1
|
Chen X, Duan N, Zhang W, Song T, Cong F. Prmt1-mediated methylation regulates Ncoa4 stability to transactivate Adamts genes and promote bone extracellular matrix degradation in chronic hematogenous osteomyelitis. Biol Direct 2025; 20:60. [PMID: 40346625 PMCID: PMC12065254 DOI: 10.1186/s13062-025-00652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Protein arginine methyltransferases (Prmts) are essential regulators of various biological processes and have been implicated in the pathogenesis of numerous diseases. However, their role in osteomyelitis remains poorly understood. METHODS A mouse model of chronic hematogenous osteomyelitis (CHOM) was established by intravenous inoculation with Staphylococcus aureus (S. aureus). Gene and protein expression levels were quantified using RT-qPCR and immunoblot analysis, respectively. Protein interactions were determined via immunoprecipitation and co-immunoprecipitation assays. In vitro and in vivo assays were employed to evaluate protein methylation and ubiquitination. Bone destruction was assessed through histological staining. RESULTS Among 9 Prmt members, Prmt1 was the only one significantly upregulated in osteomyelitis-affected mice. Our findings revealed that the inflammatory microenvironment specifically upregulated Prmt1 expression in osteoblasts and osteocytes, which facilitated its interaction with the transcriptional activator Ncoa4 (nuclear receptor coactivator 4) and mediated Ncoa4 arginine methylation, thereby enhancing Ncoa4 protein stability. Methylated Ncoa4 formed a transcriptional complex with the histone acetyltransferase Cbp (CREB-binding protein) and transcription factor Ap1 (Activator protein 1), driving the expression of four Adamts genes (Adamts3/8/12/14) that promoted extracellular matrix (ECM) degradation in osteoblasts and osteocytes. In contrast, depletion or pharmacological inhibition of Prmt1 prevented Ncoa4 methylation upon stimulation with pro-inflammatory cytokines, leading to Ncoa4 ubiquitination by Rnf8 (Ring finger protein 8) E3 ligase and subsequent proteasomal degradation, eventually leading to downregulation of Adamts expression. Importantly, treatment with Prmt1 inhibitors TCE-5003 and MS023 significantly mitigated bone ECM degradation and prevented osteomyelitis progression in S. aureus-infected mice. CONCLUSION These findings identify Prmt1 as a pivotal regulator of bone ECM degradation in osteomyelitis through stabilization of Ncoa4 and highlight Prmt1 as a promising therapeutic target for osteomyelitis treatment.
Collapse
Affiliation(s)
- Xun Chen
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Ning Duan
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Wentao Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Tao Song
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Fei Cong
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
2
|
Heng Y, Wang F, Zhang Z, Lin Z, Zhao D, Li Q. PRMT7 Inhibitor SGC3027 Enhances Radiotherapy Efficacy via Activating ATM Kinase in Non-Small Cell Lung Carcinoma. Radiat Res 2025; 203:284-292. [PMID: 40015317 DOI: 10.1667/rade-24-00242.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Non-small-cell lung cancer (NSCLC) is the leading cause of tumor-related death in humans. Radiotherapy is a crucial strategy for NSCLC treatment, although its effectiveness is limited by the radio-resistance of tumor cells. Our current research finds that the protein arginine methyltransferase 7 (PRMT7) is upregulated in NSCLC and correlates with poor prognosis. Pharmacological inhibition of PRMT7 by SGC3027, a specific small-molecule PRMT7 inhibitor, suppresses the proliferation, migration and invasion of NSCLC. Combining irradiation with SGC3027 strengthens the impact of irradiation on the biological behaviors of NSCLC cells. We also find that SGC3027 specifically activates ATM kinase and its downstream cell cycle checkpoint kinases to enhance radiobiological response in NSCLC. These findings underscore the promising therapeutic potential of PRMT7 inhibitors as well as combining PRMT7 inhibition with irradiation exposure for effective NSCLC therapies.
Collapse
Affiliation(s)
- Ya Heng
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Feifei Wang
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Zhonghui Zhang
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Zebang Lin
- Department of Thoracic Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P.R. China
| | - Dahai Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei 230601, P.R. China
| | - Qiuling Li
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| |
Collapse
|
3
|
Yang GJ, Liu YJ, Chen RY, Shi JJ, Li CY, Wang R, Yu J, Lu JF, Zhang LL, Yu B, Chen J. PRMT7 in cancer: Structure, effects, and therapeutic potentials. Eur J Med Chem 2025; 283:117103. [PMID: 39615371 DOI: 10.1016/j.ejmech.2024.117103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025]
Abstract
Protein arginine methyltransferase 7 (PRMT7), a type III methyltransferase responsible solely for arginine mono-methylation, plays a critical role in numerous physiological and pathological processes. Recent studies have highlighted its aberrant expression or mutation in various cancers, implicating it in tumorigenesis, cancer progression, and drug resistance. Consequently, PRMT7 has emerged as a promising target for cancer diagnosis and therapeutic intervention. In this review, we present an overview of the molecular structure of PRMT7, discuss its roles and mechanisms in different cancer types, and analyze the binding modes and structure-activity relationships of reported PRMT7 inhibitors. Furthermore, we identify the challenges encountered in functional exploration and drug development targeting PRMT7, propose potential solutions to these challenges, and outline future directions for the development of PRMT7 inhibitors to inform future drug discovery efforts.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China.
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, 610106, Chengdu, China.
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China.
| |
Collapse
|
4
|
Lowe TL, Valencia DA, Velasquez VE, Quinlan ME, Clarke SG. Methylation and phosphorylation of formin homology domain proteins (Fhod1 and Fhod3) by protein arginine methyltransferase 7 (PRMT7) and Rho kinase (ROCK1). J Biol Chem 2024; 300:107857. [PMID: 39368550 PMCID: PMC11584945 DOI: 10.1016/j.jbc.2024.107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024] Open
Abstract
Protein post-translational modifications (PTMs) can regulate biological processes by altering an amino acid's bulkiness, charge, and hydrogen bonding interactions. Common modifications include phosphorylation, methylation, acetylation, and ubiquitylation. Although a primary focus of studying PTMs is understanding the effects of a single amino acid modification, the possibility of additional modifications increases the complexity. For example, substrate recognition motifs for arginine methyltransferases and some serine/threonine kinases overlap, leading to potential enzymatic crosstalk. In this study we have shown that the human family of formin homology domain-containing proteins (Fhods) contain a substrate recognition motif specific for human protein arginine methyltransferase 7 (PRMT7). In particular, PRMT7 methylates two arginine residues in the diaphanous autoinhibitory domain (DAD) of the family of Fhod proteins: R1588 and/or R1590 of Fhod3 isoform 4. Additionally, we confirmed that S1589 and S1595 in the DAD domain of Fhod3 can be phosphorylated by Rho/ROCK1 kinase. Significantly, we have determined that if S1589 is phosphorylated then PRMT7 cannot subsequently methylate R1588 or R1590. In contrast, if R1588 or R1590 of Fhod3 is methylated then ROCK1 phosphorylation activity is only slightly affected. Finally, we show that the interaction of the N-terminal DID domain can also inhibit the methylation of the DAD domain. Taken together these results suggest that the family of Fhod proteins, potential in vivo substrates for PRMT7, might be regulated by a combination of methylation and phosphorylation.
Collapse
Affiliation(s)
- Troy L Lowe
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California - Los Angeles, Los Angeles, California, USA
| | - Dylan A Valencia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California - Los Angeles, Los Angeles, California, USA
| | - Vicente E Velasquez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California - Los Angeles, Los Angeles, California, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California - Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
5
|
Rehman S, Parent M, Storey KB. Histone Arginine Methylation as a Regulator of Gene Expression in the Dehydrating African Clawed Frog ( Xenopus laevis). Genes (Basel) 2024; 15:1156. [PMID: 39336747 PMCID: PMC11431520 DOI: 10.3390/genes15091156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The African clawed frog (Xenopus laevis) endures prolonged periods of dehydration while estivating underground during the dry season. Epigenetic modifications play crucial roles in regulating gene expression in response to environmental changes. The elucidation of epigenetic changes relevant to survival could serve as a basis for further studies on organ preservation under extreme stress. The current study examined the relative protein levels of key enzymes involved in the arginine methylation of histones in the liver and kidney tissues of control versus dehydrated (35 ± 1%) X. laevis through immunoblotting. Protein arginine methyltransferases (PRMT) 4, 5, and 6 showed significant protein level decreases of 35 ± 3%, 71 ± 7%, and 25 ± 5%, respectively, in the liver tissues of the dehydrated frogs relative to controls. In contrast, PRMT7 exhibited an increase of 36 ± 4%. Similarly, the methylated histone markers H3R2m2a, H3R8m2a, and H3R8m2s were downregulated by 34 ± 11%, 15 ± 4%, and 42 ± 12%, respectively, in the livers of dehydrated frogs compared to controls. By contrast, the kidneys of dehydrated frogs showed an upregulation of histone markers. H3R2m2a, H3R8m2a, H3R8m2s, and H4R3m2a were significantly increased by 126 ± 12%, 112 ± 7%, 47 ± 13%, and 13 ± 3%, respectively. These changes can play vital roles in the metabolic reorganization of X. laevis during dehydration, and are likely to increase the chances of survival. In turn, the tissue-specific regulation of the histone arginine methylation mechanism suggests the importance of epigenetic regulation in the adaptation of X. laevis for whole-body dehydration.
Collapse
Affiliation(s)
| | | | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.R.)
| |
Collapse
|
6
|
Wegman R, Langberg M, Davis RB, Liu X, Luo M, Yu MC, Walker SE. Protein Arginine Methylation of the Translation Initiation Factor eIF1A Increases Usage of a Near-cognate Start Codon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608280. [PMID: 39185183 PMCID: PMC11343201 DOI: 10.1101/2024.08.16.608280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Protein arginine methylation has emerged as a key post-translational modification responsible for many facets of eukaryotic gene expression. To better understand the extent of this modification in cellular pathways, we carried out bioorthogonal methylation profiling in Saccharomyces cerevisiae to comprehensively identify the in vivo substrates of the major yeast protein arginine methyltransferase Hmt1. Gene ontology analysis of candidate substrates revealed an enrichment of proteins involved in the process of translation. We verified one such factor, eIF1A, by in vitro methylation. Three sites on eIF1A were found to be responsible for its methylation: R13, R14, and R62, with varied capacity by which each site contributed to the overall methylation capacity in vitro. To determine the role of methylation in eIF1A function, we used a battery of arginine-to-alanine substitution mutants to evaluate translation fidelity in these mutants. Our data show that substitution mutants at R13 and R14 in the N-terminal tail improved the fidelity of start codon recognition in an initiation fidelity assay. Overall, our data suggest that Hmt1-mediated methylation of eIF1A fine-tunes the fidelity of start codon recognition for proper translation initiation.
Collapse
Affiliation(s)
| | - Michael Langberg
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Richoo B. Davis
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Pharmacology, Weill Medical College, Cornell University, New York, New York, United States of America
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Xiaozhuo Liu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Pharmacology, Weill Medical College, Cornell University, New York, New York, United States of America
| | - Michael C. Yu
- Address correspondence to: M.L, M.C.Y., and S.E.W., Minkui Luo, Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY. 10065, Fax: 646-888-3166, ; Sarah E. Walker, Department of Biological Sciences, State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY. 14260, Fax: 716-645-2975, ; Michael C. Yu, Department of Biological Sciences, State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY. 14260, Fax: 716-645-2975,
| | - Sarah E. Walker
- Address correspondence to: M.L, M.C.Y., and S.E.W., Minkui Luo, Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY. 10065, Fax: 646-888-3166, ; Sarah E. Walker, Department of Biological Sciences, State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY. 14260, Fax: 716-645-2975, ; Michael C. Yu, Department of Biological Sciences, State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY. 14260, Fax: 716-645-2975,
| |
Collapse
|
7
|
Jia Y, Jia R, Dai Z, Zhou J, Ruan J, Chng W, Cai Z, Zhang X. Stress granules in cancer: Adaptive dynamics and therapeutic implications. iScience 2024; 27:110359. [PMID: 39100690 PMCID: PMC11295550 DOI: 10.1016/j.isci.2024.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Stress granules (SGs), membrane-less cellular organelles formed via liquid-liquid phase separation, are central to how cells adapt to various stress conditions, including endoplasmic reticulum stress, nutrient scarcity, and hypoxia. Recent studies have underscored a significant link between SGs and the process of tumorigenesis, highlighting that proteins, associated components, and signaling pathways that facilitate SG formation are often upregulated in cancer. SGs play a key role in enhancing tumor cell proliferation, invasion, and migration, while also inhibiting apoptosis, facilitating immune evasion, and driving metabolic reprogramming through multiple mechanisms. Furthermore, SGs have been identified as crucial elements in the development of resistance against chemotherapy, immunotherapy, and radiotherapy across a variety of cancer types. This review delves into the complex role of SGs in cancer development and resistance, bringing together the latest progress in the field and exploring new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Yunlu Jia
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ruyin Jia
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhengfeng Dai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - WeeJoo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
8
|
Chen L, Sun K, Qin W, Huang B, Wu C, Chen J, Lai Q, Wang X, Zhou R, Li A, Liu S, Zhang Y. LIMK1 m 6A-RNA methylation recognized by YTHDC2 induces 5-FU chemoresistance in colorectal cancer via endoplasmic reticulum stress and stress granule formation. Cancer Lett 2023; 576:216420. [PMID: 37778684 DOI: 10.1016/j.canlet.2023.216420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
LIM kinase 1 (LIMK1) is a member of the LIMK family that has been considered to be involved in chemoresistance in various tumors, and N6-methyladenosine (m6A) is the most abundant nucleotide modification on mRNA. However, whether elevated expression of LIMK1 leads to chemoresistance due to m6A modification remains to be further studied. The findings of our study indicate that high LIMK1 expression in colorectal cancer (CRC) cells promotes cell proliferation and increases resistance to 5-fluorouracil (5-FU). Moreover, downregulation of YTH domain-containing 2 (YTHDC2), an m6A "reader", in CRC cells resulted in decreased recognition and binding to the m6A site "GGACA" in LIMK1 mRNA, thereby increasing LIMK1 mRNA stability and expression. Furthermore, the overexpression of LIMK1 facilitated eIF2α phosphorylation, which induced endoplasmic reticulum (ER) stress and promoted stress granule (SG) formation, ultimately leading to 5-FU resistance. This study evaluated the specificity of the YTHDC2/LIMK1/eIF2α signalling axis and the efficacy of related drugs in modulating 5-FU sensitivity in CRC.
Collapse
Affiliation(s)
- Lu Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kangyue Sun
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjie Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bing Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changjie Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junsheng Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinke Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Gastroenterology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| | - Yue Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Acosta CH, Clemons GA, Citadin CT, Carr WC, Udo MSB, Tesic V, Sanicola HW, Freelin AH, Toms JB, Jordan JD, Guthikonda B, Rodgers KM, Wu CYC, Lee RHC, Lin HW. PRMT7 can prevent neurovascular uncoupling, blood-brain barrier permeability, and mitochondrial dysfunction in repetitive and mild traumatic brain injury. Exp Neurol 2023; 366:114445. [PMID: 37196697 PMCID: PMC10960645 DOI: 10.1016/j.expneurol.2023.114445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Mild traumatic brain injury (TBI) comprises the largest percentage of TBI-related injuries, with pathophysiological and functional deficits that persist in a subset of TBI patients. In our three-hit paradigm of repetitive and mild traumatic brain injury (rmTBI), we observed neurovascular uncoupling via decreased red blood cell velocity, microvessel diameter, and leukocyte rolling velocity 3 days post-rmTBI via intra-vital two-photon laser scanning microscopy. Furthermore, our data suggest increased blood-brain barrier (BBB) permeability (leakage), with corresponding decrease in junctional protein expression post-rmTBI. Mitochondrial oxygen consumption rates (measured via Seahorse XFe24) were also altered 3 days post-rmTBI, along with disrupted mitochondrial dynamics of fission and fusion. Overall, these pathophysiological findings correlated with decreased protein arginine methyltransferase 7 (PRMT7) protein levels and activity post-rmTBI. Here, we increased PRMT7 levels in vivo to assess the role of the neurovasculature and mitochondria post-rmTBI. In vivo overexpression of PRMT7 using a neuronal specific AAV vector led to restoration of neurovascular coupling, prevented BBB leakage, and promoted mitochondrial respiration, altogether to suggest a protective and functional role of PRMT7 in rmTBI.
Collapse
Affiliation(s)
- Christina H Acosta
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Garrett A Clemons
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Cristiane T Citadin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - William C Carr
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Mariana Sayuri Berto Udo
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Vesna Tesic
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Henry W Sanicola
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America; Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Anne H Freelin
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Jamie B Toms
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - J Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Bharat Guthikonda
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Krista M Rodgers
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Hung Wen Lin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America; Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America.
| |
Collapse
|
10
|
Bondoc TJ, Lowe TL, Clarke SG. The exquisite specificity of human protein arginine methyltransferase 7 (PRMT7) toward Arg-X-Arg sites. PLoS One 2023; 18:e0285812. [PMID: 37216364 DOI: 10.1371/journal.pone.0285812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
Mammalian protein arginine methyltransferase 7 (PRMT7) has been shown to target substrates with motifs containing two arginine residues separated by one other residue (RXR motifs). In particular, the repression domain of human histone H2B (29-RKRSR-33) has been a key substrate in determining PRMT7 activity. We show that incubating human PRMT7 and [3H]-AdoMet with full-length Xenopus laevis histone H2B, containing the substitutions K30R and R31K (RKRSR to RRKSR), results in greatly reduced methylation activity. Using synthetic peptides, we have now focused on the enzymology behind this specificity. We show for the human and Xenopus peptide sequences 23-37 the difference in activity results from changes in the Vmax rather than the apparent binding affinity of the enzyme for the substrates. We then characterized six additional peptides containing a single arginine or a pair of arginine residues flanked by glycine and lysine residues. We have corroborated previous findings that peptides with an RXR motif have much higher activity than peptides that contain only one Arg residue. We show that these peptides have similar apparent km values but significant differences in their Vmax values. Finally, we have examined the effect of ionic strength on these peptides. We found the inclusion of salt had little effect on the Vmax value but a considerable increase in the apparent km value, suggesting that the inhibitory effect of ionic strength on PRMT7 activity occurs largely by decreasing apparent substrate-enzyme binding affinity. In summary, we find that even subtle substitutions in the RXR recognition motif can dramatically affect PRMT7 catalysis.
Collapse
Affiliation(s)
- Timothy J Bondoc
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Troy L Lowe
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
11
|
Dane TL, Gill AL, Vieira FG, Denton KR. Reduced C9orf72 expression exacerbates polyGR toxicity in patient iPSC-derived motor neurons and a Type I protein arginine methyltransferase inhibitor reduces that toxicity. Front Cell Neurosci 2023; 17:1134090. [PMID: 37138766 PMCID: PMC10149854 DOI: 10.3389/fncel.2023.1134090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Intronic repeat expansions in the C9orf72 gene are the most frequent known single genetic causes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These repeat expansions are believed to result in both loss-of-function and toxic gain-of-function. Gain-of-function results in the production of toxic arginine-rich dipeptide repeat proteins (DPRs), namely polyGR and polyPR. Small-molecule inhibition of Type I protein arginine methyltransferases (PRMTs) has been shown to protect against toxicity resulting from polyGR and polyPR challenge in NSC-34 cells and primary mouse-derived spinal neurons, but the effect in human motor neurons (MNs) has not yet been explored. Methods To study this, we generated a panel of C9orf72 homozygous and hemizygous knockout iPSCs to examine the contribution of C9orf72 loss-of-function toward disease pathogenesis. We differentiated these iPSCs into spinal motor neurons (sMNs). Results We found that reduced levels of C9orf72 exacerbate polyGR15 toxicity in a dose-dependent manner. Type I PRMT inhibition was able to partially rescue polyGR15 toxicity in both wild-type and C9orf72-expanded sMNs. Discussion This study explores the interplay of loss-of-function and gain-of-function toxicity in C9orf72 ALS. It also implicates type I PRMT inhibitors as a possible modulator of polyGR toxicity.
Collapse
|
12
|
Grypari IM, Pappa I, Papastergiou T, Zolota V, Bravou V, Melachrinou M, Megalooikonomou V, Tzelepi V. Elucidating the role of PRMTs in prostate cancer using open access databases and a patient cohort dataset. Histol Histopathol 2023; 38:287-302. [PMID: 36082942 DOI: 10.14670/hh-18-513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Protein arginine methylation is an understudied epigenetic mechanism catalyzed by enzymes known as Protein Methyltransferases of Arginine (PRMTs), while the opposite reaction is performed by Jumonji domain- containing protein 6 (JMJD6). There is increasing evidence that PRMTs are deregulated in prostate cancer (PCa). In this study, the expression of two PRMT members, PRMT2 and PRMT7 as well as JMJD6, a demethylase, was analyzed in PCa. Initially, we retrieved data from The Cancer Genome Atlas (TCGA) project and the Gene Expression Omnibus (GEO) database to explore the differential expression of various PRMT family members in patients with PCa and then applied immunohistochemistry in a patient cohort across the spectrum of PCa, including non-neoplastic prostate tissue and lymph node metastatic foci. The results from the TCGA analysis revealed that PRMT7, PRMT6 and PRMT3 expression increased while PRMT2, PRMT9 and JMJD6 levels decreased in the tumor compared to non-neoplastic prostate. Results from the GEO datasets were similar, albeit not identical with the TCGA results, with PRMT7 and PRMT3 being upregulated and PRMT2 and JMJD6 being downregulated in the tumor compared to non-neoplastic tissue in some of them. In addition, PRMT7 levels decreased with stage and grade progression in the TCGA analysis. In the patient cohort, both PRMTs and JMJD6 were overexpressed in PCa compared to non-neoplastic tissue, and nuclear PRMT2 and JMJD6 were upregulated in lymph node metastasis, too. PRMT7 and JMJD6 expression were upregulated with the progression of stage and JMJD6 was also increased with the elevation of grade. After androgen ablation therapy, nuclear expression of PRMT7 and JMJD6 were elevated compared to untreated tumors. PRMT2, PRMT7 and JMD6 were also correlated with markers of EMT and cell cycle regulators. Finally, our findings indicate that PRMTs and JMJD6 are involved in prostate cancer progression and revealed a potential interplay of PRMTs with EMT mediators, underscoring the need for therapeutic targeting of arginine methylation in prostate cancer.
Collapse
Affiliation(s)
- Ioanna Maria Grypari
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Ioanna Pappa
- Multidimensional Data Analysis and Knowledge Management Laboratory, Computer Engineering and Informatics Department, School of Engineering, University of Patras, Patras, Greece
| | - Thomas Papastergiou
- Multidimensional Data Analysis and Knowledge Management Laboratory, Computer Engineering and Informatics Department, School of Engineering, University of Patras, Patras, Greece
| | - Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Bravou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Maria Melachrinou
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Vasileios Megalooikonomou
- Multidimensional Data Analysis and Knowledge Management Laboratory, Computer Engineering and Informatics Department, School of Engineering, University of Patras, Patras, Greece
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece.
| |
Collapse
|
13
|
Brown JI, Alibhai J, Zhu E, Frankel A. Methylarginine efflux in nutrient-deprived yeast mitigates disruption of nitric oxide synthesis. Amino Acids 2023; 55:215-233. [PMID: 36454288 DOI: 10.1007/s00726-022-03220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
Protein arginine N-methyltransferases (PRMTs) have emerged as important actors in the eukaryotic stress response with implications in human disease, aging, and cell signaling. Intracellular free methylarginines contribute to cellular stress through their interaction with nitric oxide synthase (NOS). The arginine-dependent production of nitric oxide (NO), which is strongly inhibited by methylarginines, serves as a protective small molecule against oxidative stress in eukaryotic cells. NO signaling is highly conserved between higher and lower eukaryotes, although a canonical NOS homologue has yet to be identified in yeast. Since stress signaling pathways are well conserved among eukaryotes, yeast is an ideal model organism to study the implications of PRMTs and methylarginines during stress. We sought to explore the roles and fates of methylarginines in Saccharomyces cerevisiae. We starved methyltransferase-, autophagy-, and permease-related yeast knockouts by incubating them in water and monitored methylarginine production. We found that under starvation, methylarginines are expelled from yeast cells. We found that autophagy-deficient cells have an impaired ability to efflux methylarginines, which suggests that methylarginine-containing proteins are degraded via autophagy. For the first time, we determine that yeast take up methylarginines less readily than arginine, and we show that methylarginines impact yeast NO production. This study reveals that yeast circumvent a potential methylarginine toxicity by expelling them after autophagic degradation of arginine-modified proteins.
Collapse
Affiliation(s)
- Jennifer I Brown
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Jenah Alibhai
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Erica Zhu
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
14
|
Jeong A, Cho Y, Cho M, Bae GU, Song DG, Kim SN, Kim YK. PRMT7 Inhibitor SGC8158 Enhances Doxorubicin-Induced DNA Damage and Its Cytotoxicity. Int J Mol Sci 2022; 23:ijms232012323. [PMID: 36293180 PMCID: PMC9604017 DOI: 10.3390/ijms232012323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Protein arginine methyltransferase 7 (PRMT7) regulates various cellular responses, including gene expression, cell migration, stress responses, and stemness. In this study, we investigated the biological role of PRMT7 in cell cycle progression and DNA damage response (DDR) by inhibiting PRMT7 activity with either SGC8158 treatment or its specific siRNA transfection. Suppression of PRMT7 caused cell cycle arrest at the G1 phase, resulting from the stabilization and subsequent accumulation of p21 protein. In addition, PRMT7 activity is closely associated with DNA repair pathways, including both homologous recombination and non-homologous end-joining. Interestingly, SGC8158, in combination with doxorubicin, led to a synergistic increase in both DNA damage and cytotoxicity in MCF7 cells. Taken together, our data demonstrate that PRMT7 is a critical modulator of cell growth and DDR, indicating that it is a promising target for cancer treatment.
Collapse
Affiliation(s)
- Ahyeon Jeong
- Muscle Physiome Research Center and Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yena Cho
- Muscle Physiome Research Center and Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea
| | - Minkyeong Cho
- Muscle Physiome Research Center and Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea
| | - Gyu-Un Bae
- Muscle Physiome Research Center and Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea
| | - Dae-Geun Song
- Natural Products Research Institute, KIST Gangneung, Gangneung 25451, Korea
| | - Su-Nam Kim
- Natural Products Research Institute, KIST Gangneung, Gangneung 25451, Korea
- Division of Bio-Medical Science and Technology, University of Science and Technology KIST School, Seoul 02792, Korea
- Correspondence: (S.-N.K.); (Y.K.K.); Tel.: +82-33-650-3503 (S.-N.K.); +82-2-2077-7688 (Y.K.K.)
| | - Yong Kee Kim
- Muscle Physiome Research Center and Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (S.-N.K.); (Y.K.K.); Tel.: +82-33-650-3503 (S.-N.K.); +82-2-2077-7688 (Y.K.K.)
| |
Collapse
|
15
|
Brobbey C, Liu L, Yin S, Gan W. The Role of Protein Arginine Methyltransferases in DNA Damage Response. Int J Mol Sci 2022; 23:ijms23179780. [PMID: 36077176 PMCID: PMC9456308 DOI: 10.3390/ijms23179780] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
In response to DNA damage, cells have developed a sophisticated signaling pathway, consisting of DNA damage sensors, transducers, and effectors, to ensure efficient and proper repair of damaged DNA. During this process, posttranslational modifications (PTMs) are central events that modulate the recruitment, dissociation, and activation of DNA repair proteins at damage sites. Emerging evidence reveals that protein arginine methylation is one of the common PTMs and plays critical roles in DNA damage response. Protein arginine methyltransferases (PRMTs) either directly methylate DNA repair proteins or deposit methylation marks on histones to regulate their transcription, RNA splicing, protein stability, interaction with partners, enzymatic activities, and localization. In this review, we summarize the substrates and roles of each PRMTs in DNA damage response and discuss the synergistic anticancer effects of PRMTs and DNA damage pathway inhibitors, providing insight into the significance of arginine methylation in the maintenance of genome integrity and cancer therapies.
Collapse
|
16
|
Human Protein Arginine Methyltransferases (PRMTs) Can Be Optimally Active Under Non-Physiological Conditions. J Biol Chem 2022; 298:102290. [PMID: 35868559 PMCID: PMC9418908 DOI: 10.1016/j.jbc.2022.102290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/05/2022] Open
Abstract
Protein arginine methylation is involved in many biological processes and can be enhanced in cancer. In mammals, these reactions are catalyzed on multiple substrates by a family of nine protein arginine methyltransferases (PRMTs). However, conditions that may regulate the activity of each enzyme and that may help us understand the physiological role of PRMTs have not been fully established. Previous studies had suggested unexpected effects of temperature and ionic strength on PRMT7 activity. Here we examine in detail the effects of temperature, pH, and ionic strength on recombinant human PRMT1, PRMT5, and PRMT7. We confirmed the unusual temperature dependence of PRMT7, where optimal activity was observed at 15 °C. On the other hand, we found that PRMT1 and PRMT5 are most active near physiological temperatures of 37 °C. However, we showed all three enzymes still have significant activity at 0 °C. Furthermore, we determined that PRMT1 is most active at a pH of about 7.7, while PRMT5 activity is not dependent on pH in the range of 6.5 to 8.5. Significantly, PRMT7 is most active at an alkaline pH of 8.5 but shows little activity at the physiological intracellular pH of about 7.2. We also detected decreased activity at physiological salt conditions for PRMT1, PRMT5, and PRMT7. We demonstrate that the loss of activity is due to the increasing ionic strength. Taken together, these results open the possibility that PRMTs respond in cells undergoing temperature, salt, or pH stress and demonstrate the potential for in vivo regulation of protein arginine methylation.
Collapse
|
17
|
PRMT7 ablation stimulates anti-tumor immunity and sensitizes melanoma to immune checkpoint blockade. Cell Rep 2022; 38:110582. [PMID: 35354055 PMCID: PMC9838175 DOI: 10.1016/j.celrep.2022.110582] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/08/2022] [Accepted: 03/07/2022] [Indexed: 01/17/2023] Open
Abstract
Despite the success of immune checkpoint inhibitor (ICI) therapy for cancer, resistance and relapse are frequent. Combination therapies are expected to enhance response rates and overcome this resistance. Herein, we report that combining PRMT7 inhibition with ICI therapy induces a strong anti-tumor T cell immunity and restrains tumor growth in vivo by increasing immune cell infiltration. PRMT7-deficient B16.F10 melanoma exhibits increased expression of genes in the interferon pathway, antigen presentation, and chemokine signaling. PRMT7 deficiency or inhibition with SGC3027 in B16.F10 melanoma results in reduced DNMT expression, loss of DNA methylation in the regulatory regions of endogenous retroviral elements (ERVs) causing their increased expression. PRMT7-deficient cells increase RIG-I and MDA5 expression with a reduction in the H4R3me2s repressive histone mark at their gene promoters. Our findings identify PRMT7 as a regulatory checkpoint for RIG-I, MDA5, and their ERV-double-stranded RNA (dsRNA) ligands, facilitating immune escape and anti-tumor T cell immunity to restrain tumor growth.
Collapse
|
18
|
Shen T, Ni T, Chen J, Chen H, Ma X, Cao G, Wu T, Xie H, Zhou B, Wei G, Saiyin H, Shen S, Yu P, Xiao Q, Liu H, Gao Y, Long X, Yin J, Guo Y, Wu J, Wei GH, Hou J, Jiang DK. An enhancer variant at 16q22.1 predisposes to hepatocellular carcinoma via regulating PRMT7 expression. Nat Commun 2022; 13:1232. [PMID: 35264579 PMCID: PMC8907293 DOI: 10.1038/s41467-022-28861-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
Most cancer causal variants are found in gene regulatory elements, e.g., enhancers. However, enhancer variants predisposing to hepatocellular carcinoma (HCC) remain unreported. Here we conduct a genome-wide survey of HCC-susceptible enhancer variants through a three-stage association study in 11,958 individuals and identify rs73613962 (T > G) within the intronic region of PRMT7 at 16q22.1 as a susceptibility locus of HCC (OR = 1.41, P = 6.02 × 10-10). An enhancer dual-luciferase assay indicates that the rs73613962-harboring region has allele-specific enhancer activity. CRISPR-Cas9/dCas9 experiments further support the enhancer activity of this region to regulate PRMT7 expression. Mechanistically, transcription factor HNF4A binds to this enhancer region, with preference to the risk allele G, to promote PRMT7 expression. PRMT7 upregulation contributes to in vitro, in vivo, and clinical HCC-associated phenotypes, possibly by affecting the p53 signaling pathway. This concept of HCC pathogenesis may open a promising window for HCC prevention/treatment.
Collapse
Affiliation(s)
- Ting Shen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- School of Life Sciences, Central South University, 510006, Changsha, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Jiaxuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Haitao Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- School of Public Health (Shenzhen), Sun Yat-sen University, 528406, Shenzhen, China
| | - Xiaopin Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Naval Medical University, 200433, Shanghai, China
| | - Tianzhi Wu
- Institute of Bioinformatics, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Haisheng Xie
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Suqin Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Peng Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Qianyi Xiao
- School of Public Health, Fudan University, 200032, Shanghai, China
| | - Hui Liu
- School of Basic Medical Sciences; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Guangzhou Medical University, 510182, Guangzhou, China
| | - Yuzheng Gao
- Department of Forensic Medicine, Medical College of Soochow University, 215123, Suzhou, Jiangsu Province, China
| | - Xidai Long
- Department of Pathology, Youjiang Medical College for Nationalities, 533000, Baise, Guangxi Province, China
| | - Jianhua Yin
- Department of Epidemiology, Naval Medical University, 200433, Shanghai, China
| | - Yanfang Guo
- Institute of Bioinformatics, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Gong-Hong Wei
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
- School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - De-Ke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
19
|
Xu J, Richard S. Cellular pathways influenced by protein arginine methylation: Implications for cancer. Mol Cell 2021; 81:4357-4368. [PMID: 34619091 PMCID: PMC8571027 DOI: 10.1016/j.molcel.2021.09.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Arginine methylation is an influential post-translational modification occurring on histones, RNA binding proteins, and many other cellular proteins, affecting their function by altering their protein-protein and protein-nucleic acid interactions. Recently, a wealth of information has been gathered, implicating protein arginine methyltransferases (PRMTs), enzymes that deposit arginine methylation, in transcription, pre-mRNA splicing, DNA damage signaling, and immune signaling with major implications for cancer therapy, especially immunotherapy. This review summarizes this recent progress and the current state of PRMT inhibitors, some in clinical trials, as promising drug targets for cancer.
Collapse
Affiliation(s)
- Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, and Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, Gerald Bronfman Department of Oncology, and Departments of Medicine, Human Genetics, and Biochemistry, McGill University, Montréal, QC H3T 1E2, Canada.
| |
Collapse
|
20
|
PRMT7: A Pivotal Arginine Methyltransferase in Stem Cells and Development. Stem Cells Int 2021; 2021:6241600. [PMID: 34712331 PMCID: PMC8548130 DOI: 10.1155/2021/6241600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Protein arginine methylation is a posttranslational modification catalyzed by protein arginine methyltransferases (PRMTs), which play critical roles in many biological processes. To date, nine PRMT family members, namely, PRMT1, 2, 3, 4, 5, 6, 7, 8, and 9, have been identified in mammals. Among them, PRMT7 is a type III PRMT that can only catalyze the formation of monomethylarginine and plays pivotal roles in several kinds of stem cells. It has been reported that PRMT7 is closely associated with embryonic stem cells, induced pluripotent stem cells, muscle stem cells, and human cancer stem cells. PRMT7 deficiency or mutation led to severe developmental delay in mice and humans, which is possibly due to its crucial functions in stem cells. Here, we surveyed and summarized the studies on PRMT7 in stem cells and development in mice and humans and herein provide a discussion of the underlying molecular mechanisms. Furthermore, we also discuss the roles of PRMT7 in cancer, adipogenesis, male reproduction, cellular stress, and cellular senescence, as well as the future perspectives of PRMT7-related studies. Overall, PRMT7 mediates the proliferation and differentiation of stem cells. Deficiency or mutation of PRMT7 causes developmental delay, including defects in skeletal muscle, bone, adipose tissues, neuron, and male reproduction. A better understanding of the roles of PRMT7 in stem cells and development as well as the underlying mechanisms will provide information for the development of strategies for in-depth research of PRMT7 and stem cells as well as their applications in life sciences and medicine.
Collapse
|
21
|
Asadi MR, Rahmanpour D, Moslehian MS, Sabaie H, Hassani M, Ghafouri-Fard S, Taheri M, Rezazadeh M. Stress Granules Involved in Formation, Progression and Metastasis of Cancer: A Scoping Review. Front Cell Dev Biol 2021; 9:745394. [PMID: 34604242 PMCID: PMC8485071 DOI: 10.3389/fcell.2021.745394] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
The assembly of stress granules (SGs) is a well-known cellular strategy for reducing stress-related damage and promoting cell survival. SGs have become important players in human health, in addition to their fundamental role in the stress response. The critical role of SGs in cancer cells in formation, progression, and metastasis makes sense. Recent researchers have found that several SG components play a role in tumorigenesis and cancer metastasis via tumor-associated signaling pathways and other mechanisms. Gene-ontology analysis revealed the role of these protein components in the structure of SGs. Involvement in the translation process, regulation of mRNA stability, and action in both the cytoplasm and nucleus are among the main features of SG proteins. The present scoping review aimed to consider all studies on the effect of SGs on cancer formation, proliferation, and metastasis and performed based on a six-stage methodology structure and the PRISMA guideline. A systematic search of seven databases for qualified articles was conducted before July 2021. Publications were screened, and quantitative and qualitative analysis was performed on the extracted data. Go analysis was performed on seventy-one SGs protein components. Remarkably G3BP1, TIA1, TIAR, and YB1 have the largest share among the proteins considered in the studies. Altogether, this scoping review tries to demonstrate and provide a comprehensive summary of the role of SGs in the formation, progression, and metastasis of cancer by reviewing all studies.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dara Rahmanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Hassani
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Halabelian L, Barsyte-Lovejoy D. Structure and Function of Protein Arginine Methyltransferase PRMT7. Life (Basel) 2021; 11:768. [PMID: 34440512 PMCID: PMC8399567 DOI: 10.3390/life11080768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 01/06/2023] Open
Abstract
PRMT7 is a member of the protein arginine methyltransferase (PRMT) family, which methylates a diverse set of substrates. Arginine methylation as a posttranslational modification regulates protein-protein and protein-nucleic acid interactions, and as such, has been implicated in various biological functions. PRMT7 is a unique, evolutionarily conserved PRMT family member that catalyzes the mono-methylation of arginine. The structural features, functional aspects, and compounds that inhibit PRMT7 are discussed here. Several studies have identified physiological substrates of PRMT7 and investigated the substrate methylation outcomes which link PRMT7 activity to the stress response and RNA biology. PRMT7-driven substrate methylation further leads to the biological outcomes of gene expression regulation, cell stemness, stress response, and cancer-associated phenotypes such as cell migration. Furthermore, organismal level phenotypes of PRMT7 deficiency have uncovered roles in muscle cell physiology, B cell biology, immunity, and brain function. This rapidly growing information on PRMT7 function indicates the critical nature of context-dependent functions of PRMT7 and necessitates further investigation of the PRMT7 interaction partners and factors that control PRMT7 expression and levels. Thus, PRMT7 is an important cellular regulator of arginine methylation in health and disease.
Collapse
Affiliation(s)
- Levon Halabelian
- Structural Genomics Consortium, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
23
|
Protein Arginine Methyltransferase (PRMT) Inhibitors-AMI-1 and SAH Are Effective in Attenuating Rhabdomyosarcoma Growth and Proliferation in Cell Cultures. Int J Mol Sci 2021; 22:ijms22158023. [PMID: 34360791 PMCID: PMC8348967 DOI: 10.3390/ijms22158023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a malignant soft tissue cancer that develops mostly in children and young adults. With regard to histopathology, four rhabdomyosarcoma types are distinguishable: embryonal, alveolar, pleomorphic and spindle/sclerosing. Currently, increased amounts of evidence indicate that not only gene mutations, but also epigenetic modifications may be involved in the development of RMS. Epigenomic changes regulate the chromatin architecture and affect the interaction between DNA strands, histones and chromatin binding proteins, thus, are able to control gene expression. The main aim of the study was to assess the role of protein arginine methyltransferases (PRMT) in the cellular biology of rhabdomyosarcoma. In the study we used two pan-inhibitors of PRMT, called AMI-1 and SAH, and evaluated their effects on proliferation and apoptosis of RMS cells. We observed that AMI-1 and SAH reduce the invasive phenotype of rhabdomyosarcoma cells by decreasing their proliferation rate, cell viability and ability to form cell colonies. In addition, microarray analysis revealed that these inhibitors attenuate the activity of the PI3K-Akt signaling pathway and affect expression of genes related to it.
Collapse
|
24
|
Zhang W, Li S, Li K, Li LI, Yin P, Tong G. The role of protein arginine methyltransferase 7 in human developmentally arrested embryos cultured in vitro. Acta Biochim Biophys Sin (Shanghai) 2021; 53:925-932. [PMID: 34041522 DOI: 10.1093/abbs/gmab068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
Human embryos of in vitro fertilization (IVF) are often susceptible to developmental arrest, which greatly reduces the efficiency of IVF treatment. In recent years, it has been found that protein arginine methyltransferase 7 (PRMT7) plays an important role in the process of early embryonic development. However, not much is known about the relationship between PRMT7 and developmentally arrested embryos. The role of PRMT7 in developmentally arrested embryos was thus investigated in this study. Discarded human embryos from IVF were collected for experimental materials. Quantitative real-time polymerase chain reaction (qRT-PCR) and confocal analyses were used to identify PRMT7 mRNA and protein levels in early embryos at different developmental stages, as well as changes in the methylation levels of H4R3me2s. Additionally, PRMT7 was knocked down in the developmentally arrested embryos to observe the further development of these embryos. Our results demonstrated that PRMT7 mRNA and protein levels in arrested embryos were significantly increased compared with those in control embryos; meanwhile, the methylation levels of H4R3me2s in arrested embryos were also increased significantly. Knockdown of PRMT7 could rescue partially developmentally arrested embryos, and even individual developmentally arrested embryos could develop into blastocysts. In conclusion, over-expression of PRMT7 disrupts the early embryo development process, leading to early embryos developmental arrest, but these developmentally arrested defects could be partially rescued by knockdown of the PRMT7 protein.
Collapse
Affiliation(s)
- Wuwen Zhang
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shifeng Li
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kai Li
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - L i Li
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Yin
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guoqing Tong
- Reproductive Medicine Center, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
25
|
Hwang JW, Cho Y, Bae GU, Kim SN, Kim YK. Protein arginine methyltransferases: promising targets for cancer therapy. Exp Mol Med 2021; 53:788-808. [PMID: 34006904 PMCID: PMC8178397 DOI: 10.1038/s12276-021-00613-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Protein methylation, a post-translational modification (PTM), is observed in a wide variety of cell types from prokaryotes to eukaryotes. With recent and rapid advancements in epigenetic research, the importance of protein methylation has been highlighted. The methylation of histone proteins that contributes to the epigenetic histone code is not only dynamic but is also finely controlled by histone methyltransferases and demethylases, which are essential for the transcriptional regulation of genes. In addition, many nonhistone proteins are methylated, and these modifications govern a variety of cellular functions, including RNA processing, translation, signal transduction, DNA damage response, and the cell cycle. Recently, the importance of protein arginine methylation, especially in cell cycle regulation and DNA repair processes, has been noted. Since the dysregulation of protein arginine methylation is closely associated with cancer development, protein arginine methyltransferases (PRMTs) have garnered significant interest as novel targets for anticancer drug development. Indeed, several PRMT inhibitors are in phase 1/2 clinical trials. In this review, we discuss the biological functions of PRMTs in cancer and the current development status of PRMT inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Jee Won Hwang
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Yena Cho
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Gyu-Un Bae
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Su-Nam Kim
- grid.35541.360000000121053345Natural Product Research Institute, Korea Institute of Science and Technology, Gangneung, 25451 Republic of Korea
| | - Yong Kee Kim
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| |
Collapse
|
26
|
Janisiak J, Kopytko P, Tarnowski M. Dysregulation of protein argininemethyltransferase in the pathogenesis of cancerpy. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arginine methylation is considered to be one of the most permanent and one of the most frequent post-translational modifications. The reaction of transferring a methyl group from S-adenosylmethionine to arginine residue is catalyzed by aginine methyltransferase (PRMT). In humans there are nine members of the PRMT family, named in order of discovery of PRMT1- PRMT9. Arginine methyltransferases were divided into three classes: I, II, III, with regard to the product of the catalyzed reaction. The products of their activity are, respectively, the following: asymmetric dimethylarginine (ADMA), symmetrical dimethylarginine (SDMA) and monomethylarginine (MMA). These modifications significantly affect the chromatin functions; therefore, they can act as co-activators or suppressors of the transcription process. Arginine methylation plays a crucial role in many biological processes in a human organism. Among others, it participates in signal transduction control, mRNA splicing and the regulation of basic cellular processes such as proliferation, differentiation, migration and apoptosis. There is increasing evidence that dysregulation of PRMT levels may lead to the cancer transformation of cells. The correlation between increased PRMT level and cancer has been demonstrated in the following: breast, ovary, lung and colorectal cancer. The activity of arginine methyltransferase can be regulated by small molecule PRMT inhibitors. To date, three substances that inhibit PRMT activity have been evaluated in clinical trials and exhibit anti-tumor activity against hematological cancer. It is believed that the use of specific PRMT inhibitors may become a new, effective and safe treatment of oncological diseases.
Collapse
Affiliation(s)
- Joanna Janisiak
- Katedra i Zakład Fizjologii, Pomorski Uniwersytet Medyczny w Szczecinie
| | - Patrycja Kopytko
- Katedra i Zakład Fizjologii, Pomorski Uniwersytet Medyczny w Szczecinie
| | - Maciej Tarnowski
- Katedra i Zakład Fizjologii, Pomorski Uniwersytet Medyczny w Szczecinie
| |
Collapse
|
27
|
Li WJ, He YH, Yang JJ, Hu GS, Lin YA, Ran T, Peng BL, Xie BL, Huang MF, Gao X, Huang HH, Zhu HH, Ye F, Liu W. Profiling PRMT methylome reveals roles of hnRNPA1 arginine methylation in RNA splicing and cell growth. Nat Commun 2021; 12:1946. [PMID: 33782401 PMCID: PMC8007824 DOI: 10.1038/s41467-021-21963-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/12/2021] [Indexed: 02/05/2023] Open
Abstract
Numerous substrates have been identified for Type I and II arginine methyltransferases (PRMTs). However, the full substrate spectrum of the only type III PRMT, PRMT7, and its connection to type I and II PRMT substrates remains unknown. Here, we use mass spectrometry to reveal features of PRMT7-regulated methylation. We find that PRMT7 predominantly methylates a glycine and arginine motif; multiple PRMT7-regulated arginine methylation sites are close to phosphorylations sites; methylation sites and proximal sequences are vulnerable to cancer mutations; and methylation is enriched in proteins associated with spliceosome and RNA-related pathways. We show that PRMT4/5/7-mediated arginine methylation regulates hnRNPA1 binding to RNA and several alternative splicing events. In breast, colorectal and prostate cancer cells, PRMT4/5/7 are upregulated and associated with high levels of hnRNPA1 arginine methylation and aberrant alternative splicing. Pharmacological inhibition of PRMT4/5/7 suppresses cancer cell growth and their co-inhibition shows synergistic effects, suggesting them as targets for cancer therapy. Arginine methyltransferases (PRMTs) are involved in the regulation of various physiological and pathological conditions. Using proteomics, the authors here profile the methylation substrates of PRMTs 4, 5 and 7 and characterize the roles of these enzymes in cancer-associated splicing regulation.
Collapse
Affiliation(s)
- Wen-Juan Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yao-Hui He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jing-Jing Yang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yi-An Lin
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ting Ran
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bing-Ling Peng
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bing-Lan Xie
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ming-Feng Huang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiang Gao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hai-Hua Huang
- Department of Pathology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Helen He Zhu
- Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Ye
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Fujian, China
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China. .,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China. .,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
28
|
Gill AL, Premasiri AS, Vieira FG. Hypothesis and Theory: Roles of Arginine Methylation in C9orf72-Mediated ALS and FTD. Front Cell Neurosci 2021; 15:633668. [PMID: 33833668 PMCID: PMC8021787 DOI: 10.3389/fncel.2021.633668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Hexanucleotide repeat expansion (G4C2n) mutations in the gene C9ORF72 account for approximately 30% of familial cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), as well as approximately 7% of sporadic cases of ALS. G4C2n mutations are known to result in the production of five species of dipeptide repeat proteins (DRPs) through non-canonical translation processes. Arginine-enriched dipeptide repeat proteins, glycine-arginine (polyGR), and proline-arginine (polyPR) have been demonstrated to be cytotoxic and deleterious in multiple experimental systems. Recently, we and others have implicated methylation of polyGR/polyPR arginine residues in disease processes related to G4C2n mutation-mediated neurodegeneration. We previously reported that inhibition of asymmetric dimethylation (ADMe) of arginine residues is protective in cell-based models of polyGR/polyPR cytotoxicity. These results are consistent with the idea that PRMT-mediated arginine methylation in the context of polyGR/polyPR exposure is harmful. However, it remains unclear why. Here we discuss the influence of arginine methylation on diverse cellular processes including liquid-liquid phase separation, chromatin remodeling, transcription, RNA processing, and RNA-binding protein localization, and we consider how methylation of polyGR/polyPR may disrupt processes essential for normal cellular function and survival.
Collapse
Affiliation(s)
- Anna L Gill
- ALS Therapy Development Institute, Cambridge, MA, United States
| | | | | |
Collapse
|
29
|
Liu Y, Li L, Liu X, Wang Y, Liu L, Peng L, Liu J, Zhang L, Wang G, Li H, Liu DX, Huang B, Lu J, Zhang Y. Arginine methylation of SHANK2 by PRMT7 promotes human breast cancer metastasis through activating endosomal FAK signalling. eLife 2020; 9:57617. [PMID: 32844749 PMCID: PMC7494359 DOI: 10.7554/elife.57617] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Arginine methyltransferase PRMT7 is associated with human breast cancer metastasis. Endosomal FAK signalling is critical for cancer cell migration. Here we identified the pivotal roles of PRMT7 in promoting endosomal FAK signalling activation during breast cancer metastasis. PRMT7 exerted its functions through binding to scaffold protein SHANK2 and catalyzing di-methylation of SHANK2 at R240. SHANK2 R240 methylation exposed ANK domain by disrupting its SPN-ANK domain blockade, promoting in co-accumulation of dynamin2, talin, FAK, cortactin with SHANK2 on endosomes. In addition, SHANK2 R240 methylation activated endosomal FAK/cortactin signals in vitro and in vivo. Consistently, all the levels of PRMT7, methylated SHANK2, FAK Y397 phosphorylation and cortactin Y421 phosphorylation were correlated with aggressive clinical breast cancer tissues. These findings characterize the PRMT7-dependent SHANK2 methylation as a key player in mediating endosomal FAK signals activation, also point to the value of SHANK2 R240 methylation as a target for breast cancer metastasis.
Collapse
Affiliation(s)
- Yingqi Liu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Lingling Li
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiaoqing Liu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lingxia Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lu Peng
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jiayuan Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lian Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Guannan Wang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Baiqu Huang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yu Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
30
|
The role of protein arginine methyltransferases in kidney diseases. Clin Sci (Lond) 2020; 134:2037-2051. [PMID: 32766778 DOI: 10.1042/cs20200680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Abstract
The methylation of arginine residues by protein arginine methyltransferases (PRMTs) is a crucial post-translational modification for many biological processes, including DNA repair, RNA processing, and transduction of intra- and extracellular signaling. Previous studies have reported that PRMTs are extensively involved in various pathologic states, including cancer, inflammation, and oxidative stress reaction. However, the role of PRMTs has not been well described in kidney diseases. Recent studies have shown that aberrant function of PRMTs and its metabolic products-symmetric dimethylarginine (SDMA) and asymmetric dimethylarginine (ADMA)-are involved in several renal pathological processes, including renal fibrosis, acute kidney injury (AKI), diabetic nephropathy (DN), hypertension, graft rejection and renal tumors. We aim in this review to elucidate the possible roles of PRMTs in normal renal function and various kidney diseases.
Collapse
|
31
|
Pharmacological inhibition of PRMT7 links arginine monomethylation to the cellular stress response. Nat Commun 2020; 11:2396. [PMID: 32409666 PMCID: PMC7224190 DOI: 10.1038/s41467-020-16271-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) regulate diverse biological processes and are increasingly being recognized for their potential as drug targets. Here we report the discovery of a potent, selective, and cell-active chemical probe for PRMT7. SGC3027 is a cell permeable prodrug, which in cells is converted to SGC8158, a potent, SAM-competitive PRMT7 inhibitor. Inhibition or knockout of cellular PRMT7 results in drastically reduced levels of arginine monomethylated HSP70 family stress-associated proteins. Structural and biochemical analyses reveal that PRMT7-driven in vitro methylation of HSP70 at R469 requires an ATP-bound, open conformation of HSP70. In cells, SGC3027 inhibits methylation of both constitutive and inducible forms of HSP70, and leads to decreased tolerance for perturbations of proteostasis including heat shock and proteasome inhibitors. These results demonstrate a role for PRMT7 and arginine methylation in stress response. Protein arginine methyltransferases (PRMTs) are increasingly recognized as potential therapeutic targets but PRMT7 remains an understudied member of this enzyme family. Here, the authors develop a chemical probe for PRMT7 and apply it to elucidate the role of PRMT7 in the cellular stress response.
Collapse
|
32
|
Lorton BM, Harijan RK, Burgos ES, Bonanno JB, Almo SC, Shechter D. A Binary Arginine Methylation Switch on Histone H3 Arginine 2 Regulates Its Interaction with WDR5. Biochemistry 2020; 59:3696-3708. [PMID: 32207970 DOI: 10.1021/acs.biochem.0c00035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Histone H3 arginine 2 (H3R2) is post-translationally modified in three different states by "writers" of the protein arginine methyltransferase (PRMT) family. H3R2 methylarginine isoforms include PRMT5-catalyzed monomethylation (me1) and symmetric dimethylation (me2s) and PRMT6-catalyzed me1 and asymmetric dimethylation (me2a). WD-40 repeat-containing protein 5 (WDR5) is an epigenetic "reader" protein that interacts with H3R2. Previous studies suggested that H3R2me2s specified a high-affinity interaction with WDR5. However, our prior biological data prompted the hypothesis that WDR5 may also interact with H3R2me1. Here, using highly accurate quantitative binding analysis combined with high-resolution crystal structures of WDR5 in complex with unmodified (me0) and me1/me2s l-arginine amino acids and in complex with the H3R2me1 peptide, we provide a rigorous biochemical study and address long-standing discrepancies of this important biological interaction. Despite modest structural differences at the binding interface, our study supports an interaction model regulated by a binary arginine methylation switch: H3R2me2a prevents interaction with WDR5, whereas H3R2me0, -me1, and -me2s are equally permissive.
Collapse
Affiliation(s)
- Benjamin M Lorton
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Rajesh K Harijan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Emmanuel S Burgos
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Jeffrey B Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
33
|
Morettin A, Bourassa J, Mahadevan K, Trinkle-Mulcahy L, Cote J. Using affinity purification coupled with stable isotope labeling by amino acids in cell culture quantitative mass spectrometry to identify novel interactors/substrates of protein arginine methyltransferases. Methods 2020; 175:44-52. [PMID: 31794835 DOI: 10.1016/j.ymeth.2019.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
The protein arginine methyltransferase family (PRMT) is known as being the catalytic driving force for arginine methylation. This specific type of post translational modification is extensively used in biological processes, and therefore is highly relevant in the pathology of a profusion of diseases. Since altered PRMT expression or deregulation has been shown to contribute to a vast range of those diseases including cancer, their study is of great interest. Although an increasing number of substrates are being discovered for each PRMT, large scale proteomic methods can be used to identify novel interactors/substrates, further elucidating the role that PRMTs perform in physiological or disease states. Here, we describe the use of affinity purification (AP) coupled with stable isotope labeling with amino acids in cell culture (SILAC) quantitative mass spectrometry (MS) to identify protein interactors and substrates of PRMTs. We also explore the possibility of exploiting the fact most PRMTs display lower dissociation rates with their hypomethylated substrates as a strategy to increase the proportion of substrates identified in AP/MS studies.
Collapse
Affiliation(s)
- Alan Morettin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Julie Bourassa
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kohila Mahadevan
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jocelyn Cote
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
34
|
Urulangodi M, Mohanty A. DNA damage response and repair pathway modulation by non-histone protein methylation: implications in neurodegeneration. J Cell Commun Signal 2020; 14:31-45. [PMID: 31749026 PMCID: PMC7176765 DOI: 10.1007/s12079-019-00538-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Protein post-translational modifications (PTMs) have emerged to be combinatorial, essential mechanisms used by eukaryotic cells to regulate local chromatin structure, diversify and extend their protein functions and dynamically coordinate complex intracellular signalling processes. Most common types of PTMs include enzymatic addition of small chemical groups resulting in phosphorylation, glycosylation, poly(ADP-ribosyl)ation, nitrosylation, methylation, acetylation or covalent attachment of complete proteins such as ubiquitin and SUMO. Protein arginine methyltransferases (PRMTs) and protein lysine methyltransferases (PKMTs) enzymes catalyse the methylation of arginine and lysine residues in target proteins, respectively. Rapid progress in quantitative proteomic analysis and functional assays have not only documented the methylation of histone proteins post-translationally but also identified their occurrence in non-histone proteins which dynamically regulate a plethora of cellular functions including DNA damage response and repair. Emerging advances have now revealed the role of both histone and non-histone methylations in the regulating the DNA damage response (DDR) proteins, thereby modulating the DNA repair pathways both in proliferating and post-mitotic neuronal cells. Defects in many cellular DNA repair processes have been found primarily manifested in neuronal tissues. Moreover, fine tuning of the dynamicity of methylation of non-histone proteins as well as the perturbations in this dynamic methylation processes have recently been implicated in neuronal genomic stability maintenance. Considering the impact of methylation on chromatin associated pathways, in this review we attempt to link the evidences in non-histone protein methylation and DDR with neurodegenerative research.
Collapse
Affiliation(s)
- Madhusoodanan Urulangodi
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, PIN-695011, India.
| | - Abhishek Mohanty
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, PIN-110085, India.
| |
Collapse
|
35
|
Al-Hamashi AA, Diaz K, Huang R. Non-Histone Arginine Methylation by Protein Arginine Methyltransferases. Curr Protein Pept Sci 2020; 21:699-712. [PMID: 32379587 PMCID: PMC7529871 DOI: 10.2174/1389203721666200507091952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022]
Abstract
Protein arginine methyltransferase (PRMT) enzymes play a crucial role in RNA splicing, DNA damage repair, cell signaling, and differentiation. Arginine methylation is a prominent posttransitional modification of histones and various non-histone proteins that can either activate or repress gene expression. The aberrant expression of PRMTs has been linked to multiple abnormalities, notably cancer. Herein, we review a number of non-histone protein substrates for all nine members of human PRMTs and how PRMT-mediated non-histone arginine methylation modulates various diseases. Additionally, we highlight the most recent clinical studies for several PRMT inhibitors.
Collapse
Affiliation(s)
- Ayad A. Al-Hamashi
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-almoadham, Baghdad, Iraq
| | - Krystal Diaz
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
36
|
Li ASM, Li F, Eram MS, Bolotokova A, Dela Seña CC, Vedadi M. Chemical probes for protein arginine methyltransferases. Methods 2019; 175:30-43. [PMID: 31809836 DOI: 10.1016/j.ymeth.2019.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/28/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups to specific arginine residues of their substrates using S-adenosylmethionine as a methyl donor, contributing to regulation of many biological processes including transcription, and DNA damage repair. Dysregulation of PRMT expression is often associated with various diseases including cancers. Different methods have been used to characterize the activities of PRMTs and determine their kinetic parameters including mass spectrometry, radiometric, and antibody-based assays. Here, we present kinetic characterization of PRMTs using a radioactivity-based assay for better comparison along with previously reported values. We also report on full characterization of PRMT9 activity with SAP145 peptide as substrate. We further review the potent, selective and cell-active PRMT inhibitors discovered in recent years to provide a better understanding of available tools to investigate the roles these proteins play in health and disease.
Collapse
Affiliation(s)
- Alice Shi Ming Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Albina Bolotokova
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Carlo C Dela Seña
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
37
|
Jain K, Clarke SG. PRMT7 as a unique member of the protein arginine methyltransferase family: A review. Arch Biochem Biophys 2019; 665:36-45. [PMID: 30802433 PMCID: PMC6461449 DOI: 10.1016/j.abb.2019.02.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 12/14/2022]
Abstract
Protein arginine methyltransferases (PRMTs) are found in a wide variety of eukaryotic organisms and can regulate gene expression, DNA repair, RNA splicing, and stem cell biology. In mammalian cells, nine genes encode a family of sequence-related enzymes; six of these PRMTs catalyze the formation of ω-asymmetric dimethyl derivatives, two catalyze ω-symmetric dimethyl derivatives, and only one (PRMT7) solely catalyzes ω-monomethylarginine formation. Purified recombinant PRMT7 displays a number of unique enzymatic properties including a substrate preference for arginine residues in R-X-R motifs with additional flanking basic amino acid residues and a temperature optimum well below 37 °C. Evidence has been presented for crosstalk between PRMT7 and PRMT5, where methylation of a histone H4 peptide at R17, a PRMT7 substrate, may activate PRMT5 for methylation of R3. Defects in muscle stem cells (satellite cells) and immune cells are found in mouse Prmt7 homozygous knockouts, while humans lacking PRMT7 are characterized by significant intellectual developmental delays, hypotonia, and facial dysmorphisms. The overexpression of the PRMT7 gene has been correlated with cancer metastasis in humans. Current research challenges include identifying cellular factors that control PRMT7 expression and activity, identifying the physiological substrates of PRMT7, and determining the effect of methylation on these substrates.
Collapse
Affiliation(s)
- Kanishk Jain
- Lineberger Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|