1
|
Zhao C, Cao Y, Ibrahim N, Wang Y, Martemyanov KA. Efficient in vivo labeling of endogenous proteins with SMART delineates retina cellular and synaptic organization. Nat Commun 2025; 16:3768. [PMID: 40263339 PMCID: PMC12015494 DOI: 10.1038/s41467-025-58945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
A key application of CRISPR/Cas9-based genomic editing is modification of genes to introduce engineered sequences. However, the editing flexibility is severely constrained by the requirement for targeting sites in proximity to the desired modification site, which makes many modifications intractable. Here, we develop a strategy that overcomes this key limitation to allow CRISPR-based editing at any position with high efficiency. It relies on reconstructing the targeted gene using Silently Mutate And Repair Template (SMART) where we mutate the gap sequence in the repair template to prevent its base pairing with the target DNA while maintaining the same amino acid coding. Using vertebrate retina as a neuronal model system we document the application of SMART editing for labeling endogenous proteins in vivo with high efficiency. We show that SMART editing allows us to access numerous cell types in the retina and address fundamental cell biological questions pertaining to its organization. We propose that this approach will facilitate functional genomic studies in a wide range of systems and increase the precision of corrective gene therapies.
Collapse
Affiliation(s)
- Chuanping Zhao
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
- Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL, USA
| | - Yan Cao
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Noor Ibrahim
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Yuchen Wang
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
- Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
2
|
Chauhan R, Gupta A, Dagar G, Sharma S, Sadida HQ, Hashem S, Verghese AM, Tanwar M, Macha MA, Uddin S, Al-Shabeeb Akil AS, Pandita TK, Bhat AA, Singh M. Role of lamins in cellular physiology and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:119-153. [PMID: 39843134 DOI: 10.1016/bs.apcsb.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Lamins, which are crucial type V intermediate filament proteins found in the nuclear lamina, are essential for maintaining the stability and function of the nucleus in higher vertebrates. They are classified into A- and B-types, and their distinct expression patterns contribute to cellular survival, development, and functionality. Lamins emerged during the transition from open to closed mitosis, with their complexity increasing alongside organism evolution. Derived from the LMNA, LMNB1, and LMNB2 genes, lamins undergo alternative splicing to produce seven variants, influencing cellular processes such as stiffness, chromatin condensation, and cell cycle regulation. The lamin network interacts with the cytoskeleton via Linkers of the nucleoskeleton to the cytoskeleton (LINC) complexes, playing a critical role in cellular stability and mechanotransduction. Lamins also regulate active transport into and out of the nucleus, affecting nuclear integrity, positioning, DNA maintenance, and gene expression. Genetic mutations in lamin genes lead to laminopathies, highlighting their functional significance and organizational roles. Changes in lamin subtype composition within the nuclear lamina have significant implications for cancer development, impacting cellular stiffness, mobility, and the Epithelial-to-Mesenchymal Transition (EMT). Lamin A/C, in particular, plays multifaceted roles in cancer biology, influencing progression, metastasis, and therapy response through interactions with various proteins and pathways. Dysregulated lamin expression is commonly observed in cancers, suggesting their potential as diagnostic and prognostic markers. This chapter underscores the pivotal roles of lamins in nuclear architecture and cancer biology, emphasizing their impact on cellular functions and disease pathology. Understanding lamin behavior and regulation mechanisms holds promise for developing novel diagnostic tools and targeted therapies in cancer treatment.
Collapse
Affiliation(s)
- Ravi Chauhan
- Department of Medical Oncology (Lab), Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab), Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Gunjan Dagar
- Department of Medical Oncology (Lab), Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Shalini Sharma
- Department of Medical Oncology (Lab), Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Ann M Verghese
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Mukesh Tanwar
- Department of Genetics, Maharishi Dayanand University Rohtak, Haryana, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Jammu and Kashmir, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, United States
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Mestres I, Atabay A, Escolano JC, Arndt S, Schmidtke K, Einsiedel M, Patsonis M, Bolaños-Castro LA, Yun M, Bernhardt N, Taubenberger A, Calegari F. Manipulation of the nuclear envelope-associated protein SLAP during mammalian brain development affects cortical lamination and exploratory behavior. Biol Open 2024; 13:bio060359. [PMID: 38466184 PMCID: PMC10958201 DOI: 10.1242/bio.060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Here, we report the first characterization of the effects resulting from the manipulation of Soluble-Lamin Associated Protein (SLAP) expression during mammalian brain development. We found that SLAP localizes to the nuclear envelope and when overexpressed causes changes in nuclear morphology and lengthening of mitosis. SLAP overexpression in apical progenitors of the developing mouse brain altered asymmetric cell division, neurogenic commitment and neuronal migration ultimately resulting in unbalance in the proportion of upper, relative to deeper, neuronal layers. Several of these effects were also recapitulated upon Cas9-mediated knockdown. Ultimately, SLAP overexpression during development resulted in a reduction in subcortical projections of young mice and, notably, reduced their exploratory behavior. Our study shows the potential relevance of the previously uncharacterized nuclear envelope protein SLAP in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivan Mestres
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Azra Atabay
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Joan-Carles Escolano
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Solveig Arndt
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Klara Schmidtke
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Maximilian Einsiedel
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Melina Patsonis
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Lizbeth Airais Bolaños-Castro
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Maximina Yun
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Anna Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Federico Calegari
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| |
Collapse
|
4
|
Hasper J, Welle K, Swovick K, Hryhorenko J, Ghaemmaghami S, Buchwalter A. Long lifetime and tissue-specific accumulation of lamin A/C in Hutchinson-Gilford progeria syndrome. J Cell Biol 2024; 223:e202307049. [PMID: 37966721 PMCID: PMC10651395 DOI: 10.1083/jcb.202307049] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
LMNA mutations cause laminopathies that afflict the cardiovascular system and include Hutchinson-Gilford progeria syndrome. The origins of tissue specificity in these diseases are unclear as the lamin A/C proteins are broadly expressed. We show that LMNA transcript levels are not predictive of lamin A/C protein levels across tissues and use quantitative proteomics to discover that tissue context and disease mutation each influence lamin A/C protein's lifetime. Lamin A/C's lifetime is an order of magnitude longer in the aorta, heart, and fat, where laminopathy pathology is apparent, than in the liver and intestine, which are spared from the disease. Lamin A/C is especially insoluble in cardiovascular tissues, which may limit degradation and promote protein stability. Progerin is even more long lived than lamin A/C in the cardiovascular system and accumulates there over time. Progerin accumulation is associated with impaired turnover of hundreds of abundant proteins in progeroid tissues. These findings identify impaired lamin A/C protein turnover as a novel feature of laminopathy syndromes.
Collapse
Affiliation(s)
- John Hasper
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Kevin Welle
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
| | - Kyle Swovick
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
| | - Jennifer Hryhorenko
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
| | - Sina Ghaemmaghami
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
5
|
Buchwalter A. Intermediate, but not average: The unusual lives of the nuclear lamin proteins. Curr Opin Cell Biol 2023; 84:102220. [PMID: 37619289 PMCID: PMC12049094 DOI: 10.1016/j.ceb.2023.102220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
The nuclear lamins are polymeric intermediate filament proteins that scaffold the nucleus and organize the genome in nearly all eukaryotic cells. This review focuses on the dynamic regulation of lamin filaments through their biogenesis, assembly, disassembly, and degradation. The lamins are unusually long-lived proteins under homeostatic conditions, but their turnover can be induced in select contexts that are highlighted in this review. Finally, we discuss recent investigations into the influence of laminopathy-linked mutations on the assembly, folding, and stability of the nuclear lamins.
Collapse
Affiliation(s)
- Abigail Buchwalter
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
6
|
Pande S, Ghosh DK. Nuclear proteostasis imbalance in laminopathy-associated premature aging diseases. FASEB J 2023; 37:e23116. [PMID: 37498235 DOI: 10.1096/fj.202300878r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Laminopathies are a group of rare genetic disorders with heterogeneous clinical phenotypes such as premature aging, cardiomyopathy, lipodystrophy, muscular dystrophy, microcephaly, epilepsy, and so on. The cellular phenomena associated with laminopathy invariably show disruption of nucleoskeleton of lamina due to deregulated expression, localization, function, and interaction of mutant lamin proteins. Impaired spatial and temporal tethering of lamin proteins to the lamina or nucleoplasmic aggregation of lamins are the primary molecular events that can trigger nuclear proteotoxicity by modulating differential protein-protein interactions, sequestering quality control proteins, and initiating a cascade of abnormal post-translational modifications. Clearly, laminopathic cells exhibit moderate to high nuclear proteotoxicity, raising the question of whether an imbalance in nuclear proteostasis is involved in laminopathic diseases, particularly in diseases of early aging such as HGPS and laminopathy-associated premature aging. Here, we review nuclear proteostasis and its deregulation in the context of lamin proteins and laminopathies.
Collapse
Affiliation(s)
- Shruti Pande
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Debasish Kumar Ghosh
- Enteric Disease Division, Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
7
|
Martino S, Carollo PS, Barra V. A Glimpse into Chromatin Organization and Nuclear Lamina Contribution in Neuronal Differentiation. Genes (Basel) 2023; 14:genes14051046. [PMID: 37239406 DOI: 10.3390/genes14051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
During embryonic development, stem cells undergo the differentiation process so that they can specialize for different functions within the organism. Complex programs of gene transcription are crucial for this process to happen. Epigenetic modifications and the architecture of chromatin in the nucleus, through the formation of specific regions of active as well as inactive chromatin, allow the coordinated regulation of the genes for each cell fate. In this mini-review, we discuss the current knowledge regarding the regulation of three-dimensional chromatin structure during neuronal differentiation. We also focus on the role the nuclear lamina plays in neurogenesis to ensure the tethering of the chromatin to the nuclear envelope.
Collapse
Affiliation(s)
- Salvatore Martino
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Pietro Salvatore Carollo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Viviana Barra
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
8
|
Hasper J, Welle K, Swovick K, Hryhorenko J, Ghaemmaghami S, Buchwalter A. Long lifetime and selective accumulation of the A-type lamins accounts for the tissue specificity of Hutchinson-Gilford progeria syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.04.527139. [PMID: 37162946 PMCID: PMC10168242 DOI: 10.1101/2023.02.04.527139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mutations to the LMNA gene cause laminopathies including Hutchinson-Gilford progeria syndrome (HGPS) that severely affect the cardiovascular system. The origins of tissue specificity in these diseases are unclear, as the A-type Lamins are abundant and broadly expressed proteins. We show that A-type Lamin protein and transcript levels are uncorrelated across tissues. As protein-transcript discordance can be caused by variations in protein lifetime, we applied quantitative proteomics to profile protein turnover rates in healthy and progeroid tissues. We discover that tissue context and disease mutation each influence A-type Lamin protein lifetime. Lamin A/C has a weeks-long lifetime in the aorta, heart, and fat, where progeroid pathology is apparent, but a days-long lifetime in the liver and gastrointestinal tract, which are spared from disease. The A-type Lamins are insoluble and densely bundled in cardiovascular tissues, which may present an energetic barrier to degradation and promote long protein lifetime. Progerin is even more long-lived than Lamin A/C in the cardiovascular system and accumulates there over time. Progerin accumulation interferes broadly with protein homeostasis, as hundreds of abundant proteins turn over more slowly in progeroid tissues. These findings indicate that potential gene therapy interventions for HGPS will have significant latency and limited potency in disrupting the long-lived Progerin protein. Finally, we reveal that human disease alleles are significantly over-represented in the long-lived proteome, indicating that long protein lifetime may influence disease pathology and present a significant barrier to gene therapies for numerous human diseases.
Collapse
Affiliation(s)
- John Hasper
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Kevin Welle
- University of Rochester Mass Spectrometry Resource Laboratory, Rochester, NY
| | - Kyle Swovick
- University of Rochester Mass Spectrometry Resource Laboratory, Rochester, NY
| | - Jennifer Hryhorenko
- University of Rochester Mass Spectrometry Resource Laboratory, Rochester, NY
| | - Sina Ghaemmaghami
- University of Rochester Mass Spectrometry Resource Laboratory, Rochester, NY
- Department of Biology, University of Rochester, Rochester, NY
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Physiology, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
9
|
Li Y, Zhu J, Yu Z, Li H, Jin X. The role of Lamin B2 in human diseases. Gene 2023; 870:147423. [PMID: 37044185 DOI: 10.1016/j.gene.2023.147423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Lamin B2 (LMNB2), on the inner side of the nuclear envelope, constitutes the nuclear skeleton by connecting with other nuclear proteins. LMNB2 is involved in a wide range of nuclear functions, including DNA replication and stability, regulation of chromatin, and nuclear stiffness. Moreover, LMNB2 regulates several cellular processes, such as tissue development, cell cycle, cellular proliferation and apoptosis, chromatin localization and stability, and DNA methylation. Besides, the influence of abnormal expression and mutations of LMNB2 has been gradually discovered in cancers and laminopathies. Therefore, this review summarizes the recent advances of LMNB2-associated biological roles in physiological or pathological conditions, with a particular emphasis on cancers and laminopathies, as well as the potential mechanism of LMNB2 in related cancers.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China.
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China.
| |
Collapse
|
10
|
Bai J, Koos DS, Stepanian K, Fouladian Z, Shayler DWH, Aparicio JG, Fraser SE, Moats RA, Cobrinik D. Episodic live imaging of cone photoreceptor maturation in GNAT2-EGFP retinal organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530518. [PMID: 36909527 PMCID: PMC10002746 DOI: 10.1101/2023.02.28.530518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Fluorescent reporter pluripotent stem cell (PSC) derived retinal organoids are powerful tools to investigate cell type-specific development and disease phenotypes. When combined with live imaging, they enable direct and repeated observation of cell behaviors within a developing retinal tissue. Here, we generated a human cone photoreceptor reporter line by CRISPR/Cas9 genome editing of WTC11-mTagRFPT-LMNB1 human induced pluripotent stem cells (iPSCs) by inserting enhanced green fluorescent protein (EGFP) coding sequences and a 2A self-cleaving peptide at the N-terminus of Guanine Nucleotide-Binding Protein Subunit Alpha Transducin 2 (GNAT2). In retinal organoids generated from these iPSCs, the GNAT2-EGFP allele robustly and exclusively labeled both immature and mature cones starting at culture day 34. Episodic confocal live imaging of hydrogel immobilized retinal organoids allowed tracking of morphological maturation of individual cones for >18 weeks and revealed inner segment accumulation of mitochondria and growth at 12.2 cubic microns per day from day 126 to day 153. Immobilized GNAT2-EGFP cone reporter organoids provide a valuable tool for investigating human cone development and disease.
Collapse
Affiliation(s)
- Jinlun Bai
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David S. Koos
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Translational Biomedical Imaging Laboratory, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Kayla Stepanian
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Zachary Fouladian
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dominic W. H. Shayler
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jennifer G. Aparicio
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Scott E. Fraser
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Translational Biomedical Imaging Laboratory, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
| | - Rex A. Moats
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Translational Biomedical Imaging Laboratory, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - David Cobrinik
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Eftekharpour E. The neuronal nucleus: a new battlefield in fight against neurodegeneration. Aging (Albany NY) 2023; 15:898-904. [PMID: 36806186 PMCID: PMC10008506 DOI: 10.18632/aging.204519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/06/2023] [Indexed: 02/20/2023]
Abstract
Aging is an inevitable fact of life which brings along a series of age-associated diseases. Although medical innovations and patient care improvement have increased our life expectancy, the rate of age-associated diseases have also increased. Nervous system is specifically prone to these diseases that cause neuronal loss in different anatomical regions. Alzheimer's disease is the best-known example of age-associated illnesses and is diagnosed by accumulation of intracellular Neurofibrillary tangles and extracellular Amyloid Plaques resulting in dementia. However, therapeutic attempts aiming at the removal of these plaques and tangles to reverse the cognitive decline have generally failed in human patients and may compromise the patient's health. We have learnt that interruption of neuronal housekeeping systems such as autophagy contributes to formation of these aggregates, and therefore understanding the underlying mechanisms that lead to failure of these endogenous protective systems may provide valuable information and novel therapies. The house keeping systems are delicately regulated through gene expression and chromatin modifications in the nucleus, however, the contribution of this largest cellular organelle in pathophysiology of the disease has been overlooked. During the last few years, a wealth of information on neuronal nucleus has emerged that provides a strong rationale for examining its contribution to the pathophysiology of the disease. In this research perspective, I have attempted to summarize the latest research on neuronal nucleus, with a special focus on nuclear lamina damage and its downstream events to rationalize the need for focusing on the neuronal nucleus as a therapeutic target.
Collapse
Affiliation(s)
- Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Faber S, Letteboer SJF, Junger K, Butcher R, Tammana TVS, van Beersum SEC, Ueffing M, Collin RWJ, Liu Q, Boldt K, Roepman R. PDE6D Mediates Trafficking of Prenylated Proteins NIM1K and UBL3 to Primary Cilia. Cells 2023; 12:cells12020312. [PMID: 36672247 PMCID: PMC9857354 DOI: 10.3390/cells12020312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Mutations in PDE6D impair the function of its cognate protein, phosphodiesterase 6D (PDE6D), in prenylated protein trafficking towards the ciliary membrane, causing the human ciliopathy Joubert Syndrome (JBTS22) and retinal degeneration in mice. In this study, we purified the prenylated cargo of PDE6D by affinity proteomics to gain insight into PDE6D-associated disease mechanisms. By this approach, we have identified a specific set of PDE6D-interacting proteins that are involved in photoreceptor integrity, GTPase activity, nuclear import, or ubiquitination. Among these interacting proteins, we identified novel ciliary cargo proteins of PDE6D, including FAM219A, serine/threonine-protein kinase NIM1 (NIM1K), and ubiquitin-like protein 3 (UBL3). We show that NIM1K and UBL3 localize inside the cilium in a prenylation-dependent manner. Furthermore, UBL3 also localizes in vesicle-like structures around the base of the cilium. Through affinity proteomics of UBL3, we confirmed its strong interaction with PDE6D and its association with proteins that regulate small extracellular vesicles (sEVs) and ciliogenesis. Moreover, we show that UBL3 localizes in specific photoreceptor cilium compartments in a prenylation-dependent manner. Therefore, we propose that UBL3 may play a role in the sorting of proteins towards the photoreceptor outer segment, further explaining the development of PDE6D-associated retinal degeneration.
Collapse
Affiliation(s)
- Siebren Faber
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Stef J. F. Letteboer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Katrin Junger
- Division of Experimental Ophthalmology and Medical Proteome Center, Center of Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Rossano Butcher
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02115, USA
| | - Trinadh V. Satish Tammana
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Sylvia E. C. van Beersum
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Marius Ueffing
- Division of Experimental Ophthalmology and Medical Proteome Center, Center of Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Rob W. J. Collin
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Qin Liu
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02115, USA
| | - Karsten Boldt
- Division of Experimental Ophthalmology and Medical Proteome Center, Center of Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Correspondence:
| |
Collapse
|
13
|
Ji J, Li H, Chen J, Wang W. Lamin B2 contributes to the proliferation of bladder cancer cells via activating the expression of cell division cycle‑associated protein 3. Int J Mol Med 2022; 50:111. [PMID: 35775376 PMCID: PMC9282643 DOI: 10.3892/ijmm.2022.5168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/24/2022] [Indexed: 12/09/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system, and in China it is first among urogenital system tumors. More therapeutic targets are still urgently required to combat this disease. Lamin B2 (LMNB2) is a type of nuclear lamina filament protein, which is involved in multiple cellular processes, and known as an oncogene affecting the progression of multiple types of cancers. Although the multiple effects of LMNB2 on cancer progression have been elucidated, its possible role in bladder cancer remains unclear. In the present study, it was determined that LMNB2 expression was upregulated in human bladder cancer tissues, and its expression was correlated with the prognosis and the clinical features, including tumor stage (P=0.001) and recurrence (P=0.006) of patients with bladder cancer. In addition, it was further revealed that LMNB2 depletion inhibited bladder cancer cell proliferation, stimulated cell cycle arrest and apoptosis in vitro, and suppressed tumor growth of bladder cancer cells in mice. Furthermore, the present data revealed that LMNB2 promoted the proliferation of bladder cancer cells via transcriptional activation of CDCA3 expression. Therefore, the role of LMNB2 in bladder cancer progression was demonstrated, and may serve as a promising therapeutic target for bladder cancer treatment.
Collapse
Affiliation(s)
- Junpeng Ji
- Department of Urology Surgery, The Third Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
- Department of Urology Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Huibing Li
- Department of Urology Surgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Jing Chen
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Wenjun Wang
- Department of Urology Surgery, The Third Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
14
|
Chen G, Kong Y, Li Y, Huang A, Wang C, Zhou S, Yang Z, Wu Y, Ren J, Ying T. A Promising Intracellular Protein-Degradation Strategy: TRIMbody-Away Technique Based on Nanobody Fragment. Biomolecules 2021; 11:biom11101512. [PMID: 34680146 PMCID: PMC8533776 DOI: 10.3390/biom11101512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Most recently, a technology termed TRIM-Away has allowed acute and rapid destruction of endogenous target proteins in cultured cells using specific antibodies and endogenous/exogenous tripartite motif 21 (TRIM21). However, the relatively large size of the full-size mAbs (150 kDa) results in correspondingly low tissue penetration and inaccessibility of some sterically hindered epitopes, which limits the target protein degradation. In addition, exogenous introduction of TRIM21 may cause side effects for treated cells. To tackle these limitations, we sought to replace full-size mAbs with the smaller format of antibodies, a nanobody (VHH, 15 kDa), and construct a new type of fusion protein named TRIMbody by fusing the nanobody and RBCC motif of TRIM21. Next, we introduced enhanced green fluorescent protein (EGFP) as a model substrate and generated αEGFP TRIMbody using a bispecific anti-EGFP (αEGFP) nanobody. Remarkably, inducible expression of αEGFP TRIMbody could specifically degrade intracellular EGFP in HEK293T cells in a time-dependent manner. By treating cells with inhibitors, we found that intracellular EGFP degradation by αEGFP TRIMbody relies on both ubiquitin-proteasome and autophagy-lysosome pathways. Taken together, these results suggested that TRIMbody-Away technology could be utilized to specifically degrade intracellular protein and could expand the potential applications of degrader technologies.
Collapse
Affiliation(s)
- Gang Chen
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (G.C.); (Y.K.); (Y.L.); (A.H.); (C.W.); (S.Z.)
| | - Yu Kong
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (G.C.); (Y.K.); (Y.L.); (A.H.); (C.W.); (S.Z.)
| | - You Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (G.C.); (Y.K.); (Y.L.); (A.H.); (C.W.); (S.Z.)
| | - Ailing Huang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (G.C.); (Y.K.); (Y.L.); (A.H.); (C.W.); (S.Z.)
| | - Chunyu Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (G.C.); (Y.K.); (Y.L.); (A.H.); (C.W.); (S.Z.)
| | - Shanshan Zhou
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (G.C.); (Y.K.); (Y.L.); (A.H.); (C.W.); (S.Z.)
| | - Zhenlin Yang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (G.C.); (Y.K.); (Y.L.); (A.H.); (C.W.); (S.Z.)
- Correspondence: (Y.W.); (J.R.); (T.Y.); Tel.: +86-021-54237761 (Y.W.); +86-021-54920668 (J.R.); +86-021-54237761 (T.Y.)
| | - Jianke Ren
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (Y.W.); (J.R.); (T.Y.); Tel.: +86-021-54237761 (Y.W.); +86-021-54920668 (J.R.); +86-021-54237761 (T.Y.)
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (G.C.); (Y.K.); (Y.L.); (A.H.); (C.W.); (S.Z.)
- Correspondence: (Y.W.); (J.R.); (T.Y.); Tel.: +86-021-54237761 (Y.W.); +86-021-54920668 (J.R.); +86-021-54237761 (T.Y.)
| |
Collapse
|
15
|
Kim PH, Chen NY, Heizer PJ, Tu Y, Weston TA, Fong JLC, Gill NK, Rowat AC, Young SG, Fong LG. Nuclear membrane ruptures underlie the vascular pathology in a mouse model of Hutchinson-Gilford progeria syndrome. JCI Insight 2021; 6:151515. [PMID: 34423791 PMCID: PMC8409987 DOI: 10.1172/jci.insight.151515] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
The mutant nuclear lamin protein (progerin) produced in Hutchinson-Gilford progeria syndrome (HGPS) results in loss of arterial smooth muscle cells (SMCs), but the mechanism has been unclear. We found that progerin induces repetitive nuclear membrane (NM) ruptures, DNA damage, and cell death in cultured SMCs. Reducing lamin B1 expression and exposing cells to mechanical stress - to mirror conditions in the aorta - triggered more frequent NM ruptures. Increasing lamin B1 protein levels had the opposite effect, reducing NM ruptures and improving cell survival. Remarkably, raising lamin B1 levels increased nuclear compliance in cells and was able to offset the increased nuclear stiffness caused by progerin. In mice, lamin B1 expression in aortic SMCs is normally very low, and in mice with a targeted HGPS mutation (LmnaG609G), levels of lamin B1 decrease further with age while progerin levels increase. Those observations suggest that NM ruptures might occur in aortic SMCs in vivo. Indeed, studies in LmnaG609G mice identified NM ruptures in aortic SMCs, along with ultrastructural abnormalities in the cell nucleus that preceded SMC loss. Our studies identify NM ruptures in SMCs as likely causes of vascular pathology in HGPS.
Collapse
Affiliation(s)
- Paul H. Kim
- Department of Medicine
- Department of Bioengineering
| | - Natalie Y. Chen
- Department of Medicine
- Department of Integrative Biology and Physiology, and
| | | | | | | | | | | | - Amy C. Rowat
- Department of Bioengineering
- Department of Integrative Biology and Physiology, and
| | - Stephen G. Young
- Department of Medicine
- Department of Human Genetics, UCLA, Los Angeles, California, USA
| | | |
Collapse
|
16
|
Drosophila female germline stem cells undergo mitosis without nuclear breakdown. Curr Biol 2021; 31:1450-1462.e3. [PMID: 33548191 DOI: 10.1016/j.cub.2021.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 02/02/2023]
Abstract
Stem cell homeostasis requires nuclear lamina (NL) integrity. In Drosophila germ cells, compromised NL integrity activates the ataxia telangiectasia and Rad3-related (ATR) and checkpoint kinase 2 (Chk2) checkpoint kinases, blocking germ cell differentiation and causing germline stem cell (GSC) loss. Checkpoint activation occurs upon loss of either the NL protein emerin or its partner barrier-to-autointegration factor, two proteins required for nuclear reassembly at the end of mitosis. Here, we examined how mitosis contributes to NL structural defects linked to checkpoint activation. These analyses led to the unexpected discovery that wild-type female GSCs utilize a non-canonical mode of mitosis, one that retains a permeable but intact nuclear envelope and NL. We show that the interphase NL is remodeled during mitosis for insertion of centrosomes that nucleate the mitotic spindle within the confines of the nucleus. We show that depletion or loss of NL components causes mitotic defects, including compromised chromosome segregation associated with altered centrosome positioning and structure. Further, in emerin mutant GSCs, centrosomes remain embedded in the interphase NL. Notably, these embedded centrosomes carry large amounts of pericentriolar material and nucleate astral microtubules, revealing a role for emerin in the regulation of centrosome structure. Epistasis studies demonstrate that defects in centrosome structure are upstream of checkpoint activation, suggesting that these centrosome defects might trigger checkpoint activation and GSC loss. Connections between NL proteins and centrosome function have implications for mechanisms associated with NL dysfunction in other stem cell populations, including NL-associated diseases, such as laminopathies.
Collapse
|
17
|
Chen NY, Kim PH, Fong LG, Young SG. Nuclear membrane ruptures, cell death, and tissue damage in the setting of nuclear lamin deficiencies. Nucleus 2020; 11:237-249. [PMID: 32910721 PMCID: PMC7529418 DOI: 10.1080/19491034.2020.1815410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/26/2022] Open
Abstract
The nuclear membranes function as a barrier to separate the cell nucleus from the cytoplasm, but this barrier can be compromised by nuclear membrane ruptures, leading to intermixing of nuclear and cytoplasmic contents. Spontaneous nuclear membrane ruptures (i.e., ruptures occurring in the absence of mechanical stress) have been observed in cultured cells, but they are more frequent in the setting of defects or deficiencies in nuclear lamins and when cells are subjected to mechanical stress. Nuclear membrane ruptures in cultured cells have been linked to DNA damage, but the relevance of ruptures to developmental or physiologic processes in vivo has received little attention. Recently, we addressed that issue by examining neuronal migration in the cerebral cortex, a developmental process that subjects the cell nucleus to mechanical stress. In the setting of lamin B1 deficiency, we observed frequent nuclear membrane ruptures in migrating neurons in the developing cerebral cortex and showed that those ruptures are likely the cause of observed DNA damage, neuronal cell death, and profound neuropathology. In this review, we discuss the physiologic relevance of nuclear membrane ruptures, with a focus on migrating neurons in cell culture and in the cerebral cortex of genetically modified mice.
Collapse
Affiliation(s)
- Natalie Y. Chen
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Paul H. Kim
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Loren G. Fong
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Stephen G. Young
- Department of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Almendáriz-Palacios C, Gillespie ZE, Janzen M, Martinez V, Bridger JM, Harkness TAA, Mousseau DD, Eskiw CH. The Nuclear Lamina: Protein Accumulation and Disease. Biomedicines 2020; 8:E188. [PMID: 32630170 PMCID: PMC7400325 DOI: 10.3390/biomedicines8070188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular health is reliant on proteostasis-the maintenance of protein levels regulated through multiple pathways modulating protein synthesis, degradation and clearance. Loss of proteostasis results in serious disease and is associated with aging. One proteinaceous structure underlying the nuclear envelope-the nuclear lamina-coordinates essential processes including DNA repair, genome organization and epigenetic and transcriptional regulation. Loss of proteostasis within the nuclear lamina results in the accumulation of proteins, disrupting these essential functions, either via direct interactions of protein aggregates within the lamina or by altering systems that maintain lamina structure. Here we discuss the links between proteostasis and disease of the nuclear lamina, as well as how manipulating specific proteostatic pathways involved in protein clearance could improve cellular health and prevent/reverse disease.
Collapse
Affiliation(s)
- Carla Almendáriz-Palacios
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
| | - Zoe E. Gillespie
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Matthew Janzen
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Valeria Martinez
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
| | - Joanna M. Bridger
- Centre for Genome Engineering and Maintenance, College of Health, Life and Medical Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK;
| | - Troy A. A. Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Darrell D. Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK S7N 5A5, Canada;
| | - Christopher H. Eskiw
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| |
Collapse
|
19
|
Wesley CC, Mishra S, Levy DL. Organelle size scaling over embryonic development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e376. [PMID: 32003549 DOI: 10.1002/wdev.376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Cell division without growth results in progressive cell size reductions during early embryonic development. How do the sizes of intracellular structures and organelles scale with cell size and what are the functional implications of such scaling relationships? Model organisms, in particular Caenorhabditis elegans worms, Drosophila melanogaster flies, Xenopus laevis frogs, and Mus musculus mice, have provided insights into developmental size scaling of the nucleus, mitotic spindle, and chromosomes. Nuclear size is regulated by nucleocytoplasmic transport, nuclear envelope proteins, and the cytoskeleton. Regulators of microtubule dynamics and chromatin compaction modulate spindle and mitotic chromosome size scaling, respectively. Developmental scaling relationships for membrane-bound organelles, like the endoplasmic reticulum, Golgi, mitochondria, and lysosomes, have been less studied, although new imaging approaches promise to rectify this deficiency. While models that invoke limiting components and dynamic regulation of assembly and disassembly can account for some size scaling relationships in early embryos, it will be exciting to investigate the contribution of newer concepts in cell biology such as phase separation and interorganellar contacts. With a growing understanding of the underlying mechanisms of organelle size scaling, future studies promise to uncover the significance of proper scaling for cell function and embryonic development, as well as how aberrant scaling contributes to disease. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Fertilization to Gastrulation Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
20
|
Chen NY, Yang Y, Weston TA, Belling JN, Heizer P, Tu Y, Kim P, Edillo L, Jonas SJ, Weiss PS, Fong LG, Young SG. An absence of lamin B1 in migrating neurons causes nuclear membrane ruptures and cell death. Proc Natl Acad Sci U S A 2019; 116:25870-25879. [PMID: 31796586 PMCID: PMC6926041 DOI: 10.1073/pnas.1917225116] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deficiencies in either lamin B1 or lamin B2 cause both defective migration of cortical neurons in the developing brain and reduced neuronal survival. The neuronal migration abnormality is explained by a weakened nuclear lamina that interferes with nucleokinesis, a nuclear translocation process required for neuronal migration. In contrast, the explanation for impaired neuronal survival is poorly understood. We hypothesized that the forces imparted on the nucleus during neuronal migration result in nuclear membrane (NM) ruptures, causing interspersion of nuclear and cytoplasmic contents-and ultimately cell death. To test this hypothesis, we bred Lmnb1-deficient mice that express a nuclear-localized fluorescent Cre reporter. Migrating neurons within the cortical plate of E18.5 Lmnb1-deficient embryos exhibited NM ruptures, evident by the escape of the nuclear-localized reporter into the cytoplasm and NM discontinuities by electron microscopy. The NM ruptures were accompanied by DNA damage and cell death. The NM ruptures were not observed in nonmigrating cells within the ventricular zone. NM ruptures, DNA damage, and cell death were also observed in cultured Lmnb1-/- and Lmnb2-/- neurons as they migrated away from neurospheres. To test whether mechanical forces on the cell nucleus are relevant to NM ruptures in migrating neurons, we examined cultured Lmnb1-/- neurons when exposed to external constrictive forces (migration into a field of tightly spaced silicon pillars). As the cells entered the field of pillars, there were frequent NM ruptures, accompanied by DNA damage and cell death.
Collapse
Affiliation(s)
- Natalie Y Chen
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Ye Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Thomas A Weston
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Jason N Belling
- California NanoSystems Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Patrick Heizer
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Yiping Tu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Paul Kim
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Lovelyn Edillo
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Steven J Jonas
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Children's Discovery and Innovation Institute, University of California, Los Angeles, CA 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095
| | - Paul S Weiss
- California NanoSystems Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
| | - Loren G Fong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095;
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095;
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
21
|
Fišerová J, Maninová M, Sieger T, Uhlířová J, Šebestová L, Efenberková M, Čapek M, Fišer K, Hozák P. Nuclear pore protein TPR associates with lamin B1 and affects nuclear lamina organization and nuclear pore distribution. Cell Mol Life Sci 2019; 76:2199-2216. [PMID: 30762072 PMCID: PMC11105453 DOI: 10.1007/s00018-019-03037-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
The organization of the nuclear periphery is crucial for many nuclear functions. Nuclear lamins form dense network at the nuclear periphery and play a substantial role in chromatin organization, transcription regulation and in organization of nuclear pore complexes (NPCs). Here, we show that TPR, the protein located preferentially within the nuclear baskets of NPCs, associates with lamin B1. The depletion of TPR affects the organization of lamin B1 but not lamin A/C within the nuclear lamina as shown by stimulated emission depletion microscopy. Finally, reduction of TPR affects the distribution of NPCs within the nuclear envelope and the effect can be reversed by simultaneous knock-down of lamin A/C or the overexpression of lamin B1. Our work suggests a novel role for the TPR at the nuclear periphery: the TPR contributes to the organization of the nuclear lamina and in cooperation with lamins guards the interphase assembly of nuclear pore complexes.
Collapse
Affiliation(s)
- Jindřiška Fišerová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic.
| | - Miloslava Maninová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Tomáš Sieger
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jana Uhlířová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Lenka Šebestová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Michaela Efenberková
- Microscopy Centre-LM and EM, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Martin Čapek
- Microscopy Centre-LM and EM, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Karel Fišer
- CLIP Laboratories, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol Prague, V Úvalu 84, 150 06, Prague, Czech Republic
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
- Microscopy Centre-LM and EM, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
- Division BIOCEV, Institute of Molecular Genetics CAS, v.v.i., Průmyslová 595, Vestec, 252 50, Prague, Czech Republic
| |
Collapse
|
22
|
Rao RA, Ketkar AA, Kedia N, Krishnamoorthy VK, Lakshmanan V, Kumar P, Mohanty A, Kumar SD, Raja SO, Gulyani A, Chaturvedi CP, Brand M, Palakodeti D, Rampalli S. KMT1 family methyltransferases regulate heterochromatin-nuclear periphery tethering via histone and non-histone protein methylation. EMBO Rep 2019; 20:e43260. [PMID: 30858340 PMCID: PMC6501005 DOI: 10.15252/embr.201643260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 12/31/2022] Open
Abstract
Euchromatic histone methyltransferases (EHMTs), members of the KMT1 family, methylate histone and non-histone proteins. Here, we uncover a novel role for EHMTs in regulating heterochromatin anchorage to the nuclear periphery (NP) via non-histone methylation. We show that EHMTs methylate and stabilize LaminB1 (LMNB1), which associates with the H3K9me2-marked peripheral heterochromatin. Loss of LMNB1 methylation or EHMTs abrogates heterochromatin anchorage at the NP We further demonstrate that the loss of EHMTs induces many hallmarks of aging including global reduction of H3K27methyl marks and altered nuclear morphology. Consistent with this, we observe a gradual depletion of EHMTs, which correlates with loss of methylated LMNB1 and peripheral heterochromatin in aging human fibroblasts. Restoration of EHMT expression reverts peripheral heterochromatin defects in aged cells. Collectively, our work elucidates a new mechanism by which EHMTs regulate heterochromatin domain organization and reveals their impact on fundamental changes associated with the intrinsic aging process.
Collapse
Affiliation(s)
- Radhika Arasala Rao
- Centre For Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
- Sastra University, Tirumalaisamudram, Thanjavur, Tamilnadu, India
| | - Alhad Ashok Ketkar
- Centre For Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Neelam Kedia
- Centre For Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Vignesh K Krishnamoorthy
- Centre For Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Vairavan Lakshmanan
- Sastra University, Tirumalaisamudram, Thanjavur, Tamilnadu, India
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Pankaj Kumar
- Centre For Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Abhishek Mohanty
- Centre For Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Shilpa Dilip Kumar
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Sufi O Raja
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Akash Gulyani
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Chandra Prakash Chaturvedi
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Marjorie Brand
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dasaradhi Palakodeti
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Shravanti Rampalli
- Centre For Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| |
Collapse
|
23
|
Du Z, Chen J, Chu H. Differential Expression of LaminB1 in the Developing Rat Cochlea. J Int Adv Otol 2019; 15:106-111. [PMID: 30924780 PMCID: PMC6483428 DOI: 10.5152/iao.2019.6573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/17/2019] [Accepted: 03/02/2019] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES To explore the temporal expression pattern of LaminB1 in the cochlea of postnatal rat, and whether LaminB1 is associated with cochlear development. MATERIALS AND METHODS Sprague-Dawley rats ranging from postnatal day 0 (p0) to 21 (p21) were used. The tissues of stria vascularis (STV) including spiral ligament, spiral ganglion cell (SGC), and basilar membrane (BM), including the organ of Corti, were dissected, respectively. Immunofluorescence, quantitative real-time polymerase chain reaction, and western blot were applied to detect the expression of LaminB1 in individual cochlear tissues at both mRNA and protein levels. RESULTS Immunofluorescence revealed that LaminB1 was localized in the outer hair cells, inner hair cells, Kolliker's organ, Reissner's membrane, SGC, STV, and spiral ligament. The intensity of staining surrounding the scala media decreased during cochlear development. The expression of LaminB1 mRNA and protein in STV, SGC, and BM was at a maximum level at p0 but gradually declined to a minimum level at p21. CONCLUSION Our research provided direct evidence that LaminB1 was expressed in the developing cochlea and developmentally regulated in cochlear tissues, suggesting a possible role of LaminB1 in cochlear development. Our result provided a theoretical basis for further study about the physiological function of LaminB1 in the peripheral auditory system.
Collapse
Affiliation(s)
- Zhihui Du
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Chen
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanqi Chu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Deal SL, Yamamoto S. Unweaving the role of nuclear Lamins in neural circuit integrity. Cell Stress 2018; 2:219-224. [PMID: 31223139 PMCID: PMC6558928 DOI: 10.15698/cst2018.09.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 02/02/2023] Open
Abstract
Lamins are type-V intermediate filament proteins that comprise the nuclear lamina. Although once considered static structural components that provide physical support to the inner nuclear envelope, recent studies are revealing additional functional and regulatory roles for Lamins in chromatin organization, gene regulation, DNA repair, cell division and signal transduction. In this issue of Cell Stress, Oyston et al. (2018) reports the function of Lamin in the maintenance of nervous system integrity and neural circuit function using Drosophila. A number of laminopathies in humans exhibit age-dependent neurological phenotypes, but understanding how defects in specific neural cell types or circuitries contribute to patient phenotypes is very challenging. Drosophila provides a simple yet sophisticated system to begin untangling the vulnerability of diverse neuronal cell types and circuits against cellular stressors induced by defects in nuclear lamina organization.
Collapse
Affiliation(s)
- Samantha L. Deal
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX 77030
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX 77030
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030
- Department of Neuroscience, BCM, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX
| |
Collapse
|
25
|
Abstract
Eukaryotic cells depend on precise genome organization within the nucleus to maintain an appropriate gene-expression profile. Critical to this process is the packaging of functional domains of open and closed chromatin to specific regions of the nucleus, but how this is regulated remains unclear. In this study, we show that the zinc finger protein Casz1 regulates higher-order nuclear organization of rod photoreceptors in the mouse retina by repressing nuclear lamina function, which leads to central localization of heterochromatin. Loss of Casz1 in rods leads to an abnormal transcriptional profile followed by degeneration. These results identify Casz1 as a regulator of higher-order genome organization. Genome organization plays a fundamental role in the gene-expression programs of numerous cell types, but determinants of higher-order genome organization are poorly understood. In the developing mouse retina, rod photoreceptors represent a good model to study this question. They undergo a process called “chromatin inversion” during differentiation, in which, as opposed to classic nuclear organization, heterochromatin becomes localized to the center of the nucleus and euchromatin is restricted to the periphery. While previous studies showed that the lamin B receptor participates in this process, the molecular mechanisms regulating lamina function during differentiation remain elusive. Here, using conditional genetics, we show that the zinc finger transcription factor Casz1 is required to establish and maintain the inverted chromatin organization of rod photoreceptors and to safeguard their gene-expression profile and long-term survival. At the mechanistic level, we show that Casz1 interacts with the polycomb repressor complex in a splice variant-specific manner and that both are required to suppress the expression of the nuclear envelope intermediate filament lamin A/C in rods. Lamin A is in turn sufficient to regulate heterochromatin organization and nuclear position. Furthermore, we show that Casz1 is sufficient to expand and centralize the heterochromatin of fibroblasts, suggesting a general role for Casz1 in nuclear organization. Together, these data support a model in which Casz1 cooperates with polycomb to control rod genome organization, in part by silencing lamin A/C.
Collapse
|
26
|
Zheng X, Hu J, Yue S, Kristiani L, Kim M, Sauria M, Taylor J, Kim Y, Zheng Y. Lamins Organize the Global Three-Dimensional Genome from the Nuclear Periphery. Mol Cell 2018; 71:802-815.e7. [PMID: 30201095 DOI: 10.1016/j.molcel.2018.05.017] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 04/01/2018] [Accepted: 05/15/2018] [Indexed: 11/29/2022]
Abstract
Lamins are structural components of the nuclear lamina (NL) that regulate genome organization and gene expression, but the mechanism remains unclear. Using Hi-C, we show that lamins maintain proper interactions among the topologically associated chromatin domains (TADs) but not their overall architecture. Combining Hi-C with fluorescence in situ hybridization (FISH) and analyses of lamina-associated domains (LADs), we reveal that lamin loss causes expansion or detachment of specific LADs in mouse ESCs. The detached LADs disrupt 3D interactions of both LADs and interior chromatin. 4C and epigenome analyses further demonstrate that lamins maintain the active and repressive chromatin domains among different TADs. By combining these studies with transcriptome analyses, we found a significant correlation between transcription changes and the interaction changes of active and inactive chromatin domains These findings provide a foundation to further study how the nuclear periphery impacts genome organization and transcription in development and NL-associated diseases.
Collapse
Affiliation(s)
- Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.
| | - Jiabiao Hu
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Sibiao Yue
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Lidya Kristiani
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, 25 Bongjeong-ro, Cheonan-si, Chungcheongnam-do 31151, Korea
| | - Miri Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, 25 Bongjeong-ro, Cheonan-si, Chungcheongnam-do 31151, Korea
| | - Michael Sauria
- Department of Biology and Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - James Taylor
- Department of Biology and Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Youngjo Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, 25 Bongjeong-ro, Cheonan-si, Chungcheongnam-do 31151, Korea.
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.
| |
Collapse
|
27
|
Falisse E, Voisin AS, Silvestre F. Impacts of triclosan exposure on zebrafish early-life stage: Toxicity and acclimation mechanisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 189:97-107. [PMID: 28605648 DOI: 10.1016/j.aquatox.2017.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/24/2017] [Accepted: 06/04/2017] [Indexed: 06/07/2023]
Abstract
Triclosan (TCS) is a broad spectrum antibacterial agent widely used in personal care products and present in most aquatic ecosystems. This study investigated the occurrence of triclosan acclimation and the biological mechanisms underlying the stress response triggered in early-life stage of zebrafish. Zebrafish eggs were first exposed to four different sublethal concentrations of TCS (2, 20, 50 and 100μg/L) for 7days following fertilization and subsequently exposed to a lethal concentration of TCS (1000μg/L). During the time-to-death exposure (TTD), mortality was continuously recorded to evaluate if increased resistance occurred. Overall, larvae exposed to 50μg/L of TCS demonstrated higher sensitivity, with delayed hatching and increased mortality during the sub-lethal exposure and significant lower mean time-to-death (TTD) value compared to the other groups. Interestingly, fish exposed to the highest concentration of TCS (100μg/L) presented a similar mean TTD value as controls and a significantly better survival in comparison with embryos exposed to 50μg/L, suggesting that acclimation process has been triggered at this concentration. Proteomic and enzymatic analyses were conducted on 7days post fertilization (dpf) larvae exposed to 50μg/L and 100μg/L of TCS giving insights into the functional changes triggered at those specific concentrations. TCS seemed to affect proteins involved in cytoskeleton, stress response, eyes and neuronal development. This was endorsed by the enzymatic results, which suggest impairment in glutathione metabolism and acute neurotoxicity. A significant 2.5-fold and 3-fold increase of AChE activity was observed following TCS exposure. Moreover, GPx activity was significantly increased whereas a significant inhibition of GR activity was observed, suggesting that de novo synthesis of reduced GSH might occur in order to maintain the ratio between reduced and oxidized GSH. Proteomic results revealed possible candidate protein involved in the acclimation process of larvae exposed to 100μg/L of TCS. Our integrative analysis revealed complex non-monotonic concentration-related effects on zebrafish early-life stages with increased resistance between 50 and 100μg/L exposures. This research highlighted oxidative stress and neurotoxicity as major toxicity mechanisms of TCS during development.
Collapse
Affiliation(s)
- Elodie Falisse
- Institute of Life, Earth and Environment, Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | - Anne-Sophie Voisin
- Institute of Life, Earth and Environment, Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Frédéric Silvestre
- Institute of Life, Earth and Environment, Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
28
|
Gigante CM, Dibattista M, Dong FN, Zheng X, Yue S, Young SG, Reisert J, Zheng Y, Zhao H. Lamin B1 is required for mature neuron-specific gene expression during olfactory sensory neuron differentiation. Nat Commun 2017; 8:15098. [PMID: 28425486 PMCID: PMC5411488 DOI: 10.1038/ncomms15098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/28/2017] [Indexed: 01/29/2023] Open
Abstract
B-type lamins are major constituents of the nuclear lamina in all metazoan cells, yet have specific roles in the development of certain cell types. Although they are speculated to regulate gene expression in developmental contexts, a direct link between B-type lamins and developmental gene expression in an in vivo system is currently lacking. Here, we identify lamin B1 as a key regulator of gene expression required for the formation of functional olfactory sensory neurons. By using targeted knockout in olfactory epithelial stem cells in adult mice, we show that lamin B1 deficient neurons exhibit attenuated response to odour stimulation. This deficit can be explained by decreased expression of genes involved in mature neuron function, along with increased expression of genes atypical of the olfactory lineage. These results support that the broadly expressed lamin B1 regulates expression of a subset of genes involved in the differentiation of a specific cell type.
Collapse
Affiliation(s)
- Crystal M. Gigante
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Michele Dibattista
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari ‘A. Moro', Bari 70121, Italy
| | - Frederick N. Dong
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Sibiao Yue
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Stephen G. Young
- Department of Medicine, Molecular Biology Institute and Department of Human Genetics, University of California, Los Angeles, California 90095, USA
| | - Johannes Reisert
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Haiqing Zhao
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
29
|
Old Proteins in Man: A Field in its Infancy. Trends Biochem Sci 2016; 41:654-664. [PMID: 27426990 DOI: 10.1016/j.tibs.2016.06.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022]
Abstract
It has only recently been appreciated that the human body contains many long-lived proteins (LLPs). Their gradual degradation over time contributes to human aging and probably also to a range of age-related disorders. Indeed, the role of progressive damage of proteins in aging may be indicated by the fact that many neurological diseases do not appear until after middle age. A major factor responsible for the deterioration of old proteins is the spontaneous breakdown of susceptible amino acid residues resulting in racemization, truncation, deamidation, and crosslinking. When proteins decompose in this way, their structures and functions may be altered and novel epitopes can be formed that can induce an autoimmune response.
Collapse
|