1
|
Koch K, Schlüppmann K, Hüsken S, Stark LM, Förster N, Masjosthusmann S, Klose J, Dönmez A, Fritsche E. Nuclear hormone receptors control fundamental processes of human fetal neurodevelopment: Basis for endocrine disruption assessment. ENVIRONMENT INTERNATIONAL 2025; 198:109400. [PMID: 40147140 DOI: 10.1016/j.envint.2025.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/10/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Despite growing awareness of endocrine disrupting chemicals (EDCs), knowledge gaps remain regarding their effects on human brain development. EDC risk assessment focuses primarily on EATS modalities (estrogens, androgens, thyroid hormones, and steroidogenesis), overlooking the broader range of hormone receptors expressed in the developing brain. This limits the evaluation of chemicals for their potential to cause endocrine disruption-mediated developmental neurotoxicity (ED-DNT). The Neurosphere Assay, an in vitro test method for developmental neurotoxicity (DNT) evaluation, is an integral component of the DNT in vitro testing battery, which has been used to screen a broad domain of environmental chemicals. Here, we define the endocrine-related applicability domain of the Neurosphere Assay by assessing the impact and specificity of 14 hormone receptors on seven key neurodevelopmental processes (KNDPs), neural progenitor cell (NPC) proliferation, migration of radial glia, neurons, and oligodendrocytes, neurite outgrowth, and differentiation of neurons and oligodendrocytes. Comparative analyses in human and rat NPCs of both sexes revealed species- and sex-specific responses. Mechanistic insights were obtained through RNA sequencing and agonist/antagonist co-exposures. Most receptor agonists modulated KNDPs at concentrations in the range of physiologically relevant hormone concentrations. Phenotypic effects induced by glucocorticoid receptor (GR), liver X receptor (LXR), peroxisome proliferator-activated receptor beta/delta (PPARβδ), retinoic acid receptor (RAR) and retinoid X receptor (RXR) activation were counteracted by receptor antagonists, confirming specificity. Transcriptomics highlighted receptor crosstalk and the involvement of conserved developmental pathways (e.g. Notch and Wnt). Species comparisons identified limited concordance in hormone receptor-regulated KNDPs between human and rat NPCs. This study presents novel findings on cellular and molecular hormone actions in human fetal NPCs, highlights major species differences, and illustrates the Neurosphere Assay's relevance for detecting endocrine MoAs, supporting its application in human-based ED-DNT risk assessment.
Collapse
Affiliation(s)
- Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; DNTOX GmbH, Duesseldorf, Germany.
| | - Kevin Schlüppmann
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Saskia Hüsken
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Louisa Merit Stark
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Nils Förster
- Bioinformatics Group, Faculty for Biology and Biotechnology, Ruhr-University Bochum, Germany; Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, Bochum, Germany
| | | | - Jördis Klose
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; DNTOX GmbH, Duesseldorf, Germany
| | - Arif Dönmez
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; DNTOX GmbH, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; DNTOX GmbH, Duesseldorf, Germany; Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany; SCAHT - Swiss Centre for Applied Human Toxicology, Basel, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Tian J, Zhang Y, Zhao X. The Effects and Mechanisms of n-3 and n-6 Polyunsaturated Fatty Acids in the Central Nervous System. Cell Mol Neurobiol 2025; 45:25. [PMID: 40097862 PMCID: PMC11914701 DOI: 10.1007/s10571-025-01543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
The brain is rich in fatty acids (FAs), with polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (C22:6n-3, DHA) and arachidonic acid (C20:4n-6, ARA), and the former predominantly stored in the form of phosphatidylcholine, phosphatidyl ethanolamine (PE, diacyl and plasma phospholipid proform), and phosphatidylserine (PS), while the latter is mainly found in ethanolamine phosphoglycerides (EPG) and contributes to constitute most of phosphoglycerides. When required by the body, PUFAs are liberated from membrane phospholipids (either directly or via their metabolites, which are generated by a series of enzymatic reactions) to participate in various cerebral physiological processes. PUFAs and their derivatives play crucial roles in modulating numerous bodily functions, including neuronal signal transmission, neurogenesis, neuroinflammation, and glucose uptake in the brain, thereby sustaining fundamental brain function. Although PUFAs have been implicated in a spectrum of neurological disorders, including acute brain injury (TBI), multiple sclerosis (MS), and neurodegenerative diseases, their role in conditions such as depression, Alzheimer's disease (AD), and Parkinson's disease (PD) is particularly noteworthy. These disorders are closely linked to critical brain functions, including cognition, memory, and inflammatory processes. Given the substantial body of research elucidating the involvement of PUFAs in the pathogenesis and progression of these diseases, this review will specifically concentrate on their impact within these contexts.
Collapse
Affiliation(s)
- Jiajia Tian
- Department of Neurosurgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Yating Zhang
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong, 226019, China
| | - Xudong Zhao
- Department of Neurosurgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China.
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong, 226019, China.
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Elhemiely AA, Darwish A. Pharmacological and biochemical insights into lead-induced hepatotoxicity: Pathway interplay and the protective effects of arbutin via the oral and intraperitoneal routes in silico and in vivo. Int Immunopharmacol 2024; 142:112968. [PMID: 39226827 DOI: 10.1016/j.intimp.2024.112968] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Lead acetate (PbAc), a hazardous heavy metal, poses significant threats to human health and the environment because of widespread industrial exposure. PbAc exposure leads to liver injury primarily through oxidative stress and the disruption of key regulatory pathways. Understanding these mechanisms and exploring protective agents are vital for mitigating PbAc-induced hepatotoxicity. Therefore, we aimed to investigate the molecular pathways implicated in PbAc-induced liver damage, focusing on Sirt-1, Nrf2 (HO-1, NQO1, and SOD), Akt-1/GSK3β, m-TOR, and P53. Additionally, we aimed to assess the hepatoprotective effects of arbutin, which is administered orally and intraperitoneally, to determine the most effective delivery method. METHODOLOGY In silico analyses were conducted to identify relevant protein networks associated with Sirt-1 and AKT-1/GSK-3B pathways. The pharmacodynamic properties of arbutin were examined, followed by molecular docking studies to elucidate its interactions with the selected protein network. In vivo preclinical studies were carried out on adult male rats randomly assigned to 6 different treatment groups, including PbAc exposure and PbAc exposure treated with arbutin either orally or intraperitoneally. RESULTS PbAc exposure led to hepatic oxidative stress, as evidenced by elevated MDA levels and SIRT-1 inhibition, disrupting antioxidant pathways and activating antiautophagic and proapoptotic pathways, ultimately resulting in hepatocyte necrosis. Both oral and intraperitoneal arbutin administration effectively modifed these effects, with intraperitoneal delivery showing superior efficacy in mitigating PbAc-induced histological, immunological, and biochemical alterations. CONCLUSION This study provides insights into the molecular mechanisms underlying PbAc-induced liver injury and highlights the hepatoprotective potential of arbutin. These findings suggest that arbutin, particularly when administered intraperitoneally, holds promise as a therapeutic agent for combating PbAc-induced hepatotoxicity.
Collapse
Affiliation(s)
| | - Alshaymaa Darwish
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt.
| |
Collapse
|
4
|
Zhang P, Munier JJ, Wiese CB, Vergnes L, Link JC, Abbasi F, Ronquillo E, Scheker K, Muñoz A, Kuang YL, Theusch E, Lu M, Sanchez G, Oni-Orisan A, Iribarren C, McPhaul MJ, Nomura DK, Knowles JW, Krauss RM, Medina MW, Reue K. X chromosome dosage drives statin-induced dysglycemia and mitochondrial dysfunction. Nat Commun 2024; 15:5571. [PMID: 38956041 PMCID: PMC11219728 DOI: 10.1038/s41467-024-49764-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Statin drugs lower blood cholesterol levels for cardiovascular disease prevention. Women are more likely than men to experience adverse statin effects, particularly new-onset diabetes (NOD) and muscle weakness. Here we find that impaired glucose homeostasis and muscle weakness in statin-treated female mice are associated with reduced levels of the omega-3 fatty acid, docosahexaenoic acid (DHA), impaired redox tone, and reduced mitochondrial respiration. Statin adverse effects are prevented in females by administering fish oil as a source of DHA, by reducing dosage of the X chromosome or the Kdm5c gene, which escapes X chromosome inactivation and is normally expressed at higher levels in females than males. As seen in female mice, we find that women experience more severe reductions than men in DHA levels after statin administration, and that DHA levels are inversely correlated with glucose levels. Furthermore, induced pluripotent stem cells from women who developed NOD exhibit impaired mitochondrial function when treated with statin, whereas cells from men do not. These studies identify X chromosome dosage as a genetic risk factor for statin adverse effects and suggest DHA supplementation as a preventive co-therapy.
Collapse
Affiliation(s)
- Peixiang Zhang
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Joseph J Munier
- Molecular, Cellular & Integrative Physiology, University of California, Los Angeles, CA, USA
| | - Carrie B Wiese
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Laurent Vergnes
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Jenny C Link
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
- Department of Biology, Whittier College, Whittier, CA, USA
| | - Fahim Abbasi
- Division of Cardiovascular Medicine and Cardiovascular Institute, Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Emilio Ronquillo
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Katherine Scheker
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Antonio Muñoz
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Yu-Lin Kuang
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Elizabeth Theusch
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Meng Lu
- Division of Research, Kaiser Permanente, Oakland, CA, USA
| | | | - Akinyemi Oni-Orisan
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | | | - Michael J McPhaul
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, 92675, USA
| | - Daniel K Nomura
- Nutritional Sciences and Toxicology, and Novartis-Berkeley Center of Proteomics and Chemistry Technologies, University of California, Berkeley, Berkeley, CA, USA
| | - Joshua W Knowles
- Division of Cardiovascular Medicine and Cardiovascular Institute, Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald M Krauss
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Marisa W Medina
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Karen Reue
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Dos Santos Silva P, Kra G, Butenko Y, Daddam JR, Levin Y, Zachut M. Maternal supplementation with n-3 fatty acids affects placental lipid metabolism, inflammation, oxidative stress, the endocannabinoid system, and the neonate cytokine concentrations in dairy cows. J Anim Sci Biotechnol 2024; 15:74. [PMID: 38769527 PMCID: PMC11106909 DOI: 10.1186/s40104-024-01033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/06/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The placenta plays a crucial role in supporting and influencing fetal development. We compared the effects of prepartum supplementation with omega-3 (n-3) fatty acid (FA) sources, flaxseed oil (FLX) and fish oil (FO), on the expression of genes and proteins related to lipid metabolism, inflammation, oxidative stress, and the endocannabinoid system (ECS) in the expelled placenta, as well as on FA profile and inflammatory response of neonates. Late-pregnant Holstein dairy cows were supplemented with saturated fat (CTL), FLX, or FO. Placental cotyledons (n = 5) were collected immediately after expulsion, and extracted RNA and proteins were analyzed by RT-PCR and proteomic analysis. Neonatal blood was assessed for FA composition and concentrations of inflammatory markers. RESULTS FO increased the gene expression of fatty acid binding protein 4 (FABP4), interleukin 10 (IL-10), catalase (CAT), cannabinoid receptor 1 (CNR1), and cannabinoid receptor 2 (CNR2) compared with CTL placenta. Gene expression of ECS-enzyme FA-amide hydrolase (FAAH) was lower in FLX and FO than in CTL. Proteomic analysis identified 3,974 proteins; of these, 51-59 were differentially abundant between treatments (P ≤ 0.05, |fold change| ≥ 1.5). Top canonical pathways enriched in FLX vs. CTL and in FO vs. CTL were triglyceride metabolism and inflammatory processes. Both n-3 FA increased the placental abundance of FA binding proteins (FABPs) 3 and 7. The abundance of CNR1 cannabinoid-receptor-interacting-protein-1 (CNRIP1) was reduced in FO vs. FLX. In silico modeling affirmed that bovine FABPs bind to endocannabinoids. The FLX increased the abundance of inflammatory CD44-antigen and secreted-phosphoprotein-1, whereas prostaglandin-endoperoxide synthase 2 was decreased in FO vs. CTL placenta. Maternal FO enriched neonatal plasma with n-3 FAs, and both FLX and FO reduced interleukin-6 concentrations compared with CTL. CONCLUSION Maternal n-3 FA from FLX and FO differentially affected the bovine placenta; both enhanced lipid metabolism and modulated oxidative stress, however, FO increased some transcriptional ECS components, possibly related to the increased FABPs. Maternal FO induced a unique balance of pro- and anti-inflammatory components in the placenta. Taken together, different sources of n-3 FA during late pregnancy enhanced placental immune and metabolic processes, which may affect the neonatal immune system.
Collapse
Affiliation(s)
- Priscila Dos Santos Silva
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel
| | - Gitit Kra
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yana Butenko
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel
| | | | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
6
|
Muñoz-Jurado A, Escribano BM, Galván A, Valdelvira ME, Caballero-Villarraso J, Giraldo AI, Santamaría A, Luque E, Agüera E, LaTorre M, Túnez I. Neuroprotective and antioxidant effects of docosahexaenoic acid (DHA) in an experimental model of multiple sclerosis. J Nutr Biochem 2024; 124:109497. [PMID: 37875228 DOI: 10.1016/j.jnutbio.2023.109497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/03/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease, whose etiology is not yet fully understood, although there are several factors that can increase the chances of suffering from it. These factors include nutrition, which may be involved in the pathogenesis of the disease. In relation to nutrition, docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (n-3 PUFA), has emerged as an important player in the regulation of neuroinflammation, being considered a pleiotropic molecule. This study aimed to evaluate the effect of DHA supplementation on clinical state and oxidative stress produced by experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Twenty-five Dark Agouti rats which were used divided into Control Group, Control+Vehicle Group, Control+DHA Group, EAE Group, and EAE+DHA Group. DHA was administered for 51 days by intraperitoneal (i.p.) injection at a dose of 40 mg/kg, once a day, 5 days a week. DHA supplementation produced a decrease in oxidative stress, as well as an improvement in the clinical score of the disease. DHA could exert a beneficial effect on the clinic of MS, through the activation of the antioxidant factor Nrf2.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain; Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain.
| | - Alberto Galván
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Manuel E Valdelvira
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Javier Caballero-Villarraso
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain; Analysis Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Ana I Giraldo
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Abel Santamaría
- Laboratory of exciting amino acids, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Evelio Luque
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Eduardo Agüera
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Neurology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Manuel LaTorre
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain
| | - Isaac Túnez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain; Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Madrid, Spain.
| |
Collapse
|
7
|
Rana AK, Sharma S, Kumar R, Singh D. Buckwheat tartary regulates the Gsk-3β/β-catenin pathway to prevent neurobehavioral impairments in a rat model of surgical menopause. Metab Brain Dis 2023; 38:1859-1875. [PMID: 37133802 DOI: 10.1007/s11011-023-01213-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/07/2023] [Indexed: 05/04/2023]
Abstract
Menopause is a natural aging process characterized by decreased levels of sex hormones in females. Deprivation of estrogen following menopause results in alterations of dendritic arborization of the neuron that leads to neurobehavioral complications. Hormone replacement therapy is in practice to manage postmenopausal conditions but is associated with a lot of adverse effects. In the present study, the efficacy of buckwheat tartary (Fagopyrum tataricum) whole seed extract was investigated against the neurobehavioral complication in middle-aged ovariectomized rats, which mimic the clinical postmenopausal condition. Hydroalcoholic extraction (80% ethanol) was done, and quantification of major marker compounds in the extract was performed using HPLC. Oral treatment of the extract following the critical window period rescued the reconsolidation process of spatial and recognition memory, as well as depression-like behavior. Gene expression analysis disclosed elevated oxidative stress and neuroinflammation that largely disturb the integrity of the blood-brain barrier in ovariectomized rats. Gfap and Pparγ expression also showed reactive astrogliosis in the rats subjected to ovariectomy. The extract treatment reverted the elevated oxidative stress, neuroinflammation and expression of the studied genes. Furthermore, protein expression analysis revealed that Gsk-3β was activated differentially in the brain, as suggested by β-catenin protein expression, which was normalized following the treatment with extract and rescued the altered neurobehavioral process. The results of the current study concluded that Fagopyrum tataricum seed extract is better option to overcome the neurobehavioral complications associated with the menopause.
Collapse
Affiliation(s)
- Anil Kumar Rana
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Supriya Sharma
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajneesh Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Basak S, Duttaroy AK. Maternal PUFAs, Placental Epigenetics, and Their Relevance to Fetal Growth and Brain Development. Reprod Sci 2023; 30:408-427. [PMID: 35676498 DOI: 10.1007/s43032-022-00989-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022]
Abstract
Dietary polyunsaturated fatty acids (PUFAs), especially omega-3 (n-3) and n-6 long-chain (LC) PUFAs, are indispensable for the fetus' brain supplied by the placenta. Despite being highly unsaturated, n-3 LCPUFA-docosahexaenoic acid (DHA) plays a protective role as an antioxidant in the brain. Deficiency of DHA during fetal development may cause irreversible damages in neurodevelopment programming. Dietary PUFAs can impact placental structure and functions by regulating early placentation processes, such as angiogenesis. They promote remodeling of uteroplacental architecture to facilitate increased blood flow and surface area for nutrient exchange. The placenta's fatty acid transfer depends on the uteroplacental vascular development, ensuring adequate maternal circulatory fatty acids transport to fulfill the fetus' rapid growth and development requirements. Maternal n-3 PUFA deficiency predominantly leads to placental epigenetic changes than other fetal developing organs. A global shift in DNA methylation possibly transmits epigenetic instability in developing fetuses due to n-3 PUFA deficiency. Thus, an optimal level of maternal omega-3 (n-3) PUFAs may protect the placenta's structural and functional integrity and allow fetal growth by controlling the aberrant placental epigenetic changes. This narrative review summarizes the recent advances and underpins the roles of maternal PUFAs on the structure and functions of the placenta and their relevance to fetal growth and brain development.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India.
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Davinelli S, Medoro A, Intrieri M, Saso L, Scapagnini G, Kang JX. Targeting NRF2-KEAP1 axis by Omega-3 fatty acids and their derivatives: Emerging opportunities against aging and diseases. Free Radic Biol Med 2022; 193:736-750. [PMID: 36402440 DOI: 10.1016/j.freeradbiomed.2022.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
The transcription factor NRF2 and its endogenous inhibitor KEAP1 play a crucial role in the maintenance of cellular redox homeostasis by regulating the gene expression of diverse networks of antioxidant, anti-inflammatory, and detoxification enzymes. Therefore, activation of NRF2 provides cytoprotection against numerous pathologies, including age-related diseases. An age-associated loss of NRF2 function may be a key driving force behind the aging phenotype. Recently, numerous NRF2 inducers have been identified and some of them are promising candidates to restore NRF2 transcriptional activity during aging. Emerging evidence indicates that omega-3 (n-3) polyunsaturated fatty acids (PUFAs) and their electrophilic derivatives may trigger a protective response via NRF2 activation, rescuing or maintaining cellular redox homeostasis. In this review, we provide an overview of the NRF2-KEAP1 system and its dysregulation in aging cells. We also summarize current studies on the modulatory role of n-3 PUFAs as potential agents to prevent multiple chronic diseases and restore the age-related impairment of NRF2 function.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Wierenga KA, Riemers FM, Westendorp B, Harkema JR, Pestka JJ. Single cell analysis of docosahexaenoic acid suppression of sequential LPS-induced proinflammatory and interferon-regulated gene expression in the macrophage. Front Immunol 2022; 13:993614. [PMID: 36405730 PMCID: PMC9669445 DOI: 10.3389/fimmu.2022.993614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Preclinical and clinical studies suggest that consumption of long chain omega-3 polyunsaturated fatty acids (PUFAs) reduces severity of chronic inflammatory and autoimmune diseases. While these ameliorative effects are conventionally associated with downregulated expression of proinflammatory cytokine and chemokine genes, our laboratory has recently identified Type 1 interferon (IFN1)-regulated gene expression to be another key target of omega-3 PUFAs. Here we used single cell RNA sequencing (scRNAseq) to gain new mechanistic perspectives on how the omega-3 PUFA docosahexaenoic acid (DHA) influences TLR4-driven proinflammatory and IFN1-regulated gene expression in a novel self-renewing murine fetal liver-derived macrophage (FLM) model. FLMs were cultured with 25 µM DHA or vehicle for 24 h, treated with modest concentration of LPS (20 ng/ml) for 1 and 4 h, and then subjected to scRNAseq using the 10X Chromium System. At 0 h (i.e., in the absence of LPS), DHA increased expression of genes associated with the NRF2 antioxidant response (e.g. Sqstm1, Hmox1, Chchd10) and metal homeostasis (e.g.Mt1, Mt2, Ftl1, Fth1), both of which are consistent with DHA-induced polarization of FLMs to a more anti-inflammatory phenotype. At 1 h post-LPS treatment, DHA inhibited LPS-induced cholesterol synthesis genes (e.g. Scd1, Scd2, Pmvk, Cyp51, Hmgcs1, and Fdps) which potentially could contribute to interference with TLR4-mediated inflammatory signaling. At 4 h post-LPS treatment, LPS-treated FLMs reflected a more robust inflammatory response including upregulation of proinflammatory cytokine (e.g. Il1a, Il1b, Tnf) and chemokine (e.g.Ccl2, Ccl3, Ccl4, Ccl7) genes as well as IFN1-regulated genes (e.g. Irf7, Mx1, Oasl1, Ifit1), many of which were suppressed by DHA. Using single-cell regulatory network inference and clustering (SCENIC) to identify gene expression networks, we found DHA modestly downregulated LPS-induced expression of NF-κB-target genes. Importantly, LPS induced a subset of FLMs simultaneously expressing NF-κB- and IRF7/STAT1/STAT2-target genes that were conspicuously absent in DHA-pretreated FLMs. Thus, DHA potently targeted both the NF-κB and the IFN1 responses. Altogether, scRNAseq generated a valuable dataset that provides new insights into multiple overlapping mechanisms by which DHA may transcriptionally or post-transcriptionally regulate LPS-induced proinflammatory and IFN1-driven responses in macrophages.
Collapse
Affiliation(s)
- Kathryn A. Wierenga
- Department of Biochemistry and Molecular Biology, Michigan State University, Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, Lansing, MI, United States
| | - Frank M. Riemers
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Bart Westendorp
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jack R. Harkema
- Institute for Integrative Toxicology, Michigan State University, Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, Lansing, MI, United States
| |
Collapse
|
11
|
Roy MA, Gridley CK, Li S, Park Y, Timme-Laragy AR. Nrf2a dependent and independent effects of early life exposure to 3,3'-dichlorobiphenyl (PCB-11) in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106219. [PMID: 35700651 PMCID: PMC9701526 DOI: 10.1016/j.aquatox.2022.106219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 06/03/2023]
Abstract
The environmental pollutant 3,3'-dichlorobiphenyl (PCB-11) is a lower-chlorinated polychlorinated biphenyl (PCB) congener present in air and water samples. Both PCB-11 and its metabolite, 4-PCB-11-Sulfate, are detected in humans, including in pregnant women. Previous research in zebrafish (Danio rerio) has shown that 0.2 μM exposures to 4-PCB-11-Sulfate starting at 1 day post fertilization (dpf) increase hepatic neutral lipid accumulation in larvae at 15 dpf. Here, we explored whether nuclear factor erythroid 2-related factor 2 (Nrf2), known as the master-regulator of the adaptive response to oxidative stress, contributes to metabolic impacts of 4-PCB-11-Sulfate. For this work, embryos were collected from homozygous wildtype or Nrf2a mutant adult zebrafish that also express GFP in pancreatic β-cells, rendering Tg(ins:GFP;nrf2afh318+/+) and Tg(ins:GFP;nrf2afh318-/-) lines. Exposures were conducted from 1-15 dpf to either 0.05% DMSO or DMSO-matched 0.2 µM 4-PCB-11-Sulfate, and at 15 dpf subsets of larvae were imaged for overall morphology, primary pancreatic islet area, and collected for fatty acid profiling and RNAseq. At 15 dpf, independent of genotype, fish exposed to 4-PCB-11-Sulfate survived significantly more at 80-85% compared to 65-73% survival for unexposed fish, and had primary pancreatic islets 8% larger compared to unexposed fish. Fish growth at 15 dpf was dependent on genotype, with Nrf2a mutant fish a significant 3-5% shorter than wildtype fish, and an interaction effect was observed where Nrf2a mutant fish exposed to 4-PCB-11-Sulfate experienced a significant 29% decrease in the omega-3 fatty acid DHA compared to unexposed mutant fish. RNAseq revealed 308 differentially expressed genes, most of which were dependent on genotype. These findings suggest that Nrf2a plays an important role in growth as well as for DHA production in the presence of 4-PCB-11-Sulfate. Further research would be beneficial to understand the importance of Nrf2a throughout the lifecourse, especially in the context of toxicant exposures.
Collapse
Affiliation(s)
- Monika A Roy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 171B Goessmann Building, 686 N Pleasant St, Amherst, MA 01003, USA; Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Charlotte K Gridley
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 171B Goessmann Building, 686 N Pleasant St, Amherst, MA 01003, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 171B Goessmann Building, 686 N Pleasant St, Amherst, MA 01003, USA.
| |
Collapse
|
12
|
Ferroptosis and NRF2: an emerging battlefield in the neurodegeneration of Alzheimer's disease. Essays Biochem 2021; 65:925-940. [PMID: 34623415 DOI: 10.1042/ebc20210017] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022]
Abstract
Ferroptosis is an iron- and lipid peroxidation-dependent cell death modality and emerging evidence indicates that ferroptosis has great explanatory potential for neuronal loss and associated CNS dysfunction in a range of neurodegenerative diseases (e.g., Alzheimer's, Parkinson's and Huntington's diseases, Motor neuron disease, Friedreich ataxia (FRDA)). Ferroptotic death results from lethal levels of phospholipid hydroperoxides that are generated by iron-dependent peroxidation of polyunsaturated fatty acids (PUFAs), such as arachidonic and adrenic acids, which are conjugated to specific phospholipids (e.g., phosphatidylethanolamines (PEs)). The major cellular protector against ferroptosis is glutathione peroxidase 4 (GPX4), a membrane-associated selenoenzyme that reduces deleterious phospholipid hydroperoxides to their corresponding benign phospholipid alcohols in a glutathione-dependent manner. Other complementary protective systems have also been identified that act to bolster cellular defences against ferroptosis. Many pharmacological modulators of the ferroptosis pathway have been identified, targeting proteins involved in iron homoeostasis and autophagy; the production and detoxification of lipid peroxides, and cyst(e)ine/glutathione metabolism. While a growing number of cell signalling pathways converge to regulate the ferroptosis cascade, an emerging understanding of ferroptosis regulation suggests that the ferroptotic 'tone' of cells can be set by the transcription factor, nuclear factor erythroid 2-related factor 2 (NRF2), which transcriptionally controls many key components of the ferroptosis pathway. In this review, we provide a critical overview of the relationship between ferroptosis and NRF2 signalling. With a focus on the role of ferroptosis in Alzheimer's disease (AD), we discuss how therapeutic modulation of the NRF2 pathway is a viable strategy to explore in the treatment of ferroptosis-driven neurodegeneration.
Collapse
|