1
|
He S, Xu Z, Han X. Lipidome disruption in Alzheimer's disease brain: detection, pathological mechanisms, and therapeutic implications. Mol Neurodegener 2025; 20:11. [PMID: 39871348 PMCID: PMC11773937 DOI: 10.1186/s13024-025-00803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Alzheimer's disease (AD) is among the most devastating neurodegenerative disorders with limited treatment options. Emerging evidence points to the involvement of lipid dysregulation in the development of AD. Nevertheless, the precise lipidomic landscape and the mechanistic roles of lipids in disease pathology remain poorly understood. This review aims to highlight the significance of lipidomics and lipid-targeting approaches in the diagnosis and treatment of AD. We summarized the connection between lipid dysregulation in the human brain and AD at both genetic and lipid species levels. We briefly introduced lipidomics technologies and discussed potential challenges and areas of future advancements in the lipidomics field for AD research. To elucidate the central role of lipids in converging multiple pathological aspects of AD, we reviewed the current knowledge on the interplay between lipids and major AD features, including amyloid beta, tau, and neuroinflammation. Finally, we assessed the progresses and obstacles in lipid-based therapeutics and proposed potential strategies for leveraging lipidomics in the treatment of AD.
Collapse
Affiliation(s)
- Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA
| | - Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA.
| |
Collapse
|
2
|
Boyarko B, Podvin S, Greenberg B, Arnold S, Juanes AM, van der Kant R, Goldstein L, Momper JD, Bang A, Silverman J, Feldman HH, Hook V. Challenges and Opportunities for Consideration of Efavirenz Drug Repurposing for Alzheimer's Disease Therapeutics. ACS Pharmacol Transl Sci 2024; 7:2924-2935. [PMID: 39421657 PMCID: PMC11480897 DOI: 10.1021/acsptsci.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 10/19/2024]
Abstract
Therapeutic research and development for Alzheimer's disease (AD) has been an area of intense research to alleviate memory loss and neurodegeneration. There is growing interest in drug repositioning and repurposing strategies for FDA-approved medications as potential candidates that may further advance AD therapeutics. The FDA drug efavirenz has been investigated as a candidate drug for repurposing as an AD medication. The proposed mechanism of action of efavirenz (at low doses) is the activation of the neuron-specific enzyme CYP46A1 that converts excess brain cholesterol into 24-hydroxycholesterol (24-HC) that is exported to the periphery. Efavirenz at a low dose was found to improve memory deficit in the 5XFAD model of AD that was accompanied by elevated 24-HC and reduction in Aβ; furthermore, efavirenz reduced pTau and excess cholesterol levels in human iPSC-derived Alzheimer's neurons. The low dose of efavirenz used in the AD mouse model to increase 24-HC contrasts with the use of more than 100-fold higher doses of efavirenz for clinical treatment of human immunodeficiency virus (HIV) through inhibition of reverse transcriptase. Low doses of efavirenz may avoid neurotoxic adverse effects that occur at high efavirenz doses used for HIV treatment. This review evaluates the drug properties of efavirenz with respect to its preclinical data on regulating memory deficit, pharmacokinetics, pharmacodynamics, metabolites, and genetic variabilities in drug metabolism as well as its potential adverse effects. These analyses discuss the challenges and questions that should be addressed in future studies to consider the opportunity for low dose efavirenz as a candidate for AD drug development.
Collapse
Affiliation(s)
- Ben Boyarko
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Alzheimer’s
Disease Cooperative Study, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Barry Greenberg
- Department
of Neurology, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21287, United States
| | - Steven Arnold
- Alzheimer’s
Clinical and Translational Research Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Almudena Maroto Juanes
- Department
of Functional Genomics, Center for Neurogenomics and Cognitive Research,
Amsterdam Neuroscience, VU University Amsterdam
de Boelelaan, Amsterdam 1081 HV, The Netherlands
| | - Rik van der Kant
- Department
of Functional Genomics, Center for Neurogenomics and Cognitive Research,
Amsterdam Neuroscience, VU University Amsterdam
de Boelelaan, Amsterdam 1081 HV, The Netherlands
| | - Lawrence Goldstein
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
| | - Jeremiah D. Momper
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Anne Bang
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - James Silverman
- Alzheimer’s
Disease Cooperative Study, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Neurosciences, University of California,
San Diego, La Jolla, California 92093, United States
| | - Howard H. Feldman
- Alzheimer’s
Disease Cooperative Study, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Neurosciences, University of California,
San Diego, La Jolla, California 92093, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Alzheimer’s
Disease Cooperative Study, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Neurosciences, University of California,
San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Usefi F, Rustamzadeh A, Ghobadi Z, Sadigh N, Mohebi N, Ariaei A, Moradi F. Rosuvastatin attenuates total-tau serum levels and increases expression of miR-124-3p in dyslipidemic Alzheimer's patients: a historic cohort study. Metab Brain Dis 2024; 39:1201-1211. [PMID: 38896205 DOI: 10.1007/s11011-024-01371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
microRNAs are candidate diagnostic biomarkers for Alzheimer's disease. This study aimed to compare Silymarin with Rosuvastatin and placebo on total-Tau protein level and expression levels of microRNAs and TGF-β and COX-2 in Alzheimer's patients with secondary dyslipidemia. 36 mild AD patients with dyslipidemia were divided into three groups of 12. The first group received silymarin (140mg), the second group received placebo (140mg), and the third group recieved Rosuvastatin (10mg). Tablets were administered three times a day for Six months. The blood samples of the patients were collected before and after the intervention and the serum was separated. Using the RT-qPCR method, the expression levels of miR-124-3p and miR-125b-5p were assessed, and the serum levels of total-Tau, TGF-β, and COX-2 enzyme were measured using the ELISA method. Data were analyzed with SPSS software. In this study, the level of Δtotal-Tau was significantly lower in the Rosuvastatin group compared to the placebo (P = 0.038). Also, a significant reduction in the level of ΔTGF-β was observed in the Silymarin to Rosuvastatin group (p = 0.046) and ΔmiR-124-3p was significantly increased in the Rosuvastatin compared to the placebo group (p = 0.044). Rosuvastatin outperformed silymarin in decreasing Δtotal-Tau serum levels and enhancing expression of ΔmiR-124-3p, attributed to Rosuvastatin's capacity to lower cholesterol levels and inflammation concurrently. Conversely, silymarin was more effective than Rosuvastatin in reducing levels of ΔTGF-β. Serum miR-124-3p could serve as a promising diagnostic biomarker and a new therapeutic focus in AD.
Collapse
Affiliation(s)
- Farnoosh Usefi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Auob Rustamzadeh
- Cellular and Molecular Research Center, Research Institute for Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Ghobadi
- Advanced Medical Imaging Ward, Pars Darman Medical Imaging Center, Karaj, Iran
| | - Nader Sadigh
- Department of Emergency Medicine, School of Medicine, Trauma and Injury Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Mohebi
- Department of Neurology, Rasool Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Armin Ariaei
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
| |
Collapse
|
4
|
Liu LC, Liang JY, Liu YH, Liu B, Dong XH, Cai WH, Zhang N. The Intersection of cerebral cholesterol metabolism and Alzheimer's disease: Mechanisms and therapeutic prospects. Heliyon 2024; 10:e30523. [PMID: 38726205 PMCID: PMC11079309 DOI: 10.1016/j.heliyon.2024.e30523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease in the elderly, the exact pathogenesis of which remains incompletely understood, and effective preventive and therapeutic drugs are currently lacking. Cholesterol plays a vital role in cell membrane formation and neurotransmitter synthesis, and its abnormal metabolism is associated with the onset of AD. With the continuous advancement of imaging techniques and molecular biology methods, researchers can more accurately explore the relationship between cholesterol metabolism and AD. Elevated cholesterol levels may lead to vascular dysfunction, thereby affecting neuronal function. Additionally, abnormal cholesterol metabolism may affect the metabolism of β-amyloid protein, thereby promoting the onset of AD. Brain cholesterol levels are regulated by multiple factors. This review aims to deepen the understanding of the subtle relationship between cholesterol homeostasis and AD, and to introduce the latest advances in cholesterol-regulating AD treatment strategies, thereby inspiring readers to contemplate deeply on this complex relationship. Although there are still many unresolved important issues regarding the risk of brain cholesterol and AD, and some studies may have opposite conclusions, further research is needed to enrich our understanding. However, these findings are expected to deepen our understanding of the pathogenesis of AD and provide important insights for the future development of AD treatment strategies targeting brain cholesterol homeostasis.
Collapse
Affiliation(s)
- Li-cheng Liu
- Pharmaceutical Branch, Harbin Pharmaceutical Group Co., Harbin, Heilongjiang Province, China
| | - Jun-yi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Yan-hong Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-hong Dong
- Jiamusi College, Heilongjiang University of Traditional Chinese Medicine, Jiamusi, Heilongjiang Province, China
| | - Wen-hui Cai
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Ning Zhang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
5
|
Essayan-Perez S, Südhof TC. Neuronal γ-secretase regulates lipid metabolism, linking cholesterol to synaptic dysfunction in Alzheimer's disease. Neuron 2023; 111:3176-3194.e7. [PMID: 37543038 PMCID: PMC10592349 DOI: 10.1016/j.neuron.2023.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Presenilin mutations that alter γ-secretase activity cause familial Alzheimer's disease (AD), whereas ApoE4, an apolipoprotein for cholesterol transport, predisposes to sporadic AD. Both sporadic and familial AD feature synaptic dysfunction. Whether γ-secretase is involved in cholesterol metabolism and whether such involvement impacts synaptic function remains unknown. Here, we show that in human neurons, chronic pharmacological or genetic suppression of γ-secretase increases synapse numbers but decreases synaptic transmission by lowering the presynaptic release probability without altering dendritic or axonal arborizations. In search of a mechanism underlying these synaptic impairments, we discovered that chronic γ-secretase suppression robustly decreases cholesterol levels in neurons but not in glia, which in turn stimulates neuron-specific cholesterol-synthesis gene expression. Suppression of cholesterol levels by HMG-CoA reductase inhibitors (statins) impaired synaptic function similar to γ-secretase inhibition. Thus, γ-secretase enables synaptic function by maintaining cholesterol levels, whereas the chronic suppression of γ-secretase impairs synapses by lowering cholesterol levels.
Collapse
Affiliation(s)
- Sofia Essayan-Perez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Kwon SH, Parthiban S, Tippani M, Divecha HR, Eagles NJ, Lobana JS, Williams SR, Mak M, Bharadwaj RA, Kleinman JE, Hyde TM, Page SC, Hicks SC, Martinowich K, Maynard KR, Collado-Torres L. Influence of Alzheimer's disease related neuropathology on local microenvironment gene expression in the human inferior temporal cortex. GEN BIOTECHNOLOGY 2023; 2:399-417. [PMID: 39329069 PMCID: PMC11426291 DOI: 10.1089/genbio.2023.0019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Neuropathological lesions in the brains of individuals affected with neurodegenerative disorders are hypothesized to trigger molecular and cellular processes that disturb homeostasis of local microenvironments. Here, we applied the 10x Genomics Visium Spatial Proteogenomics (Visium-SPG) platform, which couples spatial gene expression with immunofluorescence protein co-detection, to evaluate its ability to quantify changes in spatial gene expression with respect to amyloid-β (Aβ) and hyperphosphorylated tau (pTau) pathology in post-mortem human brain tissue from individuals with Alzheimer's disease (AD). We identified transcriptomic signatures associated with proximity to Aβ in the human inferior temporal cortex (ITC) during late-stage AD, which we further investigated at cellular resolution with combined immunofluorescence and single molecule fluorescent in situ hybridization (smFISH). The study provides a data analysis workflow for Visium-SPG, and the data represent a proof-of-principal for the power of multi-omic profiling in identifying changes in molecular dynamics that are spatially-associated with pathology in the human brain. We provide the scientific community with web-based, interactive resources to access the datasets of the spatially resolved AD-related transcriptomes at https://research.libd.org/Visium_SPG_AD/.
Collapse
Affiliation(s)
- Sang Ho Kwon
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sowmya Parthiban
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Heena R. Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Nicholas J. Eagles
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Jashandeep S. Lobana
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | | | | | - Rahul A. Bharadwaj
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stephanie C. Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Stephanie C. Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen R. Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
7
|
Rudajev V, Novotny J. Cholesterol-dependent amyloid β production: space for multifarious interactions between amyloid precursor protein, secretases, and cholesterol. Cell Biosci 2023; 13:171. [PMID: 37705117 PMCID: PMC10500844 DOI: 10.1186/s13578-023-01127-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Amyloid β is considered a key player in the development and progression of Alzheimer's disease (AD). Many studies investigating the effect of statins on lowering cholesterol suggest that there may be a link between cholesterol levels and AD pathology. Since cholesterol is one of the most abundant lipid molecules, especially in brain tissue, it affects most membrane-related processes, including the formation of the most dangerous form of amyloid β, Aβ42. The entire Aβ production system, which includes the amyloid precursor protein (APP), β-secretase, and the complex of γ-secretase, is highly dependent on membrane cholesterol content. Moreover, cholesterol can affect amyloidogenesis in many ways. Cholesterol influences the stability and activity of secretases, but also dictates their partitioning into specific cellular compartments and cholesterol-enriched lipid rafts, where the amyloidogenic machinery is predominantly localized. The most complicated relationships have been found in the interaction between cholesterol and APP, where cholesterol affects not only APP localization but also the precise character of APP dimerization and APP processing by γ-secretase, which is important for the production of Aβ of different lengths. In this review, we describe the intricate web of interdependence between cellular cholesterol levels, cholesterol membrane distribution, and cholesterol-dependent production of Aβ, the major player in AD.
Collapse
Affiliation(s)
- Vladimir Rudajev
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Devi G. A how-to guide for a precision medicine approach to the diagnosis and treatment of Alzheimer's disease. Front Aging Neurosci 2023; 15:1213968. [PMID: 37662550 PMCID: PMC10469885 DOI: 10.3389/fnagi.2023.1213968] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Article purpose The clinical approach to Alzheimer's disease (AD) is challenging, particularly in high-functioning individuals. Accurate diagnosis is crucial, especially given the significant side effects, including brain hemorrhage, of newer monoclonal antibodies approved for treating earlier stages of Alzheimer's. Although early treatment is more effective, early diagnosis is also more difficult. Several clinical mimickers of AD exist either separately, or in conjunction with AD pathology, adding to the diagnostic complexity. To illustrate the clinical decision-making process, this study includes de-identified cases and reviews of the underlying etiology and pathology of Alzheimer's and available therapies to exemplify diagnostic and treatment subtleties. Problem The clinical presentation of Alzheimer's is complex and varied. Multiple other primary brain pathologies present with clinical phenotypes that can be difficult to distinguish from AD. Furthermore, Alzheimer's rarely exists in isolation, as almost all patients also show evidence of other primary brain pathologies, including Lewy body disease and argyrophilic grain disease. The phenotype and progression of AD can vary based on the brain regions affected by pathology, the coexistence and severity of other brain pathologies, the presence and severity of systemic comorbidities such as cardiac disease, the common co-occurrence with psychiatric diagnoses, and genetic risk factors. Additionally, symptoms and progression are influenced by an individual's brain reserve and cognitive reserve, as well as the timing of the diagnosis, which depends on the demographics of both the patient and the diagnosing physician, as well as the availability of biomarkers. Methods The optimal clinical and biomarker strategy for accurately diagnosing AD, common neuropathologic co-morbidities and mimickers, and available medication and non-medication-based treatments are discussed. Real-life examples of cognitive loss illustrate the diagnostic and treatment decision-making process as well as illustrative treatment responses. Implications AD is best considered a syndromic disorder, influenced by a multitude of patient and environmental characteristics. Additionally, AD existing alone is a unicorn, as there are nearly always coexisting other brain pathologies. Accurate diagnosis with biomarkers is essential. Treatment response is affected by the variables involved, and the effective treatment of Alzheimer's disease, as well as its prevention, requires an individualized, precision medicine strategy.
Collapse
Affiliation(s)
- Gayatri Devi
- Neurology and Psychiatry, Zucker School of Medicine, Hempstead, NY, United States
- Neurology and Psychiatry, Lenox Hill Hospital, New York City, NY, United States
- Park Avenue Neurology, New York City, NY, United States
| |
Collapse
|
9
|
Schilling S, August A, Meleux M, Conradt C, Tremmel LM, Teigler S, Adam V, Müller UC, Koo EH, Kins S, Eggert S. APP family member dimeric complexes are formed predominantly in synaptic compartments. Cell Biosci 2023; 13:141. [PMID: 37533067 PMCID: PMC10398996 DOI: 10.1186/s13578-023-01092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The amyloid precursor protein (APP), a key player in Alzheimer's disease (AD), is part of a larger gene family, including the APP like proteins APLP1 and APLP2. They share similar structures, form homo- and heterotypic dimers and exhibit overlapping functions. RESULTS We investigated complex formation of the APP family members via two inducible dimerization systems, the FKBP-rapamycin based dimerization as well as cysteine induced dimerization, combined with co-immunoprecipitations and Blue Native (BN) gel analyses. Within the APP family, APLP1 shows the highest degree of dimerization and high molecular weight (HMW) complex formation. Interestingly, only about 20% of APP is dimerized in cultured cells whereas up to 50% of APP is dimerized in mouse brains, independent of age and splice forms. Furthermore, we could show that dimerized APP originates mostly from neurons and is enriched in synaptosomes. Finally, BN gel analysis of human cortex samples shows a significant decrease of APP dimers in AD patients compared to controls. CONCLUSIONS Together, we suggest that loss of full-length APP dimers might correlate with loss of synapses in the process of AD.
Collapse
Affiliation(s)
- Sandra Schilling
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Alexander August
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Mathieu Meleux
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Carolin Conradt
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Luisa M Tremmel
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
- Medical, Biochemistry & Molecular Biology, Center for Molecular Signaling (PZMS), Saarland University, 66421, Homburg, Germany
| | - Sandra Teigler
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Virginie Adam
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Ulrike C Müller
- Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Edward H Koo
- Department of Neuroscience, University of California, San Diego (UCSD), La Jolla, CA, 92093-0662, USA
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany.
- Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, City-Campus, Hermann-Rein-Str. 3, 37075, Göttingen, Germany.
| |
Collapse
|
10
|
Abstract
All mammalian cell membranes contain cholesterol to maintain membrane integrity. The transport of this hydrophobic lipid is mediated by lipoproteins. Cholesterol is especially enriched in the brain, particularly in synaptic and myelin membranes. Aging involves changes in sterol metabolism in peripheral organs and also in the brain. Some of those alterations have the potential to promote or to counteract the development of neurodegenerative diseases during aging. Here, we summarize the current knowledge of general principles of sterol metabolism in humans and mice, the most widely used model organism in biomedical research. We discuss changes in sterol metabolism that occur in the aged brain and highlight recent developments in cell type-specific cholesterol metabolism in the fast-growing research field of aging and age-related diseases, focusing on Alzheimer's disease. We propose that cell type-specific cholesterol handling and the interplay between cell types critically influence age-related disease processes.
Collapse
Affiliation(s)
- Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
11
|
Chen HM, Li KY, Li TL, Kwong EYL, Wong GHY, McGrath C, Chen H. The Association between Tooth Loss and Cognitive Decline in the Aged Population: the Mediating Role of HDL-cholesterol. J Dent 2023:104570. [PMID: 37263408 DOI: 10.1016/j.jdent.2023.104570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023] Open
Abstract
OBJECTIVE Tooth loss and its impact on cognitive impairment have become a heated topic over the past decade as the global population continues to age. Despite the proliferation of research in this area, the underlying mechanism linking tooth loss and cognitive decline remains poorly understood. Limited investigation has been conducted to explore the potential role of lipid metabolism and its impact on the association between tooth loss and cognitive function. This study endeavored to identify the role of high-density lipoprotein cholesterol (HDL-C) concentration among older adults and its contribution to the link between tooth loss and cognitive impairment. METHODS Data were retrieved from a public database, namely, the National Health and Nutrition Examination Survey (NHANES). Among 1,124 included participants who were aged above 60 years old, linear regression was performed to determine the association between tooth loss (moderate and severe tooth loss) and cognitive function [Consortium to Establish a Registry for Alzheimer's Disease-Immediate Recall (CERAD-IR), Delayed Recall (CERAD-DR), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST)]. Mediation analysis was used to test the effect of HDL-C on the association of tooth numbers and four cognitive tests. RESULTS Participants with moderate and severe tooth loss had lower scores on cognitive performance (p<0.001) and lower levels of HDL-C (p<0.05). The HDL-C levels were highly correlated with CERAD-IR and DSST, which mediated 2.11% to 5.24% of the total effect between tooth numbers and cognitive function. CONCLUSION Tooth loss was negatively associated with cognitive function which was mediated by serum HDL-C levels.
Collapse
Affiliation(s)
- Hui Min Chen
- Department of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Kar Yan Li
- Clinical Research Centre, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Tian Le Li
- Department of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Elaine Yee Lan Kwong
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University; Research Institute for Smart Ageing, The Hong Kong Polytechnic University
| | - Gloria Hoi Yan Wong
- Department of Social Work and Social Administration, The University of Hong Kong, Hong Kong SAR, PR China
| | - Colman McGrath
- Department of Dental Public Health, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Hui Chen
- Department of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
12
|
Sato W, Watanabe-Takahashi M, Murata T, Utsunomiya-Tate N, Motoyama J, Anzai M, Ishihara S, Nishioka N, Uchiyama H, Togashi J, Nishihara S, Kawasaki K, Saito T, Saido TC, Funamoto S, Nishikawa K. A tailored tetravalent peptide displays dual functions to inhibit amyloid β production and aggregation. Commun Biol 2023; 6:383. [PMID: 37031306 PMCID: PMC10082830 DOI: 10.1038/s42003-023-04771-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Inhibition of amyloid-β peptide (Aβ) accumulation in the brain is a promising approach for treatment of Alzheimer's disease (AD). Aβ is produced by β-secretase and γ-secretase in endosomes via sequential proteolysis of amyloid precursor protein (APP). Aβ and APP have a common feature to readily cluster to form multimers. Here, using multivalent peptide library screens, we identified a tetravalent peptide, LME-tet, which binds APP and Aβ via multivalent interactions. In cells, LME-tet-bound APP in the plasma membrane is transported to endosomes, blocking Aβ production through specific inhibition of β-cleavage, but not γ-cleavage. LME-tet further suppresses Aβ aggregation by blocking formation of the β-sheet conformation. Inhibitory effects are not observed with a monomeric peptide, emphasizing the significance of multivalent interactions for mediating these activities. Critically, LME-tet efficiently reduces Aβ levels in the brain of AD model mice, suggesting it may hold promise for treatment of AD.
Collapse
Affiliation(s)
- Waka Sato
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Takuya Murata
- Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | | | - Jun Motoyama
- Laboratory of Developmental Neurobiology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Masataka Anzai
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Seiko Ishihara
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Nanako Nishioka
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Hina Uchiyama
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Juri Togashi
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Saeka Nishihara
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Aichi, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, Riken Center For Brain Science, Saitama, Japan
| | - Satoru Funamoto
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan.
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan.
| |
Collapse
|
13
|
Harned TC, Stan RV, Cao Z, Chakrabarti R, Higgs HN, Chang CCY, Chang TY. Acute ACAT1/SOAT1 Blockade Increases MAM Cholesterol and Strengthens ER-Mitochondria Connectivity. Int J Mol Sci 2023; 24:5525. [PMID: 36982602 PMCID: PMC10059652 DOI: 10.3390/ijms24065525] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Cholesterol is a key component of all mammalian cell membranes. Disruptions in cholesterol metabolism have been observed in the context of various diseases, including neurodegenerative disorders such as Alzheimer's disease (AD). The genetic and pharmacological blockade of acyl-CoA:cholesterol acyltransferase 1/sterol O-acyltransferase 1 (ACAT1/SOAT1), a cholesterol storage enzyme found on the endoplasmic reticulum (ER) and enriched at the mitochondria-associated ER membrane (MAM), has been shown to reduce amyloid pathology and rescue cognitive deficits in mouse models of AD. Additionally, blocking ACAT1/SOAT1 activity stimulates autophagy and lysosomal biogenesis; however, the exact molecular connection between the ACAT1/SOAT1 blockade and these observed benefits remain unknown. Here, using biochemical fractionation techniques, we observe cholesterol accumulation at the MAM which leads to ACAT1/SOAT1 enrichment in this domain. MAM proteomics data suggests that ACAT1/SOAT1 inhibition strengthens the ER-mitochondria connection. Confocal and electron microscopy confirms that ACAT1/SOAT1 inhibition increases the number of ER-mitochondria contact sites and strengthens this connection by shortening the distance between these two organelles. This work demonstrates how directly manipulating local cholesterol levels at the MAM can alter inter-organellar contact sites and suggests that cholesterol buildup at the MAM is the impetus behind the therapeutic benefits of ACAT1/SOAT1 inhibition.
Collapse
Affiliation(s)
- Taylor C. Harned
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| | - Radu V. Stan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| | - Ze Cao
- Chinese Academy of Sciences, Beijing 100045, China;
| | - Rajarshi Chakrabarti
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Henry N. Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| | - Catherine C. Y. Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| | - Ta Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| |
Collapse
|
14
|
Sharp FR, DeCarli CS, Jin LW, Zhan X. White matter injury, cholesterol dysmetabolism, and APP/Abeta dysmetabolism interact to produce Alzheimer's disease (AD) neuropathology: A hypothesis and review. Front Aging Neurosci 2023; 15:1096206. [PMID: 36845656 PMCID: PMC9950279 DOI: 10.3389/fnagi.2023.1096206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
We postulate that myelin injury contributes to cholesterol release from myelin and cholesterol dysmetabolism which contributes to Abeta dysmetabolism, and combined with genetic and AD risk factors, leads to increased Abeta and amyloid plaques. Increased Abeta damages myelin to form a vicious injury cycle. Thus, white matter injury, cholesterol dysmetabolism and Abeta dysmetabolism interact to produce or worsen AD neuropathology. The amyloid cascade is the leading hypothesis for the cause of Alzheimer's disease (AD). The failure of clinical trials based on this hypothesis has raised other possibilities. Even with a possible new success (Lecanemab), it is not clear whether this is a cause or a result of the disease. With the discovery in 1993 that the apolipoprotein E type 4 allele (APOE4) was the major risk factor for sporadic, late-onset AD (LOAD), there has been increasing interest in cholesterol in AD since APOE is a major cholesterol transporter. Recent studies show that cholesterol metabolism is intricately involved with Abeta (Aβ)/amyloid transport and metabolism, with cholesterol down-regulating the Aβ LRP1 transporter and upregulating the Aβ RAGE receptor, both of which would increase brain Aβ. Moreover, manipulating cholesterol transport and metabolism in rodent AD models can ameliorate pathology and cognitive deficits, or worsen them depending upon the manipulation. Though white matter (WM) injury has been noted in AD brain since Alzheimer's initial observations, recent studies have shown abnormal white matter in every AD brain. Moreover, there is age-related WM injury in normal individuals that occurs earlier and is worse with the APOE4 genotype. Moreover, WM injury precedes formation of plaques and tangles in human Familial Alzheimer's disease (FAD) and precedes plaque formation in rodent AD models. Restoring WM in rodent AD models improves cognition without affecting AD pathology. Thus, we postulate that the amyloid cascade, cholesterol dysmetabolism and white matter injury interact to produce and/or worsen AD pathology. We further postulate that the primary initiating event could be related to any of the three, with age a major factor for WM injury, diet and APOE4 and other genes a factor for cholesterol dysmetabolism, and FAD and other genes for Abeta dysmetabolism.
Collapse
Affiliation(s)
- Frank R. Sharp
- Department of Neurology, The MIND Institute, University of California at Davis Medical Center, Sacramento, CA, United States
| | | | | | | |
Collapse
|
15
|
Bao H, Shen Y. Unmasking BACE1 in aging and age-related diseases. Trends Mol Med 2023; 29:99-111. [PMID: 36509631 DOI: 10.1016/j.molmed.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
The beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) has long been considered a conventional target for Alzheimer's disease (AD). Unfortunately, AD clinical trials of most BACE1 inhibitors were discontinued due to ineffective cognitive improvement or safety challenges. Recent studies investigating the involvement of BACE1 in metabolic, vascular, and immune functions have indicated a role in aging, diabetes, hypertension, and cancer. These novel BACE1 functions have helped to identify new 'druggable' targets for BACE1 against aging comorbidities. In this review, we discuss BACE1 regulation during aging, and then provide recent insights into its enzymatic and nonenzymatic involvement in aging and age-related diseases. Our study not only proposes the perspective of BACE1's actions in various systems, but also provides new directions for using BACE1 inhibitors and modulators to delay aging and to treat age-related diseases.
Collapse
Affiliation(s)
- Hong Bao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Provincial Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, Division of Biological and Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
16
|
Dong W, Huang Y. Common Genetic Factors and Pathways in Alzheimer's Disease and Ischemic Stroke: Evidences from GWAS. Genes (Basel) 2023; 14:353. [PMID: 36833280 PMCID: PMC9957001 DOI: 10.3390/genes14020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) and ischemic stroke (IS) are common neurological disorders, and the comorbidity of these two brain diseases is often seen. Although AD and IS were regarded as two distinct disease entities, in terms of different etiologies and clinical presentation, recent genome-wide association studies (GWASs) revealed that there were common risk genes between AD and IS, indicating common molecular pathways and their common pathophysiology. In this review, we summarize AD and IS risk single nucleotide polymorphisms (SNPs) and their representative genes from the GWAS Catalog database, and find thirteen common risk genes, but no common risk SNPs. Furthermore, the common molecular pathways associated with these risk gene products are summarized from the GeneCards database and clustered into inflammation and immunity, G protein-coupled receptor, and signal transduction. At least seven of these thirteen genes can be regulated by 23 microRNAs identified from the TargetScan database. Taken together, the imbalance of these molecular pathways may give rise to these two common brain disorders. This review sheds light on the pathogenesis of comorbidity of AD and IS, and provides molecular targets for disease prevention, manipulation, and brain health maintenance.
Collapse
Affiliation(s)
- Wei Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yue Huang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
17
|
Young JE, Goldstein LSB. Human-Induced Pluripotent Stem Cell (hiPSC)-Derived Neurons and Glia for the Elucidation of Pathogenic Mechanisms in Alzheimer's Disease. Methods Mol Biol 2023; 2561:105-133. [PMID: 36399267 DOI: 10.1007/978-1-0716-2655-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder and a mechanistically complex disease. For the last decade, human models of AD using induced pluripotent stem cells (iPSCs) have emerged as a powerful way to understand disease pathogenesis in relevant human cell types. In this review, we summarize the state of the field and how this technology can apply to studies of both familial and sporadic studies of AD. We discuss patient-derived iPSCs, genome editing, differentiation of neural cell types, and three-dimensional organoids, and speculate on the future of this type of work for increasing our understanding of, and improving therapeutic development for, this devastating disease.
Collapse
Affiliation(s)
- Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA. .,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| | - Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine, Department of Neurosciences, UC San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| |
Collapse
|
18
|
Papadopoulos N, Suelves N, Perrin F, Vadukul DM, Vrancx C, Constantinescu SN, Kienlen-Campard P. Structural Determinant of β-Amyloid Formation: From Transmembrane Protein Dimerization to β-Amyloid Aggregates. Biomedicines 2022; 10:2753. [PMID: 36359274 PMCID: PMC9687742 DOI: 10.3390/biomedicines10112753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 10/03/2023] Open
Abstract
Most neurodegenerative diseases have the characteristics of protein folding disorders, i.e., they cause lesions to appear in vulnerable regions of the nervous system, corresponding to protein aggregates that progressively spread through the neuronal network as the symptoms progress. Alzheimer's disease is one of these diseases. It is characterized by two types of lesions: neurofibrillary tangles (NFTs) composed of tau proteins and senile plaques, formed essentially of amyloid peptides (Aβ). A combination of factors ranging from genetic mutations to age-related changes in the cellular context converge in this disease to accelerate Aβ deposition. Over the last two decades, numerous studies have attempted to elucidate how structural determinants of its precursor (APP) modify Aβ production, and to understand the processes leading to the formation of different Aβ aggregates, e.g., fibrils and oligomers. The synthesis proposed in this review indicates that the same motifs can control APP function and Aβ production essentially by regulating membrane protein dimerization, and subsequently Aβ aggregation processes. The distinct properties of these motifs and the cellular context regulate the APP conformation to trigger the transition to the amyloid pathology. This concept is critical to better decipher the patterns switching APP protein conformation from physiological to pathological and improve our understanding of the mechanisms underpinning the formation of amyloid fibrils that devastate neuronal functions.
Collapse
Affiliation(s)
- Nicolas Papadopoulos
- SIGN Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
- Ludwig Institute for Cancer Research Brussels, 1348 Brussels, Belgium
| | - Nuria Suelves
- Aging and Dementia Research Group, Cellular and Molecular (CEMO) Division, Institute of Neuroscience, UCLouvain, 1200 Brussels, Belgium
| | - Florian Perrin
- Memory Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Devkee M. Vadukul
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London SW7 2BX, UK
| | - Céline Vrancx
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Stefan N. Constantinescu
- SIGN Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
- Ludwig Institute for Cancer Research Brussels, 1348 Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, Oxford University, Oxford OX1 2JD, UK
| | - Pascal Kienlen-Campard
- Aging and Dementia Research Group, Cellular and Molecular (CEMO) Division, Institute of Neuroscience, UCLouvain, 1200 Brussels, Belgium
| |
Collapse
|
19
|
Cholesterol-induced robust Ca oscillation in astrocytes required for survival and lipid droplet formation in high-cholesterol condition. iScience 2022; 25:105138. [PMID: 36185358 PMCID: PMC9523397 DOI: 10.1016/j.isci.2022.105138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/08/2022] [Accepted: 09/10/2022] [Indexed: 11/22/2022] Open
Abstract
Cholesterol, one of the major cell membrane components, stabilizes membrane fluidity and regulates signal transduction. Beside its canonical roles, cholesterol has been reported to directly activate signaling pathways such as hedgehog (Hh). We recently found that astrocytes, one of the glial cells, respond to Hh pathway stimulation by Ca signaling. These notions led us to test if extracellularly applied cholesterol triggers Ca signaling in astrocytes. Here, we found that cholesterol application induces robust Ca oscillation only in astrocytes with different properties from the Hh-induced Ca response. The Ca oscillation has a long delay which corresponds to the onset of cholesterol accumulation in the plasma membrane. Blockade of the Ca oscillation resulted in enhancement of astrocytic cell death and disturbance of lipid droplet formation, implying a possibility that the cholesterol-induced Ca oscillation plays important roles in astrocytic survival and cholesterol handling under pathological conditions of cholesterol load such as demyelination. Robust Ca oscillation by cholesterol in astrocytes but not in neurons and microglia Cholesterol-induced Ca oscillation relates to membrane cholesterol accumulation The Ca oscillation is driven via the PLC-IP3 signaling pathway Ca oscillation inhibition leads to astrocytic death and lipid droplet malformation
Collapse
|
20
|
Morató X, Pytel V, Jofresa S, Ruiz A, Boada M. Symptomatic and Disease-Modifying Therapy Pipeline for Alzheimer's Disease: Towards a Personalized Polypharmacology Patient-Centered Approach. Int J Mol Sci 2022; 23:9305. [PMID: 36012569 PMCID: PMC9409252 DOI: 10.3390/ijms23169305] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Since 1906, when Dr. Alois Alzheimer first described in a patient "a peculiar severe disease process of the cerebral cortex", people suffering from this pathology have been waiting for a breakthrough therapy. Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder and the most common form of dementia in the elderly with a long presymptomatic phase. Worldwide, approximately 50 million people are living with dementia, with AD comprising 60-70% of cases. Pathologically, AD is characterized by the deposition of amyloid β-peptide (Aβ) in the neuropil (neuritic plaques) and blood vessels (amyloid angiopathy), and by the accumulation of hyperphosphorylated tau in neurons (neurofibrillary tangles) in the brain, with associated loss of synapses and neurons, together with glial activation, and neuroinflammation, resulting in cognitive deficits and eventually dementia. The current competitive landscape in AD consists of symptomatic treatments, of which there are currently six approved medications: three AChEIs (donepezil, rivastigmine, and galantamine), one NMDA-R antagonist (memantine), one combination therapy (memantine/donepezil), and GV-971 (sodium oligomannate, a mixture of oligosaccharides derived from algae) only approved in China. Improvements to the approved therapies, such as easier routes of administration and reduced dosing frequencies, along with the developments of new strategies and combined treatments are expected to occur within the next decade and will positively impact the way the disease is managed. Recently, Aducanumab, the first disease-modifying therapy (DMT) has been approved for AD, and several DMTs are in advanced stages of clinical development or regulatory review. Small molecules, mAbs, or multimodal strategies showing promise in animal studies have not confirmed that promise in the clinic (where small to moderate changes in clinical efficacy have been observed), and therefore, there is a significant unmet need for a better understanding of the AD pathogenesis and the exploration of alternative etiologies and therapeutic effective disease-modifying therapies strategies for AD. Therefore, a critical review of the disease-modifying therapy pipeline for Alzheimer's disease is needed.
Collapse
Affiliation(s)
- Xavier Morató
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Vanesa Pytel
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Sara Jofresa
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
21
|
Pfundstein G, Nikonenko AG, Sytnyk V. Amyloid precursor protein (APP) and amyloid β (Aβ) interact with cell adhesion molecules: Implications in Alzheimer’s disease and normal physiology. Front Cell Dev Biol 2022; 10:969547. [PMID: 35959488 PMCID: PMC9360506 DOI: 10.3389/fcell.2022.969547] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder in which dysfunction and loss of synapses and neurons lead to cognitive impairment and death. Accumulation and aggregation of neurotoxic amyloid-β (Aβ) peptides generated via amyloidogenic processing of amyloid precursor protein (APP) is considered to play a central role in the disease etiology. APP interacts with cell adhesion molecules, which influence the normal physiological functions of APP, its amyloidogenic and non-amyloidogenic processing, and formation of Aβ aggregates. These cell surface glycoproteins also mediate attachment of Aβ to the neuronal cell surface and induce intracellular signaling contributing to Aβ toxicity. In this review, we discuss the current knowledge surrounding the interactions of cell adhesion molecules with APP and Aβ and analyze the evidence of the critical role these proteins play in regulating the processing and physiological function of APP as well as Aβ toxicity. This is a necessary piece of the complex AD puzzle, which we should understand in order to develop safe and effective therapeutic interventions for AD.
Collapse
Affiliation(s)
- Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Vladimir Sytnyk,
| |
Collapse
|
22
|
Poudel P, Park S. Recent Advances in the Treatment of Alzheimer's Disease Using Nanoparticle-Based Drug Delivery Systems. Pharmaceutics 2022; 14:835. [PMID: 35456671 PMCID: PMC9026997 DOI: 10.3390/pharmaceutics14040835] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder. Most existing treatments only provide symptomatic solutions. Here, we introduce currently available commercial drugs and new therapeutics, including repositioned drugs, to treat AD. Despite tremendous efforts, treatments targeting the hallmarks of AD show limited efficacy. Challenges in treating AD are partly caused by difficulties in penetrating the blood-brain barrier (BBB). Recently, nanoparticle (NP)-based systems have shown promising potential as precision medicines that can effectively penetrate the BBB and enhance the targeting ability of numerous drugs. Here, we describe how NPs enter the brain by crossing, avoiding, or disrupting the BBB. In addition, we provide an overview of the action of NPs in the microenvironment of the brain for the treatment of AD. Diverse systems, including liposomes, micelles, polymeric NPs, solid-lipid NPs, and inorganic NPs, have been investigated for NP drug loading to relieve AD symptoms, target AD hallmarks, and target moieties to diagnose AD. We also highlight NP-based immunotherapy, which has recently gained special attention as a potential treatment option to disrupt AD progression. Overall, this review focuses on recently investigated NP systems that represent innovative strategies to understand AD pathogenesis and suggests treatment and diagnostic modalities to cure AD.
Collapse
|
23
|
Gomaa AA, Farghaly HS, Ahmed AM, El-Mokhtar MA, Hemida FK. Advancing combination treatment with cilostazol and caffeine for Alzheimer's disease in high fat-high fructose-STZ induced model of amnesia. Eur J Pharmacol 2022; 921:174873. [DOI: 10.1016/j.ejphar.2022.174873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
|
24
|
Burrinha T, Cláudia GA. Aging impact on amyloid precursor protein neuronal trafficking. Curr Opin Neurobiol 2022; 73:102524. [PMID: 35303572 DOI: 10.1016/j.conb.2022.102524] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 11/03/2022]
Abstract
Neurons live a lifetime. Neuronal aging may increase the risk of Alzheimer's disease. How does neuronal membrane trafficking maintain synapse function during aging? In the normal aged brain, intraneuronal beta-amyloid (Aβ) accumulates without Alzheimer's disease mutations or risk variants. However, do changes with neuronal aging potentiate Aβ accumulation? We reviewed the membrane trafficking of the amyloid precursor protein in neurons and highlighted its importance in Aβ production. Importantly, we reviewed the evidence supporting the impact of aging on neuronal membrane trafficking, APP processing, and consequently Aβ production. Dissecting the molecular regulators of APP trafficking during neuronal aging is required to identify strategies to delay synaptic decline and protect from Alzheimer's disease.
Collapse
Affiliation(s)
- Tatiana Burrinha
- Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal. https://twitter.com/@burrinha_t
| | - Guimas Almeida Cláudia
- Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| |
Collapse
|
25
|
Barak M, Fedorova V, Pospisilova V, Raska J, Vochyanova S, Sedmik J, Hribkova H, Klimova H, Vanova T, Bohaciakova D. Human iPSC-Derived Neural Models for Studying Alzheimer's Disease: from Neural Stem Cells to Cerebral Organoids. Stem Cell Rev Rep 2022; 18:792-820. [PMID: 35107767 PMCID: PMC8930932 DOI: 10.1007/s12015-021-10254-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/05/2022]
Abstract
During the past two decades, induced pluripotent stem cells (iPSCs) have been widely used to study mechanisms of human neural development, disease modeling, and drug discovery in vitro. Especially in the field of Alzheimer’s disease (AD), where this treatment is lacking, tremendous effort has been put into the investigation of molecular mechanisms behind this disease using induced pluripotent stem cell-based models. Numerous of these studies have found either novel regulatory mechanisms that could be exploited to develop relevant drugs for AD treatment or have already tested small molecules on in vitro cultures, directly demonstrating their effect on amelioration of AD-associated pathology. This review thus summarizes currently used differentiation strategies of induced pluripotent stem cells towards neuronal and glial cell types and cerebral organoids and their utilization in modeling AD and potential drug discovery.
Collapse
Affiliation(s)
- Martin Barak
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Veronika Fedorova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Veronika Pospisilova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Jan Raska
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Simona Vochyanova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Jiri Sedmik
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno, Brno, Czech Republic
| | - Hana Hribkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Hana Klimova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Tereza Vanova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno, Brno, Czech Republic
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's Faculty Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
26
|
Tang BL. Cholesterol synthesis inhibition or depletion in axon regeneration. Neural Regen Res 2022; 17:271-276. [PMID: 34269187 PMCID: PMC8463970 DOI: 10.4103/1673-5374.317956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/08/2021] [Accepted: 03/17/2021] [Indexed: 11/05/2022] Open
Abstract
Cholesterol is biosynthesized by all animal cells. Beyond its metabolic role in steroidogenesis, it is enriched in the plasma membrane where it has key structural and regulatory functions. Cholesterol is thus presumably important for post-injury axon regrowth, and this notion is supported by studies showing that impairment of local cholesterol reutilization impeded regeneration. However, several studies have also shown that statins, inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase, are enhancers of axon regeneration, presumably acting through an attenuation of the mevalonate isoprenoid pathway and consequent reduction in protein prenylation. Several recent reports have now shown that cholesterol depletion, as well as inhibition of cholesterol synthesis per se, enhances axon regeneration. Here, I discussed these findings and propose some possible underlying mechanisms. The latter would include possible disruptions to axon growth inhibitor signaling by lipid raft-localized receptors, as well as other yet unclear neuronal survival signaling process enhanced by cholesterol lowering or depletion.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| |
Collapse
|
27
|
Bogorodskiy A, Okhrimenko I, Burkatovskii D, Jakobs P, Maslov I, Gordeliy V, Dencher NA, Gensch T, Voos W, Altschmied J, Haendeler J, Borshchevskiy V. Role of Mitochondrial Protein Import in Age-Related Neurodegenerative and Cardiovascular Diseases. Cells 2021; 10:3528. [PMID: 34944035 PMCID: PMC8699856 DOI: 10.3390/cells10123528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/17/2022] Open
Abstract
Mitochondria play a critical role in providing energy, maintaining cellular metabolism, and regulating cell survival and death. To carry out these crucial functions, mitochondria employ more than 1500 proteins, distributed between two membranes and two aqueous compartments. An extensive network of dedicated proteins is engaged in importing and sorting these nuclear-encoded proteins into their designated mitochondrial compartments. Defects in this fundamental system are related to a variety of pathologies, particularly engaging the most energy-demanding tissues. In this review, we summarize the state-of-the-art knowledge about the mitochondrial protein import machinery and describe the known interrelation of its failure with age-related neurodegenerative and cardiovascular diseases.
Collapse
Affiliation(s)
- Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
| | - Ivan Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
| | - Dmitrii Burkatovskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
| | - Philipp Jakobs
- Environmentally-Induced Cardiovascular Degeneration, Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University Hospital and Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (P.J.); (J.A.); (J.H.)
| | - Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38400 Grenoble, France
| | - Norbert A. Dencher
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
- Physical Biochemistry, Chemistry Department, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Thomas Gensch
- Institute of Biological Information Processing (IBI-1: Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428 Jülich, Germany;
| | - Wolfgang Voos
- Institute of Biochemistry and Molecular Biology (IBMB), Faculty of Medicine, University of Bonn, 53113 Bonn, Germany;
| | - Joachim Altschmied
- Environmentally-Induced Cardiovascular Degeneration, Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University Hospital and Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Judith Haendeler
- Environmentally-Induced Cardiovascular Degeneration, Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University Hospital and Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (P.J.); (J.A.); (J.H.)
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
28
|
Dutta S, Rahman S, Ahmad R, Kumar T, Dutta G, Banerjee S, Abubakar AR, Rowaiye AB, Dhingra S, Ravichandiran V, Kumar S, Sharma P, Haque M, Charan J. An evidence-based review of neuronal cholesterol role in dementia and statins as a pharmacotherapy in reducing risk of dementia. Expert Rev Neurother 2021; 21:1455-1472. [PMID: 34756134 DOI: 10.1080/14737175.2021.2003705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Dementia is a progressive neurodegenerative disorder impairing memory and cognition. Alzheimer's Disease, followed by vascular dementia - the most typical form. Risk factors for vascular dementia include diabetes, cardiovascular disease, hyperlipidemia. Lipids' levels are significantly associated with vascular changes in the brain. AREAS COVERED The present article reviews the cholesterol metabolism in the brain, which includes: the synthesis, transport, storage, and elimination process. Additionally, it reviews the role of cholesterol in the pathogenesis of dementia and statin as a therapeutic intervention in dementia. In addition to the above, it further reviews evidence in support of as well as against statin therapy in dementia, recent updates of statin pharmacology, and demerits of use of statin pharmacotherapy. EXPERT OPINION Amyloid-β peptides and intraneuronal neurofibrillary tangles are markers of Alzheimer's disease. Evidence shows cholesterol modulates the functioning of enzymes associated with Amyloid-β peptide processing and synthesis. Lowering cholesterol using statin may help prevent or delay the progression of dementia. This paper reviews the role of statin in dementia and recommends extensive future studies, including genetic research, to obtain a precise medication approach for patients with dementia.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujrat, India
| | - Sayeeda Rahman
- School of Medicine, American University of Integrative Sciences, Bridgetown, Barbados
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, Bangladesh
| | - Tarun Kumar
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Gitashree Dutta
- Department of Community Medicine, Neigrihms, Shillong, India
| | | | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Adekunle Babajide Rowaiye
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Kolkata, Kolkata, India
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati University, Gandhinagar, India
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur, Malaysia
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujrat, India
| |
Collapse
|
29
|
Wang H, Kulas JA, Wang C, Holtzman DM, Ferris HA, Hansen SB. Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc Natl Acad Sci U S A 2021; 118:e2102191118. [PMID: 34385305 PMCID: PMC8379952 DOI: 10.1073/pnas.2102191118] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of amyloid β (Aβ) plaques, tau tangles, inflammation, and loss of cognitive function. Genetic variation in a cholesterol transport protein, apolipoprotein E (apoE), is the most common genetic risk factor for sporadic AD. In vitro evidence suggests that apoE links to Aβ production through nanoscale lipid compartments (lipid clusters), but its regulation in vivo is unclear. Here, we use superresolution imaging in the mouse brain to show that apoE utilizes astrocyte-derived cholesterol to specifically traffic neuronal amyloid precursor protein (APP) in and out of lipid clusters, where it interacts with β- and γ-secretases to generate Aβ-peptide. We find that the targeted deletion of astrocyte cholesterol synthesis robustly reduces amyloid and tau burden in a mouse model of AD. Treatment with cholesterol-free apoE or knockdown of cholesterol synthesis in astrocytes decreases cholesterol levels in cultured neurons and causes APP to traffic out of lipid clusters, where it interacts with α-secretase and gives rise to soluble APP-α (sAPP-α), a neuronal protective product of APP. Changes in cellular cholesterol have no effect on α-, β-, and γ-secretase trafficking, suggesting that the ratio of Aβ to sAPP-α is regulated by the trafficking of the substrate, not the enzymes. We conclude that cholesterol is kept low in neurons, which inhibits Aβ accumulation and enables the astrocyte regulation of Aβ accumulation by cholesterol signaling.
Collapse
Affiliation(s)
- Hao Wang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458
| | - Joshua A Kulas
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA 22908
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Heather A Ferris
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA 22908;
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Scott B Hansen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458;
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| |
Collapse
|
30
|
Jeong A, Cheng S, Zhong R, Bennett DA, Bergö MO, Li L. Protein farnesylation is upregulated in Alzheimer's human brains and neuron-specific suppression of farnesyltransferase mitigates pathogenic processes in Alzheimer's model mice. Acta Neuropathol Commun 2021; 9:129. [PMID: 34315531 PMCID: PMC8314463 DOI: 10.1186/s40478-021-01231-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 11/10/2022] Open
Abstract
The pathogenic mechanisms underlying the development of Alzheimer's disease (AD) remain elusive and to date there are no effective prevention or treatment for AD. Farnesyltransferase (FT) catalyzes a key posttranslational modification process called farnesylation, in which the isoprenoid farnesyl pyrophosphate is attached to target proteins, facilitating their membrane localization and their interactions with downstream effectors. Farnesylated proteins, including the Ras superfamily of small GTPases, are involved in regulating diverse physiological and pathological processes. Emerging evidence suggests that isoprenoids and farnesylated proteins may play an important role in the pathogenesis of AD. However, the dynamics of FT and protein farnesylation in human brains and the specific role of neuronal FT in the pathogenic progression of AD are not known. Here, using postmortem brain tissue from individuals with no cognitive impairment (NCI), mild cognitive impairment (MCI), or Alzheimer's dementia, we found that the levels of FT and membrane-associated H-Ras, an exclusively farnesylated protein, and its downstream effector ERK were markedly increased in AD and MCI compared with NCI. To elucidate the specific role of neuronal FT in AD pathogenesis, we generated the transgenic AD model APP/PS1 mice with forebrain neuron-specific FT knockout, followed by a battery of behavioral assessments, biochemical assays, and unbiased transcriptomic analysis. Our results showed that the neuronal FT deletion mitigates memory impairment and amyloid neuropathology in APP/PS1 mice through suppressing amyloid generation and reversing the pathogenic hyperactivation of mTORC1 signaling. These findings suggest that aberrant upregulation of protein farnesylation is an early driving force in the pathogenic cascade of AD and that targeting FT or its downstream signaling pathways presents a viable therapeutic strategy against AD.
Collapse
|
31
|
Feringa FM, van der Kant R. Cholesterol and Alzheimer's Disease; From Risk Genes to Pathological Effects. Front Aging Neurosci 2021; 13:690372. [PMID: 34248607 PMCID: PMC8264368 DOI: 10.3389/fnagi.2021.690372] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
While the central nervous system compromises 2% of our body weight, it harbors up to 25% of the body's cholesterol. Cholesterol levels in the brain are tightly regulated for physiological brain function, but mounting evidence indicates that excessive cholesterol accumulates in Alzheimer's disease (AD), where it may drive AD-associated pathological changes. This seems especially relevant for late-onset AD, as several of the major genetic risk factors are functionally associated with cholesterol metabolism. In this review we discuss the different systems that maintain brain cholesterol metabolism in the healthy brain, and how dysregulation of these processes can lead, or contribute to, Alzheimer's disease. We will also discuss how AD-risk genes might impact cholesterol metabolism and downstream AD pathology. Finally, we will address the major outstanding questions in the field and how recent technical advances in CRISPR/Cas9-gene editing and induced pluripotent stem cell (iPSC)-technology can aid to study these problems.
Collapse
Affiliation(s)
- Femke M. Feringa
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, Netherlands
| | - Rik van der Kant
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
32
|
Nicolosi M, Bellia F, Giuffrida ML, Zimbone S, Oliveri V, Vecchio G. Synthesis and biological evaluation of novel β-cyclodextrin-fluvastatin conjugates. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|