1
|
Heiss J, Treacher N, Lamichhane A, Magar AR, Tavana H. Extracellular Fibronectin and Hyaluronic Acid Effects on Tumorigenic Functions of Triple-Negative Breast Cancer Cells. J Biomed Mater Res A 2025; 113:e37906. [PMID: 40192931 DOI: 10.1002/jbm.a.37906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/21/2025] [Accepted: 03/17/2025] [Indexed: 05/17/2025]
Abstract
The extracellular matrix (ECM) in solid tumors provides structural support and signaling cues to cancer cells. Altered ECM in tumors promotes local invasion of cancer cells, a key step toward metastasis. Engineered tumor models that are used to study cancer invasion often focus on the effects of an individual ECM molecule on specific functions of cancer cells. However, how different components of ECM in a complex tumor model may co-regulate cancer invasion and the underlying signaling pathways is understudied. We developed a 3D tumor model of triple-negative breast cancer (TNBC) to study the effects of fibronectin and hyaluronic acid, alone or in combination, on TNBC cell invasion of collagen-based hydrogels. Our focus on these molecules was due to their significance in breast tumors, disease progression, and association with worse outcomes in patients. Results showed that fibronectin and hyaluronic acid significantly increase collagen invasion of TNBC cells and oncogenic signaling but not in combination, potentially due to differences in the microstructure of the hydrogels. Fibronectin and hyaluronic acid in composite hydrogels also promoted drug resistance and cancer stemness. This study demonstrated the utility of a 3D tumor model for functional and mechanistic studies to define complex effects of ECM in solid cancers.
Collapse
Affiliation(s)
- Jacob Heiss
- Department of Biomedical Engineering, University of Akron, Akron, Ohio, USA
| | - Nina Treacher
- Department of Biomedical Engineering, University of Akron, Akron, Ohio, USA
| | - Astha Lamichhane
- Department of Biomedical Engineering, University of Akron, Akron, Ohio, USA
| | - Anju Rana Magar
- Department of Biomedical Engineering, University of Akron, Akron, Ohio, USA
| | - Hossein Tavana
- Department of Biomedical Engineering, University of Akron, Akron, Ohio, USA
| |
Collapse
|
2
|
Baude JA, Li MD, Jackson SM, Sharma A, Walter DI, Stowers RS. Engineered basement membrane mimetic hydrogels to study mammary epithelial morphogenesis and invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640825. [PMID: 40093166 PMCID: PMC11908212 DOI: 10.1101/2025.02.28.640825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Reconstituted basement membrane (rBM) products like Matrigel are widely used in 3D culture models of epithelial tissues and cancer. However, their utility is hindered by key limitations, including batch variability, xenogenic contaminants, and a lack of tunability. To address these challenges, we engineered a 3D basement membrane (eBM) matrix by conjugating defined extracellular matrix (ECM) adhesion peptides (IKVAV, YIGSR, RGD) to an alginate hydrogel network with precisely tunable stiffness and viscoelasticity. We optimized the mechanical and biochemical properties of the engineered basement membranes (eBMs) to support mammary acinar morphogenesis in MCF10A cells, similar to rBM. We found that IKVAV-modified, fast-relaxing (τ1/2 = 30-150 s), and soft (E = 200 Pa) eBMs best promoted polarized acinar structures. Clusters became invasive and lost polarity only when the IKVAV-modified eBM exhibited both similar stiffness to a malignant breast tumor (E = 4000 Pa) and slow stress relaxation (τ1/2 = 600-1100 s). Notably, tumor-like stiffness alone was not sufficient to drive invasion in fast stress relaxing matrices modified with IKVAV. In contrast, RGD-modified matrices promoted a malignant phenotype regardless of mechanical properties. We also utilized this system to interrogate the mechanism driving acinar and tumorigenic phenotypes in response to microenvironmental parameters. A balance in activity between β1- and β4-integrins was observed in the context of IKVAV-modified eBMs, prompting further investigation into the downstream mechanisms. We found differences in hemidesmosome formation and production of endogenous laminin in response to peptide type, stress relaxation, and stiffness. We also saw that inhibiting either focal adhesion kinase or hemidesmosome signaling in IKVAV eBMs prevented acinus formation. This eBM matrix is a powerful, reductionist, xenogenic-free system, offering a robust platform for both fundamental research and translational applications in tissue engineering and disease modeling.
Collapse
Affiliation(s)
- Jane A Baude
- University of California, Santa Barbara, Department of Molecular, Cellular, and Developmental Biology
| | - Megan D Li
- University of California, Santa Barbara, Department of Molecular, Cellular, and Developmental Biology
| | - Sabrina M Jackson
- University of California, Santa Barbara, Department of Molecular, Cellular, and Developmental Biology
| | - Abhishek Sharma
- University of California, Santa Barbara, Department of Mechanical Engineering
| | - Daniella I Walter
- University of California, Santa Barbara, Department of Mechanical Engineering
| | - Ryan S Stowers
- University of California, Santa Barbara, Department of Molecular, Cellular, and Developmental Biology
- University of California, Santa Barbara, Department of Mechanical Engineering
- University of California, Santa Barbara, Department of Bioengineering
| |
Collapse
|
3
|
Narain R, Muncie-Vasic JM, Weaver VM. Forcing the code: tension modulates signaling to drive morphogenesis and malignancy. Genes Dev 2025; 39:163-181. [PMID: 39638568 PMCID: PMC11789492 DOI: 10.1101/gad.352110.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Development and disease are regulated by the interplay between genetics and the signaling pathways stimulated by morphogens, growth factors, and cytokines. Experimental data highlight the importance of mechanical force in regulating embryonic development, tissue morphogenesis, and malignancy. Force not only sculpts tissue movements to drive embryogenesis and morphogenesis but also modifies the context of biochemical signaling and gene expression to regulate cell and tissue fate. Not surprisingly, experiments have demonstrated that perturbations in cell tension drive malignancy and metastasis by altering biochemical signaling and gene expression through modifications in cytoskeletal tension, transmembrane receptor structure and function, and organelle phenotype that enhance cell growth and survival, alter metabolism, and foster cell migration and invasion. At the tissue level, tumor-associated forces disrupt cell-cell adhesions to perturb tissue organization, compromise vascular integrity to induce hypoxia, and interfere with antitumor immunity to foster metastasis and treatment resistance. Exciting new approaches now exist with which to clarify the relationship between mechanotransduction, biochemical signaling, and gene expression in development and disease. Indeed, gaining insight into these interactions is essential to unravel molecular mechanisms that regulate development and clarify the molecular basis of cancer.
Collapse
Affiliation(s)
- Radhika Narain
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California 94143, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, Berkeley, California 94720, USA
| | | | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, California 94143
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
4
|
Copeland SE, Snow SM, Wan J, Matkowskyj KA, Halberg RB, Weaver BA. MAD1 upregulation sensitizes to inflammation-mediated tumor formation. PLoS Genet 2024; 20:e1011437. [PMID: 39374311 PMCID: PMC11486420 DOI: 10.1371/journal.pgen.1011437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/17/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Mitotic Arrest Deficient 1 (gene name MAD1L1), an essential component of the mitotic spindle assembly checkpoint, is frequently overexpressed in colon cancer, which correlates with poor disease-free survival. MAD1 upregulation induces two phenotypes associated with tumor promotion in tissue culture cells-low rates of chromosomal instability (CIN) and destabilization of the tumor suppressor p53. Using CRISPR/Cas9 gene editing, we generated a novel mouse model by inserting a doxycycline (dox)-inducible promoter and HA tag into the endogenous mouse Mad1l1 gene, enabling inducible expression of HA-MAD1 following exposure to dox in the presence of the reverse tet transactivator (rtTA). A modest 2-fold overexpression of MAD1 in murine colon resulted in decreased p53 expression and increased mitotic defects consistent with CIN. After exposure to the colon-specific inflammatory agent dextran sulfate sodium (DSS), 31% of mice developed colon lesions, including a mucinous adenocarcinoma, while none formed in control animals. Lesion incidence was particularly high in male mice, 57% of which developed at least one hyperplastic polyp, adenoma or adenocarcinoma in the colon. Notably, mice expressing HA-MAD1 also developed lesions in tissues in which DSS is not expected to induce inflammation. These findings demonstrate that MAD1 upregulation is sufficient to promote colon tumorigenesis in the context of inflammation in immune-competent mice.
Collapse
Affiliation(s)
- Sarah E. Copeland
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Santina M. Snow
- Cancer Biology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jun Wan
- Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kristina A. Matkowskyj
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Richard B. Halberg
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Beth A. Weaver
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
5
|
Selke P, Strauss C, Horstkorte R, Scheer M. Effect of Different Glucose Levels and Glycation on Meningioma Cell Migration and Invasion. Int J Mol Sci 2024; 25:10075. [PMID: 39337558 PMCID: PMC11432498 DOI: 10.3390/ijms251810075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Meningiomas are predominantly benign tumors, but there are also malignant forms that are associated with a poor prognosis. Like almost all tumors, meningiomas metabolize glucose as part of aerobic glycolysis (Warburg effect) for energy supply, so there are attempts to influence the prognosis of tumor diseases using a glucose-reduced diet. This altered metabolism leads to so called hallmarks of cancer, such as glycation and glycosylation. In this study, we investigated the influence of low (3 mM), normal (5.5 mM) and high glucose (15 mM) on a malignant meningioma cell line (IOMM-Lee, WHO grade 3). In addition, the influence of methylglyoxal, a by-product of glycolysis and a precursor for glycation, was investigated. Impedance-based methods (ECIS and RTCA) were used to study migration and invasion, and immunoblotting was used to analyze the expression of proteins relevant to these processes, such as focal adhesion kinase (FAK), merlin or integrin ß1. We were able to show that low glucose reduced the invasive potential of the cells, which was associated with a reduced amount of sialic acid. Under high glucose, barrier function was impaired and adhesion decreased, which correlated with a decreased expression of FAK.
Collapse
Affiliation(s)
- Philipp Selke
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Maximilian Scheer
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| |
Collapse
|
6
|
Smirnova O, Efremov Y, Klyucherev T, Peshkova M, Senkovenko A, Svistunov A, Timashev P. Direct and cell-mediated EV-ECM interplay. Acta Biomater 2024; 186:63-84. [PMID: 39043290 DOI: 10.1016/j.actbio.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Extracellular vesicles (EV) are a heterogeneous group of lipid particles excreted by cells. They play an important role in regeneration, development, inflammation, and cancer progression, together with the extracellular matrix (ECM), which they constantly interact with. In this review, we discuss direct and indirect interactions of EVs and the ECM and their impact on different physiological processes. The ECM affects the secretion of EVs, and the properties of the ECM and EVs modulate EVs' diffusion and adhesion. On the other hand, EVs can affect the ECM both directly through enzymes and indirectly through the modulation of the ECM synthesis and remodeling by cells. This review emphasizes recently discovered types of EVs bound to the ECM and isolated by enzymatic digestion, including matrix-bound nanovesicles (MBV) and tissue-derived EV (TiEV). In addition to the experimental studies, computer models of the EV-ECM-cell interactions, from all-atom models to quantitative pharmacology models aiming to improve our understanding of the interaction mechanisms, are also considered. STATEMENT OF SIGNIFICANCE: Application of extracellular vesicles in tissue engineering is an actively developing area. Vesicles not only affect cells themselves but also interact with the matrix and change it. The matrix also influences both cells and vesicles. In this review, different possible types of interactions between vesicles, matrix, and cells are discussed. Furthermore, the united EV-ECM system and its regulation through the cellular activity are presented.
Collapse
Affiliation(s)
- Olga Smirnova
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Yuri Efremov
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Timofey Klyucherev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 119991 Moscow, Russia
| | - Alexey Senkovenko
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | | | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 119991 Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
7
|
Parihar K, Ko SHB, Bradley RP, Taylor P, Ramakrishnan N, Baumgart T, Guo W, Weaver VM, Janmey PA, Radhakrishnan R. Asymmetric crowders and membrane morphology at the nexus of intracellular trafficking and oncology. MECHANOBIOLOGY IN MEDICINE 2024; 2:100071. [PMID: 38899029 PMCID: PMC11185830 DOI: 10.1016/j.mbm.2024.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A definitive understanding of the interplay between protein binding/migration and membrane curvature evolution is emerging but needs further study. The mechanisms defining such phenomena are critical to intracellular transport and trafficking of proteins. Among trafficking modalities, exosomes have drawn attention in cancer research as these nano-sized naturally occurring vehicles are implicated in intercellular communication in the tumor microenvironment, suppressing anti-tumor immunity and preparing the metastatic niche for progression. A significant question in the field is how the release and composition of tumor exosomes are regulated. In this perspective article, we explore how physical factors such as geometry and tissue mechanics regulate cell cortical tension to influence exosome production by co-opting the biophysics as well as the signaling dynamics of intracellular trafficking pathways and how these exosomes contribute to the suppression of anti-tumor immunity and promote metastasis. We describe a multiscale modeling approach whose impact goes beyond the fundamental investigation of specific cellular processes toward actual clinical translation. Exosomal mechanisms are critical to developing and approving liquid biopsy technologies, poised to transform future non-invasive, longitudinal profiling of evolving tumors and resistance to cancer therapies to bring us one step closer to the promise of personalized medicine.
Collapse
Affiliation(s)
- Kshitiz Parihar
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Seung-Hyun B. Ko
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan P. Bradley
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip Taylor
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - N. Ramakrishnan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Tobias Baumgart
- Department of Chemistry, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie M. Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA
| | - Paul A. Janmey
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Zhu S, Kubota N, Wang S, Wang T, Xiao G, Hoshida Y. STIE: Single-cell level deconvolution, convolution, and clustering in in situ capturing-based spatial transcriptomics. Nat Commun 2024; 15:7559. [PMID: 39214995 PMCID: PMC11364663 DOI: 10.1038/s41467-024-51728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
In in situ capturing-based spatial transcriptomics, spots of the same size and printed at fixed locations cannot precisely capture the randomly-located single cells, therefore inherently failing to profile transcriptome at the single-cell level. To this end, we present STIE, an Expectation Maximization algorithm that aligns the spatial transcriptome to its matched histology image-based nuclear morphology and recovers missing cells from ~70% gap area, thereby achieving the real single-cell level and whole-slide scale deconvolution, convolution, and clustering for both low- and high-resolution spots. STIE characterizes cell-type-specific gene expression and demonstrates outperforming concordance with true cell-type-specific transcriptomic signatures than the other spot- and subspot-level methods. Furthermore, STIE reveals the single-cell level insights, for instance, lower actual spot resolution than its reported spot size, unbiased evaluation of cell type colocalization, superior power of high-resolution spot in distinguishing nuanced cell types, and spatial cell-cell interactions at the single-cell level other than spot level.
Collapse
Affiliation(s)
- Shijia Zhu
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Naoto Kubota
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Kakkad S, Krishnamachary B, Fackche N, Garner M, Brock M, Huang P, Bhujwalla ZM. Collagen 1 Fiber Volume Predicts for Recurrence of Stage 1 Non-Small Cell Lung Cancer. Tomography 2024; 10:1099-1112. [PMID: 39058055 PMCID: PMC11281282 DOI: 10.3390/tomography10070083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Background: The standard of care for stage 1 NSCLC is upfront surgery followed by surveillance. However, 20-30% of stage 1 NSCLC recur. There is an unmet need to identify individuals likely to recur who would benefit from frequent monitoring and aggressive cancer treatments. Collagen 1 (Col1) fibers detected by second harmonic generation (SHG) microscopy are a major structural component of the extracellular matrix (ECM) of tumors that play a role in cancer progression. Method: We characterized Col1 fibers with SHG microscopy imaging of surgically resected stage 1 NSCLC. Gene expression from RNA sequencing data was used to validate the SHG microscopy findings. Results: We identified a significant (p ≤ 0.05) increase in the Col1 fiber volume in stage 1 NSCLC that recurred. The increase in Col1 fiber volume was supported by significant increases in the gene expression of Col1 in invasive, compared to noninvasive, lung adenocarcinoma. Significant differences were identified in the gene expression of other ECM proteins, as well as CAFs, immune checkpoint markers, immune cytokines, and T-cell markers. Conclusion: Col1 fiber analysis can provide a companion diagnostic test to evaluate the likelihood of tumor recurrence following stage 1 NSCLC. The studies expand our understanding of the role of the ECM in NSCLC recurrence.
Collapse
Affiliation(s)
- Samata Kakkad
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.K.); (B.K.)
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.K.); (B.K.)
| | - Nadege Fackche
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (N.F.); (M.G.); (M.B.)
| | - Matthew Garner
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (N.F.); (M.G.); (M.B.)
| | - Malcom Brock
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (N.F.); (M.G.); (M.B.)
| | - Peng Huang
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.K.); (B.K.)
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Nasimi Shad A, Moghbeli M. Integrins as the pivotal regulators of cisplatin response in tumor cells. Cell Commun Signal 2024; 22:265. [PMID: 38741195 DOI: 10.1186/s12964-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cisplatin (CDDP) is a widely used first-line chemotherapeutic drug in various cancers. However, CDDP resistance is frequently observed in cancer patients. Therefore, it is required to evaluate the molecular mechanisms associated with CDDP resistance to improve prognosis among cancer patients. Integrins are critical factors involved in tumor metastasis that regulate cell-matrix and cell-cell interactions. They modulate several cellular mechanisms including proliferation, invasion, angiogenesis, polarity, and chemo resistance. Modification of integrin expression levels can be associated with both tumor progression and inhibition. Integrins are also involved in drug resistance of various solid tumors through modulation of the tumor cell interactions with interstitial matrix and extracellular matrix (ECM). Therefore, in the present review we discussed the role of integrin protein family in regulation of CDDP response in tumor cells. It has been reported that integrins mainly promoted the CDDP resistance through interaction with PI3K/AKT, MAPK, and WNT signaling pathways. They also regulated the CDDP mediated apoptosis in tumor cells. This review paves the way to suggest the integrins as the reliable therapeutic targets to improve CDDP response in tumor cells.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Sneider A, Liu Y, Starich B, Du W, Nair PR, Marar C, Faqih N, Ciotti GE, Kim JH, Krishnan S, Ibrahim S, Igboko M, Locke A, Lewis DM, Hong H, Karl MN, Vij R, Russo GC, Gómez-de-Mariscal E, Habibi M, Muñoz-Barrutia A, Gu L, Eisinger-Mathason TK, Wirtz D. Small Extracellular Vesicles Promote Stiffness-mediated Metastasis. CANCER RESEARCH COMMUNICATIONS 2024; 4:1240-1252. [PMID: 38630893 PMCID: PMC11080964 DOI: 10.1158/2767-9764.crc-23-0431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/13/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Tissue stiffness is a critical prognostic factor in breast cancer and is associated with metastatic progression. Here we show an alternative and complementary hypothesis of tumor progression whereby physiologic matrix stiffness affects the quantity and protein cargo of small extracellular vesicles (EV) produced by cancer cells, which in turn aid cancer cell dissemination. Primary patient breast tissue released by cancer cells on matrices that model human breast tumors (25 kPa; stiff EVs) feature increased adhesion molecule presentation (ITGα2β1, ITGα6β4, ITGα6β1, CD44) compared with EVs from softer normal tissue (0.5 kPa; soft EVs), which facilitates their binding to extracellular matrix proteins including collagen IV, and a 3-fold increase in homing ability to distant organs in mice. In a zebrafish xenograft model, stiff EVs aid cancer cell dissemination. Moreover, normal, resident lung fibroblasts treated with stiff and soft EVs change their gene expression profiles to adopt a cancer-associated fibroblast phenotype. These findings show that EV quantity, cargo, and function depend heavily on the mechanical properties of the extracellular microenvironment. SIGNIFICANCE Here we show that the quantity, cargo, and function of breast cancer-derived EVs vary with mechanical properties of the extracellular microenvironment.
Collapse
Affiliation(s)
- Alexandra Sneider
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Ying Liu
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Bartholomew Starich
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Wenxuan Du
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Praful R. Nair
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Carolyn Marar
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Najwa Faqih
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Gabrielle E. Ciotti
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Joo Ho Kim
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Sejal Krishnan
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Salma Ibrahim
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Muna Igboko
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Alexus Locke
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Daniel M. Lewis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Hanna Hong
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Michelle N. Karl
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Raghav Vij
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Gabriella C. Russo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Estibaliz Gómez-de-Mariscal
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, Leganés, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Mehran Habibi
- Johns Hopkins Breast Center, Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - Arrate Muñoz-Barrutia
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, Leganés, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Luo Gu
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - T.S. Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Parihar K, Ko SH, Bradley R, Taylor P, Ramakrishnan N, Baumgart T, Guo W, Weaver VM, Janmey PA, Radhakrishnan R. Free energy calculations for membrane morphological transformations and insights to physical biology and oncology. Methods Enzymol 2024; 701:359-386. [PMID: 39025576 PMCID: PMC11258396 DOI: 10.1016/bs.mie.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In this chapter, we aim to bridge basic molecular and cellular principles surrounding membrane curvature generation with rewiring of cellular signals in cancer through multiscale models. We describe a general framework that integrates signaling with other cellular functions like trafficking, cell-cell and cell-matrix adhesion, and motility. The guiding question in our approach is: how does a physical change in cell membrane configuration caused by external stimuli (including those by the extracellular microenvironment) alter trafficking, signaling and subsequent cell fate? We answer this question by constructing a modeling framework based on stochastic spatial continuum models of cell membrane deformations. We apply this framework to explore the link between trafficking, signaling in the tumor microenvironment, and cell fate. At each stage, we aim to connect the results of our predictions with cellular experiments.
Collapse
Affiliation(s)
- Kshitiz Parihar
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Seung-Hyun Ko
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Ryan Bradley
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Phillip Taylor
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - N Ramakrishnan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Tobias Baumgart
- Department of Chemistry, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, United States
| | - Paul A Janmey
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
13
|
Sneider A, Liu Y, Starich B, Du W, Marar C, Faqih N, Ciotti GE, Kim JH, Krishnan S, Ibrahim S, Igboko M, Locke A, Lewis DM, Hong H, Karl M, Vij R, Russo GC, Nair P, Gómez-de-Mariscal E, Habibi M, Muñoz-Barrutia A, Gu L, Eisinger-Mathason TSK, Wirtz D. Small extracellular vesicles promote stiffness-mediated metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.01.545937. [PMID: 37425743 PMCID: PMC10327142 DOI: 10.1101/2023.07.01.545937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Tissue stiffness is a critical prognostic factor in breast cancer and is associated with metastatic progression. Here we show an alternative and complementary hypothesis of tumor progression whereby physiological matrix stiffness affects the quantity and protein cargo of small EVs produced by cancer cells, which in turn drive their metastasis. Primary patient breast tissue produces significantly more EVs from stiff tumor tissue than soft tumor adjacent tissue. EVs released by cancer cells on matrices that model human breast tumors (25 kPa; stiff EVs) feature increased adhesion molecule presentation (ITGα 2 β 1 , ITGα 6 β 4 , ITGα 6 β 1 , CD44) compared to EVs from softer normal tissue (0.5 kPa; soft EVs), which facilitates their binding to extracellular matrix (ECM) protein collagen IV, and a 3-fold increase in homing ability to distant organs in mice. In a zebrafish xenograft model, stiff EVs aid cancer cell dissemination through enhanced chemotaxis. Moreover, normal, resident lung fibroblasts treated with stiff and soft EVs change their gene expression profiles to adopt a cancer associated fibroblast (CAF) phenotype. These findings show that EV quantity, cargo, and function depend heavily on the mechanical properties of the extracellular microenvironment.
Collapse
|
14
|
Zhu S, Kubota N, Wang S, Wang T, Xiao G, Hoshida Y. Single-cell level deconvolution, convolution, and clustering in spatial transcriptomics by aligning spot level transcriptome to nuclear morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.17.572084. [PMID: 38187541 PMCID: PMC10769305 DOI: 10.1101/2023.12.17.572084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In spot-based spatial transcriptomics, spots that are of the same size and printed at the fixed location cannot precisely capture the actual randomly located single cells, therefore failing to profile the transcriptome at the single-cell level. The current studies primarily focused on enhancing the spot resolution in size via computational imputation or technical improvement, however, they largely overlooked that single-cell resolution, i.e., resolution in cellular or even smaller size, does not equal single-cell level. Using both real and simulated spatial transcriptomics data, we demonstrated that even the high-resolution spatial transcriptomics still has a large number of spots partially covering multiple cells simultaneously, revealing the intrinsic non-single-cell level of spot-based spatial transcriptomics regardless of spot size. To this end, we present STIE, an EM algorithm that aligns the spatial transcriptome to its matched histology image-based nuclear morphology and recovers missing cells from up to ~70% gap area between spots via the nuclear morphological similarity and neighborhood information, thereby achieving the real single-cell level and whole-slide scale deconvolution/convolution and clustering for both low- and high-resolution spots. On both real and simulation spatial transcriptomics data, STIE characterizes the cell-type specific gene expression variation and demonstrates the outperforming concordance with the single-cell RNAseq-derived cell type transcriptomic signatures compared to the other spot- and subspot-level methods. Furthermore, STIE enabled us to gain novel insights that failed to be revealed by the existing methods due to the lack of single-cell level, for instance, lower actual spot resolution than its reported spot size, the additional contribution of cellular morphology to cell typing beyond transcriptome, unbiased evaluation of cell type colocalization, superior power of high-resolution spot in distinguishing nuanced cell types, and spatially resolved cell-cell interactions at the single-cell level other than spot level. The STIE code is publicly available as an R package at https://github.com/zhushijia/STIE.
Collapse
Affiliation(s)
- Shijia Zhu
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Naoto Kubota
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
15
|
Shimpi AA, Williams ED, Ling L, Tamir T, White FM, Fischbach C. Phosphoproteomic Changes Induced by Cell-Derived Matrix and Their Effect on Tumor Cell Migration and Cytoskeleton Remodeling. ACS Biomater Sci Eng 2023; 9:6835-6848. [PMID: 38015076 DOI: 10.1021/acsbiomaterials.3c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Increased fibrotic extracellular matrix (ECM) deposition promotes tumor invasion, which is the first step of the metastatic cascade. Yet, the underlying mechanisms are poorly understood as conventional studies of tumor cell migration are often performed in 2D cultures lacking the compositional and structural complexity of native ECM. Moreover, these studies frequently focus on select candidate pathways potentially overlooking other relevant changes in cell signaling. Here, we combine a cell-derived matrix (CDM) model with phosphotyrosine phosphoproteomic analysis to investigate tumor cell migration on fibrotic ECM relative to standard tissue culture plastic (TCP). Our results suggest that tumor cells cultured on CDMs migrate faster and in a more directional manner than their counterparts on TCP. These changes in migration correlate with decreased cell spreading and increased cell elongation. While the formation of phosphorylated focal adhesion kinase (pFAK)+ adhesion complexes did not vary between TCP and CDMs, time-dependent phosphoproteomic analysis identified that the SRC family kinase LYN may be differentially regulated. Pharmacological inhibition of LYN decreased tumor cell migration and cytoskeletal rearrangement on CDMs and also on TCP, suggesting that LYN regulates tumor cell migration on CDMs in combination with other mechanisms. These data highlight how the combination of physicochemically complex in vitro systems with phosphoproteomics can help identify signaling mechanisms by which the fibrotic ECM regulates tumor cell migration.
Collapse
Affiliation(s)
- Adrian A Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Erik D Williams
- Department of Information Science, Cornell University, Ithaca, New York 14853, United States
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Tigist Tamir
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 023139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 023139, United States
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 023139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 023139, United States
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
16
|
Yu TY, Zhang G, Chai XX, Ren L, Yin DC, Zhang CY. Recent progress on the effect of extracellular matrix on occurrence and progression of breast cancer. Life Sci 2023; 332:122084. [PMID: 37716504 DOI: 10.1016/j.lfs.2023.122084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer (BC) metastasis is an enormous challenge targeting BC therapy. The extracellular matrix (ECM), the principal component of the BC metastasis niche, is the pivotal driver of breast tumor development, whose biochemical and biophysical characteristics have attracted widespread attention. Here, we review the biological effects of ECM constituents and the influence of ECM stiffness on BC metastasis and drug resistance. We provide an overview of the relative signal transduction mechanisms, existing metastasis models, and targeted drug strategies centered around ECM stiffness. It will shed light on exploring more underlying targets and developing specific drugs aimed at ECM utilizing biomimetic platforms, which are promising for breast cancer treatment.
Collapse
Affiliation(s)
- Tong-Yao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Xiao-Xia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Li Ren
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China; Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China.
| |
Collapse
|
17
|
Xin Y, Li K, Huang M, Liang C, Siemann D, Wu L, Tan Y, Tang X. Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine. Oncogene 2023; 42:3457-3490. [PMID: 37864030 PMCID: PMC10656290 DOI: 10.1038/s41388-023-02844-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Evidence from physical sciences in oncology increasingly suggests that the interplay between the biophysical tumor microenvironment and genetic regulation has significant impact on tumor progression. Especially, tumor cells and the associated stromal cells not only alter their own cytoskeleton and physical properties but also remodel the microenvironment with anomalous physical properties. Together, these altered mechano-omics of tumor tissues and their constituents fundamentally shift the mechanotransduction paradigms in tumorous and stromal cells and activate oncogenic signaling within the neoplastic niche to facilitate tumor progression. However, current findings on tumor biophysics are limited, scattered, and often contradictory in multiple contexts. Systematic understanding of how biophysical cues influence tumor pathophysiology is still lacking. This review discusses recent different schools of findings in tumor biophysics that have arisen from multi-scale mechanobiology and the cutting-edge technologies. These findings range from the molecular and cellular to the whole tissue level and feature functional crosstalk between mechanotransduction and oncogenic signaling. We highlight the potential of these anomalous physical alterations as new therapeutic targets for cancer mechanomedicine. This framework reconciles opposing opinions in the field, proposes new directions for future cancer research, and conceptualizes novel mechanomedicine landscape to overcome the inherent shortcomings of conventional cancer diagnosis and therapies.
Collapse
Grants
- R35 GM150812 NIGMS NIH HHS
- This work was financially supported by National Natural Science Foundation of China (Project no. 11972316, Y.T.), Shenzhen Science and Technology Innovation Commission (Project no. JCYJ20200109142001798, SGDX2020110309520303, and JCYJ20220531091002006, Y.T.), General Research Fund of Hong Kong Research Grant Council (PolyU 15214320, Y. T.), Health and Medical Research Fund (HMRF18191421, Y.T.), Hong Kong Polytechnic University (1-CD75, 1-ZE2M, and 1-ZVY1, Y.T.), the Cancer Pilot Research Award from UF Health Cancer Center (X. T.), the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM150812 (X. T.), the National Science Foundation under grant number 2308574 (X. T.), the Air Force Office of Scientific Research under award number FA9550-23-1-0393 (X. T.), the University Scholar Program (X. T.), UF Research Opportunity Seed Fund (X. T.), the Gatorade Award (X. T.), and the National Science Foundation REU Site at UF: Engineering for Healthcare (Douglas Spearot and Malisa Sarntinoranont). We are deeply grateful for the insightful discussions with and generous support from all members of Tang (UF)’s and Tan (PolyU)’s laboratories and all staff members of the MAE/BME/ECE/Health Cancer Center at UF and BME at PolyU.
- National Natural Science Foundation of China (National Science Foundation of China)
- Shenzhen Science and Technology Innovation Commission
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Chenyu Liang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Dietmar Siemann
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Lizi Wu
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
18
|
Yun WS, Kim J, Lim DK, Kim DH, Jeon SI, Kim K. Recent Studies and Progress in the Intratumoral Administration of Nano-Sized Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2225. [PMID: 37570543 PMCID: PMC10421122 DOI: 10.3390/nano13152225] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Over the last 30 years, diverse types of nano-sized drug delivery systems (nanoDDSs) have been intensively explored for cancer therapy, exploiting their passive tumor targetability with an enhanced permeability and retention effect. However, their systemic administration has aroused some unavoidable complications, including insufficient tumor-targeting efficiency, side effects due to their undesirable biodistribution, and carrier-associated toxicity. In this review, the recent studies and advancements in intratumoral nanoDDS administration are generally summarized. After identifying the factors to be considered to enhance the therapeutic efficacy of intratumoral nanoDDS administration, the experimental results on the application of intratumoral nanoDDS administration to various types of cancer therapies are discussed. Subsequently, the reports on clinical studies of intratumoral nanoDDS administration are addressed in short. Intratumoral nanoDDS administration is proven with its versatility to enhance the tumor-specific accumulation and retention of therapeutic agents for various therapeutic modalities. Specifically, it can improve the efficacy of therapeutic agents with poor bioavailability by increasing their intratumoral concentration, while minimizing the side effect of highly toxic agents by restricting their delivery to normal tissues. Intratumoral administration of nanoDDS is considered to expand its application area due to its potent ability to improve therapeutic effects and relieve the systemic toxicities of nanoDDSs.
Collapse
Affiliation(s)
- Wan Su Yun
- Korea Institute of Science and Technology (KU-KIST), Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Jeongrae Kim
- Korea Institute of Science and Technology (KU-KIST), Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Dong-Kwon Lim
- Korea Institute of Science and Technology (KU-KIST), Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Dong-Hwee Kim
- Korea Institute of Science and Technology (KU-KIST), Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Seong Ik Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kwangmeyung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
19
|
Constantin M, Mătanie C, Petrescu L, Bolocan A, Andronic O, Bleotu C, Mitache MM, Tudorache S, Vrancianu CO. Landscape of Genetic Mutations in Appendiceal Cancers. Cancers (Basel) 2023; 15:3591. [PMID: 37509254 PMCID: PMC10377024 DOI: 10.3390/cancers15143591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In appendiceal cancers, the most frequently mutated genes are (i) KRAS, which, when reactivated, restores signal transduction via the RAS-RAF-MEK-ERK signaling pathway and stimulates cell proliferation in the early stages of tumor transformation, and then angiogenesis; (ii) TP53, whose inactivation leads to the inhibition of programmed cell death; (iii) GNAS, which, when reactivated, links the cAMP pathway to the RAS-RAF-MEK-ERK signaling pathway, stimulating cell proliferation and angiogenesis; (iv) SMAD4, exhibiting typical tumor-suppressive activity, blocking the transmission of oncogenic TGFB signals via the SMAD2/SMAD3 heterodimer; and (v) BRAF, which is part of the RAS-RAF-MEK-ERK signaling pathway. Diverse mutations are reported in other genes, which are part of secondary or less critical signaling pathways for tumor progression, but which amplify the phenotypic diversity of appendiceal cancers. In this review, we will present the main genetic mutations involved in appendix tumors and their roles in cell proliferation and survival, and in tumor invasiveness, angiogenesis, and acquired resistance to anti-growth signals.
Collapse
Affiliation(s)
- Marian Constantin
- Institute of Biology of Romanian Academy, 060031 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Cristina Mătanie
- Department of Anatomy, Animal Physiology and Biophysics (DAFAB), Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Livia Petrescu
- Department of Anatomy, Animal Physiology and Biophysics (DAFAB), Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Alexandra Bolocan
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Octavian Andronic
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Coralia Bleotu
- Life, Environmental and Earth Sciences Division, The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | | | - Sorin Tudorache
- Faculty of Medicine, "Titu Maiorescu" University, 040441 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| |
Collapse
|
20
|
Taufalele PV, Wang W, Simmons AJ, Southard-Smith AN, Chen B, Greenlee JD, King MR, Lau KS, Hassane DC, Bordeleau F, Reinhart-King CA. Matrix stiffness enhances cancer-macrophage interactions and M2-like macrophage accumulation in the breast tumor microenvironment. Acta Biomater 2023; 163:365-377. [PMID: 35483629 PMCID: PMC9592676 DOI: 10.1016/j.actbio.2022.04.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/17/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023]
Abstract
The role of intratumor heterogeneity is becoming increasingly apparent in part due to expansion in single cell technologies. Clinically, tumor heterogeneity poses several obstacles to effective cancer therapy dealing with biomarker variability and treatment responses. Matrix stiffening is known to occur during tumor progression and contribute to pathogenesis in several cancer hallmarks, including tumor angiogenesis and metastasis. However, the effects of matrix stiffening on intratumor heterogeneity have not been thoroughly studied. In this study, we applied single-cell RNA sequencing to investigate the differences in the transcriptional landscapes between stiff and compliant MMTV-PyMT mouse mammary tumors. We found similar compositions of cancer and stromal subpopulations in compliant and stiff tumors but differential intercellular communication and a significantly higher concentration of tumor-promoting, M2-like macrophages in the stiffer tumor microenvironments. Interestingly, we found that cancer cells seeded on stiffer substrates recruited more macrophages. Furthermore, elevated matrix stiffness increased Colony Stimulating Factor 1 (CSF-1) expression in breast cancer cells and reduction of CSF-1 expression on stiffer substrates reduced macrophage recruitment. Thus, our results demonstrate that tissue phenotypes were conserved between stiff and compliant tumors but matrix stiffening altered cell-cell interactions which may be responsible for shifting the phenotypic balance of macrophages residing in the tumor microenvironment towards a pro-tumor progression M2 phenotype. STATEMENT OF SIGNIFICANCE: Cells within tumors are highly heterogeneous, posing challenges with treatment and recurrence. While increased tissue stiffness can promote several hallmarks of cancer, its effects on tumor heterogeneity are unclear. We used single-cell RNA sequencing to investigate the differences in the transcriptional landscapes between stiff and compliant MMTV-PyMT mouse mammary tumors. We found similar compositions of cancer and stromal subpopulations in compliant and stiff tumors but differential intercellular communication and a significantly higher concentration of tumor-promoting, M2-like macrophages in the stiffer tumor microenvironments. Using a biomaterial-based platform, we found that cancer cells seeded on stiffer substrates recruited more macrophages, supporting our in vivo findings. Together, our results demonstrate a key role of matrix stiffness in affecting cell-cell communication and macrophage recruitment.
Collapse
Affiliation(s)
- Paul V Taufalele
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alan J Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Austin N Southard-Smith
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bob Chen
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Joshua D Greenlee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Duane C Hassane
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - François Bordeleau
- Cancer Research Center and Centre de Recherche du CHU de Québec, Université Laval, Canada
| | | |
Collapse
|
21
|
de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023; 41:374-403. [PMID: 36917948 DOI: 10.1016/j.ccell.2023.02.016] [Citation(s) in RCA: 1392] [Impact Index Per Article: 696.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
Cancers represent complex ecosystems comprising tumor cells and a multitude of non-cancerous cells, embedded in an altered extracellular matrix. The tumor microenvironment (TME) includes diverse immune cell types, cancer-associated fibroblasts, endothelial cells, pericytes, and various additional tissue-resident cell types. These host cells were once considered bystanders of tumorigenesis but are now known to play critical roles in the pathogenesis of cancer. The cellular composition and functional state of the TME can differ extensively depending on the organ in which the tumor arises, the intrinsic features of cancer cells, the tumor stage, and patient characteristics. Here, we review the importance of the TME in each stage of cancer progression, from tumor initiation, progression, invasion, and intravasation to metastatic dissemination and outgrowth. Understanding the complex interplay between tumor cell-intrinsic, cell-extrinsic, and systemic mediators of disease progression is critical for the rational development of effective anti-cancer treatments.
Collapse
Affiliation(s)
- Karin E de Visser
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland; Agora Cancer Center Lausanne, and Swiss Cancer Center Léman, 1011 Lausanne, Switzerland.
| |
Collapse
|
22
|
Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer 2022; 21:208. [PMID: 36324128 PMCID: PMC9628074 DOI: 10.1186/s12943-022-01670-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Tumors are comprised of both cancer cells and surrounding stromal components. As an essential part of the tumor microenvironment, the tumor stroma is highly dynamic, heterogeneous and commonly tumor-type specific, and it mainly includes noncellular compositions such as the extracellular matrix and the unique cancer-associated vascular system as well as a wide variety of cellular components including activated cancer-associated fibroblasts, mesenchymal stromal cells, pericytes. All these elements operate with each other in a coordinated fashion and collectively promote cancer initiation, progression, metastasis and therapeutic resistance. Over the past few decades, numerous studies have been conducted to study the interaction and crosstalk between stromal components and neoplastic cells. Meanwhile, we have also witnessed an exponential increase in the investigation and recognition of the critical roles of tumor stroma in solid tumors. A series of clinical trials targeting the tumor stroma have been launched continually. In this review, we introduce and discuss current advances in the understanding of various stromal elements and their roles in cancers. We also elaborate on potential novel approaches for tumor-stroma-based therapeutic targeting, with the aim to promote the leap from bench to bedside.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tao Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
23
|
Parihar K, Nukpezah J, Iwamoto DV, Janmey PA, Radhakrishnan R. Data driven and biophysical insights into the regulation of trafficking vesicles by extracellular matrix stiffness. iScience 2022; 25:104721. [PMID: 35865140 PMCID: PMC9293776 DOI: 10.1016/j.isci.2022.104721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Biomechanical signals from remodeled extracellular matrix (ECM) promote tumor progression. Here, we show that cell-matrix and cell-cell communication may be inherently linked and tuned through mechanisms of mechanosensitive biogenesis of trafficking vesicles. Pan-cancer analysis of cancer cells' mechanical properties (focusing primarily on cell stiffness) on substrates of varied stiffness and composition elucidated a heterogeneous cellular response to mechanical stimuli. Through machine learning, we identified a fingerprint of cytoskeleton-related proteins that accurately characterize cell stiffness in different ECM conditions. Expression of their respective genes correlates with patient prognosis across different tumor types. The levels of selected cytoskeleton proteins indicated that cortical tension mirrors the increase (or decrease) in cell stiffness with a change in ECM stiffness. A mechanistic biophysical model shows that the tendency for curvature generation by curvature-inducing proteins has an ultrasensitive dependence on cortical tension. This study thus highlights the effect of ECM stiffness, mediated by cortical tension, in modulating vesicle biogenesis.
Collapse
Affiliation(s)
- Kshitiz Parihar
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Nukpezah
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel V. Iwamoto
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A. Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Northey JJ, Weaver VM. Mechanosensitive Steroid Hormone Signaling and Cell Fate. Endocrinology 2022; 163:bqac085. [PMID: 35678467 PMCID: PMC9237634 DOI: 10.1210/endocr/bqac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/19/2022]
Abstract
Mechanical forces collaborate across length scales to coordinate cell fate during development and the dynamic homeostasis of adult tissues. Similarly, steroid hormones interact with their nuclear and nonnuclear receptors to regulate diverse physiological processes necessary for the appropriate development and function of complex multicellular tissues. Aberrant steroid hormone action is associated with tumors originating in hormone-sensitive tissues and its disruption forms the basis of several therapeutic interventions. Prolonged perturbations to mechanical forces may further foster tumor initiation and the evolution of aggressive metastatic disease. Recent evidence suggests that steroid hormone and mechanical signaling intersect to direct cell fate during development and tumor progression. Potential mechanosensitive steroid hormone signaling pathways along with their molecular effectors will be discussed in this context.
Collapse
Affiliation(s)
- Jason J Northey
- Department of Surgery, University of California, San Francisco, CA 94143, USA
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143,USA
| | - Valerie M Weaver
- Department of Surgery, University of California, San Francisco, CA 94143, USA
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143,USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143,USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143,USA
- Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143,USA
| |
Collapse
|
25
|
Sneider A, Kiemen A, Kim JH, Wu PH, Habibi M, White M, Phillip JM, Gu L, Wirtz D. Deep learning identification of stiffness markers in breast cancer. Biomaterials 2022; 285:121540. [PMID: 35537336 PMCID: PMC9873266 DOI: 10.1016/j.biomaterials.2022.121540] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
While essential to our understanding of solid tumor progression, the study of cell and tissue mechanics has yet to find traction in the clinic. Determining tissue stiffness, a mechanical property known to promote a malignant phenotype in vitro and in vivo, is not part of the standard algorithm for the diagnosis and treatment of breast cancer. Instead, clinicians routinely use mammograms to identify malignant lesions and radiographically dense breast tissue is associated with an increased risk of developing cancer. Whether breast density is related to tumor tissue stiffness, and what cellular and non-cellular components of the tumor contribute the most to its stiffness are not well understood. Through training of a deep learning network and mechanical measurements of fresh patient tissue, we create a bridge in understanding between clinical and mechanical markers. The automatic identification of cellular and extracellular features from hematoxylin and eosin (H&E)-stained slides reveals that global and local breast tissue stiffness best correlate with the percentage of straight collagen. Importantly, the percentage of dense breast tissue does not directly correlate with tissue stiffness or straight collagen content.
Collapse
Affiliation(s)
- Alexandra Sneider
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Ashley Kiemen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Joo Ho Kim
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Mehran Habibi
- Johns Hopkins Breast Center, Johns Hopkins Bayview Medical Center, 4940 Eastern Ave, Baltimore, MD, 21224, USA
| | - Marissa White
- Department of Pathology, Johns Hopkins School of Medicine, 401 N Broadway, Baltimore, MD, 21231, USA
| | - Jude M. Phillip
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA,Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Luo Gu
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA,Department of Pathology, Johns Hopkins School of Medicine, 401 N Broadway, Baltimore, MD, 21231, USA,Department of Oncology, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD, 21205, USA,Corresponding author. Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA., (D. Wirtz)
| |
Collapse
|
26
|
Xiao L, Li Q, Huang Y, Fan Z, Qin W, Liu B, Yuan X. Integrative Analysis Constructs an Extracellular Matrix-Associated Gene Signature for the Prediction of Survival and Tumor Immunity in Lung Adenocarcinoma. Front Cell Dev Biol 2022; 10:835043. [PMID: 35557945 PMCID: PMC9086365 DOI: 10.3389/fcell.2022.835043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) accounts for the majority of lung cancers, and the survival of patients with advanced LUAD is poor. The extracellular matrix (ECM) is a fundamental component of the tumor microenvironment (TME) that determines the oncogenesis and antitumor immunity of solid tumors. However, the prognostic value of extracellular matrix-related genes (ERGs) in LUAD remains unexplored. Therefore, this study is aimed to explore the prognostic value of ERGs in LUAD and establish a classification system to predict the survival of patients with LUAD.Methods: LUAD samples from The Cancer Genome Atlas (TCGA) and GSE37745 were used as discovery and validation cohorts, respectively. Prognostic ERGs were identified by univariate Cox analysis and used to construct a prognostic signature by Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. The extracellular matrix-related score (ECMRS) of each patient was calculated according to the prognostic signature and used to classify patients into high- and low-risk groups. The prognostic performance of the signature was evaluated using Kaplan–Meier curves, Cox regression analyses, and ROC curves. The relationship between ECMRS and tumor immunity was determined using stepwise analyses. A nomogram based on the signature was established for the convenience of use in the clinical practice. The prognostic genes were validated in multiple databases and clinical specimens by qRT-PCR.Results: A prognostic signature based on eight ERGs (FERMT1, CTSV, CPS1, ENTPD2, SERPINB5, ITGA8, ADAMTS8, and LYPD3) was constructed. Patients with higher ECMRS had poorer survival, lower immune scores, and higher tumor purity in both the discovery and validation cohorts. The predictive power of the signature was independent of the clinicopathological parameters, and the nomogram could also predict survival precisely.Conclusions: We constructed an ECM-related gene signature which can be used to predict survival and tumor immunity in patients with LUAD. This signature can serve as a novel prognostic indicator and therapeutic target in LUAD.
Collapse
Affiliation(s)
- Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijie Fan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Liu, ; Xianglin Yuan,
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Liu, ; Xianglin Yuan,
| |
Collapse
|
27
|
Xie YH, Ran LQ, Wu ZY, Sun C, Xu XE, Zou HY, Fang WK, Xie JJ. Role of Integrin β1 in the progression and chemo-resistance of esophageal squamous cell carcinoma. J Cancer 2022; 13:2074-2085. [PMID: 35517416 PMCID: PMC9066195 DOI: 10.7150/jca.68647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/27/2022] [Indexed: 02/05/2023] Open
Abstract
Objective: Integrins have been shown to play an important role in the tumorigenesis of many cancers. In this work, we aimed to explore the expression and clinical value of Integrin α5β1 in esophageal squamous cell carcinoma (ESCC), and the effect of integrin β1 on the development and chemo-resistance of ESCC cells. Methods: The expression profiling of integrins was analyzed in the mRNA expression dataset of ESCC. The expression of Integrin α5β1 in 278 cases of ESCC tissues and 62 cases of paracancerous tissues was detected by immunohistochemistry (IHC). The association between the expression of Integrin α5β1 and the survival of ESCC patients was analyzed by Kaplan-Meier analysis. The effect of Integrin β1 on the proliferation, migration, and invasion of ESCC cells was examined by MTS, Transwell migration, and Transwell invasion assay. The effect of Integrin β1 and L1 cell adhesion molecule (L1CAM) on cisplatin resistance was detected by MTS and the signal pathways involved were analyzed by Western blotting. Results: Integrin β1 and Integrin α5 were significantly up-regulated in ESCC. High expression of Integrin β1 was also related to worse overall survival of ESCC patients and patients with low levels of both Integrin β1 and Integrin α5 showed the shortest survival. Results of IHC revealed that Integrin α5β1 was up-regulated in ESCC and its high expression was associated with poor prognosis and could serve as an independent prognostic factor. siRNA-mediated Integrin β1 silencing or antibody blocking restrained the proliferation, migration, and invasion of ESCC cells. Simultaneous knockdown of Integrin β1 and L1CAM reduced the cisplatin resistance of ESCC cells. Further studies showed that knockdown of Integrin β1 and L1CAM suppressed the activity of Akt signaling with or without cisplatin treatment. Moreover, dual high expression of Integrin β1 and L1CAM was related to worse overall survival of ESCC patients treated with preoperative chemotherapy. Conclusion: Integrin α5β1 was up-regulated in ESCC and could be used as a new prognostic indicator for ESCC patients. In addition, Integrin β1 was involved in the proliferation, invasion, and chemo-resistance of ESCC cells.
Collapse
Affiliation(s)
- Ying-Hua Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Li-Qiang Ran
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Zhi-Yong Wu
- Department of Surgical Oncology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Chun Sun
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Xiu-E Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - Hai-Ying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Wang-Kai Fang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| |
Collapse
|
28
|
O'Melia MJ, Mulero-Russe A, Kim J, Pybus A, DeRyckere D, Wood L, Graham DK, Botchwey E, García AJ, Thomas SN. Synthetic Matrix Scaffolds Engineer the In Vivo Tumor Immune Microenvironment for Immunotherapy Screening. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108084. [PMID: 34989049 PMCID: PMC8917077 DOI: 10.1002/adma.202108084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Immunotherapy has emerged as one of the most powerful anti-cancer therapies but is stymied by the limits of existing preclinical models with respect to disease latency and reproducibility. Additionally, the influence of differing immune microenvironments within tumors observed clinically and associated with immunotherapeutic resistance cannot be tuned to facilitate drug testing workflows without changing model system or laborious genetic approaches. To address this testing platform gap in the immune oncology drug development pipeline, the authors deploy engineered biomaterials as scaffolds to increase tumor formation rate, decrease disease latency, and diminish variability of immune infiltrates into tumors formed from murine mammary carcinoma cell lines implanted into syngeneic mice. By altering synthetic gel formulations that reshape infiltrating immune cells within the tumor, responsiveness of the same tumor model to varying classes of cancer immunotherapies, including in situ vaccination with a molecular adjuvant and immune checkpoint blockade, diverge. These results demonstrate the significant role the local immune microenvironment plays in immunotherapeutic response. These engineered tumor immune microenvironments therefore improve upon the limitations of current breast tumor models used for immune oncology drug screening to enable immunotherapeutic testing relevant to the variability in tumor immune microenvironments underlying immunotherapeutic resistance seen in human patients.
Collapse
Affiliation(s)
- Meghan J O'Melia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30308, USA
| | - Adriana Mulero-Russe
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30308, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30308, USA
| | - Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30308, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30308, USA
| | - Alyssa Pybus
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30308, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30308, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30308, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30308, USA
| | - Levi Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30308, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30308, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30308, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30308, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30308, USA
| | - Edward Botchwey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30308, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30308, USA
| | - Andrés J García
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30308, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30308, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30308, USA
| | - Susan N Thomas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30308, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30308, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30308, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30308, USA
| |
Collapse
|
29
|
Weiss F, Lauffenburger D, Friedl P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance. Nat Rev Cancer 2022; 22:157-173. [PMID: 35013601 PMCID: PMC10399972 DOI: 10.1038/s41568-021-00427-0] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Resistance to therapeutic treatment and metastatic progression jointly determine a fatal outcome of cancer. Cancer metastasis and therapeutic resistance are traditionally studied as separate fields using non-overlapping strategies. However, emerging evidence, including from in vivo imaging and in vitro organotypic culture, now suggests that both programmes cooperate and reinforce each other in the invasion niche and persist upon metastatic evasion. As a consequence, cancer cell subpopulations exhibiting metastatic invasion undergo multistep reprogramming that - beyond migration signalling - supports repair programmes, anti-apoptosis processes, metabolic adaptation, stemness and survival. Shared metastasis and therapy resistance signalling are mediated by multiple mechanisms, such as engagement of integrins and other context receptors, cell-cell communication, stress responses and metabolic reprogramming, which cooperate with effects elicited by autocrine and paracrine chemokine and growth factor cues present in the activated tumour microenvironment. These signals empower metastatic cells to cope with therapeutic assault and survive. Identifying nodes shared in metastasis and therapy resistance signalling networks should offer new opportunities to improve anticancer therapy beyond current strategies, to eliminate both nodular lesions and cells in metastatic transit.
Collapse
Affiliation(s)
- Felix Weiss
- Department of Cell Biology, RIMLS, Radboud University Medical Center, Nijmegen, Netherlands
| | - Douglas Lauffenburger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter Friedl
- Department of Cell Biology, RIMLS, Radboud University Medical Center, Nijmegen, Netherlands.
- David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cancer Genomics Center, Utrecht, Netherlands.
| |
Collapse
|
30
|
Liu Y, Li J, Zeng S, Zhang Y, Zhang Y, Jin Z, Liu S, Zou X. Bioinformatic Analyses and Experimental Verification Reveal that High FSTL3 Expression Promotes EMT via Fibronectin-1/α5β1 Interaction in Colorectal Cancer. Front Mol Biosci 2021; 8:762924. [PMID: 34901156 PMCID: PMC8652210 DOI: 10.3389/fmolb.2021.762924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Colorectal cancer (CRC) is a typical cancer prevalent worldwide. Despite the conventional treatments, CRC has a poor prognosis due to relapse and metastasis. Moreover, there is a dearth of sensitive biomarkers for predicting prognosis in CRC. Methods: This study used a bioinformatics approach combining validation experiments to examine the value of follistatin-like 3 (FSTL3) as a prognostic predictor and therapeutic target in CRC. Results:FSTL3 was remarkably upregulated in the CRC samples. FSTL3 overexpression was significantly associated with a poor prognosis. FSTL3 was found to activate the epithelial-mesenchymal transition by promoting the binding of FN1 to α5β1. FSTL3 expression was also positively correlated with the abundance of the potent immunosuppressors, M2 macrophages. Conclusion:FSTL3 overexpression affects CRC prognosis and thus, FSTL3 can be a prognostic biomarker and therapeutic target with potential applications in CRC.
Collapse
Affiliation(s)
- Yuanjie Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiepin Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Shuhong Zeng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yonghua Zhang
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Zhichao Jin
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Shenlin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Zou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
31
|
Ray A, Provenzano PP. Aligned forces: Origins and mechanisms of cancer dissemination guided by extracellular matrix architecture. Curr Opin Cell Biol 2021; 72:63-71. [PMID: 34186415 PMCID: PMC8530881 DOI: 10.1016/j.ceb.2021.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Organized extracellular matrix (ECM), in the form of aligned architectures, is a critical mediator of directed cancer cell migration by contact guidance, leading to metastasis in solid tumors. Current models suggest anisotropic force generation through the engagement of key adhesion and cytoskeletal complexes drives contact-guided migration. Likewise, disrupting the balance between cell-cell and cell-ECM forces, driven by ECM engagement for cells at the tumor-stromal interface, initiates and drives local invasion. Furthermore, processes such as traction forces exerted by cancer and stromal cells, spontaneous reorientation of matrix-producing fibroblasts, and direct binding of ECM modifying proteins lead to the emergence of collagen alignment in tumors. Thus, as we obtain a deeper understanding of the origins of ECM alignment and the mechanisms by which it is maintained to direct invasion, we are poised to use the new paradigm of stroma-targeted therapies to disrupt this vital axis of disease progression in solid tumors.
Collapse
Affiliation(s)
- Arja Ray
- Department of Pathology, University of California, San Francisco, USA.
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota, USA; University of Minnesota Physical Sciences in Oncology Center, USA; Masonic Cancer Center, University of Minnesota, USA; Institute for Engineering in Medicine, University of Minnesota, USA; Stem Cell Institute, University of Minnesota, USA.
| |
Collapse
|
32
|
Abstract
Integrin-mediated adhesion of cells to the extracellular matrix (ECM) is crucial for the physiological development and functioning of tissues but is pathologically disrupted in cancer. Indeed, abnormal regulation of integrin receptors and ECM ligands allows cancer cells to break down tissue borders, breach into blood and lymphatic vessels, and survive traveling in suspension through body fluids or residing in metabolically or pharmacologically hostile environments. Different molecular and cellular mechanisms responsible for the modulation of integrin adhesive function or mechanochemical signaling are altered and participate in cancer. Cancer development and progression are also bolstered by dysfunctionalities of integrin-mediated ECM adhesion occurring both in tumor cells and in elements of the surrounding tumor microenvironment, such as vascular cells, cancer-associated fibroblasts, and immune cells. Mounting evidence suggests that integrin inhibitors may be effectively exploited to overcome resistance to standard-of-care anti-cancer therapies.
Collapse
Affiliation(s)
- Donatella Valdembri
- Candiolo Cancer Institute - Fondazione del Piemonte per l’Oncologia (FPO) - IRCCS, Candiolo (TO), Italy
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
| | - Guido Serini
- Candiolo Cancer Institute - Fondazione del Piemonte per l’Oncologia (FPO) - IRCCS, Candiolo (TO), Italy
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
| |
Collapse
|
33
|
Niu H, Zhang H, Wu F, Xiong B, Tong J, Jiang L. Proteomics study on the protective mechanism of soybean isoflavone against inflammation injury of bovine mammary epithelial cells induced by Streptococcus agalactiae. Cell Stress Chaperones 2021; 26:91-101. [PMID: 32865767 PMCID: PMC7736374 DOI: 10.1007/s12192-020-01158-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/14/2023] Open
Abstract
This study aimed to verify the anti-inflammatory effect of soybean isoflavones (SI) on the inflammatory response induced by Streptococcus agalactiae (S. agalactiae) of bovine mammary epithelial cells (bMECs) and to elucidate its possible mechanism. BMECs were pretreated with SI of different concentrations (20, 40, 60, 80, 100 μg/mL) for 0.5, 3, 6, 9, 12, 15, 18, 24 h. And then, S. agalactiae was used to infect bMECs for 6 h (MOI = 50:1) to establish the inflammation model. Cell viability, growth curves of S. agalactiae, cytotoxicity, and S. agalactiae invasion rate were determined. A proteomics technique was used to further detect differential proteins and enrichment pathways. SI (40 μg/mL) improved the viability of bMECs at 12 h (p < 0.05) and 60 and 80 μg/mL of SI greater (p < 0.01). Moreover, 60 μg/mL of SI protects cells from bacterial damage (p < 0.05). SI could inhibit S. agalactiae growth and internalization into bMECs in a time- and dose-dependent manner. In addition, proteomics results showed that 133 proteins were up-regulated and 89 proteins were down-regulated significantly. The differentially significantly expressed proteins (DSEPs) were mainly related to cell proliferation, differentiation, apoptosis, and migration. GO annotation showed that 222 DSEPs were divided into 23 biological processes (BP) terms, 14 cell components (CC) terms, and 12 molecular functions (MF) terms. DSEPs were significantly enriched in 10 pathways, of which the immune pathway was the main enrichment pathway.
Collapse
Affiliation(s)
- Hui Niu
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Hua Zhang
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Fuxin Wu
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jinjin Tong
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Linshu Jiang
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
34
|
Miyazaki K, Togo S, Okamoto R, Idiris A, Kumagai H, Miyagi Y. Collective cancer cell invasion in contact with fibroblasts through integrin-α5β1/fibronectin interaction in collagen matrix. Cancer Sci 2020; 111:4381-4392. [PMID: 32979884 PMCID: PMC7734169 DOI: 10.1111/cas.14664] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022] Open
Abstract
Interaction of cancer cells with cancer-associated fibroblasts (CAFs) plays critical roles in tumor progression. Recently we proposed a new tumor invasion mechanism in which invasive cancer cells individually migrate on elongate protrusions of CAFs (CAF fibers) in 3-D collagen matrix. In this mechanism, cancer cells interact with fibronectin fibrils assembled on CAFs mainly through integrin-α5β1. Here we tested whether this mechanism is applicable to the collective invasion of cancer cells, using two E-cadherin-expressing adenocarcinoma cell lines, DLD-1 (colon) and MCF-7 (breast). When hybrid spheroids of DLD-1 cells with CAFs were embedded into collagen gel, DLD-1 cells collectively but very slowly migrated through the collagen matrix in contact with CAFs. Epidermal growth factor and tumor necrosis factor-α promoted the collective invasion, possibly by reducing the E-cadherin junction, as did the transforming growth factor-β inhibitor SB431542 by stimulating the outgrowth of CAFs. Transforming growth factor-β itself inhibited the cancer cell invasion. Efficient collective invasion of DLD-1 cells required large CAF fibers or their assembly as stable adhesion substrates. Experiments with function-blocking Abs and siRNAs confirmed that DLD-1 cells adhered to fibronectin fibrils on CAFs mainly through integrin-α5β1. Anti-E-cadherin Ab promoted the single cell invasion of DLD-1 cells by dissociating the E-cadherin junction. Although the binding affinity of MCF-7 cells to CAFs was lower than DLD-1, they also collectively invaded the collagen matrix in a similar fashion to DLD-1 cells. Our results suggest that the direct interaction with CAFs, as well as environmental cytokines, contributes to the collective invasion of cancers.
Collapse
Affiliation(s)
- Kaoru Miyazaki
- Molecular Pathology DivisionKanagawa Cancer Center Research InstituteYokohamaJapan
| | - Shinsaku Togo
- Division of Respiratory MedicineJuntendo University of MedicineTokyoJapan
| | - Reiko Okamoto
- Bio Science DivisionMaterial Integration LaboratoriesYokohamaJapan
- Present address:
Developing and Planning DivisionTechnology Development General DivisionElectronics CompanyAGC Inc.YokohamaJapan
| | - Alimjan Idiris
- Bio Science DivisionMaterial Integration LaboratoriesYokohamaJapan
| | | | - Yohei Miyagi
- Molecular Pathology DivisionKanagawa Cancer Center Research InstituteYokohamaJapan
| |
Collapse
|
35
|
Integrin-mediated adhesion and mechanosensing in the mammary gland. Semin Cell Dev Biol 2020; 114:113-125. [PMID: 33187835 DOI: 10.1016/j.semcdb.2020.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
The mammary gland is dynamically remodelled during its postnatal development and the reproductive cycles. This inherent plasticity has been suggested to increase the susceptibility of the organ to carcinogenesis. Morphological changes in the mammary epithelium involve cell proliferation, differentiation, apoptosis, and migration which, in turn, are affected by cell adhesion to the extracellular matrix (ECM). Integrin adhesion receptors function in the sensing of the biochemical composition, patterning and mechanical properties of the ECM surrounding the cells, and strongly influence cell fate. This review aims to summarize the existing literature on how different aspects of integrin-mediated adhesion and mechanosensing, including ECM composition; stiffness and topography; integrin expression patterns; focal adhesion assembly; dynamic regulation of the actin cytoskeleton; and nuclear mechanotransduction affect mammary gland development, function and homeostasis. As the mechanical properties of a complex tissue environment are challenging to replicate in vitro, emphasis has been placed on studies conducted in vivo or using organoid models. Outright, these studies indicate that mechanosensing also contributes to the regulation of mammary gland morphogenesis in multiple ways.
Collapse
|
36
|
Gong X, Kulwatno J, Mills K. Rapid fabrication of collagen bundles mimicking tumor-associated collagen architectures. Acta Biomater 2020; 108:128-141. [PMID: 32194262 DOI: 10.1016/j.actbio.2020.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/31/2022]
Abstract
Stromal collagen is upregulated surrounding a solid tumor and presents as dense, thick, linearized, and aligned bundles. The collagen bundles are continually remodeled during tumor progression, and their orientation with respect to the tumor boundary has been correlated with invasive state. Currently, reconstituted-collagen gels are the standard in vitro tumor cell-extracellular matrix interaction model. The reticular, dense, and isotropic nanofiber (~900 nm-diameter, on average) gels do not, however, recapitulate the in vivo structural features of collagen bundling and alignment. Here, we present a rapid and simple method to fabricate bundles of collagen type I, whose average thickness may be varied between about 4 μm and 9 μm dependent upon diluent temperature and ionic strength. The durability and versatility of the collagen bundles was demonstrated with their incorporation into two in vitro models where the thickness and alignment of the collagen bundles resembled various in vivo arrangements. First, collagen bundles aligned by a microfluidic device elicited cancer cell contact guidance and enhanced their directional migration. Second, the presence of the collagen bundles in a bio-inert agarose hydrogel was shown to provide a route for cancer cell outgrowth. The unique structural features of the collagen bundles advance the physiological relevance of in vitro collagen-based tumor models for accurately capturing tumor cell-extracellular matrix interactions. STATEMENT OF SIGNIFICANCE: Collagen in the tumor microenvironment is upregulated and remodeled into dense, thick, and aligned bundles that are associated with invasive state. Current collagen-based in vitro models are based on reticular, isotropic nanofiber gels that do not fully recapitulate in vivo tumor stromal collagen. We present a simple and robust method of rapidly fabricating cell-scale collagen bundles that better mimic the remodeled collagen surrounding a tumor. Interacting with the bundles, cancer cells exhibited drastically different phenotypic behaviors, compared to nanofiber scaffolds. This work reveals the importance of microscale architecture of in vitro tumor models. The collagen bundles provide physiologically relevant collagen morphologies that may be easily incorporated into existing models of tumor cell-extracellular matrix interactions.
Collapse
|
37
|
The Extracellular Matrix Modulates the Metastatic Journey. Dev Cell 2020; 49:332-346. [PMID: 31063753 DOI: 10.1016/j.devcel.2019.03.026] [Citation(s) in RCA: 373] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022]
Abstract
The extracellular matrix is perturbed in tumors. The tumor matrix promotes the growth, survival, and invasion of the cancer and modifies fibroblast and immune cell behavior to drive metastasis and impair treatment. Here, we discuss how the tumor matrix regulates metastasis by fostering tumor cell invasion into the stroma and migration toward the vasculature. We describe the role of the tumor matrix in cancer cell intravasation and vascular dissemination. We examine the impact of the matrix on disseminated tumor cell extravasation and on tumor dormancy and metastatic outgrowth. Finally, we discuss the clinical outcome of therapeutics that normalize tumor-matrix interactions.
Collapse
|
38
|
Hiroshima Y, Kasajima R, Kimura Y, Komura D, Ishikawa S, Ichikawa Y, Bouvet M, Yamamoto N, Oshima T, Morinaga S, Singh SR, Hoffman RM, Endo I, Miyagi Y. Novel targets identified by integrated cancer-stromal interactome analysis of pancreatic adenocarcinoma. Cancer Lett 2020; 469:217-227. [PMID: 31669204 DOI: 10.1016/j.canlet.2019.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/03/2019] [Accepted: 10/18/2019] [Indexed: 12/27/2022]
|
39
|
3D multicellular models to study the regulation and roles of acid-base transporters in breast cancer. Biochem Soc Trans 2019; 47:1689-1700. [PMID: 31803922 DOI: 10.1042/bst20190131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022]
Abstract
As a result of elevated metabolic rates and net acid extrusion in the rapidly proliferating cancer cells, solid tumours are characterized by a highly acidic microenvironment, while cancer cell intracellular pH is normal or even alkaline. Two-dimensional (2D) cell monocultures, which have been used extensively in breast cancer research for decades, cannot precisely recapitulate the rich environment and complex processes occurring in tumours in vivo. The use of such models can consequently be misleading or non-predictive for clinical applications. Models mimicking the tumour microenvironment are particularly pivotal for studying tumour pH homeostasis, which is profoundly affected by the diffusion-limited conditions in the tumour. To advance the understanding of the mechanisms and consequences of dysregulated acid-base homeostasis in breast cancer, clinically relevant models that incorporate the unique microenvironment of these tumours are required. The development of three-dimensional (3D) cell cultures has provided new tools for basic research and pre-clinical approaches, allowing the culture of breast cancer cells under conditions that closely resemble tumour growth in a living organism. Here we provide an overview of the main 3D techniques relevant for breast cancer cell culture. We discuss the advantages and limitations of the classical 3D models as well as recent advances in 3D culture techniques, focusing on how these culture methods have been used to study acid-base transport in breast cancer. Finally, we outline future directions of 3D culture technology and their relevance for studies of acid-base transport.
Collapse
|
40
|
Xu S, Xu H, Wang W, Li S, Li H, Li T, Zhang W, Yu X, Liu L. The role of collagen in cancer: from bench to bedside. J Transl Med 2019; 17:309. [PMID: 31521169 PMCID: PMC6744664 DOI: 10.1186/s12967-019-2058-1] [Citation(s) in RCA: 484] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Collagen is the major component of the tumor microenvironment and participates in cancer fibrosis. Collagen biosynthesis can be regulated by cancer cells through mutated genes, transcription factors, signaling pathways and receptors; furthermore, collagen can influence tumor cell behavior through integrins, discoidin domain receptors, tyrosine kinase receptors, and some signaling pathways. Exosomes and microRNAs are closely associated with collagen in cancer. Hypoxia, which is common in collagen-rich conditions, intensifies cancer progression, and other substances in the extracellular matrix, such as fibronectin, hyaluronic acid, laminin, and matrix metalloproteinases, interact with collagen to influence cancer cell activity. Macrophages, lymphocytes, and fibroblasts play a role with collagen in cancer immunity and progression. Microscopic changes in collagen content within cancer cells and matrix cells and in other molecules ultimately contribute to the mutual feedback loop that influences prognosis, recurrence, and resistance in cancer. Nanoparticles, nanoplatforms, and nanoenzymes exhibit the expected gratifying properties. The pathophysiological functions of collagen in diverse cancers illustrate the dual roles of collagen and provide promising therapeutic options that can be readily translated from bench to bedside. The emerging understanding of the structural properties and functions of collagen in cancer will guide the development of new strategies for anticancer therapy.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Huaxiang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shuo Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tianjiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
41
|
Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Semin Cancer Biol 2019; 62:166-181. [PMID: 31415910 DOI: 10.1016/j.semcancer.2019.08.004] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) is a complex meshwork of extracellular matrix (ECM) macromolecules filled with a collection of cells including cancer-associated fibroblasts (CAFs), blood vessel associated smooth muscle cells, pericytes, endothelial cells, mesenchymal stem cells and a variety of immune cells. In tumors the homeostasis governing ECM synthesis and turnover is disturbed resulting in abnormal blood vessel formation and excessive fibrillar collagen accumulations of varying stiffness and organization. The disturbed ECM homeostasis opens up for new types of paracrine, cell-cell and cell-ECM interactions with large consequences for tumor growth, angiogenesis, metastasis, immune suppression and resistance to treatments. As a main producer of ECM and paracrine signals the CAF is a central cell type in these events. Whereas the paracrine signaling has been extensively studied in the context of tumor-stroma interactions, the nature of the numerous integrin-mediated cell-ECM interactions occurring in the TME remains understudied. In this review we will discuss and dissect the role of known and potential CAF interactions in the TME, during both tumorigenesis and chemoresistance-induced events, with a special focus on the "interaction landscape" in desmoplastic breast, lung and pancreatic cancers. As an example of the multifaceted mode of action of the stromal collagen receptor integrin α11β1, we will summarize our current understanding on the role of this CAF-expressed integrin in these three tumor types.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway; Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Irina Primac
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiège), Liege, Belgium
| | - Pugazendhi Erusappan
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway; Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jahedul Alam
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Agnes Noel
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiège), Liege, Belgium
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway.
| |
Collapse
|
42
|
Leiphart RJ, Chen D, Peredo AP, Loneker AE, Janmey PA. Mechanosensing at Cellular Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7509-7519. [PMID: 30346180 DOI: 10.1021/acs.langmuir.8b02841] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
At the plasma membrane interface, cells use various adhesions to sense their extracellular environment. These adhesions facilitate the transmission of mechanical signals that dictate cell behavior. This review discusses the mechanisms by which these mechanical signals are transduced through cell-matrix and cell-cell adhesions and how this mechanotransduction influences cell processes. Cell-matrix adhesions require the activation of and communication between various transmembrane protein complexes such as integrins. These links at the plasma membrane affect how a cell senses and responds to its matrix environment. Cells also communicate with each other through cell-cell adhesions, which further regulate cell behavior on a single- and multicellular scale. Coordination and competition between cell-cell and cell-matrix adhesions in multicellular aggregates can, to a significant extent, be modeled by differential adhesion analyses between the different interfaces even without knowing the details of cellular signaling. In addition, cell-matrix and cell-cell adhesions are connected by an intracellular cytoskeletal network that allows for direct communication between these distinct adhesions and activation of specific signaling pathways. Other membrane-embedded protein complexes, such as growth factor receptors and ion channels, play additional roles in mechanotransduction. Overall, these mechanoactive elements show the dynamic interplay between the cell, its matrix, and neighboring cells and how these relationships affect cellular function.
Collapse
Affiliation(s)
- Ryan J Leiphart
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- McKay Orthopedic Research Laboratory , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| | - Dongning Chen
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- Center for Engineering Mechanobiology , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| | - Ana P Peredo
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- McKay Orthopedic Research Laboratory , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| | - Abigail E Loneker
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- Center for Engineering Mechanobiology , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| | - Paul A Janmey
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- Institute for Medicine and Engineering, Department of Physiology , University of Pennsylvania , 3340 Smith Walk , Philadelphia , Pennsylvania 19104 , United States
- Center for Engineering Mechanobiology , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| |
Collapse
|
43
|
Chen Y, Chen L, Hong D, Chen Z, Zhang J, Fu L, Pan D, Zhang Y, Xu Y, Gan S, Xiao C, Tao L, Shen X. Baicalein inhibits fibronectin-induced epithelial-mesenchymal transition by decreasing activation and upregulation of calpain-2. Cell Death Dis 2019; 10:341. [PMID: 31000696 PMCID: PMC6472504 DOI: 10.1038/s41419-019-1572-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/26/2022]
Abstract
The extracellular matrix protein fibronectin (FN) facilitates tumorigenesis and the development of breast cancer. Inhibition of the FN-induced cellular response is a potential strategy for breast cancer treatment. In the present study, we investigated the effects of the flavonoid baicalein on FN-induced epithelial-mesenchymal transition (EMT) in MCF-10A breast epithelial cells and in a transgenic mouse MMTV-polyoma middle T antigen breast cancer model (MMTV-PyMT). Baicalein inhibited FN-induced migration, invasion, and F-actin remodeling. Baicalein also suppressed FN-induced downregulation of the epithelial markers E-cadherin and ZO-1 and upregulation of the mesenchymal markers N-cadherin, vimentin, and Snail. Further investigation revealed that calpain-2 was involved in baicalein suppression of FN-induced EMT. Baicalein significantly decreased FN-enhanced calpain-2 expression and activation by suppressing its plasma membrane localization, substrate cleavage, and degradation of its endogenous inhibitor calpastatin. Overexpression of calpain-2 in MCF-10A cells by gene transfection partially blocked the inhibitory effect of baicalein on FN-induced EMT changes. In addition, baicalein inhibited calpain-2 by decreasing FN-increased intracellular calcium ion levels and extracellular signal-regulated protein kinases activation. Baicalein significantly decreased tumor onset, growth, and pulmonary metastasis in a spontaneous breast cancer MMTV-PyMT mouse model. Baicalein also reduced the expression of FN, calpain-2, and vimentin, but increased E-cadherin expression in MMTV-PyMT mouse tumors. Overall, these results revealed that baicalein markedly inhibited FN-induced EMT by inhibiting calpain-2, thus providing novel insights into the pharmacological action and mechanism of baicalein. Baicalein may therefore possess therapeutic potential for the treatment of breast cancer though interfering with extracellular matrix-cancer cell interactions.
Collapse
Grants
- This work was supported by The National Natural Science Foundation of China [grant numbers 81560598, 81860648], Postdoctoral Science Foundation of China [grant number 2015M582749XB], The High Level Innovation Talents of Guizhou Province [grant number 71000305], The Science Foundation of Guiyang Science and Technology Bureau [grant number (20141001)06], The Science and Technology Innovation Advanced Individual of Guizhou Educational Department [grant number QJHKY[2018]048], The Foundation for Training Programs of Innovation and Entrepreneurship for Undergraduates of Guizhou province [grant number 2018520337], The Innovation Team of the Education Department of Guizhou Province [grant number 2014‑31], The Innovation Team of Guizhou Province [grant number (2015)4025], The High Level Innovation Talents [grant number 2015‑4029], The International Scientific and Technological Cooperation Base of Guizhou Province [grant number 2017‑5802], the Natural Science Foundation of Guizhou Province Science and Technology Agency and Guizhou Medical University [grant number QKHLH[2015]7365], and the Natural Science Foundation of Guizhou Province [grant number QKHJ(2012)2028].
- This work was supported by The National Natural Science Foundation of China [grant numbers 81560598, 81860648].
Collapse
Affiliation(s)
- Yan Chen
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Lin Chen
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Duanyang Hong
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Zongyue Chen
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Jingyu Zhang
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Lingyun Fu
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Di Pan
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Yanyan Zhang
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Yini Xu
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Shiquan Gan
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Chaoda Xiao
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Ling Tao
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Xiangchun Shen
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China.
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China.
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China.
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China.
| |
Collapse
|
44
|
Almouemen N, Kelly HM, O'Leary C. Tissue Engineering: Understanding the Role of Biomaterials and Biophysical Forces on Cell Functionality Through Computational and Structural Biotechnology Analytical Methods. Comput Struct Biotechnol J 2019; 17:591-598. [PMID: 31080565 PMCID: PMC6502738 DOI: 10.1016/j.csbj.2019.04.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/26/2019] [Accepted: 04/13/2019] [Indexed: 12/13/2022] Open
Abstract
Within the past 25 years, tissue engineering (TE) has grown enormously as a science and as an industry. Although classically concerned with the recapitulation of tissue and organ formation in our body for regenerative medicine, the evolution of TE research is intertwined with progress in other fields through the examination of cell function and behaviour in isolated biomimetic microenvironments. As such, TE applications now extend beyond the field of tissue regeneration research, operating as a platform for modifiable, physiologically-representative in vitro models with the potential to improve the translation of novel therapeutics into the clinic through a more informed understanding of the relevant molecular biology, structural biology, anatomy, and physiology. By virtue of their biomimicry, TE constructs incorporate features of extracellular macrostructure, molecular adhesive moieties, and biomechanical properties, converging with computational and structural biotechnology advances. Accordingly, this mini-review serves to contextualise TE for the computational and structural biotechnology reader and provides an outlook on how the disciplines overlap with respect to relevant advanced analytical applications.
Collapse
Affiliation(s)
- Nour Almouemen
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Helena M. Kelly
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Cian O'Leary
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
45
|
DeRita RM, Sayeed A, Garcia V, Krishn SR, Shields CD, Sarker S, Friedman A, McCue P, Molugu SK, Rodeck U, Dicker AP, Languino LR. Tumor-Derived Extracellular Vesicles Require β1 Integrins to Promote Anchorage-Independent Growth. iScience 2019; 14:199-209. [PMID: 30981115 PMCID: PMC6461598 DOI: 10.1016/j.isci.2019.03.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/14/2019] [Accepted: 03/21/2019] [Indexed: 01/08/2023] Open
Abstract
The β1 integrins, known to promote cancer progression, are abundant in extracellular vesicles (EVs). We investigated whether prostate cancer (PrCa) EVs affect anchorage-independent growth and whether β1 integrins are required for this effect. Specifically using a cell-line-based genetic rescue and an in vivo PrCa model, we show that gradient-purified small EVs (sEVs) from either cancer cells or blood from tumor-bearing TRAMP (transgenic adenocarcinoma of the mouse prostate) mice promote anchorage-independent growth of PrCa cells. In contrast, sEVs from cultured PrCa cells harboring a short hairpin RNA to β1, from wild-type mice or from TRAMP mice carrying a β1 conditional ablation in the prostatic epithelium (β1pc−/−), do not. We find that sEVs, from cancer cells or TRAMP blood, are functional and co-express β1 and sEV markers; in contrast, sEVs from β1pc−/−/TRAMP or wild-type mice lack β1 and sEV markers. Our results demonstrate that β1 integrins in tumor-cell-derived sEVs are required for stimulation of anchorage-independent growth. sEVs from prostate cancer stimulate anchorage-independent growth of recipient cells sEVs from tumor bearing, but not healthy, mice contain β1 integrins sEV stimulation of anchorage-independent growth is dependent on β1 integrins β1 down-regulation in the prostate tumor epithelium impairs EV functions
Collapse
Affiliation(s)
- Rachel M DeRita
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA; Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia PA 19107, USA
| | - Aejaz Sayeed
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA; Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia PA 19107, USA
| | - Vaughn Garcia
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia PA 19107, USA
| | - Shiv Ram Krishn
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA; Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia PA 19107, USA
| | - Christopher D Shields
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia PA 19107, USA
| | - Srawasti Sarker
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA; Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia PA 19107, USA
| | - Andrea Friedman
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA; Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia PA 19107, USA
| | - Peter McCue
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sudheer Kumar Molugu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ulrich Rodeck
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam P Dicker
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA; Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia PA 19107, USA; Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Miyazaki K, Oyanagi J, Hoshino D, Togo S, Kumagai H, Miyagi Y. Cancer cell migration on elongate protrusions of fibroblasts in collagen matrix. Sci Rep 2019; 9:292. [PMID: 30670761 PMCID: PMC6342997 DOI: 10.1038/s41598-018-36646-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/23/2018] [Indexed: 01/03/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) play critical roles in the tumor progression. However, it remains unclear how cancer cells migrate in the three-dimensional (3D) matrix of cancer tissues and how CAFs support the cancer invasion. Here we propose a novel mechanism of fibroblast-dependent cancer cell invasion in the 3D collagen matrix. Human cancer cell lines from the pancreas (Panc-1), lung (A549) and some other organs actively adhered to normal fibroblasts and primary lung CAFs in cultures. To show its significance in tumor invasion, we designed a new invasion assay in which homogeneous microspheroids consisting of cancer cells and fibroblasts were embedded into collagen gel. Time-lapse experiments showed that cancer cells adhered to and quickly migrated on the long protrusions of fibroblasts in the 3D collagen matrix. Fibroblast-free cancer cells poorly invaded the matrix. Experiments with function-blocking antibodies, siRNAs, and immunocytochemistry demonstrated that cancer cells adhered to fibroblasts through integrin α5β1-mediated binding to fibronectin on the surface of fibroblasts. Immunochemical analyses of the co-cultures and lung cancers suggested that cancer cells could acquire the migratory force by the fibronectin/integrin signaling. Our results also revealed that the fibroblast-bound fibronectin was a preferential substrate for cancer cells to migrate in the collagen matrix.
Collapse
Affiliation(s)
- Kaoru Miyazaki
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan. .,Division of Cell Biology, Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, 244-0813, Japan.
| | - Jun Oyanagi
- Division of Cell Biology, Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, 244-0813, Japan.,Internal Medicine III, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Daisuke Hoshino
- Cancer Cell Biology Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan
| | - Shinsaku Togo
- Division of Respiratory Medicine, Juntendo University of Medicine, 3-1-3 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Hiromichi Kumagai
- Kumagai Fellow laboratory, Innovative Technology Research Center, Technology General Division, AGC Inc, 1150 Hazawa-cho, Kanagawa-ku, Yokohama, 221-8515, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan
| |
Collapse
|
47
|
Sinha VC, Piwnica-Worms H. Intratumoral Heterogeneity in Ductal Carcinoma In Situ: Chaos and Consequence. J Mammary Gland Biol Neoplasia 2018; 23:191-205. [PMID: 30194658 PMCID: PMC6934090 DOI: 10.1007/s10911-018-9410-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
Ductal carcinoma in situ (DCIS) is a non-invasive proliferative growth in the breast that serves as a non-obligate precursor to invasive ductal carcinoma. The widespread adoption of screening mammography has led to a steep increase in the detection of DCIS, which now comprises approximately 20% of new breast cancer diagnoses in the United States. Interestingly, the intratumoral heterogeneity (ITH) that has been observed in invasive breast cancers may have been established early in tumorigenesis, given the vast and varied ITH that has been detected in DCIS. This review will discuss the intratumoral heterogeneity of DCIS, focusing on the phenotypic and genomic heterogeneity of tumor cells, as well as the compositional heterogeneity of the tumor microenvironment. In addition, we will assess the spatial heterogeneity that is now being appreciated in these lesions, and summarize new approaches to evaluate heterogeneity of tumor and stromal cells in the context of their spatial organization. Importantly, we will discuss how a growing understanding of ITH has led to a more holistic appreciation of the complex biology of DCIS, specifically its evolution and natural history. Finally, we will consider ways in which our knowledge of DCIS ITH might be translated in the future to guide clinical care for DCIS patients.
Collapse
Affiliation(s)
- Vidya C Sinha
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
48
|
Zhang H, Jiang H, Fan Y, Chen Z, Li M, Mao Y, Karrow NA, Loor JJ, Moore S, Yang Z. Transcriptomics and iTRAQ-Proteomics Analyses of Bovine Mammary Tissue with Streptococcus agalactiae-Induced Mastitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11188-11196. [PMID: 30096236 DOI: 10.1021/acs.jafc.8b02386] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mastitis is a highly prevalent disease in dairy cows that causes large economic losses. Streptococcus agalactiae is a common contagious pathogen and a major cause of bovine mastitis. The immune response to intramammary infection with S. agalactiae in dairy cows is a very complex biological process. To understand the host immune response to S. agalactiae-induced mastitis, mammary gland of lactating Chinese Holstein cows was challenged with S. agalactiae via nipple tube perfusion. Visual inspection, analysis of milk somatic cell counts, histopathology, and transmission electron microscopy of mammary tissue were performed to confirm S. agalactiae-induced mastitis. Microarray and isobaric tags for relative and absolute quantitation (iTRAQ) were used to compare the transcriptomes and proteomes of healthy and mastitic mammary tissue. Compared with healthy tissue, a total of 129 differentially expressed genes (DEGs, fold change >2, p < 0.05) and 144 differentially expressed proteins (DEPs, fold change >1.2, p < 0.05) were identified in mammary tissue from S. agalactiae-challenged cows. Among the concordant 18 DEGs/DEPs, immunoglobulin M precursor, cathelicidin-7 precursor, integrin alpha-5, and complement C4-A-like isoform X1 were associated with mastitis. Intramammary infection with S. agalactiae triggered a complex host innate immune response that involved complement and coagulation cascades, ECM-receptor interaction, focal adhesion, and phagosome and bacterial invasion of epithelial cells pathways. These results provide candidate genes or proteins for further studies in the context of prevention and targeted treatment of bovine mastitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Niel A Karrow
- Department of Animal Biosciences , University of Guelph , Guelph N1G 2W1 , Canada
| | - Juan J Loor
- Department of Animal Sciences & Division of Nutritional Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Stephen Moore
- Centre for Animal Science , University of Queensland , Saint Luci , Queensland 4072a , Australia
| | | |
Collapse
|
49
|
You E, Huh YH, Lee J, Ko P, Jeong J, Keum S, Kim J, Kwon A, Song WK, Rhee S. Downregulation of SPIN90 promotes fibroblast activation via periostin-FAK-ROCK signaling module. J Cell Physiol 2018; 234:9216-9224. [PMID: 30341913 DOI: 10.1002/jcp.27600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Alterations in mechanical properties in the extracellular matrix are modulated by myofibroblasts and are required for progressive fibrotic diseases. Recently, we reported that fibroblasts depleted of SPIN90 showed enhanced differentiation into myofibroblasts via increased acetylation of microtubules in the soft matrix; the mechanisms of the underlying signaling network, however, remain unclear. In this study, we determine the effect of depletion of SPIN90 on FAK/ROCK signaling modules. Transcriptome analysis of Spin90 KO mouse embryonic fibroblasts (MEF) and fibroblasts activated by TGF-β revealed that Postn is the most significantly upregulated gene. Knockdown of Postn by small interfering RNA suppressed cell adhesion and myofibroblastic differentiation and downregulated FAK activity in Spin90 KO MEF. Our results indicate that SPIN90 depletion activates FAK/ROCK signaling, induced by Postn expression, which is critical for myofibroblastic differentiation on soft matrices mimicking the mechanical environment of a normal tissue.
Collapse
Affiliation(s)
- Eunae You
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Yun-Hyun Huh
- Bio Imaging and Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jieun Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Panseon Ko
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seula Keum
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jaegu Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ahreum Kwon
- Bio Imaging and Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Woo Keun Song
- Bio Imaging and Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
50
|
Fleming JM, Yeyeodu ST, McLaughlin A, Schuman D, Taylor DK. In Situ Drug Delivery to Breast Cancer-Associated Extracellular Matrix. ACS Chem Biol 2018; 13:2825-2840. [PMID: 30183254 DOI: 10.1021/acschembio.8b00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The extracellular matrix (ECM) contributes to tumor progression through changes induced by tumor and stromal cell signals that promote increased ECM density and stiffness. The increase in ECM stiffness is known to promote tumor cell invasion into surrounding tissues and metastasis. In addition, this scar-like ECM creates a protective barrier around the tumor that reduces the effectiveness of innate and synthetic antitumor agents. Herein, clinically approved breast cancer therapies as well as novel experimental approaches that target the ECM are discussed, including in situ hydrogel drug delivery systems, an emerging technology the delivers toxic chemotherapeutics, gene-silencing microRNAs, and tumor suppressing immune cells directly inside the tumor. Intratumor delivery of therapeutic agents has the potential to drastically reduce systemic side effects experienced by the patient and increase the efficacy of these agents. This review also describes the opposing effects of ECM degradation on tumor progression, where some studies report improved drug delivery and delayed cancer progression and others report enhanced metastasis and decreased patient survival. Given the recent increase in ECM-targeting drugs entering preclinical and clinical trials, understanding and addressing the factors that impact the effect of the ECM on tumor progression is imperative for the sake of patient safety and survival outcome.
Collapse
Affiliation(s)
- Jodie M. Fleming
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, United States
| | - Susan T. Yeyeodu
- Charles River Discovery Services, Morrisville, North Carolina, United States
| | - Ashley McLaughlin
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, United States
| | - Darren Schuman
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, North Carolina, United States
| | - Darlene K. Taylor
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, North Carolina, United States
| |
Collapse
|