1
|
Hassan M, Ejaz U, Rashid R, Moin SF, Gulzar S, Sohail M, Hasan KA, Alswat AS, El-Bahy ZM. Utilization of wild Cressa cretica biomass for pectinase production from a halo-thermotolerant bacterium. Biotechnol J 2023; 18:e2200477. [PMID: 37458688 DOI: 10.1002/biot.202200477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Halophytes are the native inhabitants of saline environment. Their biomass can be considered as a potential substrate for the production of microbial enzymes. This study was intended at feasible utilization of a halophytic biomass, Cressia cretica, for pectinase production using a halo- and thermo-tolerant bacterium, Bacillus vallismortis MH 10. The data from fractionation of the C. cretica biomass revealed presence of 17% pectin in this wild biomass. Seven different factors (temperature, agitation, pH, inoculum size, peptone concentration, substrate concentration, and incubation time) affecting pectinase production using C. cretica were assessed through a statistical tool, Plackett-Burman design. Consequently, two significant factors (incubation time and peptone concentration) were optimized using the central composite design. The strain produced 20 IU mL-1 of pectinase after 24 h under optimized conditions. The enzyme production kinetics data also confirmed that 24 h is the most suitable cultivation period for pectinase production. Fourier transform infrared spectroscopy and scanning electron microscopy of C. cretica biomass ascertained utilization of pectin and structural changes after fermentation. The purification of pectinase by using DEAE column yielded specific activity and purification fold of 88.26 IU mg-1 and 3.2, respectively. The purified pectinase had a molecular weight of >65 kDa. This study offers prospects of large-scale production of pectinase by halotolerant strain in the presence of economical and locally grown substrate that makes the enzyme valuable for various industrial operations.
Collapse
Affiliation(s)
- Masooma Hassan
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Uroosa Ejaz
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi, Pakistan
| | - Rozina Rashid
- Department of Microbiology, University of Balochistan, Balochistan, Pakistan
| | - Syed Faraz Moin
- Dr. Zafar H Zaidi Center for Proteomics (Formely National Center for Proteomics), University of Karachi, Karach, Pakistan
| | - Salman Gulzar
- Dr Muhammad Ajmal Khan Institute of Sustainable of Halophytes Utilization, University of Karachi, Karachi, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Khwaja Ali Hasan
- Molecular and Structural Biology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Amal S Alswat
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
2
|
El Mamoun I, Bouzroud S, Zouine M, Smouni A. The Knockdown of AUXIN RESPONSE FACTOR 2 Confers Enhanced Tolerance to Salt and Drought Stresses in Tomato ( Solanum lycopersicum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2804. [PMID: 37570958 PMCID: PMC10420960 DOI: 10.3390/plants12152804] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Auxin response factors (ARFs) act as key elements of the auxin-signaling pathway and play important roles in the process of a plant's growth, development, and response to environmental conditions. We studied the implication of the SlARF2 gene in the tomato response to salt (150 mM of NaCl) and drought (15% PEG 20000) stresses. The functional characterization of SlARF2 knockdown tomato mutants revealed that the downregulation of this gene enhanced primary root length and root branching and reduced plant wilting. At the physiological level, the arf2 mutant line displayed higher chlorophyll, soluble sugars, proline, and relative water contents as well as lower stomatal conductance and a decreased malondialdehyde content. Moreover, SlARF2 knockdown tomato mutants demonstrated higher activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) under salt and drought stresses than the wild type. Indeed, the stress tolerance of the arf2 mutant was also reflected by the upregulation of stress-related genes involved in ROS scavenging and plant defense, including SOD, CAT, dehydration-responsive element-binding protein, and early responsive to dehydration, which can ultimately result in a better resistance to salt and drought stresses. Furthermore, the transcriptional levels of the Δ1-pyrroline-5-carboxylate synthase (P5CS) gene were upregulated in the arf2 mutant after stress, in correlation with the higher levels of proline. Taken together, our findings reveal that SlARF2 is implicated in salt and drought tolerance in tomato and provides some considerable elements for improving the abiotic stress tolerance and increasing the crop yields of tomato.
Collapse
Affiliation(s)
- Ibtihaj El Mamoun
- Laboratoire de Biotechnologie et de Physiologie Végétales, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco;
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse Paul Sabatier (UPS), Toulouse-INP, 31320 Auzeville-Tolosane, France
| | - Sarah Bouzroud
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco;
| | - Mohamed Zouine
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse Paul Sabatier (UPS), Toulouse-INP, 31320 Auzeville-Tolosane, France
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et de Physiologie Végétales, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco;
| |
Collapse
|
3
|
Ali S, Mir RA, Tyagi A, Manzar N, Kashyap AS, Mushtaq M, Raina A, Park S, Sharma S, Mir ZA, Lone SA, Bhat AA, Baba U, Mahmoudi H, Bae H. Chromium Toxicity in Plants: Signaling, Mitigation, and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12071502. [PMID: 37050128 PMCID: PMC10097182 DOI: 10.3390/plants12071502] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/31/2023]
Abstract
Plants are very often confronted by different heavy metal (HM) stressors that adversely impair their growth and productivity. Among HMs, chromium (Cr) is one of the most prevalent toxic trace metals found in agricultural soils because of anthropogenic activities, lack of efficient treatment, and unregulated disposal. It has a huge detrimental impact on the physiological, biochemical, and molecular traits of crops, in addition to being carcinogenic to humans. In soil, Cr exists in different forms, including Cr (III) "trivalent" and Cr (VI) "hexavalent", but the most pervasive and severely hazardous form to the biota is Cr (VI). Despite extensive research on the effects of Cr stress, the exact molecular mechanisms of Cr sensing, uptake, translocation, phytotoxicity, transcript processing, translation, post-translational protein modifications, as well as plant defensive responses are still largely unknown. Even though plants lack a Cr transporter system, it is efficiently accumulated and transported by other essential ion transporters, hence posing a serious challenge to the development of Cr-tolerant cultivars. In this review, we discuss Cr toxicity in plants, signaling perception, and transduction. Further, we highlight various mitigation processes for Cr toxicity in plants, such as microbial, chemical, and nano-based priming. We also discuss the biotechnological advancements in mitigating Cr toxicity in plants using plant and microbiome engineering approaches. Additionally, we also highlight the role of molecular breeding in mitigating Cr toxicity in sustainable agriculture. Finally, some conclusions are drawn along with potential directions for future research in order to better comprehend Cr signaling pathways and its mitigation in sustainable agriculture.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rakeeb A. Mir
- Department of Biotechnology, Central University of Kashmir, Ganderbal 191201, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Nazia Manzar
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Abhijeet Shankar Kashyap
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Muntazir Mushtaq
- MS Swaminathan School of Agriculture, Shoolini University, Bajhol 173229, India
| | - Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Zahoor A. Mir
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Showkat A. Lone
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India
| | - Ajaz A. Bhat
- Govt. Degree College for Women, University of Kashmir, Baramulla 193101, India
| | - Uqab Baba
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India
| | - Henda Mahmoudi
- Directorate of Programs, International Center for Biosaline Agriculture, Dubai P.O. Box 14660, United Arab Emirates
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
D’Oria A, Jing L, Arkoun M, Pluchon S, Pateyron S, Trouverie J, Etienne P, Diquélou S, Ourry A. Transcriptomic, Metabolomic and Ionomic Analyses Reveal Early Modulation of Leaf Mineral Content in Brassica napus under Mild or Severe Drought. Int J Mol Sci 2022; 23:781. [PMID: 35054964 PMCID: PMC8776245 DOI: 10.3390/ijms23020781] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
While it is generally acknowledged that drought is one of the main abiotic factors affecting plant growth, how mineral nutrition is specifically and negatively affected by water deficit has received very little attention, other than being analyzed as a consequence of reduced growth. Therefore, Brassica napus plants were subjected to a gradual onset of water deficits (mild, severe, or severe extended), and leaves were analyzed at the ionomic, transcriptomic and metabolic levels. The number of Differentially Expressed Genes (DEGs) and of the most differentially accumulated metabolites increased from mild (525 DEGs, 57 metabolites) to severe (5454 DEGs, 78 metabolites) and severe extended (9346 DEGs, 95 metabolites) water deficit. Gene ontology enrichment analysis of the 11,747 DEGs identified revealed that ion transport was one of the most significant processes affected, even under mild water deficit, and this was also confirmed by the shift in ionomic composition (mostly micronutrients with a strong decrease in Mo, Fe, Zn, and Mn in leaves) that occurred well before growth reduction. The metabolomic data and most of the transcriptomic data suggested that well-known early leaf responses to drought such as phytohormone metabolism (ABA and JA), proline accumulation, and oxidative stress defense were induced later than repression of genes related to nutrient transport.
Collapse
Affiliation(s)
- Aurélien D’Oria
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
- Laboratoire de Nutrition Végétale, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France; (M.A.); (S.P.)
| | - Lun Jing
- Plateformes Analytiques de Recherche, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France;
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France; (M.A.); (S.P.)
| | - Sylvain Pluchon
- Laboratoire de Nutrition Végétale, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France; (M.A.); (S.P.)
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France;
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
| | - Jacques Trouverie
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
| | - Philippe Etienne
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
| | - Sylvain Diquélou
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
| | - Alain Ourry
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
| |
Collapse
|
5
|
Raza A, Razzaq A, Mehmood SS, Hussain MA, Wei S, He H, Zaman QU, Xuekun Z, Hasanuzzaman M. Omics: The way forward to enhance abiotic stress tolerance in Brassica napus L. GM CROPS & FOOD 2021; 12:251-281. [PMID: 33464960 PMCID: PMC7833762 DOI: 10.1080/21645698.2020.1859898] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plant abiotic stresses negative affects growth and development, causing a massive reduction in global agricultural production. Rapeseed (Brassica napus L.) is a major oilseed crop because of its economic value and oilseed production. However, its productivity has been reduced by many environmental adversities. Therefore, it is a prime need to grow rapeseed cultivars, which can withstand numerous abiotic stresses. To understand the various molecular and cellular mechanisms underlying the abiotic stress tolerance and improvement in rapeseed, omics approaches have been extensively employed in recent years. This review summarized the recent advancement in genomics, transcriptomics, proteomics, metabolomics, and their imploration in abiotic stress regulation in rapeseed. Some persisting bottlenecks have been highlighted, demanding proper attention to fully explore the omics tools. Further, the potential prospects of the CRISPR/Cas9 system for genome editing to assist molecular breeding in developing abiotic stress-tolerant rapeseed genotypes have also been explained. In short, the combination of integrated omics, genome editing, and speed breeding can alter rapeseed production worldwide.
Collapse
Affiliation(s)
- Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Wuhan, China
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture , Faisalabad, Pakistan
| | - Sundas Saher Mehmood
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Wuhan, China
| | - Muhammad Azhar Hussain
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Wuhan, China
| | - Su Wei
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Wuhan, China
| | - Huang He
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Wuhan, China
| | - Qamar U Zaman
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Wuhan, China
| | - Zhang Xuekun
- College of Agriculture, Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, Yangtze University Jingzhou , China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University , Dhaka, Bangladesh
| |
Collapse
|
6
|
Research Progress on the Roles of Cytokinin in Plant Response to Stress. Int J Mol Sci 2020; 21:ijms21186574. [PMID: 32911801 PMCID: PMC7555750 DOI: 10.3390/ijms21186574] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/05/2023] Open
Abstract
Cytokinins promote plant growth and development under normal plant growth conditions and also play an important role in plant resistance to stress. Understanding the working mechanisms of cytokinins under adverse conditions will help to make full use of cytokinins in agriculture to increase production and efficiency of land use. In this article, we review the progress that has been made in cytokinin research in plant response to stress and propose its future application prospects.
Collapse
|
7
|
Wen F, Ye F, Xiao Z, Liao L, Li T, Jia M, Liu X, Wu X. Genome-wide survey and expression analysis of calcium-dependent protein kinase (CDPK) in grass Brachypodium distachyon. BMC Genomics 2020; 21:53. [PMID: 31948407 PMCID: PMC6966850 DOI: 10.1186/s12864-020-6475-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/09/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Ca2+ played as a ubiquitous secondary messenger involved in plant growth, development, and responses to various environmental stimuli. Calcium-dependent protein kinases (CDPK) were important Ca2+ sensors, which could directly translate Ca2+ signals into downstream phosphorylation signals. Considering the importance of CDPKs as Ca2+ effectors for regulation of plant stress tolerance and few studies on Brachypodium distachyon were available, it was of interest for us to isolate CDPKs from B. distachyon. RESULTS A systemic analysis of 30 CDPK family genes in B. distachyon was performed. Results showed that all BdCDPK family members contained conserved catalytic Ser/Thr protein kinase domain, autoinhibitory domain, and EF-hand domain, and a variable N-terminal domain, could be divided into four subgroup (I-IV), based upon sequence homology. Most BdCDPKs had four EF-hands, in which EF2 and EF4 revealed high variability and strong divergence from EF-hand in AtCDPKs. Synteny results indicated that large number of syntenic relationship events existed between rice and B. distachyon, implying their high conservation. Expression profiles indicated that most of BdCDPK genes were involved in phytohormones signal transduction pathways and regulated physiological process in responding to multiple environmental stresses. Moreover, the co-expression network implied that BdCDPKs might be both the activator and the repressor involved in WRKY transcription factors or MAPK cascade genes mediated stress response processes, base on their complex regulatory network. CONCLUSIONS BdCDPKs might play multiple function in WRKY or MAPK mediated abiotic stresses response and phytohormone signaling transduction in B. distachyon. Our genomics analysis of BdCDPKs could provide fundamental information for further investigation the functions of CDPKs in integrating Ca2+ signalling pathways in response to environments stresses in B. distachyon.
Collapse
Affiliation(s)
- Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| | - Feng Ye
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Zhulong Xiao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Liang Liao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Tongjian Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Mingliang Jia
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xinsheng Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xiaozhu Wu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| |
Collapse
|
8
|
Identification and in Silico Characterization of GT Factors Involved in Phytohormone and Abiotic Stresses Responses in Brachypodium distachyon. Int J Mol Sci 2019; 20:ijms20174115. [PMID: 31450734 PMCID: PMC6747514 DOI: 10.3390/ijms20174115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 11/17/2022] Open
Abstract
GT factors play critical roles in plant growth and development and in response to various environmental stimuli. Considering the new functions of GT factors on the regulation of plant stress tolerance and seeing as few studies on Brachypodium distachyon were available, we identified GT genes in B. distachyon, and the gene characterizations and phylogenies were systematically analyzed. Thirty-one members of BdGT genes were distributed on all five chromosomes with different densities. All the BdGTs could be divided into five subfamilies, including GT-1, GT-2, GTγ, SH4, and SIP1, based upon their sequence homology. BdGTs exhibited considerably divergent structures among each subfamily according to gene structure and conserved functional domain analysis, but the members within the same subfamily were relatively structure-conserved. Synteny results indicated that a large number of syntenic relationship events existed between rice and B. distachyon. Expression profiles indicated that the expression levels of most of BdGT genes were changed under abiotic stresses and hormone treatments. Moreover, the co-expression network exhibited a complex regulatory network between BdGTs and BdWRKYs as well as that between BdGTs and BdMAPK cascade gene. Results showed that GT factors might play multiple functions in responding to multiple environmental stresses in B. distachyon and participate in both the positive and negative regulation of WRKY- or MAPK-mediated stress response processes. The genome-wide analysis of BdGTs and the co-regulation network under multiple stresses provide valuable information for the further investigation of the functions of BdGTs in response to environment stresses.
Collapse
|
9
|
Hasan MMU, Ma F, Islam F, Sajid M, Prodhan ZH, Li F, Shen H, Chen Y, Wang X. Comparative Transcriptomic Analysis of Biological Process and Key Pathway in Three Cotton ( Gossypium spp.) Species Under Drought Stress. Int J Mol Sci 2019; 20:E2076. [PMID: 31035558 PMCID: PMC6539811 DOI: 10.3390/ijms20092076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 01/16/2023] Open
Abstract
Drought is one of the most important abiotic stresses that seriously affects cotton growth, development, and production worldwide. However, the molecular mechanism, key pathway, and responsible genes for drought tolerance incotton have not been stated clearly. In this research, high-throughput next generation sequencing technique was utilized to investigate gene expression profiles of three cotton species (Gossypium hirsutum, Gossypium arboreum, and Gossypium barbadense L.) under drought stress. A total of 6968 differentially expressed genes (DEGs) were identified, where 2053, 742, and 4173 genes were tested as statistically significant; 648, 320, and 1998 genes were up-regulated, and 1405, 422, and 2175 were down-regulated in TM-1, Zhongmian-16, and Pima4-S, respectively. Total DEGs were annotated and classified into functional groups under gene ontology analysis. The biological process was present only in tolerant species(TM-1), indicating drought tolerance condition. The Kyoto encyclopedia of genes and genomes showed the involvement of plant hormone signal transduction and metabolic pathways enrichment under drought stress. Several transcription factors associated with ethylene-responsive genes (ICE1, MYB44, FAMA, etc.) were identified as playing key roles in acclimatizing to drought stress. Drought also caused significant changes in the expression of certain functional genes linked to abscisic acid (ABA) responses (NCED, PYL, PP2C, and SRK2E), reactive oxygen species (ROS) related in small heat shock protein and 18.1 kDa I heat shock protein, YLS3, and ODORANT1 genes. These results will provide deeper insights into the molecular mechanisms of drought stress adaptation in cotton.
Collapse
Affiliation(s)
- Md Mosfeq-Ul Hasan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Examination Controller Section, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh.
| | - Fanglu Ma
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Faisal Islam
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Muhammad Sajid
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Zakaria H Prodhan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Feng Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Hao Shen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Yadong Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Xuede Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Zhou X, Wu X, Li T, Jia M, Liu X, Zou Y, Liu Z, Wen F. Identification, characterization, and expression analysis of auxin response factor (ARF) gene family in Brachypodium distachyon. Funct Integr Genomics 2018; 18:709-724. [PMID: 29926224 DOI: 10.1007/s10142-018-0622-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 06/03/2018] [Accepted: 06/07/2018] [Indexed: 11/30/2022]
Abstract
Auxin response factors (ARFs) are one type of essential family of transcription factors that bind with auxin response elements (AuxRE), and play vital roles in variety of plant development and physiological processes. Brachypodium distachyon, related to the major cereal grain species, were recently developed to be a good model organism for functional genomics research. So far, genome-wide overview of the ARF gene family in B. distachyon was not available. Here, a systemic analysis of ARF gene family members in B. distachyon was performed. A comprehensive overview of the characterization of the BdARFs was obtained by multiple bioinformatics analyses, including the gene and protein structure, chromosome locations, conserved motifs of proteins, phylogenetic analysis, and cis-elements in promoters of BdARF. Results showed that all BdARFs contained conserved DBD, MR, and CTD could be divided into four classes, Ia, IIa, IIb, and III. Expression profiles of BdARF genes indicated that they were expressed across various tissues and organs, which could be clustered into three main expression groups, and most of BdARF genes were involved in phytohormone signal transduction pathways and regulated physiological process in responding to multiple environmental stresses. And predicted regulatory network between B. distachyon ARFs and IAAs was also discussed. Our genomics analysis of BdARFs could yield new insights into the complexity of the control of BdARF genes and lead to potential applications in the investigation of the accurate regulatory mechanisms of ARFs in herbaceous plants.
Collapse
Affiliation(s)
- Xiaojian Zhou
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xiaozhu Wu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Tongjian Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Mingliang Jia
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xinshen Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Yulan Zou
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Zixia Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| |
Collapse
|
11
|
Rurek M, Czołpińska M, Pawłowski TA, Staszak AM, Nowak W, Krzesiński W, Spiżewski T. Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought. Impaired Coordination of Selected Transcript and Proteomic Responses, and Regulation of Various Multifunctional Proteins. Int J Mol Sci 2018; 19:ijms19041130. [PMID: 29642585 PMCID: PMC5979313 DOI: 10.3390/ijms19041130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/09/2018] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial responses under drought within Brassica genus are poorly understood. The main goal of this study was to investigate mitochondrial biogenesis of three cauliflower (Brassica oleracea var. botrytis) cultivars with varying drought tolerance. Diverse quantitative changes (decreases in abundance mostly) in the mitochondrial proteome were assessed by two-dimensional gel electrophoresis (2D PAGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Respiratory (e.g., complex II, IV (CII, CIV) and ATP synthase subunits), transporter (including diverse porin isoforms) and matrix multifunctional proteins (e.g., components of RNA editing machinery) were diversely affected in their abundance under two drought levels. Western immunoassays showed additional cultivar-specific responses of selected mitochondrial proteins. Dehydrin-related tryptic peptides (found in several 2D spots) immunopositive with dehydrin-specific antisera highlighted the relevance of mitochondrial dehydrin-like proteins for the drought response. The abundance of selected mRNAs participating in drought response was also determined. We conclude that mitochondrial biogenesis was strongly, but diversely affected in various cauliflower cultivars, and associated with drought tolerance at the proteomic and functional levels. However, discussed alternative oxidase (AOX) regulation at the RNA and protein level were largely uncoordinated due to the altered availability of transcripts for translation, mRNA/ribosome interactions, and/or miRNA impact on transcript abundance and translation.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Magdalena Czołpińska
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | | | - Aleksandra Maria Staszak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
- Present address: Department of Plant Physiology, Institute of Biology, Faculty of Biology and Chemistry, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Witold Nowak
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Włodzimierz Krzesiński
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| | - Tomasz Spiżewski
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| |
Collapse
|
12
|
Kirungu JN, Deng Y, Cai X, Magwanga RO, Zhou Z, Wang X, Wang Y, Zhang Z, Wang K, Liu F. Simple Sequence Repeat (SSR) Genetic Linkage Map of D Genome Diploid Cotton Derived from an Interspecific Cross between Gossypium davidsonii and Gossypium klotzschianum. Int J Mol Sci 2018; 19:E204. [PMID: 29324636 PMCID: PMC5796153 DOI: 10.3390/ijms19010204] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/06/2018] [Accepted: 01/07/2018] [Indexed: 12/22/2022] Open
Abstract
The challenge in tetraploid cotton cultivars is the narrow genetic base and therefore, the bottleneck is how to obtain interspecific hybrids and introduce the germplasm directly from wild cotton to elite cultivars. Construction of genetic maps has provided insight into understanding the genome structure, interrelationships between organisms in relation to evolution, and discovery of genes that carry important agronomic traits in plants. In this study, we generated an interspecific hybrid between two wild diploid cottons, Gossypium davidsonii and Gossypium klotzschianum, and genotyped 188 F2:3 populations in order to develop a genetic map. We screened 12,560 SWU Simple Sequence Repeat (SSR) primers and obtained 1000 polymorphic markers which accounted for only 8%. A total of 928 polymorphic primers were successfully scored and only 728 were effectively linked across the 13 chromosomes, but with an asymmetrical distribution. The map length was 1480.23 cM, with an average length of 2.182 cM between adjacent markers. A high percentage of the markers on the map developed, and for the physical map of G. raimondii, exhibited highly significant collinearity, with two types of duplication. High level of segregation distortion was observed. A total of 27 key genes were identified with diverse roles in plant hormone signaling, development, and defense reactions. The achievement of developing the F2:3 population and its genetic map constructions may be a landmark in establishing a new tool for the genetic improvement of cultivars from wild plants in cotton. Our map had an increased recombination length compared to other maps developed from other D genome cotton species.
Collapse
Affiliation(s)
- Joy Nyangasi Kirungu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yanfeng Deng
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
- School of Biological and Physical Sciences (SBPS), Main Campus, Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Main Campus, P.O. Box 210-40601 Bondo, Kenya.
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhenmei Zhang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
13
|
Zhang L, Hu T, Amombo E, Wang G, Xie Y, Fu J. The Alleviation of Heat Damage to Photosystem II and Enzymatic Antioxidants by Exogenous Spermidine in Tall Fescue. FRONTIERS IN PLANT SCIENCE 2017; 8:1747. [PMID: 29075277 PMCID: PMC5644155 DOI: 10.3389/fpls.2017.01747] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/25/2017] [Indexed: 05/23/2023]
Abstract
Tall fescue (Festuca arundinacea Schreb) is a typical cool-season grass that is widely used in turf and pasture. However, high temperature as an abiotic stress seriously affects its utilization. The objective of this study was to explore the effect of spermidine (Spd) on heat stress response of tall fescue. The samples were exposed to 22°C (normal condition) or 44°C (heat stress) for 4 h. The results showed that exogenous Spd partially improved the quality of tall fescue leaves under normal temperature conditions. Nevertheless, after heat stress treatment, exogenous Spd significantly decreased the electrolyte leakage of tall fescue leaves. Spd also profoundly reduced the H2O2 and O2⋅- content and increased antioxidant enzymes activities. In addition, PAs can also regulate antioxidant enzymes activities including SOD, POD, and APX which could help to scavenge ROS. Moreover, application of Spd could also remarkably increase the chlorophyll content and had a positive effect on the chlorophyll α fluorescence transients under high temperature. The Spd reagent enhanced the performance of photosystem II (PSII) as observed by the JIP-test. Under heat stress, the Spd profoundly improved the partial potentials at the steps of energy bifurcations (PIABS and PItotal) and the quantum yields and efficiencies (φP0, δR0, φR0, and γRC). Exogenous Spd could also reduce the specific energy fluxes per QA- reducing PSII reaction center (RC) (TP0/RC and ET0/RC). Additionally, exogenous Spd improved the expression level of psbA and psbB, which encoded the proteins of PSII core reaction center complex. We infer that PAs can stabilize the structure of nucleic acids and protect RNA from the degradation of ribonuclease. In brief, our study indicates that exogenous Spd enhances the heat tolerance of tall fescue by maintaining cell membrane stability, increasing antioxidant enzymes activities, improving PSII, and relevant gene expression.
Collapse
Affiliation(s)
- Liang Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Guangyang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yan Xie
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| |
Collapse
|
14
|
Singh D, Singh CK, Taunk J, Tomar RSS, Chaturvedi AK, Gaikwad K, Pal M. Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genomics 2017; 18:206. [PMID: 28241862 PMCID: PMC5327544 DOI: 10.1186/s12864-017-3596-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 02/20/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Drought stress is one of the most harmful abiotic stresses in crop plants. As a moderately drought tolerant crop, lentil is a major crop in rainfed areas and a suitable candidate for drought stress tolerance research work. Screening for drought tolerance stress under hydroponic conditions at seedling stage with air exposure is an efficient technique to select genotypes with contrasting traits. Transcriptome analysis provides valuable resources, especially for lentil, as here the information on complete genome sequence is not available. Hence, the present studies were carried out. RESULTS This study was undertaken to understand the biochemical mechanisms and transcriptome changes involved in imparting adaptation to drought stress at seedling stage in drought-tolerant (PDL-2) and drought-sensitive (JL-3) cultivars. Among different physiological and biochemical parameters, a significant increase was recorded in proline, glycine betaine contents and activities of SOD, APX and GPX in PDL-2 compared to JL-3while chlorophyll, RWC and catalase activity decreased significantly in JL-3. Transcriptome changes between the PDL-2 and JL-3 under drought stress were evaluated using Illumina HiSeq 2500 platform. Total number of bases ranged from 5.1 to 6.7 Gb. Sequence analysis of control and drought treated cDNA libraries of PDL-2 and JL-3 produced 74032, 75500, 78328 and 81523 contigs, respectively with respective N50 value of 2011, 2008, 2000 and 1991. Differential gene expression of drought treated genotypes along with their controls revealed a total of 11,435 upregulated and 6,934 downregulated transcripts. For functional classification of DEGs, KEGG pathway annotation analysis extracted a total of 413 GO annotation terms where 176 were within molecular process, 128 in cellular and 109 in biological process groups. CONCLUSION The transcriptional profiles provide a foundation for deciphering the underlying mechanism for drought tolerance in lentil. Transcriptional regulation, signal transduction and secondary metabolism in two genotypes revealed significant differences at seedling stage under severe drought. Our finding suggests role of candidate genes for improving drought tolerance in lentil.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Chandan Kumar Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Jyoti Taunk
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012 India
| | | | - Ashish Kumar Chaturvedi
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Kishor Gaikwad
- National Research Centre on Plant Biotechnology, ICAR, New Delhi, 110012 India
| | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
15
|
Transcriptomic basis for drought-resistance in Brassica napus L. Sci Rep 2017; 7:40532. [PMID: 28091614 PMCID: PMC5238399 DOI: 10.1038/srep40532] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/07/2016] [Indexed: 01/06/2023] Open
Abstract
Based on transcriptomic data from four experimental settings with drought-resistant and drought-sensitive cultivars under drought and well-watered conditions, statistical analysis revealed three categories encompassing 169 highly differentially expressed genes (DEGs) in response to drought in Brassica napus L., including 37 drought-resistant cultivar-related genes, 35 drought-sensitive cultivar-related genes and 97 cultivar non-specific ones. We provide evidence that the identified DEGs were fairly uniformly distributed on different chromosomes and their expression patterns are variety specific. Except commonly enriched in response to various stimuli or stresses, different categories of DEGs show specific enrichment in certain biological processes or pathways, which indicated the possibility of functional differences among the three categories. Network analysis revealed relationships among the 169 DEGs, annotated biological processes and pathways. The 169 DEGs can be classified into different functional categories via preferred pathways or biological processes. Some pathways might simultaneously involve a large number of shared DEGs, and these pathways are likely to cross-talk and have overlapping biological functions. Several members of the identified DEGs fit to drought stress signal transduction pathway in Arabidopsis thaliana. Finally, quantitative real-time PCR validations confirmed the reproducibility of the RNA-seq data. These investigations are profitable for the improvement of crop varieties through transgenic engineering.
Collapse
|
16
|
Li S, Yu X, Cheng Z, Yu X, Ruan M, Li W, Peng M. Global Gene Expression Analysis Reveals Crosstalk between Response Mechanisms to Cold and Drought Stresses in Cassava Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:1259. [PMID: 28769962 PMCID: PMC5513928 DOI: 10.3389/fpls.2017.01259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/04/2017] [Indexed: 05/21/2023]
Abstract
Abiotic stress negatively impacts cassava (Manihot esculenta) growth and yield. Several molecular mechanisms of plant response to cold and drought have been identified and described in the literature, however, little is known about the crosstalk of the responses of cassava to these two stresses. To elucidate this question, transcriptome analysis of cassava seedlings under cold or PEG-simulated drought stress treatment was performed. Our results showed that 6103 and 7462 transcripts were significantly regulated by cold and drought stress, respectively. Gene Ontology annotation revealed that the abscisic and jasmonic acid signaling pathways shared between the two stresses responses. We further identified 2434 common differentially expressed genes (DEGs), including 1130 up-regulated and 841 down-regulated DEGs by the two stresses. These co-induced or co-suppressed genes are grouped as stress signal perception and transduction, transcription factors (TFs), metabolism as well as transport facilitation according to the function annotation. Furthermore, a large proportion of well characterized protein kinases, TF families and ubiquitin proteasome system related genes, such as RLKs, MAPKs, AP2/ERFBPs, WRKYs, MYBs, E2 enzymes and E3 ligases, including three complexes of interacting proteins were shown as key points of crosstalk between cold and drought stress signaling transduction pathways in a hierarchical manner. Our research provides valuable information and new insights for genetically improving the tolerance of crops to multiple abiotic stresses.
Collapse
Affiliation(s)
- Shuxia Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xiang Yu
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Zhihao Cheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xiaoling Yu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Mengbin Ruan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Wenbin Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- *Correspondence: Ming Peng,
| |
Collapse
|
17
|
Rossi L, Zhang W, Lombardini L, Ma X. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:28-36. [PMID: 27661725 DOI: 10.1016/j.envpol.2016.09.060] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/09/2016] [Accepted: 09/18/2016] [Indexed: 05/27/2023]
Abstract
Dwindling high quality water resources and growing population are forcing growers to irrigate crops with water of high salinity. It is well recognized that salinity negatively affects plant physiology and biochemistry, and represents one of the most serious threats to crop production and food security. Meanwhile, engineered nanoparticles (ENPs) are increasingly detected in irrigation water and agricultural soils due to the rapid advancement of nanotechnology. Previous research has demonstrated that ENPs such as cerium oxide nanoparticles (CeO2-NPs) exert significant impact on plant growth and production. However, almost all previous studies were conducted in well controlled environment. Knowledge on how ENPs affect plant development in a stressed condition is almost empty. The goal of the present study was to understand the physiological and biochemical changes in Brassica napus L. (canola) cv. 'Dwarf Essex' under synergistic salt stress and CeO2-NPs effects. Two salinity levels: 0 (control) and 100 mM NaCl, and three CeO2-NPs concentrations: 0 (control), 200 and 1000 mg kg-1 dry sand and clay mixture, were employed. As expected, 100 mM of NaCl significantly hindered plant growth and negatively affected the physiological processes of canola. Plants treated with CeO2-NPs had higher plant biomass, exhibited higher efficiency of the photosynthetic apparatus and less stress in both fresh water and saline water irrigation conditions Overall, our results demonstrated that CeO2-NPs led to changes in canola growth and physiology which improved the plant salt stress response but did not completely alleviate the salt stress of canola.
Collapse
Affiliation(s)
- Lorenzo Rossi
- Zachry Department of Civil Engineering, Texas A&M University, TAMU 3136, College Station, TX 77843-3136, USA
| | - Weilan Zhang
- Zachry Department of Civil Engineering, Texas A&M University, TAMU 3136, College Station, TX 77843-3136, USA
| | - Leonardo Lombardini
- Department of Horticultural Sciences, Texas A&M University, TAMU 2133, College Station, TX 77843-2133, USA
| | - Xingmao Ma
- Zachry Department of Civil Engineering, Texas A&M University, TAMU 3136, College Station, TX 77843-3136, USA.
| |
Collapse
|
18
|
Differential response to physiological drought stress in tolerant and susceptible cultivars of canola. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40502-016-0239-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
Zhu M, Monroe JG, Suhail Y, Villiers F, Mullen J, Pater D, Hauser F, Jeon BW, Bader JS, Kwak JM, Schroeder JI, McKay JK, Assmann SM. Molecular and systems approaches towards drought-tolerant canola crops. THE NEW PHYTOLOGIST 2016; 210:1169-1189. [PMID: 26879345 DOI: 10.1111/nph.13866] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
1169 I. 1170 II. 1170 III. 1172 IV. 1176 V. 1181 VI. 1182 1183 References 1183 SUMMARY: Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Biology Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - J Grey Monroe
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, 80523, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Florent Villiers
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20740, USA
| | - Jack Mullen
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dianne Pater
- Division of Biological Sciences, Cell and Developmental Biology Section, Food and Fuel for the 21st Century Center, University of California San Diego, La Jolla, CA, 92093-016, USA
| | - Felix Hauser
- Division of Biological Sciences, Cell and Developmental Biology Section, Food and Fuel for the 21st Century Center, University of California San Diego, La Jolla, CA, 92093-016, USA
| | - Byeong Wook Jeon
- Biology Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - Joel S Bader
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- School of Medicine, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - June M Kwak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20740, USA
- Center for Plant Aging Research, Institute for Basic Science, Department of New Biology, DGIST, Daegu, 42988, Korea
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, Food and Fuel for the 21st Century Center, University of California San Diego, La Jolla, CA, 92093-016, USA
| | - John K McKay
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, 80523, USA
| | - Sarah M Assmann
- Biology Department, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
20
|
Hu Z, Fan J, Chen K, Amombo E, Chen L, Fu J. Effects of ethylene on photosystem II and antioxidant enzyme activity in Bermuda grass under low temperature. PHOTOSYNTHESIS RESEARCH 2016; 128:59-72. [PMID: 26497139 DOI: 10.1007/s11120-015-0199-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/17/2015] [Indexed: 05/19/2023]
Abstract
The phytohormone ethylene has been reported to mediate plant response to cold stress. However, it is still debated whether the effect of ethylene on plant response to cold stress is negative or positive. The objective of the present study was to explore the role of ethylene in the cold resistance of Bermuda grass (Cynodon dactylon (L).Pers.). Under control (warm) condition, there was no obvious effect of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or the antagonist Ag(+) of ethylene signaling on electrolyte leakage (EL) and malondialdehyde (MDA) content. Under cold stress conditions, ACC-treated plant leaves had a greater level of EL and MDA than the untreated leaves. However, the EL and MDA values were lower in the Ag(+) regime versus the untreated. In addition, after 3 days of cold treatment, ACC remarkably reduced the content of soluble protein and also altered antioxidant enzyme activity. Under control (warm) condition, there was no significant effect of ACC on the performance of photosystem II (PS II) as monitored by chlorophyll α fluorescence transients. However, under cold stress, ACC inhibited the performance of PS II. Under cold condition, ACC remarkably reduced the performance index for energy conservation from excitation to the reduction of intersystem electron acceptors (PI(ABS)), the maximum quantum yield of primary photochemistry (φP0), the quantum yield of electron transport flux from Q(A) to Q(B) (φE0), and the efficiency/probability of electron transport (ΨE0). Simultaneously, ACC increased the values of specific energy fluxes for absorption (ABS/RC) and dissipation (DI0/RC) after 3 days of cold treatment. Additionally, under cold condition, exogenous ACC altered the expressions of several related genes implicated in the induction of cold tolerance (LEA, SOD, POD-1 and CBF1, EIN3-1, and EIN3-2). The present study thus suggests that ethylene affects the cold tolerance of Bermuda grass by impacting the antioxidant system, photosystem II, as well as the CBF transcriptional regulatory cascade.
Collapse
Affiliation(s)
- Zhengrong Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Jibiao Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Ke Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
| |
Collapse
|
21
|
Rahmani F, Peymani A, Daneshvand E, Biparva P. Impact of zinc oxide and copper oxide nano-particles on physiological and molecular processes in Brassica napus L. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40502-016-0212-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Transcriptome analysis of canola (Brassica napus) under salt stress at the germination stage. PLoS One 2015; 10:e0116217. [PMID: 25679513 PMCID: PMC4332669 DOI: 10.1371/journal.pone.0116217] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/05/2014] [Indexed: 11/19/2022] Open
Abstract
Canola (Brassica napus) is one of the most important oil crops in the world. However, its yield has been constrained by salt stress. In this study, transcriptome profiles were explored using Digital Gene Expression (DGE) at 0, 3, 12 and 24 hours after H2O (control) and NaCl treatments on B. napus roots at the germination stage. Comparisons of gene-expression between the control and the treatment were conducted after tag-mapping to the sequenced Brassica rapa genome. The differentially expressed genes during the time course of salt stress were focused on, and 163 genes were identified to be differentially expressed at all the time points. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that some of the genes were involved in proline metabolism, inositol metabolism, carbohydrate metabolic processes and oxidation-reduction processes and may play vital roles in the salt-stress response at the germination stage. Thus, this study provides new candidate salt stress responding genes, which may function in novel putative nodes in the molecular pathways of salt stress resistance.
Collapse
|
23
|
Hu W, Zuo J, Hou X, Yan Y, Wei Y, Liu J, Li M, Xu B, Jin Z. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. FRONTIERS IN PLANT SCIENCE 2015; 6:742. [PMID: 26442055 PMCID: PMC4569978 DOI: 10.3389/fpls.2015.00742] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/31/2015] [Indexed: 05/18/2023]
Abstract
Auxin signaling regulates various auxin-responsive genes via two types of transcriptional regulators, Auxin Response Factors (ARF) and Aux/IAA. ARF transcription factors act as critical components of auxin signaling that play important roles in modulating various biological processes. However, limited information about this gene family in fruit crops is currently available. Herein, 47 ARF genes were identified in banana based on its genome sequence. Phylogenetic analysis of the ARFs from banana, rice, and Arabidopsis suggested that the ARFs could be divided into four subgroups, among which most ARFs from the banana showed a closer relationship with those from rice than those from Arabidopsis. Conserved motif analysis showed that all identified MaARFs had typical DNA-binding and ARF domains, but 12 members lacked the dimerization domain. Gene structure analysis showed that the number of exons in MaARF genes ranged from 5 to 21, suggesting large variation amongst banana ARF genes. The comprehensive expression profiles of MaARF genes yielded useful information about their involvement in diverse tissues, different stages of fruit development and ripening, and responses to abiotic stresses in different varieties. Interaction networks and co-expression assays indicated the strong transcriptional response of banana ARFs and ARF-mediated networks in early fruit development for different varieties. Our systematic analysis of MaARFs revealed robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MaARF genes for further functional assays in planta. These findings could lead to potential applications in the genetic improvement of banana cultivars, and yield new insights into the complexity of the control of MaARF gene expression at the transcriptional level. Finally, they support the hypothesis that ARFs are a crucial component of the auxin signaling pathway, which regulates a wide range of physiological processes.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Jiao Zuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xiaowan Hou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Yunxie Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Juhua Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Meiying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- *Correspondence: Biyu Xu, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua County, Haikou City, Hainan Province 571101, China
| | - Zhiqiang Jin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Zhiqiang Jin, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Yilong W Road 2, Longhua County, Haikou City, Hainan Province 570102, China
| |
Collapse
|
24
|
Zhang J, Mason AS, Wu J, Liu S, Zhang X, Luo T, Redden R, Batley J, Hu L, Yan G. Identification of Putative Candidate Genes for Water Stress Tolerance in Canola (Brassica napus). FRONTIERS IN PLANT SCIENCE 2015; 6:1058. [PMID: 26640475 PMCID: PMC4661274 DOI: 10.3389/fpls.2015.01058] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/13/2015] [Indexed: 05/20/2023]
Abstract
Drought stress can directly inhibit seedling establishment in canola (Brassica napus), resulting in lower plant densities and reduced yields. To dissect this complex trait, 140 B. napus accessions were phenotyped under normal (0.0 MPa, S0) and water-stressed conditions simulated by polyethylene glycol (PEG) 6000 (-0.5 MPa, S5) in a hydroponic system. Phenotypic variation and heritability indicated that the root to shoot length ratio was a reliable indicator for water stress tolerance. Thereafter, 66 accessions (16 water stress tolerant, 34 moderate and 16 sensitive lines) were genotyped using 25,495 Brassica single nucleotide polymorphisms (SNPs). Genome-wide association studies (GWAS) identified 16 loci significantly associated with water stress response. Two B. napus accessions were used for RNA sequencing, with differentially-expressed genes under normal and water-stressed conditions examined. By combining differentially-expressed genes detected by RNA sequencing with significantly associated loci from GWAS, 79 candidate genes were identified, of which eight were putatively associated with drought tolerance based on gene ontology of Arabidopsis. Functional validation of these genes may confirm key drought-related genes for selection and breeding in B. napus. Our results provide insight into the genetic basis of water stress tolerance in canola.
Collapse
Affiliation(s)
- Jing Zhang
- Ministry of Agriculture (MOA) Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Centre for Plant Genetics and Breeding, School of Plant Biology, Faculty of Science and The UWA Institute of Agriculture, The University of Western AustraliaPerth, WA, Australia
| | - Annaliese S. Mason
- Plant Breeding Department, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig UniversityGiessen, Germany
- School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of QueenslandBrisbane, QLD, Australia
| | - Jian Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Sheng Liu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xuechen Zhang
- Centre for Plant Genetics and Breeding, School of Plant Biology, Faculty of Science and The UWA Institute of Agriculture, The University of Western AustraliaPerth, WA, Australia
| | - Tao Luo
- Ministry of Agriculture (MOA) Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Robert Redden
- Australian Grains Genebank, Department of Economic Development Jobs Transport and ResourcesHorsham, VIC, Australia
| | - Jacqueline Batley
- Centre for Plant Genetics and Breeding, School of Plant Biology, Faculty of Science and The UWA Institute of Agriculture, The University of Western AustraliaPerth, WA, Australia
- School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of QueenslandBrisbane, QLD, Australia
| | - Liyong Hu
- Ministry of Agriculture (MOA) Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Liyong Hu
| | - Guijun Yan
- Centre for Plant Genetics and Breeding, School of Plant Biology, Faculty of Science and The UWA Institute of Agriculture, The University of Western AustraliaPerth, WA, Australia
- Guijun Yan
| |
Collapse
|
25
|
Comparative transcriptome analysis of leaves and roots in response to sudden increase in salinity in Brassica napus by RNA-seq. BIOMED RESEARCH INTERNATIONAL 2014; 2014:467395. [PMID: 25177691 PMCID: PMC4142189 DOI: 10.1155/2014/467395] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/20/2014] [Indexed: 01/15/2023]
Abstract
Amphidiploid species in the Brassicaceae family, such as Brassica napus, are more tolerant to environmental stress than their diploid ancestors.A relatively salt tolerant B. napus line, N119, identified in our previous study, was used. N119 maintained lower Na+ content, and Na+/K+ and Na+/Ca2+ ratios in the leaves than a susceptible line. The transcriptome profiles of both the leaves and the roots 1 h and 12 h after stress were investigated. De novo assembly of individual transcriptome followed by sequence clustering yielded 161,537 nonredundant sequences. A total of 14,719 transcripts were differentially expressed in either organs at either time points. GO and KO enrichment analyses indicated that the same 49 GO terms and seven KO terms were, respectively, overrepresented in upregulated transcripts in both organs at 1 h after stress. Certain overrepresented GO term of genes upregulated at 1 h after stress in the leaves became overrepresented in genes downregulated at 12 h. A total of 582 transcription factors and 438 transporter genes were differentially regulated in both organs in response to salt shock. The transcriptome depicting gene network in the leaves and the roots regulated by salt shock provides valuable information on salt resistance genes for future application to crop improvement.
Collapse
|
26
|
Deeplanaik N, Kumaran RC, Venkatarangaiah K, Shivashankar SKH, Doddamani D, Telkar S. Expression of drought responsive genes in pigeonpea and in silico comparison with soybean cDNA library. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s12892-013-0069-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Yıldız M, Terzi H, Bingül N. Protective role of hydrogen peroxide pretreatment on defense systems and BnMP1 gene expression in Cr(VI)-stressed canola seedlings. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:1303-12. [PMID: 23963814 DOI: 10.1007/s10646-013-1117-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2013] [Indexed: 05/24/2023]
Abstract
To evaluate the ameliorating effects of hydrogen peroxide (H2O2, 200 μM) on hexavalent chromium [Cr(VI)] toxicity in canola (Brassica napus L.), we focused on the plant growth, chlorophyll content, thiol contents, lipid peroxidation, antioxidant enzymes, and the expression of metallothionein protein (BnMP1) mRNA. Cr(VI) at 50 μM significantly decreased the plant growth (fresh and dry weights). The decrease in growth was accompanied by increased lipid peroxidation and decreased chlorophyll content in leaves. Hydrogen peroxide pretreatment, however, enhanced plant growth parameters and led to the reduced levels of lipid peroxidation and higher levels of pigment. In addition, H2O2 pretreatment increased Cr accumulation in aerial parts of seedlings. The tendency of increase in thiol content under Cr(VI) stress was further increased with H2O2 pretreatment. The activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (POD) and catalase (CAT) were differentially altered. SOD and POD activities increased under Cr(VI) stress, whereas APX and CAT activities decreased. The SOD and CAT activities remained unaffected in both durations due to H2O2 pretreatment, but activities of APX and POD were promoted in the Cr(VI)-stressed seedlings. Metallothioneins are a family of low-molecular-weight Cys-rich proteins and are thought to play a possible role in metal metabolism or detoxification. In real-time quantitative PCR analysis, the expression level of BnMP1 mRNA was increased at 1 day after treatment (DAT), whereas it was decreased at 7 DAT in Cr(VI)-stressed seedlings. At 1 DAT, pretreatment of H2O2 before Cr(VI) stress reduced the expression of BnMP1 mRNA as compared to Cr(VI) stress alone, but this effect was not significant. At 7 DAT, H2O2 pretreatment alleviated the Cr(VI) stress-mediated decrease in the expression of BnMP1 mRNA. These results suggest that H2O2 may act as a signal that triggers defense mechanisms which in turn protects canola seedlings from Cr(VI)-induced oxidative damage.
Collapse
Affiliation(s)
- Mustafa Yıldız
- Department of Biology, Faculty of Science and Literature, Afyon Kocatepe University, 03030, Afyon, Turkey,
| | | | | |
Collapse
|
28
|
Chen K, Chen L, Fan J, Fu J. Alleviation of heat damage to photosystem II by nitric oxide in tall fescue. PHOTOSYNTHESIS RESEARCH 2013; 116:21-31. [PMID: 23832593 DOI: 10.1007/s11120-013-9883-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 07/01/2013] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) has been found to mediate plant responses to heat stress. The objective of this study was to investigate the protective role of NO in the recovery process of photosystem II (PSII) in tall fescue (Festuca arundinacea) against heat stress. Treatment of tall fescue leaves with NO donor sodium nitroprusside significantly improved the overall behavior of PSII probed by the chlorophyll a fluorescence transients, while the inhibition of NO accumulation by 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (PTIO, a NO scavenger) plus N (G)-nitro-L-arginine-methyl ester (L-NAME, NO synthase inhibitor) dramatically disrupted the operation of PSII. Specifically, under heat stress, the exogenous NO reduced the initial fluorescence (F 0), increased the maximal quantum yield (F V/F M), and disappeared the K-step of 0.3 ms. By the analysis of the JIP-test, the exogenous NO improved the quantum yield of the electron transport flux from Q A to Q B (ET0/ABS), and decreased the trapped excitation flux per reaction center (RC) (TR0/RC), electron transport flux per RC (ET0/RC), and electron flux reducing end electron acceptors per RC (RE0/RC). In addition, the exogenous NO reduced the content of H2O2, O 2 (•-) , and malondialdehyde and electrolyte leakage of tall fescue leaves. These data suggest that exogenous NO could protect plants, increase the amount of activated RC and improve the electron transport from oxygen evolving complex to D1 protein. Moreover, quantitative RT-PCR revealed that, in the presence of hydrogen peroxide, NO induced the gene expression of psbA, psbB, and psbC, which encode proteins belonging to subunits of PSII core reaction center (Psb) complex. These findings indicate that, as an important strategy to protect plants against heat stress, NO could improve the recovery process of PSII by the up regulation of the transcriptions of genes encoding PSII core proteins.
Collapse
Affiliation(s)
- Ke Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo Street, Wuhan, 430074, Hubei, People's Republic of China.
| | | | | | | |
Collapse
|
29
|
Zhang J, Li D, Zou D, Luo F, Wang X, Zheng Y, Li X. A cotton gene encoding a plasma membrane aquaporin is involved in seedling development and in response to drought stress. Acta Biochim Biophys Sin (Shanghai) 2013. [PMID: 23178915 DOI: 10.1093/abbs/gms096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cotton (Gossypium hirsutum), the most important textile crop worldwide, often encounters abiotic stress such as drought and waterlog during its growth season (summer), and its productivity is significantly limited by adverse factors. To investigate the molecular adaptation mechanisms of this plant species to abiotic stress, a gene encoding the plasma membrane intrinsic protein (PIP) was isolated in cotton, and designated as GhPIP2;7. Quantitative reverse transcriptase polymerase chain reaction analysis indicated that GhPIP2;7 was preferentially expressed in cotyledons and leaves, and its expression was up-regulated in leaves after drought treatments. Strong expression of GUS gene driven by GhPIP2;7 promoter was detected in leaves of 5- to 10-day-old transgenic Arabidopsis seedlings, but GUS activity gradually became weak as the seedlings further developed. GhPIP2;7 promoter activity was also remarkably induced by mannitol treatment. Furthermore, yeast cells over-expressing GhPIP2;7 displayed relatively higher drought tolerance, compared with controls. Over-expression of GhPIP2;7 in Arabidopsis enhanced plant tolerance to drought stress. Collectively, these data suggested that GhPIP2;7 gene may be involved in leaf development and in response to drought stress.
Collapse
Affiliation(s)
- Jie Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Ali Z, Zhang DY, Xu ZL, Xu L, Yi JX, He XL, Huang YH, Liu XQ, Khan AA, Trethowan RM, Ma HX. Uncovering the salt response of soybean by unraveling its wild and cultivated functional genomes using tag sequencing. PLoS One 2012; 7:e48819. [PMID: 23209559 PMCID: PMC3509101 DOI: 10.1371/journal.pone.0048819] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 10/01/2012] [Indexed: 11/19/2022] Open
Abstract
Soil salinity has very adverse effects on growth and yield of crop plants. Several salt tolerant wild accessions and cultivars are reported in soybean. Functional genomes of salt tolerant Glycine soja and a salt sensitive genotype of Glycine max were investigated to understand the mechanism of salt tolerance in soybean. For this purpose, four libraries were constructed for Tag sequencing on Illumina platform. We identify around 490 salt responsive genes which included a number of transcription factors, signaling proteins, translation factors and structural genes like transporters, multidrug resistance proteins, antiporters, chaperons, aquaporins etc. The gene expression levels and ratio of up/down-regulated genes was greater in tolerant plants. Translation related genes remained stable or showed slightly higher expression in tolerant plants under salinity stress. Further analyses of sequenced data and the annotations for gene ontology and pathways indicated that soybean adapts to salt stress through ABA biosynthesis and regulation of translation and signal transduction of structural genes. Manipulation of these pathways may mitigate the effect of salt stress thus enhancing salt tolerance.
Collapse
Affiliation(s)
- Zulfiqar Ali
- Institute of Agro-Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Da Yong Zhang
- Institute of Agro-Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Zhao Long Xu
- Institute of Agro-Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Ling Xu
- Institute of Agro-Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Jin Xin Yi
- Institute of Agro-Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xiao Lan He
- Institute of Agro-Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Yi Hong Huang
- Institute of Agro-Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xiao Qing Liu
- Institute of Agro-Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Asif Ali Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Richard M. Trethowan
- Plant Breeding Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Hong Xiang Ma
- Institute of Agro-Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Zhong H, Guo QQ, Chen L, Ren F, Wang QQ, Zheng Y, Li XB. Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress. PLANT CELL REPORTS 2012; 31:1991-2003. [PMID: 22801866 DOI: 10.1007/s00299-012-1311-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/18/2012] [Accepted: 07/01/2012] [Indexed: 05/20/2023]
Abstract
The NAC protein family is one of the novel classes of plant-specific transcription factors. In this study, two genes (BnNAC2 and BnNAC5) encoding the putative NAC transcription factors were identified in Brassica napus. Sequence analysis revealed that the deduced BnNAC proteins contain conserved N-terminal region (NAC domain) and highly divergent C-terminal domain. Yeast transactivation analysis showed that BnNAC2 could activate reporter gene expression, suggesting that BnNAC2 functions as a transcriptional activator. Quantitative RT-PCR analysis revealed that BnNAC2 was preferentially expressed in flowers, whereas BnNAC5 mRNAs accumulated at the highest level in stems. Further experimental results indicated that the two genes are high-salinity-, drought- and abscisic acid (ABA)-induced. Overexpression of BnNAC2 and BnNAC5 genes in yeast (Schizosaccharomyces pombe) remarkably inhibited the growth rate of the host cells, and enhanced the cells sensitive to high-salinity and osmotic stresses. Complementation test indicated that BnNAC5 could recover the defects such as salt-hypersensitivity and accelerated-leaf senescence of vni2 T-DNA insertion mutant. Several stress-responsive genes including COR15A and RD29A were enhanced in the complemented plants. These results suggest that BnNAC5 may perform the similar function of VNI2 in response to high-salinity stress and regulation of leaf aging. Key message BnNAC2 and BnNAC5 are salt-, drought- and ABA-induced genes. Overexpression of BnNAC5 in Arabidopsis vni2 mutant recovered the mutant defects (salt-hypersensitivity and accelerated-leaf senescence) to the phenotype of wild type.
Collapse
Affiliation(s)
- Hui Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Chen L, Ren F, Zhou L, Wang QQ, Zhong H, Li XB. The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6211-22. [PMID: 23105131 PMCID: PMC3481211 DOI: 10.1093/jxb/ers273] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A CBL-interacting protein kinase (CIPK) gene, BnCIPK6, was isolated in Brassica napus. Through yeast two-hybrid screening, 27 interaction partners (including BnCBL1) of BnCIPK6 were identified in Brassica napus. Interaction of BnCIPK6 and BnCBL1 was further confirmed by BiFC (bimolecular fluorescence complementation) in plant cells. Expressions of BnCIPK6 and BnCBL1 were significantly up-regulated by salt and osmotic stresses, phosphorous starvation, and abscisic acid (ABA). Furthermore, BnCIPK6 promoter activity was intensively induced in cotyledons and roots under NaCl, mannitol, and ABA treatments. Transgenic Arabidopsis plants with over-expressing BnCIPK6, its activated form BnCIPK6M, and BnCBL1 enhanced high salinity and low phosphate tolerance, suggesting that the functional interaction of BnCBL1 and BnCIPK6 may be important for the high salinity and phosphorous deficiency signalling pathways. In addition, activation of BnCIPK6 confers Arabidopsis plants hypersensitive to ABA. On the other hand, over-expression of BnCIPK6 in Arabidopsis cipk6 mutant completely rescued the low-phosphate-sensitive and ABA-insensitive phenotypes of this mutant, further suggesting that BnCIPK6 is involved in the plant response to high-salinity, phosphorous deficiency, and ABA signalling.
Collapse
Affiliation(s)
- Liang Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Li Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Qing-Qing Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Hui Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Marshall A, Aalen RB, Audenaert D, Beeckman T, Broadley MR, Butenko MA, Caño-Delgado AI, de Vries S, Dresselhaus T, Felix G, Graham NS, Foulkes J, Granier C, Greb T, Grossniklaus U, Hammond JP, Heidstra R, Hodgman C, Hothorn M, Inzé D, Østergaard L, Russinova E, Simon R, Skirycz A, Stahl Y, Zipfel C, De Smet I. Tackling drought stress: receptor-like kinases present new approaches. THE PLANT CELL 2012; 24:2262-2278. [PMID: 22693282 PMCID: PMC3406892 DOI: 10.1105/tpc.112.096677] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/04/2012] [Accepted: 05/22/2012] [Indexed: 11/08/2022]
Abstract
Global climate change and a growing population require tackling the reduction in arable land and improving biomass production and seed yield per area under varying conditions. One of these conditions is suboptimal water availability. Here, we review some of the classical approaches to dealing with plant response to drought stress and we evaluate how research on RECEPTOR-LIKE KINASES (RLKs) can contribute to improving plant performance under drought stress. RLKs are considered as key regulators of plant architecture and growth behavior, but they also function in defense and stress responses. The available literature and analyses of available transcript profiling data indeed suggest that RLKs can play an important role in optimizing plant responses to drought stress. In addition, RLK pathways are ideal targets for nontransgenic approaches, such as synthetic molecules, providing a novel strategy to manipulate their activity and supporting translational studies from model species, such as Arabidopsis thaliana, to economically useful crops.
Collapse
Affiliation(s)
- Alex Marshall
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Reidunn B. Aalen
- Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Dominique Audenaert
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Martin R. Broadley
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Melinka A. Butenko
- Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Ana I. Caño-Delgado
- Department of Molecular Genetics, Centre de Recerca en Agrigenòmica, 08193 Barcelona, Spain
| | - Sacco de Vries
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040 Regensburg, Germany
| | - Georg Felix
- Zentrum für Molekularbiologie der Pflanzen, Plant Biochemistry, University Tübingen, 72076 Tuebingen, Germany
| | - Neil S. Graham
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - John Foulkes
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Christine Granier
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, Unité Mixte de Recherche 759, Institut National de la Recherche Agronomique-SupAgro, 34060 Montpellier, cedex 1, France
| | - Thomas Greb
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Ueli Grossniklaus
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, CH-8008 Zurich, Switzerland
| | - John P. Hammond
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Renze Heidstra
- Molecular Genetics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Charlie Hodgman
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Michael Hothorn
- Structural Plant Biology Lab, Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tuebingen, Germany
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Eugenia Russinova
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Rüdiger Simon
- Developmental Genetics, Heinrich-Heine University, D-40225 Duesseldorf, Germany
| | - Aleksandra Skirycz
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Yvonne Stahl
- Developmental Genetics, Heinrich-Heine University, D-40225 Duesseldorf, Germany
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| |
Collapse
|
34
|
Chen L, Zhong H, Ren F, Guo QQ, Hu XP, Li XB. A novel cold-regulated gene, COR25, of Brassica napus is involved in plant response and tolerance to cold stress. PLANT CELL REPORTS 2011; 30:463-71. [PMID: 21104087 DOI: 10.1007/s00299-010-0952-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/30/2010] [Accepted: 11/03/2010] [Indexed: 05/08/2023]
Abstract
Cold stress, which causes dehydration damage to the plant cell, is one of the most common abiotic stresses that adversely affect plant growth and crop productivity. To improve its cold-tolerance, plants often enhance expression of some cold-related genes. In this study, a cold-regulated gene encoding 25 KDa of protein was isolated from Brassica napus cDNA library using a macroarray analysis, and is consequently designated as BnCOR25. RT-PCR analysis demonstrated that BnCOR25 was expressed at high levels in hypocotyls, cotyledons, stems, and flowers, but its mRNA was found at low levels in roots and leaves. Northern blot analysis revealed that BnCOR25 transcripts were significantly induced by cold and osmotic stress treatment. The data also showed that BnCOR25 gene expression is mediated by ABA-dependent pathway. Overexpression of BnCOR25 in yeast (Schizosaccharomyces pombe) significantly enhanced the cell survival probability under cold stress, and overexpression of BnCOR25 in Arabidopsis enhances plant tolerance to cold stress. These results suggested that the BnCOR25 gene may play an important role in conferring freezing/cold tolerance in plants.
Collapse
Affiliation(s)
- Liang Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, HuaZhong Normal University, Wuhan 430079, China
| | | | | | | | | | | |
Collapse
|
35
|
Wang S, Bai Y, Shen C, Wu Y, Zhang S, Jiang D, Guilfoyle TJ, Chen M, Qi Y. Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct Integr Genomics 2010; 10:533-46. [PMID: 20499123 DOI: 10.1007/s10142-010-0174-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 04/20/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
Sorghum, a C4 model plant, has been studied to develop an understanding of the molecular mechanism of resistance to stress. The auxin-response genes, auxin/indole-3-acetic acid (Aux/IAA), auxin-response factor (ARF), Gretchen Hagen3 (GH3), small auxin-up RNAs, and lateral organ boundaries (LBD), are involved in growth/development and stress/defense responses in Arabidopsis and rice, but they have not been studied in sorghum. In the present paper, the chromosome distribution, gene duplication, promoters, intron/exon, and phylogenic relationships of Aux/IAA, ARF, GH3, and LBD genes in sorghum are presented. Furthermore, real-time PCR analysis demonstrated these genes are differently expressed in leaf/root of sorghum and indicated the expression profile of these gene families under IAA, brassinosteroid (BR), salt, and drought treatments. The SbGH3 and SbLBD genes, expressed in low level under natural condition, were highly induced by salt and drought stress consistent with their products being involved in both abiotic stresses. Three genes, SbIAA1, SbGH3-13, and SbLBD32, were highly induced under all the four treatments, IAA, BR, salt, and drought. The analysis provided new evidence for role of auxin in stress response, implied there are cross talk between auxin, BR and abiotic stress signaling pathways.
Collapse
Affiliation(s)
- SuiKang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|