1
|
Wu M, Wang Z, Shi X, Zan D, Chen H, Yang S, Ding F, Yang L, Tan P, Ma RZ, Wang J, Ma L, Ma Y, Jin J. TGFβ1-RCN3-TGFBR1 loop facilitates pulmonary fibrosis by orchestrating fibroblast activation. Respir Res 2023; 24:222. [PMID: 37710230 PMCID: PMC10500825 DOI: 10.1186/s12931-023-02533-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) bears high mortality due to unclear pathogenesis and limited therapeutic options. Therefore, identifying novel regulators is required to develop alternative therapeutic strategies. METHODS The lung fibroblasts from IPF patients and Reticulocalbin 3 (RCN3) fibroblast-selective knockdown mouse model were used to determine the importance of Rcn3 in IPF; the epigenetic analysis and protein interaction assays, including BioID, were used for mechanistic studies. RESULTS Reticulocalbin 3 (RCN3) upregulation is associated with the fibrotic activation of lung fibroblasts from IPF patients and Rcn3 overexpression blunts the antifibrotic effects of pirfenidone and nintedanib. Moreover, repressing Rcn3 expression in mouse fibroblasts ameliorates bleomycin-induced lung fibrosis and pulmonary dysfunction in vivo. Mechanistically, RCN3 promotes fibroblast activation by maintaining persistent activation of TGFβ1 signalling via the TGFβ1-RCN3-TGFBR1 positive feedback loop, in which RCN3 upregulated by TGFβ1 exposure detains EZH2 (an epigenetic methyltransferase) in the cytoplasm through RCN3-EZH2 interaction, leading to the release of the EZH2-H3K27me3 epigenetic repression of TGFBR1 and the persistent expression of TGFBR1. CONCLUSIONS These findings introduce a novel regulating mechanism of TGFβ1 signalling in fibroblasts and uncover a critical role of the RCN3-mediated loop in lung fibrosis. RCN3 upregulation may cause resistance to IPF treatment and targeting RCN3 could be a novel approach to ameliorate pulmonary fibrosis.
Collapse
Affiliation(s)
- Mingting Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhenyan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoqian Shi
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Danni Zan
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hong Chen
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuqiao Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
| | - Fangping Ding
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Liu Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, Xi Tou Tiao, Youanmen Wai, Beijing, China
| | - Pingping Tan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Runlin Z Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China
| | - Lishuang Ma
- Department of Neonatal Surgery, Children's Hospital of Capital Institute of Pediatrics, Peking Union Medical College, Beijing, China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, Xi Tou Tiao, Youanmen Wai, Beijing, China.
| | - Jiawei Jin
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital Jingxi Campus, Capital Medical University, No. 5 Jingyuan Road, Beijing, China.
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Vasic I, Libby ARG, Maslan A, Bulger EA, Zalazar D, Krakora Compagno MZ, Streets A, Tomoda K, Yamanaka S, McDevitt TC. Loss of TJP1 disrupts gastrulation patterning and increases differentiation toward the germ cell lineage in human pluripotent stem cells. Dev Cell 2023; 58:1477-1488.e5. [PMID: 37354899 PMCID: PMC10529434 DOI: 10.1016/j.devcel.2023.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/17/2023] [Accepted: 05/26/2023] [Indexed: 06/26/2023]
Abstract
Biological patterning events that occur early in development establish proper tissue morphogenesis. Identifying the mechanisms that guide these patterning events is necessary in order to understand the molecular drivers of development and disease and to build tissues in vitro. In this study, we use an in vitro model of gastrulation to study the role of tight junctions and apical/basolateral polarity in modulating bone morphogenic protein-4 (BMP4) signaling and gastrulation-associated patterning in colonies of human pluripotent stem cells (hPSCs). Disrupting tight junctions via knockdown (KD) of the scaffolding tight junction protein-1 (TJP1, also known as ZO1) allows BMP4 to robustly and ubiquitously activate pSMAD1/5 signaling over time, resulting in loss of the patterning phenotype and marked differentiation bias of pluripotent stem cells to primordial germ cell-like cells (PGCLCs). These findings give important insights into how signaling events are regulated and lead to spatial emergence of diverse cell types in vitro.
Collapse
Affiliation(s)
- Ivana Vasic
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA 94158
| | - Ashley RG Libby
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Developmental and Stem Cell Biology Ph.D. Program, University of California, San Francisco, San Francisco, CA, USA 94158
| | - Annie Maslan
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA 94158
- Department of Bioengineering, University of California, Berkeley, CA, USA 94720
- Center for Computational Biology, University of California, Berkeley, CA, USA 94720
| | - Emily A Bulger
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Developmental and Stem Cell Biology Ph.D. Program, University of California, San Francisco, San Francisco, CA, USA 94158
| | - David Zalazar
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
| | | | - Aaron Streets
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA 94158
- Department of Bioengineering, University of California, Berkeley, CA, USA 94720
- Center for Computational Biology, University of California, Berkeley, CA, USA 94720
- Chan Zuckerberg Biohub, San Francisco, CA, USA 94158
| | - Kiichiro Tomoda
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Center for iPS Cell Research and Application, Kyoto, Japan 606-8397
| | - Shinya Yamanaka
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Center for iPS Cell Research and Application, Kyoto, Japan 606-8397
| | - Todd C McDevitt
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA 94158
| |
Collapse
|
3
|
Peterson AJ, Murphy SJ, Mundt MG, Shimell M, Leof EB, O’Connor MB. A juxtamembrane basolateral targeting motif regulates signaling through a TGF-β pathway receptor in Drosophila. PLoS Biol 2022; 20:e3001660. [PMID: 35594316 PMCID: PMC9162340 DOI: 10.1371/journal.pbio.3001660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/02/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
In polarized epithelial cells, receptor-ligand interactions can be restricted by different spatial distributions of the 2 interacting components, giving rise to an underappreciated layer of regulatory complexity. We explored whether such regulation occurs in the Drosophila wing disc, an epithelial tissue featuring the TGF-β family member Decapentaplegic (Dpp) as a morphogen controlling growth and patterning. Dpp protein has been observed in an extracellular gradient within the columnar cell layer of the disc, but also uniformly in the disc lumen, leading to the question of how graded signaling is achieved in the face of 2 distinctly localized ligand pools. We find the Dpp Type II receptor Punt, but not the Type I receptor Tkv, is enriched at the basolateral membrane and depleted at the junctions and apical surface. Wit, a second Type II receptor, shows a markedly different behavior, with the protein detected on all membrane regions but enriched at the apical side. Mutational studies identified a short juxtamembrane sequence required for basolateral restriction of Punt in both wing discs and mammalian Madin-Darby canine kidney (MDCK) cells. This basolateral targeting (BLT) determinant can dominantly confer basolateral localization on an otherwise apical receptor. Rescue of punt mutants with transgenes altered in the targeting motif showed that flies expressing apicalized Punt due to the lack of a functional BLT displayed developmental defects, female sterility, and significant lethality. We also show that apicalized Punt does not produce an ectopic signal, indicating that the apical pool of Dpp is not a significant signaling source even when presented with Punt. Instead, we find that basolateral presentation of Punt is required for optimal signaling. Finally, we present evidence that the BLT acts through polarized sorting machinery that differs between types of epithelia. This suggests a code whereby each epithelial cell type may differentially traffic common receptors to enable distinctive responses to spatially localized pools of extracellular ligands.
Collapse
Affiliation(s)
- Aidan J. Peterson
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stephen J. Murphy
- Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Melinda G. Mundt
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - MaryJane Shimell
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Edward B. Leof
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
4
|
Zakrzewski PK. Canonical TGFβ Signaling and Its Contribution to Endometrial Cancer Development and Progression-Underestimated Target of Anticancer Strategies. J Clin Med 2021; 10:3900. [PMID: 34501347 PMCID: PMC8432036 DOI: 10.3390/jcm10173900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
Endometrial cancer is one of the leading gynecological cancers diagnosed among women in their menopausal and postmenopausal age. Despite the progress in molecular biology and medicine, no efficient and powerful diagnostic and prognostic marker is dedicated to endometrial carcinogenesis. The canonical TGFβ pathway is a pleiotropic signaling cascade orchestrating a variety of cellular and molecular processes, whose alterations are responsible for carcinogenesis that originates from different tissue types. This review covers the current knowledge concerning the canonical TGFβ pathway (Smad-dependent) induced by prototypical TGFβ isoforms and the involvement of pathway alterations in the development and progression of endometrial neoplastic lesions. Since Smad-dependent signalization governs opposed cellular processes, such as growth arrest, apoptosis, tumor cells growth and differentiation, as well as angiogenesis and metastasis, TGFβ cascade may act both as a tumor suppressor or tumor promoter. However, the final effect of TGFβ signaling on endometrial cancer cells depends on the cancer disease stage. The multifunctional role of the TGFβ pathway indicates the possible utilization of alterations in the TGFβ cascade as a potential target of novel anticancer strategies.
Collapse
Affiliation(s)
- Piotr K Zakrzewski
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
5
|
Ismagulov G, Hamidi S, Sheng G. Epithelial-Mesenchymal Transition Drives Three-Dimensional Morphogenesis in Mammalian Early Development. Front Cell Dev Biol 2021; 9:639244. [PMID: 33644076 PMCID: PMC7905045 DOI: 10.3389/fcell.2021.639244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 11/20/2022] Open
Abstract
From fertilization to onset of gastrulation, a mammalian embryo goes through several rounds of cellular morphogenesis resembling phenomena of epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET), collectively referred to as EMTs. How these EMT events play a role in shaping the three-dimensional (3-D) architecture of the developing embryo is not well-understood. In this review, we present a model in which cellular morphogenesis, represented primarily by dynamic changes in its epithelialization status, is the driving force of embryonic 3-D organization. This is achieved through the integration of three key components of mammalian early development, the pluripotency regulation, morphogenetic signaling, and biomechanical force anisotropy. Although cells in an early embryo do not exhibit full mesenchymal characteristics, our model underscores the importance of investigating molecular regulation of epithelial cell polarity and partial EMT/MET in understanding mammalian early development.
Collapse
Affiliation(s)
| | | | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Zhang Z, Zwick S, Loew E, Grimley JS, Ramanathan S. Mouse embryo geometry drives formation of robust signaling gradients through receptor localization. Nat Commun 2019; 10:4516. [PMID: 31586065 PMCID: PMC6778081 DOI: 10.1038/s41467-019-12533-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 09/12/2019] [Indexed: 12/21/2022] Open
Abstract
Morphogen signals are essential for cell fate specification during embryogenesis. Some receptors that sense these morphogens are known to localize to only the apical or basolateral membrane of polarized cell lines in vitro. How such localization affects morphogen sensing and patterning in the developing embryo remains unknown. Here, we show that the formation of a robust BMP signaling gradient in the early mouse embryo depends on the restricted, basolateral localization of BMP receptors. The mis-localization of receptors to the apical membrane results in ectopic BMP signaling in the mouse epiblast in vivo. With evidence from mathematical modeling, human embryonic stem cells in vitro, and mouse embryos in vivo, we find that the geometric compartmentalization of BMP receptors and ligands creates a signaling gradient that is buffered against fluctuations. Our results demonstrate the importance of receptor localization and embryo geometry in shaping morphogen signaling during embryogenesis.
Collapse
Affiliation(s)
- Zhechun Zhang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Steven Zwick
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Ethan Loew
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Joshua S Grimley
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
- Universal Cells, Seattle, WA, 98121, USA
| | - Sharad Ramanathan
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
7
|
Zi Z. Molecular Engineering of the TGF-β Signaling Pathway. J Mol Biol 2019; 431:2644-2654. [PMID: 31121181 DOI: 10.1016/j.jmb.2019.05.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Transforming growth factor beta (TGF-β) is an important growth factor that plays essential roles in regulating tissue development and homeostasis. Dysfunction of TGF-β signaling is a hallmark of many human diseases. Therefore, targeting TGF-β signaling presents broad therapeutic potential. Since the discovery of the TGF-β ligand, a collection of engineered signaling proteins have been developed to probe and manipulate TGF-β signaling responses. In this review, we highlight recent progress in the engineering of TGF-β signaling for different applications and discuss how molecular engineering approaches can advance our understanding of this important pathway. In addition, we provide a future outlook on the opportunities and challenges in the engineering of the TGF-β signaling pathway from a quantitative perspective.
Collapse
Affiliation(s)
- Zhike Zi
- Otto-Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
8
|
Lin J, Vora M, Kane NS, Gleason RJ, Padgett RW. Human Marfan and Marfan-like Syndrome associated mutations lead to altered trafficking of the Type II TGFβ receptor in Caenorhabditis elegans. PLoS One 2019; 14:e0216628. [PMID: 31071172 PMCID: PMC6508650 DOI: 10.1371/journal.pone.0216628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022] Open
Abstract
The transforming growth factor-β (TGFβ) family plays an important role in many developmental processes and when mutated often contributes to various diseases. Marfan syndrome is a genetic disease with an occurrence of approximately 1 in 5,000. The disease is caused by mutations in fibrillin, which lead to an increase in TGFβ ligand activity, resulting in abnormalities of connective tissues which can be life-threatening. Mutations in other components of TGFβ signaling (receptors, Smads, Schnurri) lead to similar diseases with attenuated phenotypes relative to Marfan syndrome. In particular, mutations in TGFβ receptors, most of which are clustered at the C-terminal end, result in Marfan-like (MFS-like) syndromes. Even though it was assumed that many of these receptor mutations would reduce or eliminate signaling, in many cases signaling is active. From our previous studies on receptor trafficking in C. elegans, we noticed that many of these receptor mutations that lead to Marfan-like syndromes overlap with mutations that cause mis-trafficking of the receptor, suggesting a link between Marfan-like syndromes and TGFβ receptor trafficking. To test this hypothesis, we introduced three of these key MFS and MFS-like mutations into the C. elegans TGFβ receptor and asked if receptor trafficking is altered. We find that in every case studied, mutated receptors mislocalize to the apical surface rather than basolateral surface of the polarized intestinal cells. Further, we find that these mutations result in longer animals, a phenotype due to over-stimulation of the nematode TGFβ pathway and, importantly, indicating that function of the receptor is not abrogated in these mutants. Our nematode models of Marfan syndrome suggest that MFS and MFS-like mutations in the type II receptor lead to mis-trafficking of the receptor and possibly provides an explanation for the disease, a phenomenon which might also occur in some cancers that possess the same mutations within the type II receptor (e.g. colon cancer).
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Animals, Genetically Modified
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/metabolism
- Caenorhabditis elegans Proteins/chemistry
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/metabolism
- Disease Models, Animal
- Humans
- Marfan Syndrome/genetics
- Marfan Syndrome/metabolism
- Mutation, Missense
- Protein Domains
- Receptor, Transforming Growth Factor-beta Type II/chemistry
- Receptor, Transforming Growth Factor-beta Type II/genetics
- Receptor, Transforming Growth Factor-beta Type II/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Transforming Growth Factor beta/chemistry
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Species Specificity
Collapse
Affiliation(s)
- Jing Lin
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Mehul Vora
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail: (MV); (RWP)
| | - Nanci S. Kane
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ryan J. Gleason
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Richard W. Padgett
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail: (MV); (RWP)
| |
Collapse
|
9
|
Miller DSJ, Bloxham RD, Jiang M, Gori I, Saunders RE, Das D, Chakravarty P, Howell M, Hill CS. The Dynamics of TGF-β Signaling Are Dictated by Receptor Trafficking via the ESCRT Machinery. Cell Rep 2018; 25:1841-1855.e5. [PMID: 30428352 PMCID: PMC7615189 DOI: 10.1016/j.celrep.2018.10.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 08/03/2018] [Accepted: 10/15/2018] [Indexed: 01/17/2023] Open
Abstract
Signal transduction pathways stimulated by secreted growth factors are tightly regulated at multiple levels between the cell surface and the nucleus. The trafficking of cell surface receptors is emerging as a key step for regulating appropriate cellular responses, with perturbations in this process contributing to human diseases, including cancer. For receptors recognizing ligands of the transforming growth factor β (TGF-β) family, little is known about how trafficking is regulated or how this shapes signaling dynamics. Here, using whole genome small interfering RNA (siRNA) screens, we have identified the ESCRT (endosomal sorting complex required for transport) machinery as a crucial determinant of signal duration. Downregulation of ESCRT components increases the outputs of TGF-β signaling and sensitizes cells to low doses of ligand in their microenvironment. This sensitization drives an epithelial-to-mesenchymal transition (EMT) in response to low doses of ligand, and we demonstrate a link between downregulation of the ESCRT machinery and cancer survival.
Collapse
Affiliation(s)
- Daniel S J Miller
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robert D Bloxham
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ming Jiang
- High Throughput Screening Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ilaria Gori
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rebecca E Saunders
- High Throughput Screening Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Debipriya Das
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
10
|
Yakymovych I, Yakymovych M, Heldin CH. Intracellular trafficking of transforming growth factor β receptors. Acta Biochim Biophys Sin (Shanghai) 2018; 50:3-11. [PMID: 29186283 DOI: 10.1093/abbs/gmx119] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor β (TGFβ) family members signal via heterotetrameric complexes of type I (TβRI) and type II (TβRII) dual specificity kinase receptors. The availability of the receptors on the cell surface is controlled by several mechanisms. Newly synthesized TβRI and TβRII are delivered from the Golgi apparatus to the cell surface via separate routes. On the cell surface, TGFβ receptors are distributed between different microdomains of the plasma membrane and can be internalized via clathrin- and caveolae-mediated endocytic mechanisms. Although receptor endocytosis is not essential for TGFβ signaling, localization of the activated receptor complexes on the early endosomes promotes TGFβ-induced Smad activation. Caveolae-mediated endocytosis, which is widely regarded as a mechanism that facilitates the degradation of TGFβ receptors, has been shown to be required for TGFβ signaling via non-Smad pathways. The importance of proper control of TGFβ receptor intracellular trafficking is emphasized by clinical data, as mislocalization of receptors has been described in connection with several human diseases. Thus, control of intracellular trafficking of the TGFβ receptors together with the regulation of their expression, posttranslational modifications and down-regulation, ensure proper regulation of TGFβ signaling.
Collapse
Affiliation(s)
- Ihor Yakymovych
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| | - Mariya Yakymovych
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| |
Collapse
|