that Hrb27C affects Yki phosphorylation. Other RNA-binding proteins known to interact with Hrb27C for mRNA transport in oocytes were also required for normal Yki activity, although they suppressed Yki output. Based on the known functions of Hrb27C, we conclude that Hrb27C-mediated control of mRNA splicing, localization, or translation is essential for coordinated activity of the Hippo pathway.
Collapse
|
27
|
Segrelles C, Paramio JM, Lorz C. The transcriptional co-activator YAP: A new player in head and neck cancer. Oral Oncol 2018; 86:25-32. [PMID: 30409308 DOI: 10.1016/j.oraloncology.2018.08.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/26/2018] [Indexed: 12/14/2022]
Abstract
The Hippo-YAP (Yes-associated protein) pathway is a key regulator of tissue growth, organ size and stem cell function. More recently, a fundamental role for this pathway has emerged in stem cell function and tumorigenesis. Activation of the transcriptional co-activator YAP promotes cell-contact independent proliferation, epithelial to mesenchymal transition (EMT), cancer stem cell features and drug resistance. In this review, we describe the main components of the pathway, the microenvironment and the cell-intrinsic cues governing its activation, the downstream players of the pathway and the biological implications of their activation in the context of cancer. We will focus on the existing knowledge of this pathway in head and neck squamous carcinoma (HNSCC), its clinical value in this type of cancer as a marker of poor prognosis and resistance to therapy, as well as the most encouraging therapeutic strategies targeting the pathway.
Collapse
Affiliation(s)
- Carmen Segrelles
- Molecular Oncology Unit, CIEMAT (ed 70A), Av. Complutense 40, 28040 Madrid, Spain; Molecular Oncology, University Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, Av. Córdoba s/n, 28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Jesús M Paramio
- Molecular Oncology Unit, CIEMAT (ed 70A), Av. Complutense 40, 28040 Madrid, Spain; Molecular Oncology, University Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, Av. Córdoba s/n, 28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Corina Lorz
- Molecular Oncology Unit, CIEMAT (ed 70A), Av. Complutense 40, 28040 Madrid, Spain; Molecular Oncology, University Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, Av. Córdoba s/n, 28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
28
|
Portela M, Yang L, Paul S, Li X, Veraksa A, Parsons LM, Richardson HE. Lgl reduces endosomal vesicle acidification and Notch signaling by promoting the interaction between Vap33 and the V-ATPase complex. Sci Signal 2018; 11:11/533/eaar1976. [PMID: 29871910 DOI: 10.1126/scisignal.aar1976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial cell polarity is linked to the control of tissue growth and tumorigenesis. The tumor suppressor and cell polarity protein lethal-2-giant larvae (Lgl) promotes Hippo signaling and inhibits Notch signaling to restrict tissue growth in Drosophila melanogaster Notch signaling is greater in lgl mutant tissue than in wild-type tissue because of increased acidification of endosomal vesicles, which promotes the proteolytic processing and activation of Notch by γ-secretase. We showed that the increased Notch signaling and tissue growth defects of lgl mutant tissue depended on endosomal vesicle acidification mediated by the vacuolar adenosine triphosphatase (V-ATPase). Lgl promoted the activity of the V-ATPase by interacting with Vap33 (VAMP-associated protein of 33 kDa). Vap33 physically and genetically interacted with Lgl and V-ATPase subunits and repressed V-ATPase-mediated endosomal vesicle acidification and Notch signaling. Vap33 overexpression reduced the abundance of the V-ATPase component Vha44, whereas Lgl knockdown reduced the binding of Vap33 to the V-ATPase component Vha68-3. Our data indicate that Lgl promotes the binding of Vap33 to the V-ATPase, thus inhibiting V-ATPase-mediated endosomal vesicle acidification and thereby reducing γ-secretase activity, Notch signaling, and tissue growth. Our findings implicate the deregulation of Vap33 and V-ATPase activity in polarity-impaired epithelial cancers.
Collapse
Affiliation(s)
- Marta Portela
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.,Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia.,Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Avenida Doctor Arce, 37, Madrid 28002, Spain
| | - Liu Yang
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Sayantanee Paul
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Linda M Parsons
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia. .,Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia.,Sir Peter MacCallum Department of Oncology, Department of Anatomy and Neuroscience, Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
29
|
Abstract
The Hippo signal transduction pathway is an important regulator of organ growth and cell differentiation, and its deregulation contributes to the development of cancer. The activity of the Hippo pathway is strongly dependent on cell junctions, cellular architecture, and the mechanical properties of the microenvironment. In this review, we discuss recent advances in our understanding of how cell junctions transduce signals from the microenvironment and control the activity of the Hippo pathway. We also discuss how these mechanisms may control organ growth during development and regeneration, and how defects in them deregulate Hippo signaling in cancer cells.
Collapse
Affiliation(s)
- Ruchan Karaman
- VIB Center for Cancer Biology, University of Leuven, 3000 Leuven, Belgium.,Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| | - Georg Halder
- VIB Center for Cancer Biology, University of Leuven, 3000 Leuven, Belgium.,Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
30
|
Saito Y, Desai RR, Muthuswamy SK. Reinterpreting polarity and cancer: The changing landscape from tumor suppression to tumor promotion. Biochim Biophys Acta Rev Cancer 2018; 1869:103-116. [DOI: 10.1016/j.bbcan.2017.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
|
31
|
Modelling Cooperative Tumorigenesis in Drosophila. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4258387. [PMID: 29693007 PMCID: PMC5859872 DOI: 10.1155/2018/4258387] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/21/2018] [Indexed: 12/13/2022]
Abstract
The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression.
Collapse
|
32
|
Stephens R, Lim K, Portela M, Kvansakul M, Humbert PO, Richardson HE. The Scribble Cell Polarity Module in the Regulation of Cell Signaling in Tissue Development and Tumorigenesis. J Mol Biol 2018; 430:3585-3612. [PMID: 29409995 DOI: 10.1016/j.jmb.2018.01.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 01/22/2023]
Abstract
The Scribble cell polarity module, comprising Scribbled (Scrib), Discs-large (Dlg) and Lethal-2-giant larvae (Lgl), has a tumor suppressive role in mammalian epithelial cancers. The Scribble module proteins play key functions in the establishment and maintenance of different modes of cell polarity, as well as in the control of tissue growth, differentiation and directed cell migration, and therefore are major regulators of tissue development and homeostasis. Whilst molecular details are known regarding the roles of Scribble module proteins in cell polarity regulation, their precise mode of action in the regulation of other key cellular processes remains enigmatic. An accumulating body of evidence indicates that Scribble module proteins play scaffolding roles in the control of various signaling pathways, which are linked to the control of tissue growth, differentiation and cell migration. Multiple Scrib, Dlg and Lgl interacting proteins have been discovered, which are involved in diverse processes, however many function in the regulation of cellular signaling. Herein, we review the components of the Scrib, Dlg and Lgl protein interactomes, and focus on the mechanism by which they regulate cellular signaling pathways in metazoans, and how their disruption leads to cancer.
Collapse
Affiliation(s)
- Rebecca Stephens
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Krystle Lim
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Avenida Doctor Arce, 37, Madrid 28002, Spain
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Anatomy & Neurobiology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
33
|
Paglia S, Sollazzo M, Di Giacomo S, de Biase D, Pession A, Grifoni D. Failure of the PTEN/aPKC/Lgl Axis Primes Formation of Adult Brain Tumours in Drosophila. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2690187. [PMID: 29445734 PMCID: PMC5763105 DOI: 10.1155/2017/2690187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/02/2017] [Accepted: 11/08/2017] [Indexed: 02/05/2023]
Abstract
Different regions in the mammalian adult brain contain immature precursors, reinforcing the concept that brain cancers, such as glioblastoma multiforme (GBM), may originate from cells endowed with stem-like properties. Alterations of the tumour suppressor gene PTEN are very common in primary GBMs. Very recently, PTEN loss was shown to undermine a specific molecular axis, whose failure is associated with the maintenance of the GBM stem cells in mammals. This axis is composed of PTEN, aPKC, and the polarity determinant Lethal giant larvae (Lgl): PTEN loss promotes aPKC activation through the PI3K pathway, which in turn leads to Lgl inhibition, ultimately preventing stem cell differentiation. To find the neural precursors responding to perturbations of this molecular axis, we targeted different neurogenic regions of the Drosophila brain. Here we show that PTEN mutation impacts aPKC and Lgl protein levels also in Drosophila. Moreover, we demonstrate that PI3K activation is not sufficient to trigger tumourigenesis, while aPKC promotes hyperplastic growth of the neuroepithelium and a noticeable expansion of the type II neuroblasts. Finally, we show that these neuroblasts form invasive tumours that persist and keep growing in the adult, leading the affected animals to untimely death, thus displaying frankly malignant behaviours.
Collapse
Affiliation(s)
- Simona Paglia
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Manuela Sollazzo
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Simone Di Giacomo
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Dario de Biase
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Annalisa Pession
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Daniela Grifoni
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
34
|
Capra J, Eskelinen S. Correlation between E-cadherin interactions, survivin expression, and apoptosis in MDCK and ts-Src MDCK cell culture models. J Transl Med 2017; 97:1453-1470. [PMID: 28892098 DOI: 10.1038/labinvest.2017.89] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Survivin, a member of inhibitor of apoptosis (IAP) protein family, is a multifunctional protein expressed in most cancers. In addition to inhibition of apoptosis, it regulates proliferation and promotes migration. Its presence and function in cells is strongly regulated via transcription factors, intracellular localization, and degradation. We analyzed the presence of survivin at protein level in various culture environments and under activation of Src tyrosine kinase in epithelial canine kidney MDCK cells in order to elucidate factors controlling survivin 'lifespan'. We used untransformed and temperature sensitive ts-Src MDCK cells as a model and forced them to grow in suspension (1D), in 2D on hard and soft surfaces and in soft 3D Matrigel environment with or without EGTA. In addition, we tested the effect of stressful conditions by cultivating the cells in the presence of an anti-cancer drug and a generator of reactive oxygen species (ROS), piperlongumine (PL) with or without an antioxidant, N-acetylcysteine (NAC). We could confirm that inhibition of apoptosis and simultaneous downregulation of survivin in MDCK cells required both intact cell-cell junctions, trans-interactions of E-cadherin and soft 3D matrix environment. In ts-Src-transformed MDCK cells, survivin was upregulated as soon as the cell-cell junctions were disintegrated. ROS generation with PL-induced cell death of ts-Src MDCK cells concomitantly with survivin downregulation. NAC rescued the ts-Src MDCK cells from ROS-induced apoptosis without upregulation of survivin resulting in a situation resembling untransformed MDCK cells in 3D environment and E-cadherin delineating the lateral cell walls.
Collapse
Affiliation(s)
- Janne Capra
- Biocenter Oulu and the Institute of Diagnostics, University of Oulu, Oulu, Finland
| | - Sinikka Eskelinen
- Biocenter Oulu and the Institute of Diagnostics, University of Oulu, Oulu, Finland
| |
Collapse
|
35
|
Abstract
Atypical protein kinase Cι (PKCι) is an oncogene in lung and ovarian cancer. The PKCι gene PRKCI is targeted for frequent tumor-specific copy number gain (CNG) in both lung squamous cell carcinoma (LSCC) and ovarian serous carcinoma (OSC). We recently demonstrated that in LSCC cells PRKCI CNG functions to drive transformed growth and tumorigenicity by activating PKCι-dependent cell autonomous Hedgehog (Hh) signaling. Here, we assessed whether OSC cells harboring PRKCI CNG exhibit similar PKCι-dependent Hh signaling. Surprisingly, we find that whereas PKCι is required for the transformed growth of OSC cells harboring PRKCI CNG, these cells do not exhibit PKCι-dependent Hh signaling or Hh-dependent proliferation. Rather, transformed growth of OSC cells is regulated by PKCι-dependent nuclear localization of the oncogenic transcription factor, YAP1. Lentiviral shRNA-mediated knockdown (KD) of PKCι leads to decreased nuclear YAP1 and increased YAP1 binding to angiomotin (AMOT), which sequesters YAP1 in the cytoplasm. Biochemical analysis reveals that PKCι directly phosphorylates AMOT at a unique site, Thr750, whose phosphorylation inhibits YAP1 binding. Pharmacologic inhibition of PKCι decreases YAP1 nuclear localization and blocks OSC tumor growth in vitro and in vivo. Immunohistochemical analysis reveals a strong positive correlation between tumor PKCι expression and nuclear YAP1 in primary OSC tumor samples, indicating the clinical relevance of PKCι-YAP1 signaling. Our results uncover a novel PKCι-AMOT-YAP1 signaling axis that promotes OSC tumor growth, and provide a rationale for therapeutic targeting of this pathway for treatment of OSC.
Collapse
|
36
|
Lesko AC, Prosperi JR. Epithelial Membrane Protein 2 and β1 integrin signaling regulate APC-mediated processes. Exp Cell Res 2016; 350:190-198. [PMID: 27890644 DOI: 10.1016/j.yexcr.2016.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/26/2016] [Accepted: 11/23/2016] [Indexed: 12/26/2022]
Abstract
Adenomatous Polyposis Coli (APC) plays a critical role in cell motility, maintenance of apical-basal polarity, and epithelial morphogenesis. We previously demonstrated that APC loss in Madin Darby Canine Kidney (MDCK) cells increases cyst size and inverts polarity independent of Wnt signaling, and upregulates the tetraspan protein, Epithelial Membrane Protein 2 (EMP2). Herein, we show that APC loss increases β1 integrin expression and migration of MDCK cells. Through 3D in vitro model systems and 2D migration analysis, we have depicted the molecular mechanism(s) by which APC influences polarity and cell motility. EMP2 knockdown in APC shRNA cells revealed that APC regulates apical-basal polarity and cyst size through EMP2. Chemical inhibition of β1 integrin and its signaling components, FAK and Src, indicated that APC controls cyst size and migration, but not polarity, through β1 integrin and its downstream targets. Combined, the current studies have identified two distinct and novel mechanisms required for APC to regulate polarity, cyst size, and cell migration independent of Wnt signaling.
Collapse
Affiliation(s)
- Alyssa C Lesko
- Department of Biological Science, Harper Cancer Research Institute, University of Notre Dame, United States
| | - Jenifer R Prosperi
- Department of Biological Science, Harper Cancer Research Institute, University of Notre Dame, United States; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, United States.
| |
Collapse
|
37
|
Involvement of Tight Junction Plaque Proteins in Cancer. CURRENT PATHOBIOLOGY REPORTS 2016. [DOI: 10.1007/s40139-016-0108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Rejon C, Al-Masri M, McCaffrey L. Cell Polarity Proteins in Breast Cancer Progression. J Cell Biochem 2016; 117:2215-23. [DOI: 10.1002/jcb.25553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Carlis Rejon
- Division of Experimental Medicine; Department of Oncology, Rosalind and Morris Goodman Cancer Research Centre, McGill University; Montreal Canada
| | - Maia Al-Masri
- Division of Experimental Medicine; Department of Oncology, Rosalind and Morris Goodman Cancer Research Centre, McGill University; Montreal Canada
| | - Luke McCaffrey
- Division of Experimental Medicine; Department of Oncology, Rosalind and Morris Goodman Cancer Research Centre, McGill University; Montreal Canada
| |
Collapse
|
39
|
Apical–Basal Polarity as a Sensor for Epithelial Homeostasis: A Matter of Life and Death. CURRENT PATHOBIOLOGY REPORTS 2016. [DOI: 10.1007/s40139-016-0107-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Wang Y, Justilien V, Brennan KI, Jamieson L, Murray NR, Fields AP. PKCι regulates nuclear YAP1 localization and ovarian cancer tumorigenesis. Oncogene 2016; 36:534-545. [PMID: 27321186 PMCID: PMC5173453 DOI: 10.1038/onc.2016.224] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/06/2016] [Accepted: 05/15/2016] [Indexed: 01/08/2023]
Abstract
Atypical protein kinase Cι (PKCι) is an oncogene in lung and ovarian cancer. The PKCι gene PRKCI is targeted for frequent tumor-specific copy number gain (CNG) in both lung squamous cell carcinoma (LSCC) and ovarian serous carcinoma (OSC). We recently demonstrated that in LSCC cells PRKCI CNG functions to drive transformed growth and tumorigenicity by activating PKCι-dependent cell autonomous Hedgehog (Hh) signaling. Here, we assessed whether OSC cells harboring PRKCI CNG exhibit similar PKCι-dependent Hh signaling. Surprisingly, we find that whereas PKCι is required for the transformed growth for OSC cells harboring PRKCI CNG, these cells do not exhibit PKCι-dependent Hh signaling or Hh-dependent proliferation. Rather, transformed growth of OSC cells is regulated by PKCι-dependent nuclear localization of the oncogenic transcription factor, YAP1. Lentiviral shRNA-mediated knock down (KD) of PKCι leads to decreased nuclear YAP1 and increased YAP1 binding to angiomotin (AMOT), which sequesters YAP1 in the cytoplasm. Biochemical analysis reveals that PKCι directly phosphorylates AMOT at a unique site, Thr750, whose phosphorylation inhibits YAP1 binding. Pharmacologic inhibition of PKCι decreases YAP1 nuclear localization and blocks OSC tumor growth in vitro and in vivo. Immunohistochemical analysis reveals a strong positive correlation between tumor PKCι expression and nuclear YAP1 in primary OSC tumor samples, indicating the clinical relevance of PKCι-YAP1 signaling. Our results uncover a novel PKCι-AMOT-YAP1 signaling axis that promotes OSC tumor growth, and provide a rationale for therapeutic targeting of this pathway for treatment of OSC.
Collapse
Affiliation(s)
- Y Wang
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - V Justilien
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - K I Brennan
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - L Jamieson
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - N R Murray
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - A P Fields
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| |
Collapse
|
41
|
Molecular Control of Atypical Protein Kinase C: Tipping the Balance between Self-Renewal and Differentiation. J Mol Biol 2016; 428:1455-64. [PMID: 26992354 DOI: 10.1016/j.jmb.2016.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/20/2016] [Accepted: 03/03/2016] [Indexed: 01/05/2023]
Abstract
Complex organisms are faced with the challenge of generating and maintaining diverse cell types, ranging from simple epithelia to neurons and motile immune cells [1-3]. To meet this challenge, a complex set of regulatory pathways controls nearly every aspect of cell growth and function, including genetic and epigenetic programming, cytoskeleton dynamics, and protein trafficking. The far reach of cell fate specification pathways makes it particularly catastrophic when they malfunction, both during development and for tissue homeostasis in adult organisms. Furthermore, the therapeutic promise of stem cells derives from their ability to deftly navigate the multitude of pathways that control cell fate [4]. How the molecular components making up these pathways function to specify cell fate is beginning to become clear. Work from diverse systems suggests that the atypical Protein Kinase C (aPKC) is a key regulator of cell fate decisions in metazoans [5-7]. Here, we examine some of the diverse physiological outcomes of aPKC's function in differentiation, along with the molecular pathways that control aPKC and those that are responsive to changes in its catalytic activity.
Collapse
|
42
|
Grampa V, Delous M, Zaidan M, Odye G, Thomas S, Elkhartoufi N, Filhol E, Niel O, Silbermann F, Lebreton C, Collardeau-Frachon S, Rouvet I, Alessandri JL, Devisme L, Dieux-Coeslier A, Cordier MP, Capri Y, Khung-Savatovsky S, Sigaudy S, Salomon R, Antignac C, Gubler MC, Benmerah A, Terzi F, Attié-Bitach T, Jeanpierre C, Saunier S. Novel NEK8 Mutations Cause Severe Syndromic Renal Cystic Dysplasia through YAP Dysregulation. PLoS Genet 2016; 12:e1005894. [PMID: 26967905 PMCID: PMC4788435 DOI: 10.1371/journal.pgen.1005894] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/02/2016] [Indexed: 01/01/2023] Open
Abstract
Ciliopathies are a group of genetic multi-systemic disorders related to dysfunction of the primary cilium, a sensory organelle present at the cell surface that regulates key signaling pathways during development and tissue homeostasis. In order to identify novel genes whose mutations would cause severe developmental ciliopathies, >500 patients/fetuses were analyzed by a targeted high throughput sequencing approach allowing exome sequencing of >1200 ciliary genes. NEK8/NPHP9 mutations were identified in five cases with severe overlapping phenotypes including renal cystic dysplasia/hypodysplasia, situs inversus, cardiopathy with hypertrophic septum and bile duct paucity. These cases highlight a genotype-phenotype correlation, with missense and nonsense mutations associated with hypodysplasia and enlarged cystic organs, respectively. Functional analyses of NEK8 mutations in patient fibroblasts and mIMCD3 cells showed that these mutations differentially affect ciliogenesis, proliferation/apoptosis/DNA damage response, as well as epithelial morphogenesis. Notably, missense mutations exacerbated some of the defects due to NEK8 loss of function, highlighting their likely gain-of-function effect. We also showed that NEK8 missense and loss-of-function mutations differentially affect the regulation of the main Hippo signaling effector, YAP, as well as the expression of its target genes in patient fibroblasts and renal cells. YAP imbalance was also observed in enlarged spheroids of Nek8-invalidated renal epithelial cells grown in 3D culture, as well as in cystic kidneys of Jck mice. Moreover, co-injection of nek8 MO with WT or mutated NEK8-GFP RNA in zebrafish embryos led to shortened dorsally curved body axis, similar to embryos injected with human YAP RNA. Finally, treatment with Verteporfin, an inhibitor of YAP transcriptional activity, partially rescued the 3D spheroid defects of Nek8-invalidated cells and the abnormalities of NEK8-overexpressing zebrafish embryos. Altogether, our study demonstrates that NEK8 human mutations cause major organ developmental defects due to altered ciliogenesis and cell differentiation/proliferation through deregulation of the Hippo pathway. Genes mutated in ciliopathies encode proteins with various localizations and functions at the primary cilium. Here we report novel NEK8 mutations in patients with renal cystic hypodysplasia and associated ciliopathy defects. NEK8 belongs to a protein complex defining the Inversin compartment of the cilium. It is also a negative regulator of the Hippo signaling pathway that controls organ growth. We report genotype-phenotype correlation in the patients. We functionally demonstrate that the two types of mutations (missense versus nonsense) differentially affect ciliogenesis, cell apoptosis and epithelialisation. We also show that all the mutations lead to dysregulation of the Hippo pathway through nuclear YAP imbalance but that the nature of this imbalance is different according to the type of mutation. We confirm alteration of the Hippo pathway associated with Nek8 mutation in vivo in Jck mice. Remarkably, we show that morphogenesis defects observed in Nek8 knockdown epithelial cells or zebrafish embryos are rescued by Verteporfin, a specific inhibitor of YAP transcriptional activity, demonstrating the causative role of YAP dysregulation in the occurrence of these defects. Altogether, this study links NEK8 mutations to dysregulation of the Hippo pathway and provide molecular clues to understand the variability of the multiorgan defects in the patients.
Collapse
Affiliation(s)
- Valentina Grampa
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Marion Delous
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Mohamad Zaidan
- INSERM U1151, CNRS UMR8253, Paris Descartes—Sorbonne Paris Cité University, Necker-Enfants Malades Institute, Mechanisms and Therapeutic Strategies of Chronic Kidney Diseases, Necker Hospital, Paris, France
| | - Gweltas Odye
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Sophie Thomas
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
- INSERM UMR1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris, France
| | - Nadia Elkhartoufi
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
- INSERM UMR1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris, France
- Department of Genetics, AP-HP, Necker Hospital, Paris, France
| | - Emilie Filhol
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Olivier Niel
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatric Nephrology, AP-HP, Robert Debré Hospital, Paris, France
| | - Flora Silbermann
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Corinne Lebreton
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
- INSERM UMR1163, Laboratory of Intestinal Immunity, Paris, France
| | | | - Isabelle Rouvet
- Cellular Biotechnology Department and Biobank, Hospices Civils de Lyon, CHU de Lyon, Lyon, France
| | | | - Louise Devisme
- Anatomopathological Department, CHRU Lille, University Hospital, Lille, France
| | | | - Marie-Pierre Cordier
- Department of Genetics, Femme Mère-Enfant Hospital, University of Lyon 1, Bron, France
| | - Yline Capri
- Department of Genetics, CHU Robert-Debré, Paris, France
| | | | - Sabine Sigaudy
- Multidisciplinary Department of Prenatal Diagnosis, La Timone Children’s Hospital, Marseille, France
| | - Rémi Salomon
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatric Nephrology, AP-HP, Necker Hospital, Paris, France
| | - Corinne Antignac
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Department of Genetics, AP-HP, Necker Hospital, Paris, France
| | - Marie-Claire Gubler
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Alexandre Benmerah
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Fabiola Terzi
- INSERM U1151, CNRS UMR8253, Paris Descartes—Sorbonne Paris Cité University, Necker-Enfants Malades Institute, Mechanisms and Therapeutic Strategies of Chronic Kidney Diseases, Necker Hospital, Paris, France
| | - Tania Attié-Bitach
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
- INSERM UMR1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris, France
- Department of Histology-Embryology and Cytogenetics, AP-HP, Necker Hospital, Paris, France
| | - Cécile Jeanpierre
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Sophie Saunier
- INSERM UMR1163, Laboratory of Inherited Kidney Diseases, Necker-Enfants Malades Hospital, Paris, France
- Paris Descartes—Sorbonne Paris Cité University, Imagine Institute, Paris, France
- * E-mail:
| |
Collapse
|
43
|
Patent highlights October–November 2015. Pharm Pat Anal 2016. [DOI: 10.4155/ppa.15.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical R&D.
Collapse
|
44
|
Muthusamy BP, Budi EH, Katsuno Y, Lee MK, Smith SM, Mirza AM, Akhurst RJ, Derynck R. ShcA Protects against Epithelial-Mesenchymal Transition through Compartmentalized Inhibition of TGF-β-Induced Smad Activation. PLoS Biol 2015; 13:e1002325. [PMID: 26680585 PMCID: PMC4682977 DOI: 10.1371/journal.pbio.1002325] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a normal cell differentiation event during development and contributes pathologically to carcinoma and fibrosis progression. EMT often associates with increased transforming growth factor-β (TGF-β) signaling, and TGF-β drives EMT, in part through Smad-mediated reprogramming of gene expression. TGF-β also activates the Erk MAPK pathway through recruitment and Tyr phosphorylation of the adaptor protein ShcA by the activated TGF-β type I receptor. We found that ShcA protects the epithelial integrity of nontransformed cells against EMT by repressing TGF-β-induced, Smad-mediated gene expression. p52ShcA competed with Smad3 for TGF-β receptor binding, and down-regulation of ShcA expression enhanced autocrine TGF-β/Smad signaling and target gene expression, whereas increased p52ShcA expression resulted in decreased Smad3 binding to the TGF-β receptor, decreased Smad3 activation, and increased Erk MAPK and Akt signaling. Furthermore, p52ShcA sequestered TGF-β receptor complexes to caveolin-associated membrane compartments, and reducing ShcA expression enhanced the receptor localization in clathrin-associated membrane compartments that enable Smad activation. Consequently, silencing ShcA expression induced EMT, with increased cell migration, invasion, and dissemination, and increased stem cell generation and mammosphere formation, dependent upon autocrine TGF-β signaling. These findings position ShcA as a determinant of the epithelial phenotype by repressing TGF-β-induced Smad activation through differential partitioning of receptor complexes at the cell surface. The adaptor protein ShcA protects epithelial cells from transitioning toward a mesenchymal phenotype by controlling partitioning of the TGF-β receptor and repressing downstream Smad2/3 activation. TGF-β family proteins control cell differentiation and various cell functions. Increased TGF-β signaling, acting through heteromeric receptor complexes, contributes to carcinoma progression and fibrosis. TGF-β drives epithelial–mesenchymal transdifferentiation (EMT), which enables cell migration and invasion. Upon TGF-β binding, “type I” receptors activate, through phosphorylation, Smad2 and Smad3 that control target gene transcription. In EMT, Smad complexes activate the expression of EMT “master” transcription factors and cooperate with these to repress the epithelial phenotype and activate mesenchymal gene expression. TGF-β receptors also activate Erk MAPK signaling, involving association of the adaptor protein ShcA and Tyr phosphorylation of ShcA by type I receptors. We now show that the predominant ShcA isoform, p52ShcA, competes with Smad2/3 for binding to type I TGF-β receptors, thus repressing Smad2/3 activation in response to TGF-β and localizing the receptors to caveolar compartments. Consequently, decreased ShcA expression enhanced TGF-β receptor localization in clathrin compartments and autocrine Smad2/3 signaling, repressed the epithelial phenotype, and promoted EMT. The changes following decreased ShcA expression resulted in increased cell migration and invasion, as well as increased stem cell generation, dependent upon autocrine TGF-β signaling. These findings position ShcA as a determinant of the epithelial phenotype by repressing TGF-β-induced Smad activation through differential partitioning of receptor complexes at the cell surface.
Collapse
Affiliation(s)
- Baby Periyanayaki Muthusamy
- Departments of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States of America
| | - Erine H. Budi
- Departments of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States of America
| | - Yoko Katsuno
- Departments of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States of America
| | - Matthew K. Lee
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Susan M. Smith
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Amer M. Mirza
- XOMA Corp., Berkeley, California, United States of America
| | - Rosemary J. Akhurst
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States of America
- Department of Anatomy, University of California, San Francisco, San Francisco, California, United States of America
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Rik Derynck
- Departments of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States of America
- Department of Anatomy, University of California, San Francisco, San Francisco, California, United States of America
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|