1
|
Czajkowski ER, Zou Y, Divekar NS, Wignall SM. The doublecortin-family kinase ZYG-8DCLK1 regulates microtubule dynamics and motor-driven forces to promote the stability of C. elegans acentrosomal spindles. PLoS Genet 2024; 20:e1011373. [PMID: 39226307 PMCID: PMC11398696 DOI: 10.1371/journal.pgen.1011373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/13/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024] Open
Abstract
Although centrosomes help organize spindles in most cell types, oocytes of most species lack these structures. During acentrosomal spindle assembly in C. elegans oocytes, microtubule minus ends are sorted outwards away from the chromosomes where they form poles, but then these outward forces must be balanced to form a stable bipolar structure. Simultaneously, microtubule dynamics must be precisely controlled to maintain spindle length and organization. How forces and dynamics are tuned to create a stable bipolar structure is poorly understood. Here, we have gained insight into this question through studies of ZYG-8, a conserved doublecortin-family kinase; the mammalian homolog of this microtubule-associated protein is upregulated in many cancers and has been implicated in cell division, but the mechanisms by which it functions are poorly understood. We found that ZYG-8 depletion from oocytes resulted in overelongated spindles with pole and midspindle defects. Importantly, experiments with monopolar spindles revealed that ZYG-8 depletion led to excess outward forces within the spindle and suggested a potential role for this protein in regulating the force-generating motor BMK-1/kinesin-5. Further, we found that ZYG-8 is also required for proper microtubule dynamics within the oocyte spindle and that kinase activity is required for its function during both meiosis and mitosis. Altogether, our findings reveal new roles for ZYG-8 in oocytes and provide insights into how acentrosomal spindles are stabilized to promote faithful meiosis.
Collapse
Affiliation(s)
- Emily R. Czajkowski
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Yuntong Zou
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Nikita S. Divekar
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Sarah M. Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
2
|
Zimyanin V, Redemann S. Microtubule length correlates with spindle length in C. elegans meiosis. Cytoskeleton (Hoboken) 2024; 81:356-368. [PMID: 38450962 PMCID: PMC11333180 DOI: 10.1002/cm.21849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
The accurate segregation of chromosomes during female meiosis relies on the precise assembly and function of the meiotic spindle, a dynamic structure primarily composed of microtubules. Despite the crucial role of microtubule dynamics in this process, the relationship between microtubule length and spindle size remains elusive. Leveraging Caenorhabditis elegans as a model system, we combined electron tomography and live imaging to investigate this correlation. Our analysis revealed significant changes in spindle length throughout meiosis, coupled with alterations in microtubule length. Surprisingly, while spindle size decreases during the initial stages of anaphase, the size of antiparallel microtubule overlap decreased as well. Detailed electron tomography shows a positive correlation between microtubule length and spindle size, indicating a role of microtubule length in determining spindle dimensions. Notably, microtubule numbers displayed no significant association with spindle length, highlighting the dominance of microtubule length regulation in spindle size determination. Depletion of the microtubule depolymerase KLP-7 led to elongated metaphase spindles with increased microtubule length, supporting the link between microtubule length and spindle size. These findings underscore the pivotal role of regulating microtubule dynamics, and thus microtubule length, in governing spindle rearrangements during meiotic division, shedding light on fundamental mechanisms dictating spindle architecture.
Collapse
Affiliation(s)
- Vitaly Zimyanin
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
3
|
Li W, Crellin HA, Cheerambathur D, McNally FJ. Redundant microtubule crosslinkers prevent meiotic spindle bending to ensure diploid offspring in C. elegans. PLoS Genet 2023; 19:e1011090. [PMID: 38150489 PMCID: PMC10775986 DOI: 10.1371/journal.pgen.1011090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/09/2024] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
Oocyte meiotic spindles mediate the expulsion of ¾ of the genome into polar bodies to generate diploid zygotes in nearly all animal species. Failures in this process result in aneuploid or polyploid offspring that are typically inviable. Accurate meiotic chromosome segregation and polar body extrusion require the spindle to elongate while maintaining its structural integrity. Previous studies have implicated three hypothetical activities during this process, including microtubule crosslinking, microtubule sliding and microtubule polymerization. However, how these activities regulate spindle rigidity and elongation as well as the exact proteins involved in the activities remain unclear. We discovered that C. elegans meiotic anaphase spindle integrity is maintained through redundant microtubule crosslinking activities of the Kinesin-5 family motor BMK-1, the microtubule bundling protein SPD-1/PRC1, and the Kinesin-4 family motor, KLP-19. Using time-lapse imaging, we found that single depletion of KLP-19KIF4A, SPD-1PRC1 or BMK-1Eg5 had minimal effects on anaphase B spindle elongation velocity. In contrast, double depletion of SPD-1PRC1 and BMK-1Eg5 or double depletion of KLP-19KIF4A and BMK-1Eg5 resulted in spindles that elongated faster, bent in a myosin-dependent manner, and had a high rate of polar body extrusion errors. Bending spindles frequently extruded both sets of segregating chromosomes into two separate polar bodies. Normal anaphase B velocity was observed after double depletion of KLP-19KIF4A and SPD-1PRC1. These results suggest that KLP-19KIF4A and SPD-1PRC1 act in different pathways, each redundant with a separate BMK-1Eg5 pathway in regulating meiotic spindle elongation. Depletion of ZYG-8, a doublecortin-related microtubule binding protein, led to slower anaphase B spindle elongation. We found that ZYG-8DCLK1 acts by excluding SPD-1PRC1 from the spindle. Thus, three mechanistically distinct microtubule regulation modules, two based on crosslinking, and one based on exclusion of crosslinkers, power the mechanism that drives spindle elongation and structural integrity during anaphase B of C.elegans female meiosis.
Collapse
Affiliation(s)
- Wenzhe Li
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Helena A. Crellin
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Dhanya Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Francis J. McNally
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| |
Collapse
|
4
|
Czajkowski ER, Divekar NS, Wignall SM. The doublecortin-family kinase ZYG-8 DCLK1 regulates motor activity to achieve proper force balance in C. elegans acentrosomal spindles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568242. [PMID: 38045228 PMCID: PMC10690225 DOI: 10.1101/2023.11.22.568242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Although centrosomes help organize spindles in most cell types, oocytes of most species lack these structures. During acentrosomal spindle assembly in C. elegans oocytes, microtubule minus ends are sorted outwards away from the chromosomes where they form poles, but then these outward forces must be balanced to form a stable bipolar structure. How proper force balance is achieved in these spindles is not known. Here, we have gained insight into this question through studies of ZYG-8, a conserved doublecortin-family kinase; the mammalian homolog of this microtubule-associated protein is upregulated in many cancers and has been implicated in cell division, but the mechanisms by which it functions are poorly understood. Interestingly, we found that ZYG-8 depletion from oocytes resulted in spindles that were over-elongated, suggesting that there was excess outward force following ZYG-8 removal. Experiments with monopolar spindles confirmed this hypothesis and revealed a role for ZYG-8 in regulating the force-generating motor BMK-1/kinesin-5. Importantly, further investigation revealed that kinase activity is required for the function of ZYG-8 in both meiosis and mitosis. Altogether, our results support a model in which ZYG-8 regulates motor-driven forces within the oocyte spindle, thus identifying a new function for a doublecortin-family protein in cell division.
Collapse
Affiliation(s)
- Emily R Czajkowski
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Nikita S Divekar
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
5
|
Pitayu-Nugroho L, Aubry M, Laband K, Geoffroy H, Ganeswaran T, Primadhanty A, Canman JC, Dumont J. Kinetochore component function in C. elegans oocytes revealed by 4D tracking of holocentric chromosomes. Nat Commun 2023; 14:4032. [PMID: 37419936 PMCID: PMC10329006 DOI: 10.1038/s41467-023-39702-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/19/2023] [Indexed: 07/09/2023] Open
Abstract
During cell division, chromosome congression to the spindle center, their orientation along the spindle long axis and alignment at the metaphase plate depend on interactions between spindle microtubules and kinetochores, and are pre-requisite for chromosome bi-orientation and accurate segregation. How these successive phases are controlled during oocyte meiosis remains elusive. Here we provide 4D live imaging during the first meiotic division in C. elegans oocytes with wild-type or disrupted kinetochore protein function. We show that, unlike in monocentric organisms, holocentric chromosome bi-orientation is not strictly required for accurate chromosome segregation. Instead, we propose a model in which initial kinetochore-localized BHC module (comprised of BUB-1Bub1, HCP-1/2CENP-F and CLS-2CLASP)-dependent pushing acts redundantly with Ndc80 complex-mediated pulling for accurate chromosome segregation in meiosis. In absence of both mechanisms, homologous chromosomes tend to co-segregate in anaphase, especially when initially mis-oriented. Our results highlight how different kinetochore components cooperate to promote accurate holocentric chromosome segregation in oocytes of C. elegans.
Collapse
Affiliation(s)
| | - Mélanie Aubry
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Kimberley Laband
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Hélène Geoffroy
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | | | | | - Julie C Canman
- Columbia University Irving Medical Center; Department of Pathology and Cell Biology, New York, NY, 10032, USA
| | - Julien Dumont
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
| |
Collapse
|
6
|
Gong T, McNally FJ. Caenorhabditis elegans spermatocytes can segregate achiasmate homologous chromosomes apart at higher than random frequency during meiosis I. Genetics 2023; 223:iyad021. [PMID: 36792551 PMCID: PMC10319977 DOI: 10.1093/genetics/iyad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Chromosome segregation errors during meiosis are the leading cause of aneuploidy. Faithful chromosome segregation during meiosis in most eukaryotes requires a crossover which provides a physical attachment holding homologs together in a "bivalent." Crossovers are critical for homologs to be properly aligned and partitioned in the first meiotic division. Without a crossover, individual homologs (univalents) might segregate randomly, resulting in aneuploid progeny. However, Caenorhabditis elegans zim-2 mutants, which have crossover defects on chromosome V, have fewer dead embryos than that expected from random segregation. This deviation from random segregation is more pronounced in zim-2 males than that in females. We found three phenomena that can explain this apparent discrepancy. First, we detected crossovers on chromosome V in both zim-2(tm574) oocytes and spermatocytes, suggesting a redundant mechanism to make up for the ZIM-2 loss. Second, after accounting for the background crossover frequency, spermatocytes produced significantly more euploid gametes than what would be expected from random segregation. Lastly, trisomy of chromosome V is viable and fertile. Together, these three phenomena allow zim-2(tm574) mutants with reduced crossovers on chromosome V to have more viable progeny. Furthermore, live imaging of meiosis in spo-11(me44) oocytes and spermatocytes, which exhibit crossover failure on all 6 chromosomes, showed 12 univalents segregating apart in roughly equal masses in a homology-independent manner, supporting the existence of a mechanism that segregates any 2 chromosomes apart.
Collapse
Affiliation(s)
- Ting Gong
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
7
|
Harvey AM, Chuang CH, Sumiyoshi E, Bowerman B. C. elegans XMAP215/ZYG-9 and TACC/TAC-1 act at multiple times during oocyte meiotic spindle assembly and promote both spindle pole coalescence and stability. PLoS Genet 2023; 19:e1010363. [PMID: 36608115 PMCID: PMC9851561 DOI: 10.1371/journal.pgen.1010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/19/2023] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
The conserved two-component XMAP215/TACC modulator of microtubule stability is required in multiple animal phyla for acentrosomal spindle assembly during oocyte meiotic cell division. In C. elegans, XMAP215/zyg-9 and TACC/tac-1 mutant oocytes exhibit multiple and indistinguishable oocyte spindle assembly defects beginning early in meiosis I. To determine if these defects represent one or more early requirements with additional later and indirect consequences, or multiple temporally distinct and more direct requirements, we have used live cell imaging and fast-acting temperature-sensitive zyg-9 and tac-1 alleles to dissect their requirements at high temporal resolution. Temperature upshift and downshift experiments indicate that the ZYG-9/TAC-1 complex has multiple temporally distinct and separable requirements throughout oocyte meiotic cell division. First, we show that during prometaphase ZYG-9 and TAC-1 promote the coalescence of early pole foci into a bipolar structure, stabilizing pole foci as they grow and limiting their growth rate, with these requirements being independent of an earlier defect in microtubule organization that occurs upon nuclear envelope breakdown. Second, during metaphase, ZYG-9 and TAC-1 maintain spindle bipolarity by suppressing ectopic pole formation. Third, we show that ZYG-9 and TAC-1 also are required for spindle assembly during meiosis II, independently of their meiosis I requirements. The metaphase pole stability requirement appears to be important for maintaining chromosome congression, and we discuss how negative regulation of microtubule stability by ZYG-9/TAC-1 during oocyte meiotic cell division might account for the observed defects in spindle pole coalescence and stability.
Collapse
Affiliation(s)
- Austin M. Harvey
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Chien-Hui Chuang
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Eisuke Sumiyoshi
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
8
|
Cavin-Meza G, Mullen TJ, Czajkowski ER, Wolff ID, Divekar NS, Finkle JD, Wignall SM. ZYG-9ch-TOG promotes the stability of acentrosomal poles via regulation of spindle microtubules in C. elegans oocyte meiosis. PLoS Genet 2022; 18:e1010489. [PMID: 36449516 PMCID: PMC9757581 DOI: 10.1371/journal.pgen.1010489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
During mitosis, centrosomes serve as microtubule organizing centers that guide the formation of a bipolar spindle. However, oocytes of many species lack centrosomes; how meiotic spindles establish and maintain these acentrosomal poles remains poorly understood. Here, we show that the microtubule polymerase ZYG-9ch-TOG is required to maintain acentrosomal pole integrity in C. elegans oocyte meiosis. We exploited the auxin inducible degradation system to remove ZYG-9 from pre-formed spindles within minutes; this caused the poles to split apart and an unstable multipolar structure to form. Depletion of TAC-1, a protein known to interact with ZYG-9 in mitosis, caused loss of proper ZYG-9 localization and similar spindle phenotypes, further demonstrating that ZYG-9 is required for pole integrity. However, depletion of ZYG-9 or TAC-1 surprisingly did not affect the assembly or stability of monopolar spindles, suggesting that these proteins are not required for acentrosomal pole structure per se. Moreover, fluorescence recovery after photobleaching (FRAP) revealed that ZYG-9 turns over rapidly at acentrosomal poles, displaying similar turnover dynamics to tubulin itself, suggesting that ZYG-9 does not play a static structural role at poles. Together, these data support a global role for ZYG-9 in regulating the stability of bipolar spindles and demonstrate that the maintenance of acentrosomal poles requires factors beyond those acting to organize the pole structure itself.
Collapse
Affiliation(s)
- Gabriel Cavin-Meza
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Timothy J. Mullen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Emily R. Czajkowski
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Ian D. Wolff
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Nikita S. Divekar
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Justin D. Finkle
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Sarah M. Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
9
|
Wolff ID, Hollis JA, Wignall SM. Acentrosomal spindle assembly and maintenance in Caenorhabditis elegans oocytes requires a kinesin-12 nonmotor microtubule interaction domain. Mol Biol Cell 2022; 33:ar71. [PMID: 35594182 PMCID: PMC9635285 DOI: 10.1091/mbc.e22-05-0153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
During the meiotic divisions in oocytes, microtubules are sorted and organized by motor proteins to generate a bipolar spindle in the absence of centrosomes. In most organisms, kinesin-5 family members crosslink and slide microtubules to generate outward force that promotes acentrosomal spindle bipolarity. However, the mechanistic basis for how other kinesin families act on acentrosomal spindles has not been explored. We investigated this question in Caenorhabditis elegans oocytes, where kinesin-5 is not required to generate outward force and the kinesin-12 family motor KLP-18 instead performs this function. Here we use a combination of in vitro biochemical assays and in vivo mutant analysis to provide insight into the mechanism by which KLP-18 promotes acentrosomal spindle assembly. We identify a microtubule binding site on the C-terminal stalk of KLP-18 and demonstrate that a direct interaction between the KLP-18 stalk and its adaptor protein MESP-1 activates nonmotor microtubule binding. We also provide evidence that this C-terminal domain is required for KLP-18 activity during spindle assembly and show that KLP-18 is continuously required to maintain spindle bipolarity. This study thus provides new insight into the construction and maintenance of the oocyte acentrosomal spindle as well as into kinesin-12 mechanism and regulation.
Collapse
Affiliation(s)
- Ian D Wolff
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Jeremy A Hollis
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
10
|
Hattersley N, Schlientz AJ, Prevo B, Oegema K, Desai A. MEL-28/ELYS and CENP-C coordinately control outer kinetochore assembly and meiotic chromosome-microtubule interactions. Curr Biol 2022; 32:2563-2571.e4. [PMID: 35609608 DOI: 10.1016/j.cub.2022.04.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
During mitosis and meiosis in the majority of eukaryotes, centromeric chromatin comprised of CENP-A nucleosomes and their reader CENP-C recruits components of the outer kinetochore to build an interface with spindle microtubules.1,2 One exception is C. elegans oocyte meiosis, where outer kinetochore proteins form cup-like structures on chromosomes independently of centromeric chromatin.3 Here, we show that the nucleoporin MEL-28 (ortholog of human ELYS) and CENP-CHCP-4 act in parallel to recruit outer kinetochore components to oocyte meiotic chromosomes. Unexpectedly, co-inhibition of MEL-28 and CENP-CHCP-4 resulted in chromosomes being expelled from the meiotic spindle prior to anaphase onset, a more severe phenotype than what was observed following ablation of the outer kinetochore.4,5 This observation suggested that MEL-28 and the outer kinetochore independently link chromosomes to spindle microtubules. Consistent with this, the chromosome expulsion defect was observed following co-inhibition of MEL-28 and the microtubule-coupling KNL-1/MIS-12/NDC-80 (KMN) network of the outer kinetochore. Use of engineered mutants showed that MEL-28 acts in conjunction with the microtubule-binding NDC-80 complex to keep chromosomes within the oocyte meiotic spindle and that this function likely involves the Y-complex of nucleoporins that associate with MEL-28; by contrast, the ability to dock protein phosphatase 1, shared by MEL-28 and KNL-1, is not involved. These results highlight nuclear pore-independent functions for a conserved nucleoporin and explain two unusual features of oocyte meiotic chromosome segregation in C. elegans: centromeric chromatin-independent outer kinetochore assembly, and dispensability of the outer kinetochore for constraining chromosomes in the acentrosomal meiotic spindle.
Collapse
Affiliation(s)
- Neil Hattersley
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA
| | - Aleesa J Schlientz
- Division of Biological Sciences & Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Bram Prevo
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA; Division of Biological Sciences & Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA; Division of Biological Sciences & Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
Cavin-Meza G, Kwan MM, Wignall SM. Multiple motors cooperate to establish and maintain acentrosomal spindle bipolarity in C. elegans oocyte meiosis. eLife 2022; 11:e72872. [PMID: 35147496 PMCID: PMC8963883 DOI: 10.7554/elife.72872] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
While centrosomes organize spindle poles during mitosis, oocyte meiosis can occur in their absence. Spindles in human oocytes frequently fail to maintain bipolarity and consequently undergo chromosome segregation errors, making it important to understand the mechanisms that promote acentrosomal spindle stability. To this end, we have optimized the auxin-inducible degron system in Caenorhabditis elegans to remove the factors from pre-formed oocyte spindles within minutes and assess the effects on spindle structure. This approach revealed that dynein is required to maintain the integrity of acentrosomal poles; removal of dynein from bipolar spindles caused pole splaying, and when coupled with a monopolar spindle induced by depletion of the kinesin-12 motor KLP-18, dynein depletion led to a complete dissolution of the monopole. Surprisingly, we went on to discover that following monopole disruption, individual chromosomes were able to reorganize local microtubules and re-establish a miniature bipolar spindle that mediated chromosome segregation. This revealed the existence of redundant microtubule sorting forces that are undetectable when KLP-18 and dynein are active. We found that the kinesin-5 family motor BMK-1 provides this force, uncovering the first evidence that kinesin-5 contributes to C. elegans meiotic spindle organization. Altogether, our studies have revealed how multiple motors are working synchronously to establish and maintain bipolarity in the absence of centrosomes.
Collapse
Affiliation(s)
- Gabriel Cavin-Meza
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Michelle M Kwan
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
12
|
Jiang Z, Zhang S, Lee YM, Teng X, Yang Q, Toyama Y, Liou YC. Hyaluronan-Mediated Motility Receptor Governs Chromosome Segregation by Regulating Microtubules Sliding Within the Bridging Fiber. Adv Biol (Weinh) 2021; 5:e2000493. [PMID: 33788418 DOI: 10.1002/adbi.202000493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/20/2021] [Indexed: 11/06/2022]
Abstract
Accurate segregation of chromosomes during anaphase relies on the central spindle and its regulators. A newly raised concept of the central spindle, the bridging fiber, shows that sliding of antiparallel microtubules (MTs) within the bridging fiber promotes chromosome segregation. However, the regulators of the bridging fiber and its regulatory mechanism on MTs sliding remain largely unknown. In this study, the non-motor microtubule-associated protein, hyaluronan-mediated motility receptor (HMMR), is identified as a novel regulator of the bridging fiber. It then identifies that HMMR regulates MTs sliding within the bridging fiber by cooperating with its binding partner HSET. By utilizing a laser-based cell ablation system and photoactivation approach, the study's results reveal that depletion of HMMR causes an inhibitory effect on MTs sliding within the bridging fiber and disrupts the forced uniformity on the kinetochore-attached microtubules-formed fibers (k-fibers). These are created by suppressing the dynamics of HSET, which functions in transiting the force from sliding of bridging MTs to the k-fiber. This study sheds new light on the novel regulatory mechanism of MTs sliding within the bridging fiber by HMMR and HSET and uncovers the role of HMMR in chromosome segregation during anaphase.
Collapse
Affiliation(s)
- Zemin Jiang
- Laboratory of Precision Cancer Medicine, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Shiyu Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yew Mun Lee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Xiang Teng
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Qiaoyun Yang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yusuke Toyama
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.,Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.,Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117573, Singapore
| |
Collapse
|
13
|
Barbosa DJ, Teixeira V, Duro J, Carvalho AX, Gassmann R. Dynein-dynactin segregate meiotic chromosomes in C. elegans spermatocytes. Development 2021; 148:dev.197780. [PMID: 33462114 DOI: 10.1242/dev.197780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/05/2021] [Indexed: 11/20/2022]
Abstract
The microtubule motor cytoplasmic dynein 1 (dynein) and its essential activator dynactin have conserved roles in spindle assembly and positioning during female meiosis and mitosis, but their contribution to male meiosis remains poorly understood. Here, we characterize the G33S mutation in the C. elegans dynactin subunit DNC-1, which corresponds to G59S in human p150Glued that causes motor neuron disease. In spermatocytes, dnc-1(G33S) delays spindle assembly and penetrantly inhibits anaphase spindle elongation in meiosis I, which prevents the segregation of homologous chromosomes. By contrast, chromosomes segregate without errors in the early dnc-1(G33S) embryo. Deletion of the DNC-1 N-terminus shows that defective meiosis in dnc-1(G33S) spermatocytes is not due to the inability of DNC-1 to interact with microtubules. Instead, our results suggest that the DNC-1(G33S) protein, which is aggregation prone in vitro, is less stable in spermatocytes than the early embryo, resulting in different phenotypic severity in the two dividing tissues. Thus, the dnc-1(G33S) mutant reveals that dynein-dynactin drive meiotic chromosome segregation in spermatocytes and illustrates that the extent to which protein misfolding leads to loss of function can vary significantly between cell types.
Collapse
Affiliation(s)
- Daniel J Barbosa
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal
| | - Vanessa Teixeira
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Duro
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana X Carvalho
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal
| | - Reto Gassmann
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
14
|
Lantzsch I, Yu CH, Chen YZ, Zimyanin V, Yazdkhasti H, Lindow N, Szentgyoergyi E, Pani AM, Prohaska S, Srayko M, Fürthauer S, Redemann S. Microtubule reorganization during female meiosis in C. elegans. eLife 2021; 10:58903. [PMID: 34114562 PMCID: PMC8225387 DOI: 10.7554/elife.58903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/24/2021] [Indexed: 02/01/2023] Open
Abstract
Most female meiotic spindles undergo striking morphological changes while transitioning from metaphase to anaphase. The ultra-structure of meiotic spindles, and how changes to this structure correlate with such dramatic spindle rearrangements remains largely unknown. To address this, we applied light microscopy, large-scale electron tomography and mathematical modeling of female meiotic Caenorhabditis elegans spindles. Combining these approaches, we find that meiotic spindles are dynamic arrays of short microtubules that turn over within seconds. The results show that the metaphase to anaphase transition correlates with an increase in microtubule numbers and a decrease in their average length. Detailed analysis of the tomographic data revealed that the microtubule length changes significantly during the metaphase-to-anaphase transition. This effect is most pronounced for microtubules located within 150 nm of the chromosome surface. To understand the mechanisms that drive this transition, we developed a mathematical model for the microtubule length distribution that considers microtubule growth, catastrophe, and severing. Using Bayesian inference to compare model predictions and data, we find that microtubule turn-over is the major driver of the spindle reorganizations. Our data suggest that in metaphase only a minor fraction of microtubules, those closest to the chromosomes, are severed. The large majority of microtubules, which are not in close contact with chromosomes, do not undergo severing. Instead, their length distribution is fully explained by growth and catastrophe. This suggests that the most prominent drivers of spindle rearrangements are changes in nucleation and catastrophe rate. In addition, we provide evidence that microtubule severing is dependent on katanin.
Collapse
Affiliation(s)
- Ina Lantzsch
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Che-Hang Yu
- Department of Electrical and Computer Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Yu-Zen Chen
- Center for Membrane and Cell Physiology, University of Virginia School of MedicineCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Vitaly Zimyanin
- Center for Membrane and Cell Physiology, University of Virginia School of MedicineCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Hossein Yazdkhasti
- Center for Membrane and Cell Physiology, University of Virginia School of MedicineCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States
| | | | - Erik Szentgyoergyi
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Ariel M Pani
- Department of Biology, University of VirginiaCharlottesvilleUnited States,Department of Cell Biology, University of Virginia School of MedicineCharlottesvilleUnited States
| | | | - Martin Srayko
- Department of Biological Sciences, University of AlbertaEdmontonCanada
| | | | - Stefanie Redemann
- Center for Membrane and Cell Physiology, University of Virginia School of MedicineCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States,Department of Cell Biology, University of Virginia School of MedicineCharlottesvilleUnited States
| |
Collapse
|
15
|
Taylor SJ, Pelisch F. Chromosome segregation during female meiosis in C. elegans: A tale of pushing and pulling. J Cell Biol 2020; 219:e202011035. [PMID: 33211077 PMCID: PMC7716380 DOI: 10.1083/jcb.202011035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of the kinetochore during meiotic chromosome segregation in C. elegans oocytes has been a matter of controversy. Danlasky et al. (2020. J. Cell. Biol.https://doi.org/10.1083/jcb.202005179) show that kinetochore proteins KNL-1 and KNL-3 are required for early stages of anaphase during female meiosis, suggesting a new kinetochore-based model of chromosome segregation.
Collapse
Affiliation(s)
| | - Federico Pelisch
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
16
|
Danlasky BM, Panzica MT, McNally KP, Vargas E, Bailey C, Li W, Gong T, Fishman ES, Jiang X, McNally FJ. Evidence for anaphase pulling forces during C. elegans meiosis. J Cell Biol 2020; 219:e202005179. [PMID: 33064834 PMCID: PMC7577052 DOI: 10.1083/jcb.202005179] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/20/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
Anaphase chromosome movement is thought to be mediated by pulling forces generated by end-on attachment of microtubules to the outer face of kinetochores. However, it has been suggested that during C. elegans female meiosis, anaphase is mediated by a kinetochore-independent pushing mechanism with microtubules only attached to the inner face of segregating chromosomes. We found that the kinetochore proteins KNL-1 and KNL-3 are required for preanaphase chromosome stretching, suggesting a role in pulling forces. In the absence of KNL-1,3, pairs of homologous chromosomes did not separate and did not move toward a spindle pole. Instead, each homolog pair moved together with the same spindle pole during anaphase B spindle elongation. Two masses of chromatin thus ended up at opposite spindle poles, giving the appearance of successful anaphase.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Francis J. McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| |
Collapse
|
17
|
Fabig G, Kiewisz R, Lindow N, Powers JA, Cota V, Quintanilla LJ, Brugués J, Prohaska S, Chu DS, Müller-Reichert T. Male meiotic spindle features that efficiently segregate paired and lagging chromosomes. eLife 2020; 9:50988. [PMID: 32149606 PMCID: PMC7101234 DOI: 10.7554/elife.50988] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/08/2020] [Indexed: 01/25/2023] Open
Abstract
Chromosome segregation during male meiosis is tailored to rapidly generate multitudes of sperm. Little is known about mechanisms that efficiently partition chromosomes to produce sperm. Using live imaging and tomographic reconstructions of spermatocyte meiotic spindles in Caenorhabditis elegans, we find the lagging X chromosome, a distinctive feature of anaphase I in C. elegans males, is due to lack of chromosome pairing. The unpaired chromosome remains tethered to centrosomes by lengthening kinetochore microtubules, which are under tension, suggesting that a ‘tug of war’ reliably resolves lagging. We find spermatocytes exhibit simultaneous pole-to-chromosome shortening (anaphase A) and pole-to-pole elongation (anaphase B). Electron tomography unexpectedly revealed spermatocyte anaphase A does not stem solely from kinetochore microtubule shortening. Instead, movement of autosomes is largely driven by distance change between chromosomes, microtubules, and centrosomes upon tension release during anaphase. Overall, we define novel features that segregate both lagging and paired chromosomes for optimal sperm production.
Collapse
Affiliation(s)
- Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Robert Kiewisz
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - James A Powers
- Light Microscopy Imaging Center, Indiana University, Bloomington, United States
| | - Vanessa Cota
- Department of Biology, San Francisco State University, San Francisco, United States
| | - Luis J Quintanilla
- Department of Biology, San Francisco State University, San Francisco, United States
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Centre for Systems Biology Dresden, Dresden, Germany
| | | | - Diana S Chu
- Department of Biology, San Francisco State University, San Francisco, United States
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
18
|
Lamelza P, Young JM, Noble LM, Caro L, Isakharov A, Palanisamy M, Rockman MV, Malik HS, Ailion M. Hybridization promotes asexual reproduction in Caenorhabditis nematodes. PLoS Genet 2019; 15:e1008520. [PMID: 31841515 PMCID: PMC6946170 DOI: 10.1371/journal.pgen.1008520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 01/07/2020] [Accepted: 11/15/2019] [Indexed: 02/04/2023] Open
Abstract
Although most unicellular organisms reproduce asexually, most multicellular eukaryotes are obligately sexual. This implies that there are strong barriers that prevent the origin or maintenance of asexuality arising from an obligately sexual ancestor. By studying rare asexual animal species we can gain a better understanding of the circumstances that facilitate their evolution from a sexual ancestor. Of the known asexual animal species, many originated by hybridization between two ancestral sexual species. The balance hypothesis predicts that genetic incompatibilities between the divergent genomes in hybrids can modify meiosis and facilitate asexual reproduction, but there are few instances where this has been shown. Here we report that hybridizing two sexual Caenorhabditis nematode species (C. nouraguensis females and C. becei males) alters the normal inheritance of the maternal and paternal genomes during the formation of hybrid zygotes. Most offspring of this interspecies cross die during embryogenesis, exhibiting inheritance of a diploid C. nouraguensis maternal genome and incomplete inheritance of C. becei paternal DNA. However, a small fraction of offspring develop into viable adults that can be either fertile or sterile. Fertile offspring are produced asexually by sperm-dependent parthenogenesis (also called gynogenesis or pseudogamy); these progeny inherit a diploid maternal genome but fail to inherit a paternal genome. Sterile offspring are hybrids that inherit both a diploid maternal genome and a haploid paternal genome. Whole-genome sequencing of individual viable worms shows that diploid maternal inheritance in both fertile and sterile offspring results from an altered meiosis in C. nouraguensis oocytes and the inheritance of two randomly selected homologous chromatids. We hypothesize that hybrid incompatibility between C. nouraguensis and C. becei modifies maternal and paternal genome inheritance and indirectly induces gynogenetic reproduction. This system can be used to dissect the molecular mechanisms by which hybrid incompatibilities can facilitate the emergence of asexual reproduction.
Collapse
Affiliation(s)
- Piero Lamelza
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Janet M. Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Luke M. Noble
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Lews Caro
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Arielle Isakharov
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Meenakshi Palanisamy
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Matthew V. Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Harmit S. Malik
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael Ailion
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
19
|
Vargas E, McNally KP, Cortes DB, Panzica MT, Danlasky BM, Li Q, Maddox AS, McNally FJ. Spherical spindle shape promotes perpendicular cortical orientation by preventing isometric cortical pulling on both spindle poles during C. elegans female meiosis. Development 2019; 146:dev.178863. [PMID: 31575646 DOI: 10.1242/dev.178863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Meiotic spindles are positioned perpendicular to the oocyte cortex to facilitate segregation of chromosomes into a large egg and a tiny polar body. In C. elegans, spindles are initially ellipsoid and parallel to the cortex before shortening to a near-spherical shape with flattened poles and then rotating to the perpendicular orientation by dynein-driven cortical pulling. The mechanistic connection between spindle shape and rotation has remained elusive. Here, we have used three different genetic backgrounds to manipulate spindle shape without eliminating dynein-dependent movement or dynein localization. Ellipsoid spindles with flattened or pointed poles became trapped in either a diagonal or a parallel orientation. Mathematical models that recapitulated the shape dependence of rotation indicated that the lower viscous drag experienced by spherical spindles prevented recapture of the cortex by astral microtubules emanating from the pole pivoting away from the cortex. In addition, maximizing contact between pole dynein and cortical dynein stabilizes flattened poles in a perpendicular orientation, and spindle rigidity prevents spindle bending that can lock both poles at the cortex. Spindle shape can thus promote perpendicular orientation by three distinct mechanisms.
Collapse
Affiliation(s)
- Elizabeth Vargas
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Karen P McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Daniel B Cortes
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michelle T Panzica
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Brennan M Danlasky
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Qianyan Li
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Amy Shaub Maddox
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
20
|
Pelisch F, Bel Borja L, Jaffray EG, Hay RT. Sumoylation regulates protein dynamics during meiotic chromosome segregation in C. elegans oocytes. J Cell Sci 2019; 132:jcs232330. [PMID: 31243051 PMCID: PMC6679583 DOI: 10.1242/jcs.232330] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022] Open
Abstract
Oocyte meiotic spindles in most species lack centrosomes and the mechanisms that underlie faithful chromosome segregation in acentrosomal meiotic spindles are not well understood. In C. elegans oocytes, spindle microtubules exert a poleward force on chromosomes that is dependent on the microtubule-stabilising protein CLS-2, the orthologue of the mammalian CLASP proteins. The checkpoint kinase BUB-1 and CLS-2 localise in the central spindle and display a dynamic localisation pattern throughout anaphase, but the signals regulating their anaphase-specific localisation remains unknown. We have shown previously that SUMO regulates BUB-1 localisation during metaphase I. Here, we found that SUMO modification of BUB-1 is regulated by the SUMO E3 ligase GEI-17 and the SUMO protease ULP-1. SUMO and GEI-17 are required for BUB-1 localisation between segregating chromosomes during early anaphase I. We also show that CLS-2 is subject to SUMO-mediated regulation; CLS-2 precociously localises in the midbivalent when either SUMO or GEI-17 are depleted. Overall, we provide evidence for a novel, SUMO-mediated control of protein dynamics during early anaphase I in oocytes.
Collapse
Affiliation(s)
- Federico Pelisch
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Laura Bel Borja
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ellis G Jaffray
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
21
|
Abstract
The universal triple-nucleotide genetic code is often viewed as a given, randomly selected through evolution. However, as summarized in this article, many observations and deductions within structural and thermodynamic frameworks help to explain the forces that must have shaped the code during the early evolution of life on Earth.
Collapse
|
22
|
Spindle assembly and chromosome dynamics during oocyte meiosis. Curr Opin Cell Biol 2019; 60:53-59. [PMID: 31082633 DOI: 10.1016/j.ceb.2019.03.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/26/2022]
Abstract
Organisms that reproduce sexually utilize a specialized form of cell division called meiosis to reduce their chromosome number by half to generate haploid gametes. Meiosis in females is especially error-prone, and this vulnerability has a profound impact on human health: it is estimated that 10-25% of human embryos are chromosomally abnormal, and the vast majority of these defects arise from problems with the female reproductive cells (oocytes). Here, we highlight recent studies that explore how these important cells divide. Although we focus on work in the model organism Caenorhabditis elegans, we also discuss complementary studies in other organisms that together provide new insights into this crucial form of cell division.
Collapse
|
23
|
Barsh GS, Bhalla N, Cole F, Copenhaver GP, Lacefield S, Libuda DE. 2018 PLOS Genetics Research Prize: Bundling, stabilizing, organizing-The orchestration of acentriolar spindle assembly by microtubule motor proteins. PLoS Genet 2018; 14:e1007649. [PMID: 30212501 PMCID: PMC6136686 DOI: 10.1371/journal.pgen.1007649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Gregory S. Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Francesca Cole
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Diana E. Libuda
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
24
|
Redemann S, Lantzsch I, Lindow N, Prohaska S, Srayko M, Müller-Reichert T. A Switch in Microtubule Orientation during C. elegans Meiosis. Curr Biol 2018; 28:2991-2997.e2. [PMID: 30197085 DOI: 10.1016/j.cub.2018.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 11/26/2022]
Abstract
In oocytes of many organisms, meiotic spindles form in the absence of centrosomes [1-5]. Such female meiotic spindles have a pointed appearance in metaphase with microtubules focused at acentrosomal spindle poles. At anaphase, the microtubules of acentrosomal spindles then transition to an inter-chromosomal array, while the spindle poles disappear. This transition is currently not understood. Previous studies have focused on this inter-chromosomal microtubule array and proposed a pushing model to drive chromosome segregation [6, 7]. This model includes an end-on orientation of microtubules with chromosomes. Alternatively, chromosomes were thought to associate along bundles of microtubules [8, 9]. Starting with metaphase, this second model proposed a pure lateral chromosome-to-microtubule association up to the final meiotic stages of anaphase. Here, we applied large-scale electron tomography [10] of staged C. elegans oocytes in meiosis to analyze the orientation of microtubules in respect to chromosomes. We show that microtubules at metaphase I are primarily oriented laterally to the chromosomes and that microtubules switch to an end-on orientation during progression through anaphase. We further show that this switch in microtubule orientation involves a kinesin-13 microtubule depolymerase, KLP-7, which removes laterally associated microtubules around chromosomes. From this, we conclude that both lateral and end-on modes of microtubule-to-chromosome orientations are successively used in C. elegans oocytes to segregate meiotic chromosomes.
Collapse
Affiliation(s)
- Stefanie Redemann
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Ina Lantzsch
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | - Martin Srayko
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
25
|
Davis-Roca AC, Divekar NS, Ng RK, Wignall SM. Dynamic SUMO remodeling drives a series of critical events during the meiotic divisions in Caenorhabditis elegans. PLoS Genet 2018; 14:e1007626. [PMID: 30180169 PMCID: PMC6138424 DOI: 10.1371/journal.pgen.1007626] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/14/2018] [Accepted: 08/13/2018] [Indexed: 11/19/2022] Open
Abstract
Chromosome congression and segregation in C. elegans oocytes depend on a complex of conserved proteins that forms a ring around the center of each bivalent during prometaphase; these complexes are then removed from chromosomes at anaphase onset and disassemble as anaphase proceeds. Here, we uncover mechanisms underlying the dynamic regulation of these ring complexes (RCs), revealing a strategy by which protein complexes can be progressively remodeled during cellular processes. We find that the assembly, maintenance, and stability of RCs is regulated by a balance between SUMO conjugating and deconjugating activity. During prometaphase, the SUMO protease ULP-1 is targeted to the RCs but is counteracted by SUMO E2/E3 enzymes; then in early anaphase the E2/E3 enzymes are removed, enabling ULP-1 to trigger RC disassembly and completion of the meiotic divisions. Moreover, we found that SUMO regulation is essential to properly connect the RCs to the chromosomes and then also to fully release them in anaphase. Altogether, our work demonstrates that dynamic remodeling of SUMO modifications facilitates key meiotic events and highlights how competition between conjugation and deconjugation activity can modulate SUMO homeostasis, protein complex stability, and ultimately, progressive processes such as cell division. Most cells have two sets of chromosomes, one from each parent. Meiosis is a specialized form of cell division where chromosomes are duplicated once and segregated twice, in order to generate eggs (oocytes) or sperm with only one copy of every chromosome. This is necessary so that fertilization will produce an embryo that once again contains two complete copies of the genome. Using C. elegans as a model system, we have uncovered regulatory mechanisms important for the fidelity of these meiotic divisions. C. elegans oocytes use a kinetochore-independent chromosome segregation mechanism that relies on a large protein complex that localizes to the chromosomes. These protein complexes facilitate chromosome congression during metaphase and then are released from chromosomes in anaphase and progressively disassemble as the chromosomes segregate. We find that the stability and disassembly of these complexes is regulated by a protein modification called SUMO and by competition between enzymes that localize to the protein complex to either add or remove SUMO modifications. These findings provide insight into the mechanisms by which SUMO and SUMO enzymes regulate progression through cell division and illustrate a general strategy by which large protein complexes can be rapidly assembled and disassembled during dynamic cellular processes.
Collapse
Affiliation(s)
- Amanda C. Davis-Roca
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Nikita S. Divekar
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Rachel K. Ng
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Sarah M. Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- * E-mail:
| |
Collapse
|
26
|
Laband K, Le Borgne R, Edwards F, Stefanutti M, Canman JC, Verbavatz JM, Dumont J. Chromosome segregation occurs by microtubule pushing in oocytes. Nat Commun 2017; 8:1499. [PMID: 29133801 PMCID: PMC5684144 DOI: 10.1038/s41467-017-01539-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/27/2017] [Indexed: 11/24/2022] Open
Abstract
During cell division, spindle microtubules ensure an equal repartition of chromosomes between the two daughter cells. While the kinetochore-dependent mechanisms that drive mitotic chromosome segregation are well understood, in oocytes of most species atypical spindles assembled in absence of centrosomes entail poorly understood mechanisms of chromosome segregation. In particular, the structure(s) responsible for force generation during meiotic chromosome separation in oocytes is unclear. Using quantitative light microscopy, electron tomography, laser-mediated ablation, and genetic perturbations in the Caenorhabditis elegans oocyte, we studied the mechanism of chromosome segregation in meiosis. We find spindle poles are largely dispensable, and in fact act as brakes for chromosome segregation. Instead, our results suggest that CLS-2-dependent microtubules of the meiotic central spindle, located between the segregating chromosomes and aligned along the axis of segregation, are essential. Our results support a model in which inter-chromosomal microtubules of the central spindle push chromosomes apart during meiotic anaphase in oocytes. In oocytes of most species atypical spindles assembled in the absence of centrosomes drive chromosome segregation, however the forces driving this process are unclear. Here the authors found that spindle poles are largely dispensable and that inter-chromosomal microtubules of the central spindle control chromosomal segregation.
Collapse
Affiliation(s)
- Kimberley Laband
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
| | - Rémi Le Borgne
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
| | - Frances Edwards
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
| | - Marine Stefanutti
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jean-Marc Verbavatz
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France.,Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, 01307, Germany
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France.
| |
Collapse
|
27
|
Vargas E, McNally K, Friedman JA, Cortes DB, Wang DY, Korf IF, McNally FJ. Autosomal Trisomy and Triploidy Are Corrected During Female Meiosis in Caenorhabditis elegans. Genetics 2017; 207:911-922. [PMID: 28882988 PMCID: PMC5676225 DOI: 10.1534/genetics.117.300259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/05/2017] [Indexed: 11/18/2022] Open
Abstract
Trisomy and triploidy, defined as the presence of a third copy of one or all chromosomes, respectively, are deleterious in many species including humans. Previous studies have demonstrated that Caenorhabditis elegans with a third copy of the X chromosome are viable and fertile. However, the extra X chromosome was shown to preferentially segregate into the first polar body during oocyte meiosis to produce a higher frequency of euploid offspring than would be generated by random segregation. Here, we demonstrate that extra autosomes are preferentially eliminated by triploid C. elegans and trisomy IV C. elegans Live imaging of anaphase-lagging chromosomes and analysis of REC-8 staining of metaphase II spindles revealed that, in triploids, some univalent chromosomes do not lose cohesion and preferentially segregate intact into the first polar body during anaphase I, whereas other autosomes segregate chromatids equationally at anaphase I and eliminate some of the resulting single chromatids during anaphase II. We also demonstrate asymmetry in the anaphase spindle, which may contribute to the asymmetric segregation. This study reveals a pathway that allows aneuploid parents to produce euploid offspring at higher than random frequency.
Collapse
Affiliation(s)
- Elizabeth Vargas
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Karen McNally
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Jacob A Friedman
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Daniel B Cortes
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - David Y Wang
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Ian F Korf
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| |
Collapse
|
28
|
Mullen TJ, Wignall SM. Interplay between microtubule bundling and sorting factors ensures acentriolar spindle stability during C. elegans oocyte meiosis. PLoS Genet 2017; 13:e1006986. [PMID: 28910277 PMCID: PMC5614648 DOI: 10.1371/journal.pgen.1006986] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/26/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
In many species, oocyte meiosis is carried out in the absence of centrioles. As a result, microtubule organization, spindle assembly, and chromosome segregation proceed by unique mechanisms. Here, we report insights into the principles underlying this specialized form of cell division, through studies of C. elegans KLP-15 and KLP-16, two highly homologous members of the kinesin-14 family of minus-end-directed kinesins. These proteins localize to the acentriolar oocyte spindle and promote microtubule bundling during spindle assembly; following KLP-15/16 depletion, microtubule bundles form but then collapse into a disorganized array. Surprisingly, despite this defect we found that during anaphase, microtubules are able to reorganize into a bundled array that facilitates chromosome segregation. This phenotype therefore enabled us to identify factors promoting microtubule organization during anaphase, whose contributions are normally undetectable in wild-type worms; we found that SPD-1 (PRC1) bundles microtubules and KLP-18 (kinesin-12) likely sorts those bundles into a functional orientation capable of mediating chromosome segregation. Therefore, our studies have revealed an interplay between distinct mechanisms that together promote spindle formation and chromosome segregation in the absence of structural cues such as centrioles.
Collapse
Affiliation(s)
- Timothy J. Mullen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Sarah M. Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- * E-mail:
| |
Collapse
|
29
|
Davis-Roca AC, Muscat CC, Wignall SM. Caenorhabditis elegans oocytes detect meiotic errors in the absence of canonical end-on kinetochore attachments. J Cell Biol 2017; 216:1243-1253. [PMID: 28356326 PMCID: PMC5412562 DOI: 10.1083/jcb.201608042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/13/2016] [Accepted: 02/14/2017] [Indexed: 01/13/2023] Open
Abstract
During mitosis, cells monitor kinetochore–microtubule attachments as a means of detecting errors. Although end-on attachments have not been observed in Caenorhabditis elegans oocytes, Davis-Roca et al. now report that these cells alter key aspects of anaphase progression in the presence of meiotic defects, revealing a new strategy for error detection during cell division. Mitotically dividing cells use a surveillance mechanism, the spindle assembly checkpoint, that monitors the attachment of spindle microtubules to kinetochores as a means of detecting errors. However, end-on kinetochore attachments have not been observed in Caenorhabditis elegans oocytes and chromosomes instead associate with lateral microtubule bundles; whether errors can be sensed in this context is not known. Here, we show that C. elegans oocytes delay key events in anaphase, including AIR-2/Aurora B relocalization to the microtubules, in response to a variety of meiotic defects, demonstrating that errors can be detected in these cells and revealing a mechanism that regulates anaphase progression. This mechanism does not appear to rely on several components of the spindle assembly checkpoint but does require the kinetochore, as depleting kinetochore components prevents the error-induced anaphase delays. These findings therefore suggest that in this system, kinetochores could be involved in sensing meiotic errors using an unconventional mechanism that does not use canonical end-on attachments.
Collapse
Affiliation(s)
- Amanda C Davis-Roca
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Christina C Muscat
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
30
|
Gigant E, Stefanutti M, Laband K, Gluszek-Kustusz A, Edwards F, Lacroix B, Maton G, Canman JC, Welburn JPI, Dumont J. Inhibition of ectopic microtubule assembly by the kinesin-13 KLP-7 prevents chromosome segregation and cytokinesis defects in oocytes. Development 2017; 144:1674-1686. [PMID: 28289130 DOI: 10.1242/dev.147504] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/07/2017] [Indexed: 01/02/2023]
Abstract
In most species, oocytes lack centrosomes. Accurate meiotic spindle assembly and chromosome segregation - essential to prevent miscarriage or developmental defects - thus occur through atypical mechanisms that are not well characterized. Using quantitative in vitro and in vivo functional assays in the C. elegans oocyte, we provide novel evidence that the kinesin-13 KLP-7 promotes destabilization of the whole cellular microtubule network. By counteracting ectopic microtubule assembly and disorganization of the microtubule network, this function is strictly required for spindle organization, chromosome segregation and cytokinesis in meiotic cells. Strikingly, when centrosome activity was experimentally reduced, the absence of KLP-7 or the mammalian kinesin-13 protein MCAK (KIF2C) also resulted in ectopic microtubule asters during mitosis in C. elegans zygotes or HeLa cells, respectively. Our results highlight the general function of kinesin-13 microtubule depolymerases in preventing ectopic, spontaneous microtubule assembly when centrosome activity is defective or absent, which would otherwise lead to spindle microtubule disorganization and aneuploidy.
Collapse
Affiliation(s)
- Emmanuelle Gigant
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Marine Stefanutti
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Kimberley Laband
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Agata Gluszek-Kustusz
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Frances Edwards
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Benjamin Lacroix
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Gilliane Maton
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Julie C Canman
- Columbia University, Department of Pathology and Cell Biology, New York, NY 10032, USA
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| |
Collapse
|
31
|
Scholey JM, Civelekoglu-Scholey G, Brust-Mascher I. Anaphase B. BIOLOGY 2016; 5:biology5040051. [PMID: 27941648 PMCID: PMC5192431 DOI: 10.3390/biology5040051] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/16/2022]
Abstract
Anaphase B spindle elongation is characterized by the sliding apart of overlapping antiparallel interpolar (ip) microtubules (MTs) as the two opposite spindle poles separate, pulling along disjoined sister chromatids, thereby contributing to chromosome segregation and the propagation of all cellular life. The major biochemical “modules” that cooperate to mediate pole–pole separation include: (i) midzone pushing or (ii) braking by MT crosslinkers, such as kinesin-5 motors, which facilitate or restrict the outward sliding of antiparallel interpolar MTs (ipMTs); (iii) cortical pulling by disassembling astral MTs (aMTs) and/or dynein motors that pull aMTs outwards; (iv) ipMT plus end dynamics, notably net polymerization; and (v) ipMT minus end depolymerization manifest as poleward flux. The differential combination of these modules in different cell types produces diversity in the anaphase B mechanism. Combinations of antagonist modules can create a force balance that maintains the dynamic pre-anaphase B spindle at constant length. Tipping such a force balance at anaphase B onset can initiate and control the rate of spindle elongation. The activities of the basic motor filament components of the anaphase B machinery are controlled by a network of non-motor MT-associated proteins (MAPs), for example the key MT cross-linker, Ase1p/PRC1, and various cell-cycle kinases, phosphatases, and proteases. This review focuses on the molecular mechanisms of anaphase B spindle elongation in eukaryotic cells and briefly mentions bacterial DNA segregation systems that operate by spindle elongation.
Collapse
Affiliation(s)
- Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California, Davis, CA 95616, USA.
| | | | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
32
|
Radford SJ, Nguyen AL, Schindler K, McKim KS. The chromosomal basis of meiotic acentrosomal spindle assembly and function in oocytes. Chromosoma 2016; 126:351-364. [PMID: 27837282 DOI: 10.1007/s00412-016-0618-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022]
Abstract
Several aspects of meiosis are impacted by the absence of centrosomes in oocytes. Here, we review four aspects of meiosis I that are significantly affected by the absence of centrosomes in oocyte spindles. One, microtubules tend to assemble around the chromosomes. Two, the organization of these microtubules into a bipolar spindle is directed by the chromosomes. Three, chromosome bi-orientation and attachment to microtubules from the correct pole require modification of the mechanisms used in mitotic cells. Four, chromosome movement to the poles at anaphase cannot rely on polar anchoring of spindle microtubules by centrosomes. Overall, the chromosomes are more active participants during acentrosomal spindle assembly in oocytes, compared to mitotic and male meiotic divisions where centrosomes are present. The chromosomes are endowed with information that can direct the meiotic divisions and dictate their own behavior in oocytes. Processes beyond those known from mitosis appear to be required for their bi-orientation at meiosis I. As mitosis occurs without centrosomes in many systems other than oocytes, including all plants, the concepts discussed here may not be limited to oocytes. The study of meiosis in oocytes has revealed mechanisms that are operating in mitosis and will probably continue to do so.
Collapse
Affiliation(s)
- Sarah J Radford
- Waksman Institute, 190 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | | | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kim S McKim
- Waksman Institute, 190 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|