1
|
Hu WF, Yu J, Wang JJ, Sun RJ, Zheng YS, Zhang T, Liu YL, Xu ZG, Guo ZY. Identification of orphan GPR25 as a receptor for the chemokine CXCL17. FEBS J 2025. [PMID: 40279398 DOI: 10.1111/febs.70117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/21/2025] [Accepted: 04/17/2025] [Indexed: 04/27/2025]
Abstract
C-X-C motif chemokine ligand 17 (CXCL17) is a small secretory protein primarily expressed in mucosal tissues, which likely functions as a chemoattractant; however, its receptor is controversial. Herein, we identified the rarely studied orphan G protein-coupled receptor 25 (GPR25) as a receptor of CXCL17 via prediction using the newly developed AlphaFold 3 algorithm and experimental validation. In the NanoLuc Binary Technology (NanoBiT)-based β-arrestin recruitment assay, recombinant human CXCL17 could activate human GPR25 in transfected human embryonic kidney (HEK) 293T cells with an EC50 value around 100 nm, but it had no activation effect on the other 17 tested G protein-coupled receptors. Deletion of three conserved C-terminal residues from human CXCL17 almost abolished its activation effect. Alanine replacement of W95 or R178 of human GPR25, two conserved residues in the predicted orthosteric ligand binding pocket, almost abolished its response to CXCL17. Only the pairing of wild-type CXCL17 with wild-type GPR25 could cause shedding of transforming growth factor α and induce chemotactic movement of transfected HEK293T cells. These results were consistent with the AlphaFold 3-predicted binding model, in which the highly conserved C-terminal fragment of CXCL17 inserts into the orthosteric ligand binding pocket of GPR25. According to their expression pattern shown in the Human Protein Atlas, CXCL17 may be an endogenous agonist of GPR25 in humans and other mammals; however, this hypothesis needs to be tested experimentally in future studies. The present deorphanization paves the way for further functional characterization of the orphan receptor GPR25 and the orphan ligand CXCL17.
Collapse
Affiliation(s)
- Wen-Feng Hu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jie Yu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Juan-Juan Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ru-Jiao Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yong-Shan Zheng
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Teng Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Koni E, Congur I, Tokcaer Keskin Z. Overexpression of CXCL17 increases migration and invasion of A549 lung adenocarcinoma cells. Front Pharmacol 2024; 15:1306273. [PMID: 38384293 PMCID: PMC10879421 DOI: 10.3389/fphar.2024.1306273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Lung cancer is one of the most frequently diagnosed malignancies and is a widespread disease that affects millions of individuals globally. CXCL17 is a member of the CXC chemokine family that attracts myeloid cells and is associated with the mucosa. CXCL17 can both support and suppress tumor growth in certain types of cancer. A549 LUAD cells were transfected with N-Terminal p3XFLAG-CMV or N-Terminal p3XFLAG-CMV-CXCL17 to establish stably transfected CXCL17-overexpressing cells. Reverse-transcription polymerase chain reaction (RT-PCR) and Enzyme Linked Immunosorbent Assay (ELISA) were performed to verify the levels of CXCL17 mRNA and of CXCL17 protein concentration of stably transfected A549 cells respectively. Wound healing, CCK8, and matrigel invasion assays were performed to assess the effect of CXCL17 overexpression on migration, proliferation, and invasion of A549 cells. When compared to control groups, proliferative capacity of A549 cells were unaffected by CXCL17 overexpression; however, the wound area in the CXCL17 overexpression group had dramatically decreased after 48 h. Similarly, the number of invasion cells was significantly higher in the CXCL17-overexpressing group than in the control ones after 48 h. CXCL17 overexpression significantly increased the ability of A549 cells to migrate and invade, without affecting their proliferative abilities.
Collapse
Affiliation(s)
- Ekin Koni
- Graduate School of Natural and Applied Sciences, Department of Molecular and Translational Biomedicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Irem Congur
- Graduate School of Natural and Applied Sciences, Department of Molecular and Translational Biomedicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Zeynep Tokcaer Keskin
- Graduate School of Natural and Applied Sciences, Department of Molecular and Translational Biomedicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| |
Collapse
|
3
|
Korbecki J, Kupnicka P, Barczak K, Bosiacki M, Ziętek P, Chlubek D, Baranowska-Bosiacka I. The Role of CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 Ligands in Molecular Cancer Processes and Clinical Aspects of Acute Myeloid Leukemia (AML). Cancers (Basel) 2023; 15:4555. [PMID: 37760523 PMCID: PMC10526350 DOI: 10.3390/cancers15184555] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Acute myeloid leukemia (AML) is a type of leukemia known for its unfavorable prognoses, prompting research efforts to discover new therapeutic targets. One area of investigation involves examining extracellular factors, particularly CXC chemokines. While CXCL12 (SDF-1) and its receptor CXCR4 have been extensively studied, research on other CXC chemokine axes in AML is less developed. This study aims to bridge that gap by providing an overview of the significance of CXC chemokines other than CXCL12 (CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 ligands and CXCL14 and CXCL17) in AML's oncogenic processes. We explore the roles of all CXC chemokines other than CXCL12, in particular CXCL1 (Gro-α), CXCL8 (IL-8), CXCL10 (IP-10), and CXCL11 (I-TAC) in AML tumor processes, including their impact on AML cell proliferation, bone marrow angiogenesis, interaction with non-leukemic cells like MSCs and osteoblasts, and their clinical relevance. We delve into how they influence prognosis, association with extramedullary AML, induction of chemoresistance, effects on bone marrow microvessel density, and their connection to French-American-British (FAB) classification and FLT3 gene mutations.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| | - Paweł Ziętek
- Department of Orthopaedics, Traumatology and Orthopaedic Oncology, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| |
Collapse
|
4
|
Hashemi SF, Khorramdelazad H. The cryptic role of CXCL17/CXCR8 axis in the pathogenesis of cancers: a review of the latest evidence. J Cell Commun Signal 2023; 17:409-422. [PMID: 36352331 PMCID: PMC10409701 DOI: 10.1007/s12079-022-00699-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Chemokines are immune system mediators that mediate various activities and play a role in the pathogenesis of several cancers. Among these chemokines, C-X-C motif chemokine 17 (CXCL-17) is a relatively novel molecule produced along the airway epithelium in physiological and pathological conditions, and evidence shows that it plays a homeostatic role in most cases. CXCL17 has a protective role in some cancers and a pathological role in others, such as liver and lung cancer. This chemokine, along with its possible receptor termed G protein-coupled receptor 35 (GPR35) or CXCR8, are involved in recruiting myeloid cells, regulating angiogenesis, defending against pathogenic microorganisms, and numerous other mechanisms. Considering the few studies that have been performed on the dual role of CXCL17 in human malignancies, this review has investigated the possible pro-tumor and anti-tumor roles of this chemokine, as well as future treatment options in cancer therapy.
Collapse
Affiliation(s)
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
5
|
Gowhari Shabgah A, Jadidi-Niaragh F, Ebrahimzadeh F, Mohammadi H, Askari E, Pahlavani N, Malekahmadi M, Ebrahimi Nik M, Gholizadeh Navashenaq J. A comprehensive review of chemokine CXC17 (VCC1) in cancer, infection, and inflammation. Cell Biol Int 2022; 46:1557-1570. [PMID: 35811438 DOI: 10.1002/cbin.11846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 01/05/2023]
Abstract
A crucial component of the immune system are chemokiness. Chemokine's dysregulation has been linked to a number of pathological diseases. Recently, CXCL17, a chemokine belonging to the CXC subfamily, was identified. With regard to a number of physiological conditions and disorders, CXCL17 either has homeostatic or pathogenic effects. Some research suggests that CXCL17 is an orphan ligand, despite the fact that G protein-coupled receptor (GPR) 35 has been suggested as a possible receptor for CXCL17. Since CXCL17 is primarily secreted by mucosal epithelia, such as those in the digestive and respiratory tracts, under physiological circumstances, this chemokine is referred to as a mucosal chemokine. Macrophages and monocytes are the cells that express GPR35 and hence react to CXCL17. In homeostatic conditions, this chemokine has anti-inflammatory, antibacterial, and chemotactic properties. CXCL17 promotes angiogenesis, metastasis, and cell proliferation in pathologic circumstances like malignancies. However, other studies suggest that CXCL17 may have anti-tumor properties. Additionally, studies have shown that CXCL17 may have a role in conditions such as idiopathic pulmonary fibrosis, multiple sclerosis, asthma, and systemic sclerosis. Additionally, deregulation of CXCL17 in some diseases may serve as a biomarker for diagnosis and prognosis. Clarifying the underlying mechanism of CXCL17's activity in homeostatic and pathological situations may thus increase our understanding of its role and hold promise for the development of novel treatment strategies.
Collapse
Affiliation(s)
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Elham Askari
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahsa Malekahmadi
- Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ebrahimi Nik
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
6
|
Shimada S, Makino K, Jinnin M, Sawamura S, Kawano Y, Ide M, Kajihara I, Makino T, Fukushima S, Ihn H. CXCL17-mediated downregulation of type I collagen via MMP1 and miR-29 in skin fibroblasts possibly contributes to the fibrosis in systemic sclerosis. J Dermatol Sci 2020; 100:183-191. [PMID: 33055012 DOI: 10.1016/j.jdermsci.2020.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/15/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Systemic sclerosis (SSc) is characterized by excessive deposition of collagen in the skin and internal organs. Recent studies have shown that chemokine (C-X-C motif) ligands (CXCLs) are involved in the pathogenesis of SSc. OBJECTIVE Our aim was to examine the anti-fibrotic potential of CXCL17, a newly discovered chemokine, in cultured skin fibroblasts and in a bleomycin-induced SSc mouse model. Moreover, we examined serum level of CXCL17 in patients with SSc. METHODS Type I collagen expression was evaluated in SSc skin and cultured fibroblasts treated with CXCL17 using immunoblotting and quantitative reverse transcription-PCR. Serum CXCL17 levels were determined using enzyme-linked immunosorbent assay in 63 patients with SSc and 17 healthy subjects. A bleomycin-induced SSc mouse model was used to evaluate the effect of CXCL17 on skin fibrosis. RESULTS CXCL17 reduced the expression of type I collagen in healthy control fibroblasts. CXCL17 also induced matrix metalloproteinase 1 (MMP1) and miR-29 expression in fibroblasts, indicating that CXCL17 regulates type I collagen expression in part via post-transcriptional mechanisms through MMP1 and miR-29. We found that local injection of CXCL17 attenuated bleomycin-induced skin fibrosis in mice. CXCL17 levels in SSc skin were lower than those in healthy controls, in contrast to the high serum CXCL17 levels in patients with SSc. The low expression of CXCL17 in SSc skin possibly affects type I collagen accumulation in this disease. CONCLUSION Our data indicate that understanding CXCL17 signaling may lead to a better therapeutic approach for SSc.
Collapse
MESH Headings
- Animals
- Biopsy
- Bleomycin/administration & dosage
- Bleomycin/toxicity
- Case-Control Studies
- Cells, Cultured
- Chemokines, CXC/administration & dosage
- Chemokines, CXC/analysis
- Chemokines, CXC/metabolism
- Collagen Type I/analysis
- Collagen Type I/metabolism
- Disease Models, Animal
- Down-Regulation
- Female
- Fibroblasts
- Healthy Volunteers
- Humans
- Male
- Matrix Metalloproteinase 1/analysis
- Matrix Metalloproteinase 1/metabolism
- Mice
- MicroRNAs/analysis
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/metabolism
- Middle Aged
- Primary Cell Culture
- RNA Processing, Post-Transcriptional
- Recombinant Proteins
- Scleroderma, Systemic/blood
- Scleroderma, Systemic/chemically induced
- Scleroderma, Systemic/genetics
- Scleroderma, Systemic/pathology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Skin/cytology
- Skin/pathology
Collapse
Affiliation(s)
- Shuichi Shimada
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunari Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Masatoshi Jinnin
- Department of Dermatology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Soichiro Sawamura
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuya Kawano
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Maho Ide
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ikko Kajihara
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takamitsu Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Xiao S, Xie W, Zhou L. Mucosal chemokine CXCL17: What is known and not known. Scand J Immunol 2020; 93:e12965. [PMID: 32869346 DOI: 10.1111/sji.12965] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/21/2020] [Accepted: 08/21/2020] [Indexed: 01/05/2023]
Abstract
CXCL17, the last described chemokine, has recently been found to be abundantly and specifically expressed in mucosal sites, while its receptor is still not well determined. Accumulative studies indicate that CXCL17 could potentially exhibit chemotactic, anti-inflammatory, antimicrobial activities under multiple biological conditions. However, the mechanism by which it contributes to the physiological and pathological processes within specific mucosal tissues is still far from being fully elucidated. In this present review, we therefore summarize the current available evidence of CXCL17 with specific emphasis on its biological role and pathophysiological significance, in order to aid in the advancement of CXCL17-related studies.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Wenhui Xie
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Liya Zhou
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| |
Collapse
|
8
|
Yao H, Lv Y, Bai X, Yu Z, Liu X. Prognostic value of CXCL17 and CXCR8 expression in patients with colon cancer. Oncol Lett 2020; 20:2711-2720. [PMID: 32782587 PMCID: PMC7400977 DOI: 10.3892/ol.2020.11819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 05/27/2020] [Indexed: 01/03/2023] Open
Abstract
C-X-C motif chemokine ligand 17 (CXCL17) is a mucous chemokine and its expression is highly correlated with that of G protein-coupled receptor 35 (GPR35), which has been confirmed as its receptor and named C-X-C motif chemokine receptor 8 (CXCR8). CXCL17 is upregulated in several types of cancer. However, the biological role of this chemokine in colon cancer remains unknown. In the present study, the expression levels of CXCL17 and CXCR8 were examined using immunohistochemistry in 101 colon cancer tissues and 79 healthy tumour-adjacent tissues. CXCL17 and CXCR8 expression levels were increased in the colon cancer samples compared with tumour-adjacent samples. Patients with high CXCL17 expression had longer overall survival (OS) compared with patients with low expression of CXCL17 (log-rank test; P=0.027). However, CXCR8 expression, but not CXCL17, was an independent prognostic factor for OS in patients with colon cancer. The expression of CXCR8 correlated positively with that of CXCL17 in colon cancer samples (ρ=0.295; P=0.003). Furthermore, the combined high expression of CXCL17 and CXCR8 was a significant independent prognostic factor for OS in patients with colon cancer (P=0.001). In subgroups with a TNM stage of I–II, the patients with combined high expression of CXCL17 and CXCR8 had a longer survival compared with those without combined high expression (P=0.001). However, this difference was not observed in subgroups with a TNM stage of III–IV. Collectively, these findings suggest that CXCL17/CXCR8 signalling may be involved in colon cancer and contribute to improved patient outcomes.
Collapse
Affiliation(s)
- Hongyan Yao
- Department of Pharmacology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China.,Nuclear Medicine Department, Jinzhou Central Hospital, Jinzhou, Liaoning 121001, P.R. China
| | - Yufeng Lv
- Department of Respiration and Critical Care, The Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xuefeng Bai
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaojian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
9
|
The protective and pathogenic roles of CXCL17 in human health and disease: Potential in respiratory medicine. Cytokine Growth Factor Rev 2020; 53:53-62. [PMID: 32345516 PMCID: PMC7177079 DOI: 10.1016/j.cytogfr.2020.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
C-X-C motif chemokine 17 (CXCL17), plays a functional role in maintaining homeostasis at mucosal barriers. CXCL17 expression is associated with both disease progression and protection in various diseases. The multifactorial mechanistic properties of CXCL17 could be exploited as a therapeutic target
C-X-C motif chemokine 17 (CXCL-17) is a novel chemokine that plays a functional role maintaining homeostasis at distinct mucosal barriers, including regulation of myeloid-cell recruitment, angiogenesis, and control of microorganisms. Particularly, CXCL17 is produced along the epithelium of the airways both at steady state and under inflammatory conditions. While increased CXCL17 expression is associated with disease progression in pulmonary fibrosis, asthma, and lung/hepatic cancer, it is thought to play a protective role in pancreatic cancer, autoimmune encephalomyelitis and viral infections. Thus, there is emerging evidence pointing to both a harmful and protective role for CXCL17 in human health and disease, with therapeutic potential for translational applications. In this review, we provide an overview of the discovery, characteristics and functions of CXCL17 emphasizing its clinical potential in respiratory disorders.
Collapse
|
10
|
Lin X, Xia Y, Hu D, Mao Q, Yu Z, Zhang H, Li C, Chen G, Liu F, Zhu W, Shi Y, Zhang H, Zheng J, Sun T, Xu J, Chao HH, Zheng X, Luο X. Transcriptome‑wide piRNA profiling in human gastric cancer. Oncol Rep 2019; 41:3089-3099. [PMID: 30896887 PMCID: PMC6448102 DOI: 10.3892/or.2019.7073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) comprise the largest class of non-coding RNAs. They represent a molecular feature shared by all non-aging biological systems, including germline and somatic cancer stem cells, which display an indefinite capacity of renewal and proliferation and are potentially immortal. They have been identified in animal stomachs, but their relationship with human gastric cancers remains largely unclear. The present study aimed to identify the piRNAs associated with human gastric cancers across the whole transcriptome. Fresh tumor tissues and adjacent non-tumorous tissues from stomachs were examined using a piRNA microarray (23,677 piRNAs) that was then validated by qPCR. The differential expression of piRNAs between cases and controls was analyzed. The transposable elements (TEs) that are potentially targeted by the risk piRNAs were searched. The expression of the nearest genes that are complementary to the sequences of the piRNAs was examined in the stomach tissue. The regulatory effects of genome-wide significant and replicated cancer-risk DNA variants on the piRNA expression in stomach were tested. Based on the findings, we identified a total of 8,759 piRNAs in human stomachs. Of all, 50 were significantly (P<0.05) and differentially (>2-fold change) expressed between the cases and controls, and 64.7% of the protein-coding genes potentially regulated by the gastric cancer-associated piRNAs were expressed in the human stomach. The expression of many cancer-associated piRNAs was correlated with the genome-wide and replicated cancer-risk SNPs. In conclusion, we conclude that piRNAs are abundant in human stomachs and may play important roles in the etiological processes of gastric cancers.
Collapse
Affiliation(s)
- Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Yan Xia
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Dan Hu
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Qiao Mao
- People's Hospital of Deyang City, Deyang, Sichun 618000, P.R. China
| | - Zongyang Yu
- Department of Medical Oncology, Fuzhou General Hospital of PLA, Fuzhou, Fujian 350025, P.R. China
| | - Hejun Zhang
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Chao Li
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian 350014, P.R. China
| | - Gang Chen
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Fen Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350002, P.R. China
| | - Weifeng Zhu
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Yi Shi
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Huihao Zhang
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jianming Zheng
- Huashan Hospital, Fudan University School of Medicine, Shanghai 200040, P.R. China
| | - Tao Sun
- Huashan Hospital, Fudan University School of Medicine, Shanghai 200040, P.R. China
| | - Jianying Xu
- Zhuhai Municipal Maternal and Children's Health Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Herta H Chao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, P.R. China
| | - Xiongwei Zheng
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian 350014, P.R. China
| | - Xingguang Luο
- Huilongguan Hospital, Beijing University School of Clinical Medicine, Beijing 100096, P.R. China
| |
Collapse
|
11
|
Hernández-Ruiz M, Othy S, Herrera C, Nguyen HT, Arrevillaga-Boni G, Catalan-Dibene J, Cahalan MD, Zlotnik A. Cxcl17 -/- mice develop exacerbated disease in a T cell-dependent autoimmune model. J Leukoc Biol 2019; 105:1027-1039. [PMID: 30860634 DOI: 10.1002/jlb.3a0918-345rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 01/07/2023] Open
Abstract
CXCL17 is a homeostatic chemokine in the mucosa known to chemoattract dendritic cells and macrophages but can also be expressed elsewhere under inflammatory conditions. Cxcl17-/- mice have lower numbers of macrophages or dendritic cells in mucosal tissues. CXCL17 is also able to chemoattract suppressor myeloid cells that can recruit regulatory T cells. To explore a possible role of Cxcl17 in T cells, we studied T cell populations from Cxcl17-/- or wild-type (WT) littermate mice. Cxcl17-/- mice have higher numbers of CD4+ and CD8+ T cells in spleen and lymph nodes (LNs). Upon activation, they produce higher levels of several proinflammatory cytokines and chemokines. Furthermore, a Cxcl17-/- mouse developed exacerbated disease in a T cell-dependent model of experimental autoimmune encephalomyelitis (EAE). By 18 days after immunization with myelin oligodendrocyte peptide, only 44% of Cxcl17-/- mice were still alive vs. 90% for WT mice. During EAE, Cxcl17-/- mice exhibited higher numbers of lymphoid and myeloid cells in spleen and LNs, whereas they had less myeloid cell infiltration in the CNS. Cxcl17-/- mice also had higher levels of some inflammatory cytokines in serum, suggesting that they may be involved in the poor survival of these mice. Abnormal T cell function may reflect altered myeloid cell migration, or it could be due to altered T cell development in the thymus. We conclude that CXCL17 is a novel factor regulating T cell homeostasis and function.
Collapse
Affiliation(s)
- Marcela Hernández-Ruiz
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.,Institute for Immunology, University of California Irvine, Irvine, California, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.,Institute for Immunology, University of California Irvine, Irvine, California, USA
| | - Carolina Herrera
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.,Institute for Immunology, University of California Irvine, Irvine, California, USA
| | - Hong-Tam Nguyen
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.,Institute for Immunology, University of California Irvine, Irvine, California, USA
| | - Gerardo Arrevillaga-Boni
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.,Institute for Immunology, University of California Irvine, Irvine, California, USA
| | - Jovani Catalan-Dibene
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.,Institute for Immunology, University of California Irvine, Irvine, California, USA
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.,Institute for Immunology, University of California Irvine, Irvine, California, USA
| | - Albert Zlotnik
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.,Institute for Immunology, University of California Irvine, Irvine, California, USA
| |
Collapse
|
12
|
Rojewska E, Ciapała K, Mika J. Kynurenic acid and zaprinast diminished CXCL17-evoked pain-related behaviour and enhanced morphine analgesia in a mouse neuropathic pain model. Pharmacol Rep 2019; 71:139-148. [DOI: 10.1016/j.pharep.2018.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/03/2018] [Accepted: 10/02/2018] [Indexed: 12/23/2022]
|
13
|
Rashad Y, Olsson L, Israelsson A, Öberg Å, Lindmark G, Hammarström ML, Hammarström S, Sitohy B. Lymph node CXCL17 messenger RNA: A new prognostic biomarker for colon cancer. Tumour Biol 2018; 40:1010428318799251. [PMID: 30198422 DOI: 10.1177/1010428318799251] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lymph node metastasis is the most important prognostic characteristic of colorectal cancer. Carcinoembryonic antigen messenger RNA was shown to detect tumor cells that have disseminated to lymph nodes of colorectal cancer patients and to be at least as good as the hematoxylin and eosin method to predict survival in colorectal cancer patients. CXCL17 was recently shown to be ectopically expressed in colon cancer tumors. Therefore, CXCL17 may serve as prognostic marker alone or in combination with carcinoembryonic antigen. CXCL17 and carcinoembryonic antigen messenger RNA levels were determined using quantitative reverse transcription polymerase chain reaction with RNA copy standard in 389 lymph nodes of 120 colon cancer patients (stages I-IV) and 67 lymph nodes of 12 control patients with inflammatory bowel disease as well as in 68 primary tumors and 30 normal colon tissue samples. Lymph nodes of colon cancer patients were analyzed for CXCL17 and carcinoembryonic antigen protein expression by immunohistochemistry. CXCL17 messenger RNA was expressed in primary tumors at high levels, while it was barely detected in normal colon tissue ( p < 0.0001). Similarly, CXCL17 messenger RNA levels were significantly higher in hematoxylin- and eosin-positive (hematoxylin and eosin (+)) lymph nodes compared to hematoxylin- and eosin-negative nodes ( p < 0.0001). CXCL17 messenger RNA levels were investigated in lymph nodes grouped according to carcinoembryonic antigen messenger RNA levels: low (-), intermediate (int), and high (+). CXCL17 messenger RNA levels were higher in the carcinoembryonic antigen (int) and carcinoembryonic antigen (+) groups compared to the carcinoembryonic antigen (-) group ( p = 0.03 and p < 0.0001, respectively). In lymph nodes of stage III and IV patients, CXCL17 messenger RNA levels correlated with carcinoembryonic antigen messenger RNA levels ( p < 0.0001, r = 0.56 and p = 0.0002, r = 0.66, respectively). Staining of consecutive lymph node sections for CXCL17 and carcinoembryonic antigen demonstrated that the same cells expressed both proteins. Altogether, these results indicate that CXCL17 in lymph nodes is expressed by tumor cells. Patients were grouped according to the CXCL17 messenger RNA levels in the highest lymph node with low levels (-) and high levels (+). CXCL17(+) colon cancer patients showed 2.8-3.6 fold increased risk for recurrence ( p = 0.03) and decreased mean disease-free survival time of 8 months compared to CXCL17(-) colon cancer patients ( p = 0.03). CXCL17(+) carcinoembryonic antigen (int) colon cancer patients showed increased risk for recurrence by 8.3 fold ( p = 0.04) and decreased mean disease-free survival time of 46 months compared to CXCL17(-) carcinoembryonic antigen (int) colon cancer patient at follow-up after 12 years ( p = 0.02). The presence of tumor cells expressing CXCL17 in regional lymph nodes is a sign of poor prognosis. Analysis of CXCL17 messenger RNA is particularly useful to detect less differentiated colon cancer tumors expressing relatively low carcinoembryonic antigen messenger RNA levels. Thus, CXCL17 messenger RNA in combination with carcinoembryonic antigen messenger RNA may be used as a complementary tool to the hematoxylin and eosin method for detection of poorly differentiated, aggressive tumors.
Collapse
Affiliation(s)
- Yomna Rashad
- 1 Division of Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,2 Division of Oncology, Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Lina Olsson
- 1 Division of Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Anne Israelsson
- 1 Division of Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Åke Öberg
- 3 Division of Surgery, Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Gudrun Lindmark
- 4 Department of Clinical Sciences, Lund University, Helsingborg, Sweden
| | | | - Sten Hammarström
- 1 Division of Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Basel Sitohy
- 2 Division of Oncology, Department of Radiation Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
Guo YJ, Zhou YJ, Yang XL, Shao ZM, Ou ZL. The role and clinical significance of the CXCL17-CXCR8 (GPR35) axis in breast cancer. Biochem Biophys Res Commun 2017; 493:1159-1167. [PMID: 28943434 DOI: 10.1016/j.bbrc.2017.09.113] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/20/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Chemokine (C-X-C motif) ligand 17 (CXCL17) is the latest member of the chemokine family. However, its function in various cancer types is unknown. The G protein-coupled receptor 35 (GPR35) was identified as the receptor of CXCL17 and named recently as CXCR8. The function of the CXCL17-CXCR8 (GPR35) biological axis in cancer has not been reported. METHODS The expression of CXCL17 and CXCR8 (GPR35) in breast cancer cell lines and a tissue microarray (TMA) was detected through western blot and immunohistochemistry (IHC). Expression data in IHC were analyzed using clinicopatholigical and survival information. RESULTS CXCL17 and CXCR8 (GPR35) were found to be variably expressed in breast cancer cell lines. Both expressed higher in breast cancer tissue than normal adjacent tissue. Although CXCL17 can interact with CXCR8 (GPR35) in breast cancer cells in vitro, the expression correlation between these two markers in breast cancer tissue was not found to be significant. As to clinical significance, CXCR8 (GPR35) expression was found to be significantly associated with advanced histological grade and higher proliferation rate indicated by Ki-67 expression. Although CXCL17 was not found to statistically correlate with any clinicopathological characteristics, it was found to be associated with shorter overall survival and is an independent marker of poor prognosis in breast cancer. In addition, CXCL17 was found to promote proliferation and migration of breast cancer cells in vitro and in vivo. CONCLUSIONS We investigated the role of the CXCL17-CXCR8 (GPR35) axis in breast cancer for the first time. CXCL17 is a potential oncogene and promising therapeutic target, is an independent biomarker of poor prognosis in patients with breast cancer, and can promote proliferation and migration of breast cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Ya Jie Guo
- Key Laboratory of Breast Cancer in Shanghai, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Jie Zhou
- Key Laboratory of Breast Cancer in Shanghai, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao Li Yang
- Key Laboratory of Breast Cancer in Shanghai, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi Min Shao
- Key Laboratory of Breast Cancer in Shanghai, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhou Luo Ou
- Key Laboratory of Breast Cancer in Shanghai, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Oka T, Sugaya M, Takahashi N, Takahashi T, Shibata S, Miyagaki T, Asano Y, Sato S. CXCL17 Attenuates Imiquimod-Induced Psoriasis-like Skin Inflammation by Recruiting Myeloid-Derived Suppressor Cells and Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:3897-3908. [DOI: 10.4049/jimmunol.1601607] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/12/2017] [Indexed: 12/18/2022]
|
16
|
Ohlsson L, Hammarström ML, Lindmark G, Hammarström S, Sitohy B. Ectopic expression of the chemokine CXCL17 in colon cancer cells. Br J Cancer 2016; 114:697-703. [PMID: 26889977 PMCID: PMC4800305 DOI: 10.1038/bjc.2016.4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 12/15/2022] Open
Abstract
Background: The novel chemokine CXCL17 acts as chemoattractant for monocytes, macrophages and dendritic cells. CXCL17 also has a role in angiogenesis of importance for tumour development. Methods: Expression of CXCL17, CXCL10, CXCL9 and CCL2 was assessed in primary colon cancer tumours, colon carcinoma cell lines and normal colon tissue at mRNA and protein levels by real-time qRT–PCR, immunohistochemistry, two-colour immunofluorescence and immunomorphometry. Results: CXCL17 mRNA was expressed at 8000 times higher levels in primary tumours than in normal colon (P<0.0001). CXCL17 protein was seen in 17.2% of cells in tumours as compared with 0.07% in normal colon (P=0.0002). CXCL10, CXCL9 and CCL2 mRNAs were elevated in tumours but did not reach the levels of CXCL17. CXCL17 and CCL2 mRNA levels were significantly correlated in tumours. Concordant with the mRNA results, CXCL10- and CXCL9-positive cells were detected in tumour tissue, but at significantly lower numbers than CXCL17. Two-colour immunofluorescence and single-colour staining of consecutive sections for CXCL17 and the epithelial cell markers carcinoembryonic antigen and BerEP4 demonstrated that colon carcinoma tumour cells indeed expressed CXCL17. Conclusions: CXCL17 is ectopically expressed in primary colon cancer tumours. As CXCL17 enhances angiogenesis and attracts immune cells, its expression could be informative for prognosis in colon cancer patients.
Collapse
Affiliation(s)
- Lina Ohlsson
- Department of Clinical Microbiology, Section of Immunology, Umeå University, SE-90185 Umeå, Sweden
| | - Marie-Louise Hammarström
- Department of Clinical Microbiology, Section of Immunology, Umeå University, SE-90185 Umeå, Sweden
| | - Gudrun Lindmark
- Department of Surgery, Helsingborg Hospital, SE-25187 Helsingborg, Sweden
| | - Sten Hammarström
- Department of Clinical Microbiology, Section of Immunology, Umeå University, SE-90185 Umeå, Sweden
| | - Basel Sitohy
- Department of Radiation Sciences, Section of Oncology, Umeå University, SE-90185 Umeå, Sweden
| |
Collapse
|
17
|
Affiliation(s)
- Steven A. Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108;
| |
Collapse
|
18
|
Maravillas-Montero JL, Burkhardt AM, Hevezi PA, Carnevale CD, Smit MJ, Zlotnik A. Cutting edge: GPR35/CXCR8 is the receptor of the mucosal chemokine CXCL17. THE JOURNAL OF IMMUNOLOGY 2014; 194:29-33. [PMID: 25411203 DOI: 10.4049/jimmunol.1401704] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chemokines are chemotactic cytokines that direct the traffic of leukocytes and other cells in the body. Chemokines bind to G protein-coupled receptors expressed on target cells to initiate signaling cascades and induce chemotaxis. Although the cognate receptors of most chemokines have been identified, the receptor for the mucosal chemokine CXCL17 is undefined. In this article, we show that GPR35 is the receptor of CXCL17. GPR35 is expressed in mucosal tissues, in CXCL17-responsive monocytes, and in the THP-1 monocytoid cell line. Transfection of GPR35 into Ba/F3 cells rendered them responsive to CXCL17, as measured by calcium-mobilization assays. Furthermore, GPR35 expression is downregulated in the lungs of Cxcl17(-/-) mice, which exhibit defects in macrophage recruitment to the lungs. We conclude that GPR35 is a novel chemokine receptor and suggest that it should be named CXCR8.
Collapse
Affiliation(s)
- José L Maravillas-Montero
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697; Institute for Immunology, University of California, Irvine, Irvine, CA 92697; and
| | - Amanda M Burkhardt
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697; Institute for Immunology, University of California, Irvine, Irvine, CA 92697; and
| | - Peter A Hevezi
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697; Institute for Immunology, University of California, Irvine, Irvine, CA 92697; and
| | - Christina D Carnevale
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697; Institute for Immunology, University of California, Irvine, Irvine, CA 92697; and
| | - Martine J Smit
- Institute for Immunology, University of California, Irvine, Irvine, CA 92697; and Division of Medicinal Chemistry, Free University Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Albert Zlotnik
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697; Institute for Immunology, University of California, Irvine, Irvine, CA 92697; and
| |
Collapse
|
19
|
Li L, Yan J, Xu J, Liu CQ, Zhen ZJ, Chen HW, Ji Y, Wu ZP, Hu JY, Zheng L, Lau WY. CXCL17 expression predicts poor prognosis and correlates with adverse immune infiltration in hepatocellular carcinoma. PLoS One 2014; 9:e110064. [PMID: 25303284 PMCID: PMC4193880 DOI: 10.1371/journal.pone.0110064] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/29/2014] [Indexed: 12/18/2022] Open
Abstract
CXC ligand 17 (CXCL17) is a novel CXC chemokine whose clinical significance remains largely unknown. In the present study, we characterized the prognostic value of CXCL17 in patients with hepatocellular carcinoma (HCC) and evaluated the association of CXCL17 with immune infiltration. We examined CXCL17 expression in 227 HCC tissue specimens by immunohistochemical staining, and correlated CXCL17 expression patterns with clinicopathological features, prognosis, and immune infiltrate density (CD4 T cells, CD8 T cells, B cells, natural killer cells, neutrophils, macrophages). Kaplan-Meier survival analysis showed that both increased intratumoral CXCL17 (P = 0.015 for overall survival [OS], P = 0.003 for recurrence-free survival [RFS]) and peritumoral CXCL17 (P = 0.002 for OS, P<0.001 for RFS) were associated with shorter OS and RFS. Patients in the CXCL17low group had significantly lower 5-year recurrence rate compared with patients in the CXCL17high group (peritumoral: 53.1% vs. 77.7%, P<0.001, intratumoral: 58.6% vs. 73.0%, P = 0.001, respectively). Multivariate Cox proportional hazards analysis identified peritumoral CXCL17 as an independent prognostic factor for both OS (hazard ratio [HR] = 2.066, 95% confidence interval [CI] = 1.296–3.292, P = 0.002) and RFS (HR = 1.844, 95% CI = 1.218–2.793, P = 0.004). Moreover, CXCL17 expression was associated with more CD68 and less CD4 cell infiltration (both P<0.05). The combination of CXCL17 density and immune infiltration could be used to further classify patients into subsets with different prognosis for RFS. Our results provide the first evidence that tumor-infiltrating CXCL17+ cell density is an independent prognostic factor that predicts both OS and RFS in HCC. CXCL17 production correlated with adverse immune infiltration and might be an important target for anti-HCC therapies.
Collapse
Affiliation(s)
- Li Li
- Department of Hepatic and Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jing Yan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jing Xu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chao-Qun Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Zuo-Jun Zhen
- Department of Hepatic and Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China
| | - Huan-Wei Chen
- Department of Hepatic and Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China
| | - Yong Ji
- Department of Hepatic and Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China
| | - Zhi-Peng Wu
- Department of Hepatic and Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China
| | - Jian-Yuan Hu
- Department of Hepatic and Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China
| | - Limin Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wan Yee Lau
- Department of Hepatic and Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China; Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| |
Collapse
|
20
|
Burkhardt AM, Maravillas-Montero JL, Carnevale CD, Vilches-Cisneros N, Flores JP, Hevezi PA, Zlotnik A. CXCL17 is a major chemotactic factor for lung macrophages. THE JOURNAL OF IMMUNOLOGY 2014; 193:1468-74. [PMID: 24973458 DOI: 10.4049/jimmunol.1400551] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chemokines are a superfamily of chemotactic cytokines that direct the movement of cells throughout the body under homeostatic and inflammatory conditions. The mucosal chemokine CXCL17 was the last ligand of this superfamily to be characterized. Several recent studies have provided greater insight into the basic biology of this chemokine and have implicated CXCL17 in several human diseases. We sought to better characterize CXCL17's activity in vivo. To this end, we analyzed its chemoattractant properties in vivo and characterized a Cxcl17 (-/-) mouse. This mouse has a significantly reduced number of macrophages in its lungs compared with wild-type mice. In addition, we observed a concurrent increase in a new population of macrophage-like cells that are F4/80(+)CDllc(mid). These results indicate that CXCL17 is a novel macrophage chemoattractant that operates in mucosal tissues. Given the importance of macrophages in inflammation, these observations strongly suggest that CXCL17 is a major regulator of mucosal inflammatory responses.
Collapse
Affiliation(s)
- Amanda M Burkhardt
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697; Institute for Immunology, University of California, Irvine, Irvine, CA 92697; and
| | - José L Maravillas-Montero
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697; Institute for Immunology, University of California, Irvine, Irvine, CA 92697; and
| | - Christina D Carnevale
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697; Institute for Immunology, University of California, Irvine, Irvine, CA 92697; and
| | - Natalia Vilches-Cisneros
- Department of Pathologic Anatomy and Cytopathology, University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Juan P Flores
- Department of Pathologic Anatomy and Cytopathology, University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Peter A Hevezi
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697; Institute for Immunology, University of California, Irvine, Irvine, CA 92697; and
| | - Albert Zlotnik
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697; Institute for Immunology, University of California, Irvine, Irvine, CA 92697; and
| |
Collapse
|
21
|
Chemokines in chronic liver allograft dysfunction pathogenesis and potential therapeutic targets. Clin Dev Immunol 2013; 2013:325318. [PMID: 24382971 PMCID: PMC3870628 DOI: 10.1155/2013/325318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 10/03/2013] [Indexed: 02/05/2023]
Abstract
Despite advances in immunosuppressive drugs, long-term success of liver transplantation is still limited by the development of chronic liver allograft dysfunction. Although the exact pathogenesis of chronic liver allograft dysfunction remains to be established, there is strong evidence that chemokines are involved in organ damage induced by inflammatory and immune responses after liver surgery. Chemokines are a group of low-molecular-weight molecules whose function includes angiogenesis, haematopoiesis, mitogenesis, organ fibrogenesis, tumour growth and metastasis, and participating in the development of the immune system and in inflammatory and immune responses. The purpose of this review is to collect all the research that has been done so far concerning chemokines and the pathogenesis of chronic liver allograft dysfunction and helpfully, to pave the way for designing therapeutic strategies and pharmaceutical agents to ameliorate chronic allograft dysfunction after liver transplantation.
Collapse
|
22
|
Lee WY, Wang CJ, Lin TY, Hsiao CL, Luo CW. CXCL17, an orphan chemokine, acts as a novel angiogenic and anti-inflammatory factor. Am J Physiol Endocrinol Metab 2013; 304:E32-40. [PMID: 23115081 DOI: 10.1152/ajpendo.00083.2012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemokines play pivotal roles in the recruitment of various immune cells to diverse tissues in both physiological and pathological conditions. CXCL17 is an orphan chemokine preliminarily found to be involved in tumor angiogenesis. However, its protein nature, as well as its endogenous bioactivity, has not been well clarified. Using real-time PCR, immunohistochemical staining, and Western blotting, we found that CXCL17 is highly expressed in both a constitutive and inducible manner in the rat gastric mucosa, where it undergoes endoproteolysis during protein maturation. The mature CXCL17 exhibited strong chemoattractant abilities targeting monocytes and macrophages, potentially through ERK1/2 and p38 but not JNK signaling. CXCL17 also induced the production of proangiogenic factors such as vascular endothelial growth factor A from treated monocytes. Furthermore, in contrast to other CXC chemokines that accelerate inflammatory responses, CXCL17 showed novel anti-inflammatory effects on LPS-activated macrophages. Therefore, our data suggest that CXCL17 in the gastric lamina propria may play an important role in tissue repair and anti-inflammation, both of which help to maintain the integrity of the gastric mucosa.
Collapse
Affiliation(s)
- Wei-Yu Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
23
|
Global gene expression and functional network analysis of gastric cancer identify extended pathway maps and GPRC5A as a potential biomarker. Cancer Lett 2012; 326:105-13. [PMID: 22867946 DOI: 10.1016/j.canlet.2012.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/09/2012] [Accepted: 07/30/2012] [Indexed: 01/05/2023]
Abstract
To get more understanding of the molecular mechanisms underlying gastric cancer, 25 paired samples were applied to gene expression microarray analysis. Here, expression microarray, quantitative reverse transcription-PCR (qRT-PCR) and immunohistochemical analysis indicated that GPRC5A was significantly elevated in gastric cancer tissues. The integrative network analysis of deregulated genes generated eight subnetworks. We also mapped copy number variations (CNVs) and associated mRNA expression changes into pathways and identified WNT, RTK-Ras-PI3K-AKT, NF-κB, and PLAU-JAK-STAT pathways involved in proliferation, evading apoptosis and sustained angiogenesis, respectively. Taken together, our results reveal several interesting genes including GPRC5A as potential biomarkers for gastric cancer, and highlight more systematical insight of deregulated genes in genetic pathways of gastric carcinogenesis.
Collapse
|
24
|
Burkhardt AM, Tai KP, Flores-Guiterrez JP, Vilches-Cisneros N, Kamdar K, Barbosa-Quintana O, Valle-Rios R, Hevezi PA, Zuñiga J, Selman M, Ouellette AJ, Zlotnik A. CXCL17 is a mucosal chemokine elevated in idiopathic pulmonary fibrosis that exhibits broad antimicrobial activity. THE JOURNAL OF IMMUNOLOGY 2012; 188:6399-406. [PMID: 22611239 DOI: 10.4049/jimmunol.1102903] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The mucosal immune network is a crucial barrier preventing pathogens from entering the body. The network of immune cells that mediates the defensive mechanisms in the mucosa is likely shaped by chemokines, which attract a wide range of immune cells to specific sites of the body. Chemokines have been divided into homeostatic or inflammatory depending upon their expression patterns. Additionally, several chemokines mediate direct killing of invading pathogens, as exemplified by CCL28, a mucosa-associated chemokine that exhibits antimicrobial activity against a range of pathogens. CXCL17 was the last chemokine ligand to be described and is the 17th member of the CXC chemokine family. Its expression pattern in 105 human tissues and cells indicates that CXCL17 is a homeostatic, mucosa-associated chemokine. Its strategic expression in mucosal tissues suggests that it is involved in innate immunity and/or sterility of the mucosa. To test the latter hypothesis, we tested CXCL17 for possible antibacterial activity against a panel of pathogenic and opportunistic bacteria. Our results indicate that CXCL17 has potent antimicrobial activities and that its mechanism of antimicrobial action involves peptide-mediated bacterial membrane disruption. Because CXCL17 is strongly expressed in bronchi, we measured it in bronchoalveolar lavage fluids and observed that it is strongly upregulated in idiopathic pulmonary fibrosis. We conclude that CXCL17 is an antimicrobial mucosal chemokine that may play a role in the pathogenesis of interstitial lung diseases.
Collapse
Affiliation(s)
- Amanda M Burkhardt
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhou Z, Lu X, Zhu P, Zhu W, Mu X, Qu R, Li M. VCC-1 over-expression inhibits cisplatin-induced apoptosis in HepG2 cells. Biochem Biophys Res Commun 2012; 420:336-42. [DOI: 10.1016/j.bbrc.2012.02.160] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 02/29/2012] [Indexed: 01/05/2023]
|
26
|
Tessema M, Klinge DM, Yingling CM, Do K, Van Neste L, Belinsky SA. Re-expression of CXCL14, a common target for epigenetic silencing in lung cancer, induces tumor necrosis. Oncogene 2010; 29:5159-70. [PMID: 20562917 PMCID: PMC2940978 DOI: 10.1038/onc.2010.255] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chemokines are important regulators of directional cell migration and tumor metastasis. A genome-wide transcriptome array designed to uncover novel genes silenced by methylation in lung cancer identified the CXC-subfamily of chemokines. Expression of eleven of the sixteen known human CXC-chemokines was increased in lung adenocarcinoma cell lines after treatment with 5-aza-2deoxycytidine (DAC). Tumor-specific methylation leading to silencing of CXCL5, 12 and 14 was found in over 75% of primary lung adenocarcinomas and DAC treatment restored expression of each silenced gene. Forced expression of CXCL14 in H23 cells where this gene is silenced by methylation increased cell death in vitro and dramatically reduced in vivo growth of lung tumor xenografts through necrosis of up to 90% of the tumor mass. CXCL14 re-expression had a profound effect on the genome altering the transcription of over 1,000 genes, including increased expression of 30 cell cycle inhibitor and pro-apoptosis genes. In addition, CXCL14 methylation in sputum from asymptomatic early stage lung cancer cases was associated with a 2.9-fold elevated risk for this disease compared to controls, substantiating its potential as a biomarker for early detection of lung cancer. Together these findings identify CXCL14 as an important tumor suppressor gene epigenetically silenced during lung carcinogenesis.
Collapse
Affiliation(s)
- M Tessema
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | | | | | | | | | | |
Collapse
|