1
|
Duff D, Gargan S, Long A. Non-muscle myosin heavy chain IIA regulates cell morphology, stress fibre structure, and cell migration in FLO-1 oesophageal adenocarcinoma cells. Hum Cell 2025; 38:80. [PMID: 40164920 PMCID: PMC11958448 DOI: 10.1007/s13577-025-01196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025]
Abstract
The incidence of oesophageal adenocarcinoma (OAC) is increasing at a rapid rate in Western countries. Early oesophageal cancer is often asymptomatic and metastatic disease is common at presentation leading to poor prognosis and survival rates. Cell migration is tightly controlled in the healthy cell but can become dysregulated in diseases such as OAC where increased cell motility and migration can contribute to metastasis. We investigated the role of an actin-based molecular motor, non-muscle myosin heavy chain IIA (NMHCIIA) in the migratory capacity of oesophageal adenocarcinoma cells. Immunofluorescence microscopy and ratiometric imaging demonstrated that NMHCIIA co-localises with F-actin at the leading edge and retracting rear of migrating FLO-1 OAC cells. siRNA-mediated depletion of NMHCIIA from FLO-1 cells altered cell morphology, gave rise to an increased number of stress fibre like structures and reduced FLO-1 cell migration. These findings suggest that NMHCIIA influences FLO-1 cell migration by regulating F-actin dynamics and the actin cytoskeleton, providing insight into the mechanisms of migration employed by OAC cells and identifying NMHCIIA as a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Deirdre Duff
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Siobhan Gargan
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Aideen Long
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Ulbrich M, Seward CH, Ivanov AI, Ward BM, Butler JS, Dziejman M. VopX, a novel Vibrio cholerae T3SS effector, modulates host actin dynamics. mBio 2025; 16:e0301824. [PMID: 39878476 PMCID: PMC11898728 DOI: 10.1128/mbio.03018-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Pathogenic Vibrio cholerae strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative V. cholerae strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol. Effectors VopF and VopM directly interact with the host actin and contribute to colonization. Our previous studies using the Saccharomyces cerevisiae model system identified VopX as a third effector that alters cytoskeletal dynamics. Herein, we used complementary approaches to translate yeast findings to a mammalian system and determined the target and mechanism of VopX activity. VopX overexpression in HeLa cells caused dramatic cell rounding. Co-culture of strain AM-19226 with polarized Caco-2/BBE monolayers increased formation of stress fibers and focal adhesions, as well as Caco-2/BBE adherence to extracellular matrix in a VopX-dependent manner. Finally, we demonstrate in vitro that VopX can act as a guanine nucleotide exchange factor for RhoA, which functions upstream of a mitogen-activated protein kinase (MAPK) signaling pathway regulating cytoskeletal dynamics. Our results suggest that VopX activity initiates a signaling cascade resulting in enhanced cell-extracellular matrix adhesion, potentially preventing detachment of host cells, and facilitating sustained bacterial colonization during infection. VopX function is therefore part of a unique pathogenic strategy employed by T3SS-positive V. cholerae, which involves multiple cytoskeletal remodeling mechanisms to support a productive infection. IMPORTANCE Despite different infection strategies, enteric pathogens commonly employ a T3SS to colonize the human host and cause disease. Effector proteins are unique to each T3SS-encoding bacterial species and generally lack conserved amino acid sequences. However, T3SS effectors from diverse pathogens target and manipulate common host cell structures and signaling proteins, such as the actin cytoskeleton and MAPK pathway components. T3SS-encoding Vibrio cholerae strains and effectors have been relatively recently identified, and the mechanisms used to mediate colonization and secretory diarrhea are poorly understood. Two V. cholerae effectors that modify the host actin cytoskeleton were shown to be important for colonization. We therefore sought to determine the target(s) and mechanism of a third actin-reorganizing effector, VopX, based on results obtained from a yeast model system. We recapitulated actin-based phenotypes in multiple mammalian model systems, leading us to identify the molecular function of the V. cholerae VopX effector protein.
Collapse
Affiliation(s)
- Megan Ulbrich
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Christopher H. Seward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Brian M. Ward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - J. Scott Butler
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
3
|
Islam ST, Cheheltani S, Cheng C, Fowler VM. Disease-related non-muscle myosin IIA D1424N rod domain mutation, but not R702C motor domain mutation, disrupts mouse ocular lens fiber cell alignment and hexagonal packing. Cytoskeleton (Hoboken) 2024; 81:789-805. [PMID: 38516850 PMCID: PMC11416570 DOI: 10.1002/cm.21853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
The mouse ocular lens is an excellent vertebrate model system for studying hexagonal cell packing and shape changes during tissue morphogenesis and differentiation. The lens is composed of two types of cells, epithelial and fiber cells. During the initiation of fiber cell differentiation, lens epithelial cells transform from randomly packed cells to hexagonally shaped and packed cells to form meridional row cells. The meridional row cells further differentiate and elongate into newly formed fiber cells that maintain hexagonal cell shape and ordered packing. In other tissues, actomyosin contractility regulates cell hexagonal packing geometry during epithelial tissue morphogenesis. Here, we use the mouse lens as a model to study the effect of two human disease-related non-muscle myosin IIA (NMIIA) mutations on lens cellular organization during fiber cell morphogenesis and differentiation. We studied genetic knock-in heterozygous mice with NMIIA-R702C motor domain or NMIIA-D1424N rod domain mutations. We observed that while one allele of NMIIA-R702C has no impact on lens meridional row epithelial cell shape and packing, one allele of the NMIIA-D1424N mutation can cause localized defects in cell hexagonal packing. Similarly, one allele of NMIIA-R702C motor domain mutation does not affect lens fiber cell organization while the NMIIA-D1424N mutant proteins disrupt fiber cell organization and packing. Our work demonstrates that disease-related NMIIA rod domain mutations (D1424N or E1841K) disrupt mouse lens fiber cell morphogenesis and differentiation.
Collapse
Affiliation(s)
- Sadia T. Islam
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Sepideh Cheheltani
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Velia M. Fowler
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
4
|
Inoue K, Bostan H, Browne MR, Bevis OF, Bortner CD, Moore SA, Stence AA, Martin NP, Chen SH, Burkholder AB, Li JL, Shaw ND. DUX4 double whammy: The transcription factor that causes a rare muscular dystrophy also kills the precursors of the human nose. SCIENCE ADVANCES 2023; 9:eabq7744. [PMID: 36800423 PMCID: PMC9937577 DOI: 10.1126/sciadv.abq7744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/12/2023] [Indexed: 05/19/2023]
Abstract
SMCHD1 mutations cause congenital arhinia (absent nose) and a muscular dystrophy called FSHD2. In FSHD2, loss of SMCHD1 repressive activity causes expression of double homeobox 4 (DUX4) in muscle tissue, where it is toxic. Studies of arhinia patients suggest a primary defect in nasal placode cells (human nose progenitors). Here, we show that upon SMCHD1 ablation, DUX4 becomes derepressed in H9 human embryonic stem cells (hESCs) as they differentiate toward a placode cell fate, triggering cell death. Arhinia and FSHD2 patient-derived induced pluripotent stem cells (iPSCs) express DUX4 when converted to placode cells and demonstrate variable degrees of cell death, suggesting an environmental disease modifier. HSV-1 may be one such modifier as herpesvirus infection amplifies DUX4 expression in SMCHD1 KO hESC and patient iPSC. These studies suggest that arhinia, like FSHD2, is due to compromised SMCHD1 repressive activity in a cell-specific context and provide evidence for an environmental modifier.
Collapse
Affiliation(s)
- Kaoru Inoue
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Hamed Bostan
- Integrative Bioinformatics, NIEHS, Research Triangle Park, NC, USA
| | - MaKenna R. Browne
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Owen F. Bevis
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Carl D. Bortner
- Signal Transduction Laboratory, NIEHS, Research Triangle Park, NC, USA
| | - Steven A. Moore
- Department of Pathology, University of Iowa Carver College of Medicine and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Iowa City, IA, USA
| | - Aaron A. Stence
- University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | | | - Shih-Heng Chen
- Viral Vector Core, NIEHS, Research Triangle Park, NC, USA
| | | | - Jian-Liang Li
- Integrative Bioinformatics, NIEHS, Research Triangle Park, NC, USA
| | - Natalie D. Shaw
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| |
Collapse
|
5
|
Baar S, Kuragano M, Tokuraku K, Watanabe S. Towards a comprehensive approach for characterizing cell activity in bright-field microscopic images. Sci Rep 2022; 12:16884. [PMID: 36207347 PMCID: PMC9546915 DOI: 10.1038/s41598-022-20598-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
When studying physical cellular response observed by light microscopy, variations in cell behavior are difficult to quantitatively measure and are often only discussed on a subjective level. Hence, cell properties are described qualitatively based on a researcher’s impressions. In this study, we aim to define a comprehensive approach to estimate the physical cell activity based on migration and morphology based on statistical analysis of a cell population within a predefined field of view and timespan. We present quantitative measurements of the influence of drugs such as cytochalasin D and taxol on human neuroblastoma, SH-SY5Y cell populations. Both chemicals are well known to interact with the cytoskeleton and affect the cell morphology and motility. Being able to compute the physical properties of each cell for a given observation time, requires precise localization of each cell even when in an adhesive state, where cells are not visually differentiable. Also, the risk of confusion through contaminants is desired to be minimized. In relation to the cell detection process, we have developed a customized encoder-decoder based deep learning cell detection and tracking procedure. Further, we discuss the accuracy of our approach to quantify cell activity and its viability in regard to the cell detection accuracy.
Collapse
Affiliation(s)
- Stefan Baar
- Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido, 050-8585, Japan
| | - Masahiro Kuragano
- Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido, 050-8585, Japan
| | - Kiyotaka Tokuraku
- Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido, 050-8585, Japan
| | - Shinya Watanabe
- Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido, 050-8585, Japan.
| |
Collapse
|
6
|
Bonneaud TL, Lefebvre CC, Nocquet L, Basseville A, Roul J, Weber H, Campone M, Juin PP, Souazé F. Targeting of MCL-1 in breast cancer-associated fibroblasts reverses their myofibroblastic phenotype and pro-invasive properties. Cell Death Dis 2022; 13:787. [PMID: 36104324 PMCID: PMC9474880 DOI: 10.1038/s41419-022-05214-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 01/21/2023]
Abstract
Cancer-associated fibroblasts (CAF) are a major cellular component of epithelial tumors. In breast cancers in particular these stromal cells have numerous tumorigenic effects in part due to their acquisition of a myofibroblastic phenotype. Breast CAFs (bCAFs) typically express MCL-1. We show here that pharmacological inhibition or knock down of this regulator of mitochondrial integrity in primary bCAFs directly derived from human samples mitigates myofibroblastic features. This decreases expression of genes involved in actomyosin organization and contractility (associated with a cytoplasmic retention of the transcriptional regulator, yes-associated protein-YAP) and decreases bCAFs ability to promote cancer cells invasion in 3D coculture assays. Our findings underscore the usefulness of targeting MCL-1 in breast cancer ecosystems, not only to favor death of cancer cells but also to counteract the tumorigenic activation of fibroblasts with which they co-evolve. Mechanistically, pharmacological inhibition of MCL-1 with a specific BH3 mimetic promotes mitochondrial fragmentation in bCAFs. Inhibition of the mitochondrial fission activity of DRP-1, which interacts with MCL-1 upon BH3 mimetic treatment, allows the maintenance of the myofibroblastic phenotype of bCAFs.
Collapse
Affiliation(s)
- Thomas L. Bonneaud
- grid.4817.a0000 0001 2189 0784Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France ,SIRIC ILIAD, Nantes, Angers, France
| | - Chloé C. Lefebvre
- grid.4817.a0000 0001 2189 0784Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France ,SIRIC ILIAD, Nantes, Angers, France
| | - Lisa Nocquet
- grid.4817.a0000 0001 2189 0784Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France ,SIRIC ILIAD, Nantes, Angers, France
| | - Agnes Basseville
- grid.418191.40000 0000 9437 3027Omics Data Science Unit, ICO, Angers, France
| | - Julie Roul
- grid.4817.a0000 0001 2189 0784Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France ,SIRIC ILIAD, Nantes, Angers, France ,ICO René Gauducheau, Saint Herblain, France
| | - Hugo Weber
- grid.4817.a0000 0001 2189 0784Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France ,SIRIC ILIAD, Nantes, Angers, France
| | - Mario Campone
- grid.4817.a0000 0001 2189 0784Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France ,SIRIC ILIAD, Nantes, Angers, France ,ICO René Gauducheau, Saint Herblain, France
| | - Philippe P. Juin
- grid.4817.a0000 0001 2189 0784Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France ,SIRIC ILIAD, Nantes, Angers, France ,ICO René Gauducheau, Saint Herblain, France
| | - Frédérique Souazé
- grid.4817.a0000 0001 2189 0784Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France ,SIRIC ILIAD, Nantes, Angers, France
| |
Collapse
|
7
|
Morris T, Sue E, Geniesse C, Brieher WM, Tang VW. Synaptopodin stress fiber and contractomere at the epithelial junction. J Cell Biol 2022; 221:e202011162. [PMID: 35416930 PMCID: PMC9011326 DOI: 10.1083/jcb.202011162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 10/07/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022] Open
Abstract
The apical junction of epithelial cells can generate force to control cell geometry and perform contractile processes while maintaining barrier function and adhesion. Yet, the structural basis for force generation at the apical junction is not fully understood. Here, we describe two synaptopodin-dependent actomyosin structures that are spatially, temporally, and structurally distinct. The first structure is formed by the retrograde flow of synaptopodin initiated at the apical junction, creating a sarcomeric stress fiber that lies parallel to the apical junction. Contraction of the apical stress fiber is associated with either clustering of membrane components or shortening of junctional length. Upon junction maturation, apical stress fibers are disassembled. In mature epithelial monolayer, a motorized "contractomere" capable of "walking the junction" is formed at the junctional vertex. Actomyosin activities at the contractomere produce a compressive force evident by actin filament buckling and measurement with a new α-actinin-4 force sensor. The motility of contractomeres can adjust junctional length and change cell packing geometry during cell extrusion and intercellular movement. We propose a model of epithelial homeostasis that utilizes contractomere motility to support junction rearrangement while preserving the permeability barrier.
Collapse
Affiliation(s)
- Timothy Morris
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - Eva Sue
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - Caleb Geniesse
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - William M Brieher
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| |
Collapse
|
8
|
Kage F, Vicente-Manzanares M, McEwan BC, Kettenbach AN, Higgs HN. Myosin II proteins are required for organization of calcium-induced actin networks upstream of mitochondrial division. Mol Biol Cell 2022; 33:ar63. [PMID: 35427150 PMCID: PMC9561854 DOI: 10.1091/mbc.e22-01-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The formin INF2 polymerizes a calcium-activated cytoplasmic network of actin filaments, which we refer to as calcium-induced actin polymerization (CIA). CIA plays important roles in multiple cellular processes, including mitochondrial dynamics and vesicle transport. Here, we show that nonmuscle myosin II (NMII) is activated within 60 s of calcium stimulation and rapidly recruited to the CIA network. Knockout of any individual NMII in U2OS cells affects the organization of the CIA network, as well as three downstream effects: endoplasmic-reticulum-to-mitochondrial calcium transfer, mitochondrial Drp1 recruitment, and mitochondrial division. Interestingly, while NMIIC is the least abundant NMII in U2OS cells (>200-fold less than NMIIA and >10-fold less than NMIIB), its knockout is equally deleterious to CIA. On the basis of these results, we propose that myosin II filaments containing all three NMII heavy chains exert organizational and contractile roles in the CIA network. In addition, NMIIA knockout causes a significant decrease in myosin regulatory light chain levels, which might have additional effects.
Collapse
Affiliation(s)
- Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
| | - Miguel Vicente-Manzanares
- Centro de Investigacion del Cancer/Instituto de Biologia Molecular y Celular del Cancer, Centro Mixto Universidad de Salamanca, 37007 Salamanca, Spain
| | - Brennan C. McEwan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
- Program in Cancer Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
- Program in Cancer Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
| | - Henry N. Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
| |
Collapse
|
9
|
Kislev N, Mor-Yossef Moldovan L, Barak R, Egozi M, Benayahu D. MYH10 Governs Adipocyte Function and Adipogenesis through Its Interaction with GLUT4. Int J Mol Sci 2022; 23:ijms23042367. [PMID: 35216482 PMCID: PMC8875441 DOI: 10.3390/ijms23042367] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
Adipogenesis is dependent on cytoskeletal remodeling that determines and maintains cellular shape and function. Cytoskeletal proteins contribute to the filament-based network responsible for controlling the shape of adipocytes and promoting the intracellular trafficking of cellular components. Currently, the understanding of these mechanisms and their effect on differentiation and adipocyte function remains incomplete. In this study, we identified the non-muscle myosin 10 (MYH10) as a novel regulator of adipogenesis and adipocyte function through its interaction with the insulin-dependent glucose transporter 4 (GLUT4). MYH10 depletion in preadipocytes resulted in impaired adipogenesis, with knockdown cells exhibiting an absence of morphological alteration and molecular signals. MYH10 was shown in a complex with GLUT4 in adipocytes, an interaction regulated by insulin induction. The missing adipogenic capacity of MYH10 knockdown cells was restored when the cells took up GLUT4 vesicles from neighbor wildtype cells in a co-culture system. This signaling cascade is regulated by the protein kinase C ζ (PKCζ), which interacts with MYH10 to modify the localization and interaction of both GLUT4 and MYH10 in adipocytes. Overall, our study establishes MYH10 as an essential regulator of GLUT4 translocation, affecting both adipogenesis and adipocyte function, highlighting its importance in future cytoskeleton-based studies in adipocytes.
Collapse
|
10
|
Identification of Impacted Pathways and Transcriptomic Markers as Potential Mediators of Pulmonary Fibrosis in Transgenic Mice Expressing Human IGFBP5. Int J Mol Sci 2021; 22:ijms222212609. [PMID: 34830489 PMCID: PMC8619832 DOI: 10.3390/ijms222212609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis is a serious disease characterized by extracellular matrix (ECM) component overproduction and remodeling. Insulin-like growth factor-binding protein 5 (IGFBP5) is a conserved member of the IGFBP family of proteins that is overexpressed in fibrotic tissues and promotes fibrosis. We used RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) between primary lung fibroblasts (pFBs) of homozygous (HOMO) transgenic mice expressing human IGFBP5 (hIGFBP5) and wild type mice (WT). The results of the differential expression analysis showed 2819 DEGs in hIGFBP5 pFBs. Functional enrichment analysis confirmed the pro-fibrotic character of IGFBP5 and revealed its impact on fundamental signaling pathways, including cytokine–cytokine receptor interaction, focal adhesion, AGE-RAGE signaling, calcium signaling, and neuroactive ligand-receptor interactions, to name a few. Noticeably, 7% of the DEGs in hIGFBP5-expressing pFBs are receptors and integrins. Furthermore, hub gene analysis revealed 12 hub genes including Fpr1, Bdkrb2, Mchr1, Nmur1, Cnr2, P2ry14, and Ptger3. Validation assays were performed to complement the RNAseq data. They confirmed significant differences in the levels of the corresponding proteins in cultured pFBs. Our study provides new insights into the molecular mechanism(s) of IGFBP5-associated pulmonary fibrosis through possible receptor interactions that drive fibrosis and tissue remodeling.
Collapse
|
11
|
Nishimura Y, Shi S, Zhang F, Liu R, Takagi Y, Bershadsky AD, Viasnoff V, Sellers JR. The formin inhibitor SMIFH2 inhibits members of the myosin superfamily. J Cell Sci 2021; 134:237818. [PMID: 33589498 PMCID: PMC8121067 DOI: 10.1242/jcs.253708] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
The small molecular inhibitor of formin FH2 domains, SMIFH2, is widely used in cell biological studies. It inhibits formin-driven actin polymerization in vitro, but not polymerization of pure actin. It is active against several types of formin from different species. Here, we found that SMIFH2 inhibits retrograde flow of myosin 2 filaments and contraction of stress fibers. We further checked the effect of SMIFH2 on non-muscle myosin 2A and skeletal muscle myosin 2 in vitro, and found that SMIFH2 inhibits activity of myosin ATPase and the ability to translocate actin filaments in the gliding actin in vitro motility assay. Inhibition of non-muscle myosin 2A in vitro required a higher concentration of SMIFH2 compared with that needed to inhibit retrograde flow and stress fiber contraction in cells. We also found that SMIFH2 inhibits several other non-muscle myosin types, including bovine myosin 10, Drosophila myosin 7a and Drosophila myosin 5, more efficiently than it inhibits formins. These off-target inhibitions demand additional careful analysis in each case when solely SMIFH2 is used to probe formin functions. This article has an associated First Person interview with Yukako Nishimura, joint first author of the paper.
Collapse
Affiliation(s)
- Yukako Nishimura
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore
| | - Shidong Shi
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore
| | - Fang Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rong Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasuharu Takagi
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander D Bershadsky
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Virgile Viasnoff
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore.,CNRS UMI 3639 BMC, Singapore 117411, Singapore.,Department of Biological Sciences, National university of Singapore, Singapore 117558, Singapore
| | - James R Sellers
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Huang W, Matsui TS, Saito T, Kuragano M, Takahashi M, Kawahara T, Sato M, Deguchi S. Mechanosensitive myosin II but not cofilin primarily contributes to cyclic cell stretch-induced selective disassembly of actin stress fibers. Am J Physiol Cell Physiol 2021; 320:C1153-C1163. [PMID: 33881935 DOI: 10.1152/ajpcell.00225.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cells adapt to applied cyclic stretch (CS) to circumvent chronic activation of proinflammatory signaling. Currently, the molecular mechanism of the selective disassembly of actin stress fibers (SFs) in the stretch direction, which occurs at the early stage of the cellular response to CS, remains controversial. Here, we suggest that the mechanosensitive behavior of myosin II, a major cross-linker of SFs, primarily contributes to the directional disassembly of the actomyosin complex SFs in bovine vascular smooth muscle cells and human U2OS osteosarcoma cells. First, we identified that CS with a shortening phase that exceeds in speed the inherent contractile rate of individual SFs leads to the disassembly. To understand the biological basis, we investigated the effect of expressing myosin regulatory light-chain mutants and found that SFs with less actomyosin activities disassemble more promptly upon CS. We consequently created a minimal mathematical model that recapitulates the salient features of the direction-selective and threshold-triggered disassembly of SFs to show that disassembly or, more specifically, unbundling of the actomyosin bundle SFs is enhanced with sufficiently fast cell shortening. We further demonstrated that similar disassembly of SFs is inducible in the presence of an active LIM-kinase-1 mutant that deactivates cofilin, suggesting that cofilin is dispensable as opposed to a previously proposed mechanism.
Collapse
Affiliation(s)
- Wenjing Huang
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tsubasa S Matsui
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Takumi Saito
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Masahiro Kuragano
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Masayuki Takahashi
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Tomohiro Kawahara
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Masaaki Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
13
|
A Stochastic Modelling Framework for Single Cell Migration: Coupling Contractility and Focal Adhesions. Symmetry (Basel) 2020. [DOI: 10.3390/sym12081348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The interaction of the actin cytoskeleton with cell–substrate adhesions is necessary for cell migration. While the trajectories of motile cells have a stochastic character, investigations of cell motility mechanisms rarely elaborate on the origins of the observed randomness. Here, guided by a few fundamental attributes of cell motility, I construct a minimal stochastic cell migration model from ground-up. The resulting model couples a deterministic actomyosin contractility mechanism with stochastic cell–substrate adhesion kinetics, and yields a well-defined piecewise deterministic process. Numerical simulations reproduce several experimentally observed results, including anomalous diffusion, tactic migration and contact guidance. This work provides a basis for the development of cell–cell collision and population migration models.
Collapse
|
14
|
Tang VW. Collagen, stiffness, and adhesion: the evolutionary basis of vertebrate mechanobiology. Mol Biol Cell 2020; 31:1823-1834. [PMID: 32730166 PMCID: PMC7525820 DOI: 10.1091/mbc.e19-12-0709] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023] Open
Abstract
The emergence of collagen I in vertebrates resulted in a dramatic increase in the stiffness of the extracellular environment, supporting long-range force propagation and the development of low-compliant tissues necessary for the development of vertebrate traits including pressurized circulation and renal filtration. Vertebrates have also evolved integrins that can bind to collagens, resulting in the generation of higher tension and more efficient force transmission in the extracellular matrix. The stiffer environment provides an opportunity for the vertebrates to create new structures such as the stress fibers, new cell types such as endothelial cells, new developmental processes such as neural crest delamination, and new tissue organizations such as the blood-brain barrier. Molecular players found only in vertebrates allow the modification of conserved mechanisms as well as the design of novel strategies that can better serve the physiological needs of the vertebrates. These innovations collectively contribute to novel morphogenetic behaviors and unprecedented increases in the complexities of tissue mechanics and functions.
Collapse
Affiliation(s)
- Vivian W. Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
15
|
Long-Range and Directional Allostery of Actin Filaments Plays Important Roles in Various Cellular Activities. Int J Mol Sci 2020; 21:ijms21093209. [PMID: 32370032 PMCID: PMC7246755 DOI: 10.3390/ijms21093209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
A wide variety of uniquely localized actin-binding proteins (ABPs) are involved in various cellular activities, such as cytokinesis, migration, adhesion, morphogenesis, and intracellular transport. In a micrometer-scale space such as the inside of cells, protein molecules diffuse throughout the cell interior within seconds. In this condition, how can ABPs selectively bind to particular actin filaments when there is an abundance of actin filaments in the cytoplasm? In recent years, several ABPs have been reported to induce cooperative conformational changes to actin filaments allowing structural changes to propagate along the filament cables uni- or bidirectionally, thereby regulating the subsequent binding of ABPs. Such propagation of ABP-induced cooperative conformational changes in actin filaments may be advantageous for the elaborate regulation of cellular activities driven by actin-based machineries in the intracellular space, which is dominated by diffusion. In this review, we focus on long-range allosteric regulation driven by cooperative conformational changes of actin filaments that are evoked by binding of ABPs, and discuss roles of allostery of actin filaments in narrow intracellular spaces.
Collapse
|
16
|
Emig R, Zgierski-Johnston CM, Beyersdorf F, Rylski B, Ravens U, Weber W, Kohl P, Hörner M, Peyronnet R. Human Atrial Fibroblast Adaptation to Heterogeneities in Substrate Stiffness. Front Physiol 2020; 10:1526. [PMID: 31998137 PMCID: PMC6965062 DOI: 10.3389/fphys.2019.01526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/04/2019] [Indexed: 01/12/2023] Open
Abstract
Fibrosis is associated with aging and many cardiac pathologies. It is characterized both by myofibroblast differentiation and by excessive accumulation of extracellular matrix proteins. Fibrosis-related tissue remodeling results in significant changes in tissue structure and function, including passive mechanical properties. This research area has gained significant momentum with the recent development of new tools and approaches to better characterize and understand the ability of cells to sense and respond to their biophysical environment. We use a novel hydrogel, termed CyPhyGel, to provide an advanced in vitro model of remodeling-related changes in tissue stiffness. Based on light-controlled dimerization of a Cyanobacterial Phytochrome, it enables contactless and reversible tuning of hydrogel mechanical properties with high spatial and temporal resolution. Human primary atrial fibroblasts were cultured on CyPhyGels. After 4 days of culturing on stiff (~4.6 kPa) or soft (~2.7 kPa) CyPhyGels, we analyzed fibroblast cell area and stiffness. Cells grown on the softer substrate were smaller and softer, compared to cells grown on the stiffer substrate. This difference was absent when both soft and stiff growth substrates were combined in a single CyPhyGel, with the resulting cell areas being similar to those on homogeneously stiff gels and cell stiffnesses being similar to those on homogeneously soft substrates. Using CyPhyGels to mimic tissue stiffness heterogeneities in vitro, our results confirm the ability of cardiac fibroblasts to adapt to their mechanical environment, and suggest the presence of a paracrine mechanism that tunes fibroblast structural and functional properties associated with mechanically induced phenotype conversion toward myofibroblasts. In the context of regionally increased tissue stiffness, such as upon scarring or in diffuse fibrosis, such a mechanism could help to prevent abrupt changes in cell properties at the border zone between normal and diseased tissue. The light-tunable mechanical properties of CyPhyGels and their suitability for studying human primary cardiac cells make them an attractive model system for cardiac mechanobiology research. Further investigations will explore the interactions between biophysical and soluble factors in the response of cardiac fibroblasts to spatially and temporally heterogeneous mechanical cues.
Collapse
Affiliation(s)
- Ramona Emig
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Callum M Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Friedhelm Beyersdorf
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiovascular Surgery, University Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Bartosz Rylski
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiovascular Surgery, University Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Sato Y, Kamijo K, Tsutsumi M, Murakami Y, Takahashi M. Nonmuscle myosin IIA and IIB differently suppress microtubule growth to stabilize cell morphology. J Biochem 2019; 167:25-39. [DOI: 10.1093/jb/mvz082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022] Open
Abstract
Abstract
Precise regulation of cytoskeletal dynamics is important in many fundamental cellular processes such as cell shape determination. Actin and microtubule (MT) cytoskeletons mutually regulate their stability and dynamics. Nonmuscle myosin II (NMII) is a candidate protein that mediates the actin–MT crosstalk. NMII regulates the stability and dynamics of actin filaments to control cell morphology. Additionally, previous reports suggest that NMII-dependent cellular contractility regulates MT dynamics, and MTs also control cell morphology; however, the detailed mechanism whereby NMII regulates MT dynamics and the relationship among actin dynamics, MT dynamics and cell morphology remain unclear. The present study explores the roles of two well-characterized NMII isoforms, NMIIA and NMIIB, on the regulation of MT growth dynamics and cell morphology. We performed RNAi and drug experiments and demonstrated the NMII isoform-specific mechanisms—NMIIA-dependent cellular contractility upregulates the expression of some mammalian diaphanous-related formin (mDia) proteins that suppress MT dynamics; NMIIB-dependent inhibition of actin depolymerization suppresses MT growth independently of cellular contractility. The depletion of either NMIIA or NMIIB resulted in the increase in cellular morphological dynamicity, which was alleviated by the perturbation of MT dynamics. Thus, the NMII-dependent control of cell morphology significantly relies on MT dynamics.
Collapse
Affiliation(s)
- Yuta Sato
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo Hokkaido, Japan
| | - Keiju Kamijo
- Division of Anatomy and Cell Biology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai Miyagi, Japan
| | - Motosuke Tsutsumi
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo Hokkaido, Japan
| | - Yota Murakami
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo Hokkaido, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo Hokkaido, Japan
| | - Masayuki Takahashi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo Hokkaido, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo Hokkaido, Japan
| |
Collapse
|
18
|
Myosin IIA suppresses glioblastoma development in a mechanically sensitive manner. Proc Natl Acad Sci U S A 2019; 116:15550-15559. [PMID: 31235578 DOI: 10.1073/pnas.1902847116] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of glioblastoma to disperse through the brain contributes to its lethality, and blocking this behavior has been an appealing therapeutic approach. Although a number of proinvasive signaling pathways are active in glioblastoma, many are redundant, so targeting one can be overcome by activating another. However, these pathways converge on nonredundant components of the cytoskeleton, and we have shown that inhibiting one of these-the myosin II family of cytoskeletal motors-blocks glioblastoma invasion even with simultaneous activation of multiple upstream promigratory pathways. Myosin IIA and IIB are the most prevalent isoforms of myosin II in glioblastoma, and we now show that codeleting these myosins markedly impairs tumorigenesis and significantly prolongs survival in a rodent model of this disease. However, while targeting just myosin IIA also impairs tumor invasion, it surprisingly increases tumor proliferation in a manner that depends on environmental mechanics. On soft surfaces myosin IIA deletion enhances ERK1/2 activity, while on stiff surfaces it enhances the activity of NFκB, not only in glioblastoma but in triple-negative breast carcinoma and normal keratinocytes as well. We conclude myosin IIA suppresses tumorigenesis in at least two ways that are modulated by the mechanics of the tumor and its stroma. Our results also suggest that inhibiting tumor invasion can enhance tumor proliferation and that effective therapy requires targeting cellular components that drive both proliferation and invasion simultaneously.
Collapse
|
19
|
Yamamoto K, Otomo K, Nemoto T, Ishihara S, Haga H, Nagasaki A, Murakami Y, Takahashi M. Differential contributions of nonmuscle myosin IIA and IIB to cytokinesis in human immortalized fibroblasts. Exp Cell Res 2019; 376:67-76. [PMID: 30711568 DOI: 10.1016/j.yexcr.2019.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 01/28/2023]
Abstract
Nonmuscle myosin II (NMII) plays an important role in cytokinesis by constricting a contractile ring. However, it is poorly understood how NMII isoforms contribute to cytokinesis in mammalian cells. Here, we investigated the roles of the two major NMII isoforms, NMIIA and NMIIB, in cytokinesis using a WI-38 VA13 cell line (human immortalized fibroblast). In this cell line, NMIIB tended to localize to the contractile ring more than NMIIA. The expression level of NMIIA affected the localization of NMIIB. Most NMIIB accumulated at the cleavage furrow in NMIIA-knockout (KO) cells, and most NMIIA was displaced from this location in exogenous NMIIB-expressing cells, indicating that NMIIB preferentially localizes to the contractile ring. Specific KO of each isoform elicited opposite effects. The rate of furrow ingression was decreased and increased in NMIIA-KO and NMIIB-KO cells, respectively. Meanwhile, the length of NMII-filament stacks in the contractile ring was increased and decreased in NMIIA-KO and NMIIB-KO cells, respectively. Moreover, NMIIA helped to maintain cortical stiffness during cytokinesis. These findings suggest that appropriate ratio of NMIIA and NMIIB in the contractile ring is important for proper cytokinesis in specific cell types. In addition, two-photon excitation spinning-disk confocal microscopy enabled us to image constriction of the contractile ring in live cells in a three-dimensional manner.
Collapse
Affiliation(s)
- Kei Yamamoto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kohei Otomo
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Tomomi Nemoto
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Seiichiro Ishihara
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hisashi Haga
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Nagasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8562, Japan
| | - Yota Murakami
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masayuki Takahashi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
20
|
Fenix AM, Neininger AC, Taneja N, Hyde K, Visetsouk MR, Garde RJ, Liu B, Nixon BR, Manalo AE, Becker JR, Crawley SW, Bader DM, Tyska MJ, Liu Q, Gutzman JH, Burnette DT. Muscle-specific stress fibers give rise to sarcomeres in cardiomyocytes. eLife 2018; 7:42144. [PMID: 30540249 PMCID: PMC6307863 DOI: 10.7554/elife.42144] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
The sarcomere is the contractile unit within cardiomyocytes driving heart muscle contraction. We sought to test the mechanisms regulating actin and myosin filament assembly during sarcomere formation. Therefore, we developed an assay using human cardiomyocytes to monitor sarcomere assembly. We report a population of muscle stress fibers, similar to actin arcs in non-muscle cells, which are essential sarcomere precursors. We show sarcomeric actin filaments arise directly from muscle stress fibers. This requires formins (e.g., FHOD3), non-muscle myosin IIA and non-muscle myosin IIB. Furthermore, we show short cardiac myosin II filaments grow to form ~1.5 μm long filaments that then 'stitch' together to form the stack of filaments at the core of the sarcomere (i.e., the A-band). A-band assembly is dependent on the proper organization of actin filaments and, as such, is also dependent on FHOD3 and myosin IIB. We use this experimental paradigm to present evidence for a unifying model of sarcomere assembly.
Collapse
Affiliation(s)
- Aidan M Fenix
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Abigail C Neininger
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Nilay Taneja
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Karren Hyde
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Mike R Visetsouk
- Department of Biological Sciences, Cell and Molecular Biology, University of Wisconsin Milwaukee, Milwaukee, United States
| | - Ryan J Garde
- Department of Biological Sciences, Cell and Molecular Biology, University of Wisconsin Milwaukee, Milwaukee, United States
| | - Baohong Liu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
| | - Benjamin R Nixon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - Annabelle E Manalo
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Jason R Becker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - Scott W Crawley
- Department of Biological Sciences, The University of Toledo, Toledo, United States
| | - David M Bader
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Qi Liu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
| | - Jennifer H Gutzman
- Department of Biological Sciences, Cell and Molecular Biology, University of Wisconsin Milwaukee, Milwaukee, United States
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| |
Collapse
|
21
|
Nonmuscle myosin IIA and IIB differentially contribute to intrinsic and directed migration of human embryonic lung fibroblasts. Biochem Biophys Res Commun 2018; 498:25-31. [DOI: 10.1016/j.bbrc.2018.02.171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 11/19/2022]
|