1
|
Diokmetzidou A, Scorrano L. Mitochondria-membranous organelle contacts at a glance. J Cell Sci 2025; 138:jcs263895. [PMID: 40357586 DOI: 10.1242/jcs.263895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Mitochondrial contact sites are specialized interfaces where mitochondria physically interact with other organelles. Stabilized by molecular tethers and defined by unique proteomic and lipidomic profiles, these sites enable direct interorganellar communication and functional coordination, playing crucial roles in cellular physiology and homeostasis. Recent advances have expanded our knowledge of contact site-resident proteins, illuminated the dynamic and adaptive nature of these interfaces, and clarified their contribution to pathophysiology. In this Cell Science at a Glance article and the accompanying poster, we summarize the mitochondrial contacts that have been characterized in mammals, the molecular mechanisms underlying their formation, and their principal functions.
Collapse
Affiliation(s)
- Antigoni Diokmetzidou
- Department of Biology, University of Padova, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| |
Collapse
|
2
|
Zhuang K, Wang W, Zheng X, Guo X, Xu C, Ren X, Shen W, Han Q, Feng Z, Chen X, Cai G. MSCs-derived HGF alleviates senescence by inhibiting unopposed mitochondrial fusion-based elongation in post-acute kidney injury. Stem Cell Res Ther 2024; 15:438. [PMID: 39563422 PMCID: PMC11575204 DOI: 10.1186/s13287-024-04041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/02/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The underlying mechanism of human umbilical-derived mesenchymal stem cells (hUC-MSCs) therapy for renal senescence in post-acute kidney injury (post-AKI) remains unclear. Unopposed mitochondrial fusion-based mitochondrial elongation is required for cellular senescence. This study attempted to dissect the role of hUC-MSCs therapy in modulating mitochondrial elongation-related senescence by hUC-MSCs therapy in post-AKI. METHODS Initially, a unilateral renal ischemia-reperfusion (uIRI) model was established in C57 mice. Subsequently, lentivirus-transfected hUC-MSCs were given by subcapsular injection. Two weeks after transplantation, histochemical staining, and transmission electron microscopy were used to assess the efficacy of hUC-MSCs in treating renal senescence, fibrosis, and mitochondrial function. To further investigate the mitochondrial regulation of hUC-MSCs secretion, hypoxic HK-2 cells were built. Finally, antibodies of HGF and its receptor were used within the hUC-MSCs supernatant. RESULTS Unopposed mitochondrial fusion, renal senescence, and renal interstitial fibrosis were successively identified after uIRI in mice. Then, the efficacy of hUC-MSCs after uIRI was confirmed. Subsequently, inhibiting hUC-MSCs-derived HGF significantly compromises the efficacy of hUC-MSCs and leads to ineffectively curbing mitochondrial elongation, accompanying insufficient control of elevated PKA and inhibitory phosphorylation of drp1 (Drp1pSer637). As a result, the treatment efficacy of renal senescence and fibrosis alleviation was also weakened. Furthermore, similar results were obtained with antibodies blocking HGF or cMet in hypoxic HK-2 cells treated with hUC-MSCs-condition medium for further proving. Uncurbed mitochondrial elongation induced by PKA and Drp1pSer637 was inhibited by hUC-MSCs derived HGF but reversed in the activation or overexpression of PKA. CONCLUSIONS The research concluded that hUC-MSCs-derived HGF can inhibit PKA-Drp1pSer637-mitochondrial elongation via its receptor cMet to alleviate renal senescence and fibrosis in post-AKI.
Collapse
Affiliation(s)
- Kaiting Zhuang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Wenjuan Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Xumin Zheng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Xinru Guo
- School of Medicine, Nankai University, Tianjin, China
| | - Cheng Xu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Xuejing Ren
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Qiuxia Han
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhe Feng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China.
| |
Collapse
|
3
|
Naón D, Hernández-Alvarez MI, Shinjo S, Wieczor M, Ivanova S, Martins de Brito O, Quintana A, Hidalgo J, Palacín M, Aparicio P, Castellanos J, Lores L, Sebastián D, Fernández-Veledo S, Vendrell J, Joven J, Orozco M, Zorzano A, Scorrano L. Splice variants of mitofusin 2 shape the endoplasmic reticulum and tether it to mitochondria. Science 2023; 380:eadh9351. [PMID: 37347868 DOI: 10.1126/science.adh9351] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023]
Abstract
In eukaryotic cells, different organelles interact at membrane contact sites stabilized by tethers. Mitochondrial mitofusin 2 (MFN2) acts as a membrane tether that interacts with an unknown partner on the endoplasmic reticulum (ER). In this work, we identified the MFN2 splice variant ERMIT2 as the ER tethering partner of MFN2. Splicing of MFN2 produced ERMIT2 and ERMIN2, two ER-specific variants. ERMIN2 regulated ER morphology, whereas ERMIT2 localized at the ER-mitochondria interface and interacted with mitochondrial mitofusins to tether ER and mitochondria. This tethering allowed efficient mitochondrial calcium ion uptake and phospholipid transfer. Expression of ERMIT2 ameliorated the ER stress, inflammation, and fibrosis typical of liver-specific Mfn2 knockout mice. Thus, ER-specific MFN2 variants display entirely extramitochondrial MFN2 functions involved in interorganellar tethering and liver metabolic activities.
Collapse
Affiliation(s)
- Déborah Naón
- Department of Biology, University of Padua, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - María Isabel Hernández-Alvarez
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- IBUB, Universitat de Barcelona, Barcelona, Spain
| | - Satoko Shinjo
- Department of Biology, University of Padua, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Milosz Wieczor
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Department of Physical Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | - Saska Ivanova
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | | - Albert Quintana
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Juan Hidalgo
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Manuel Palacín
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Aparicio
- Department of Orthopaedics and Trauma Surgery, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Juan Castellanos
- Department of Orthopaedics and Trauma Surgery, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Luis Lores
- Pneumology Department, Hospital General Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - David Sebastián
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sonia Fernández-Veledo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Medicine School, Universitat Rovira i Virgili, Tarragona and Reus, Spain
| | - Joan Vendrell
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Medicine School, Universitat Rovira i Virgili, Tarragona and Reus, Spain
| | - Jorge Joven
- Medicine School, Universitat Rovira i Virgili, Tarragona and Reus, Spain
- Unitat de Recerca Biomèdica, Institut d'Investigació Sanitària Pere Virgili, Hospital Universitari de Sant Joan, Reus, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Luca Scorrano
- Department of Biology, University of Padua, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| |
Collapse
|
4
|
Li J, Li X, Song S, Sun Z, Li Y, Yang L, Xie Z, Cai Y, Zhao Y. Mitochondria spatially and temporally modulate VSMC phenotypes via interacting with cytoskeleton in cardiovascular diseases. Redox Biol 2023; 64:102778. [PMID: 37321061 DOI: 10.1016/j.redox.2023.102778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
Cardiovascular diseases caused by atherosclerosis (AS) seriously endanger human health, which is closely related to vascular smooth muscle cell (VSMC) phenotypes. VSMC phenotypic transformation is marked by the alteration of phenotypic marker expression and cellular behaviour. Intriguingly, the mitochondrial metabolism and dynamics altered during VSMC phenotypic transformation. Firstly, this review combs VSMC mitochondrial metabolism in three aspects: mitochondrial ROS generation, mutated mitochondrial DNA (mtDNA) and calcium metabolism respectively. Secondly, we summarized the role of mitochondrial dynamics in regulating VSMC phenotypes. We further emphasized the association between mitochondria and cytoskelton via presenting cytoskeletal support during mitochondrial dynamics process, and discussed its impact on their respective dynamics. Finally, considering that both mitochondria and cytoskeleton are mechano-sensitive organelles, we demonstrated their direct and indirect interaction under extracellular mechanical stimuli through several mechano-sensitive signaling pathways. We additionally discussed related researches in other cell types in order to inspire deeper thinking and reasonable speculation of potential regulatory mechanism in VSMC phenotypic transformation.
Collapse
Affiliation(s)
- Jingwen Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Xinyue Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Sijie Song
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Zhengwen Sun
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yuanzhu Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Long Yang
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Zhenhong Xie
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yikui Cai
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yinping Zhao
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
5
|
Liu YZ, Li ZX, Zhang LL, Wang D, Liu YP. Phenotypic plasticity of vascular smooth muscle cells in vascular calcification: Role of mitochondria. Front Cardiovasc Med 2022; 9:972836. [PMID: 36312244 PMCID: PMC9597684 DOI: 10.3389/fcvm.2022.972836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Vascular calcification (VC) is an important hallmark of cardiovascular disease, the osteo-/chondrocyte phenotype differentiation of vascular smooth muscle cells (VSMCs) is the main cause of vascular calcification. Accumulating evidence shows that mitochondrial dysfunction may ultimately be more detrimental in the VSMCs calcification. Mitochondrial participate in essential cellular functions, including energy production, metabolism, redox homeostasis regulation, intracellular calcium homeostasis, apoptosis, and signal transduction. Mitochondrial dysfunction under pathological conditions results in mitochondrial reactive oxygen species (ROS) generation and metabolic disorders, which further lead to abnormal phenotypic differentiation of VSMCs. In this review, we summarize existing studies targeting mitochondria as a treatment for VC, and focus on VSMCs, highlighting recent progress in determining the roles of mitochondrial processes in regulating the phenotype transition of VSMCs, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, mitochondrial energy metabolism, and mitochondria/ER interactions. Along these lines, the impact of mitochondrial homeostasis on VC is discussed.
Collapse
|
6
|
Ramaiah P, Patra I, Abbas A, Fadhil AA, Abohassan M, Al-Qaim ZH, Hameed NM, Al-Gazally ME, Kemil Almotlaq SS, Mustafa YF, Shiravand Y. Mitofusin-2 in cancer: Friend or foe? Arch Biochem Biophys 2022; 730:109395. [PMID: 36176224 DOI: 10.1016/j.abb.2022.109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
Abstract
Cancer is a category of disorders characterized by excessive cell proliferation with the ability to infiltrate or disseminate to other organs of the body. Mitochondrial dysfunction, as one of the most prominent hallmarks of cancer cells, has been related to the onset and development of various cancers. Mitofusin 2 (MFN2) is a major mediator of mitochondrial fusion, endoplasmic reticulum (ER)-mitochondria interaction, mitophagy and axonal transport of mitochondria. Available data have shown that MFN2, which its alterations have been associated with mitochondrial dysfunction, could affect cancer initiation and progression. In fact, it showed that MFN2 may have a double-edged sword effect on cancer fate. Precisely, it demonstrated that MFN2, as a tumor suppressor, induces cancer cell apoptosis and inhibits cell proliferation via Ca2+ and Bax-mediated apoptosis and increases P21 and p27 levels, respectively. It also could suppress cell survival via inhibiting PI3K/Akt, Ras-ERK1/2-cyclin D1 and mTORC2/Akt signaling pathways. On the other hand, MFN2, as an oncogene, could increase cancer invasion via snail-mediated epithelial-mesenchymal transition (EMT) and in vivo tumorigenesis. While remarkable progress has been achieved in recent decades, further exploration is required to elucidate whether MFN2 could be a friend or it's an enemy. This study aimed to highlight the different functions of MFN2 in various cancers.
Collapse
Affiliation(s)
| | | | - Anum Abbas
- Basic Health Unit, Foundation University Medical College, Islamabad, Pakistan.
| | - Ali Abdulhussain Fadhil
- College of Medical Technology, Medical Lab Techniques, Al-farahidi University, Baghdad, Iraq
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 9088, Saudi Arabia
| | | | | | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | - Yavar Shiravand
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138, Naples, Italy.
| |
Collapse
|
7
|
Cao Y, Chen Z, Hu J, Feng J, Zhu Z, Fan Y, Lin Q, Ding G. Mfn2 Regulates High Glucose-Induced MAMs Dysfunction and Apoptosis in Podocytes via PERK Pathway. Front Cell Dev Biol 2022; 9:769213. [PMID: 34988075 PMCID: PMC8721005 DOI: 10.3389/fcell.2021.769213] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 01/11/2023] Open
Abstract
The endoplasmic reticulum (ER) stress and mitochondrial dysfunction in high glucose (HG)-induced podocyte injury have been demonstrated to the progression of diabetic kidney disease (DKD). However, the pathological mechanisms remain equivocal. Mitofusin2 (Mfn2) was initially identified as a dynamin-like protein involved in fusing the outer mitochondrial membrane (OMM). More recently, Mfn2 has been reported to be located at the ER membranes that contact OMM. Mitochondria-associated ER membranes (MAMs) is the intercellular membrane subdomain, which connects the mitochondria and ER through a proteinaceous tether. Here, we observed the suppression of Mfn2 expression in the glomeruli and glomerular podocytes of patients with DKD. Streptozotocin (STZ)-induced diabetic rats exhibited abnormal mitochondrial morphology and MAMs reduction in podocytes, accompanied by decreased expression of Mfn2 and activation of all three unfolded protein response (UPR) pathways (IRE1, ATF6, and PERK). The HG-induced mitochondrial dysfunction, MAMs reduction, and increased apoptosis in vitro were accompanied by the downregulation of Mfn2 and activation of the PERK pathway. Mfn2 physically interacts with PERK, and HG promotes a decrease in Mfn2-PERK interaction. In addition, Mfn2-silenced podocytes showed mitochondrial dysfunction, MAMs reduction, activation of PERK pathway, and increased apoptosis. Conversely, all these effects of HG stimulation were alleviated significantly by Mfn2 overexpression. Furthermore, the inhibition of PERK phosphorylation protected mitochondrial functions but did not affect the expression of Mfn2 in HG-treated podocytes. Therefore, this study confirmed that Mfn2 regulates the morphology and functions of MAMs and mitochondria, and exerts anti-apoptotic effects on podocytes by inhibiting the PERK pathway. Hence, the Mfn2-PERK signaling pathway may be a new therapeutic target for preventing podocyte injury in DKD.
Collapse
Affiliation(s)
- Yun Cao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Yanqin Fan
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Qiaoxuan Lin
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Nishigaki A, Tsubokura H, Tsuzuki-Nakao T, Okada H. Hypoxia: Role of SIRT1 and the protective effect of resveratrol in ovarian function. Reprod Med Biol 2021; 21:e12428. [PMID: 34934403 PMCID: PMC8656197 DOI: 10.1002/rmb2.12428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Background Ovarian function is closely related to the degree of vascular network development surrounding the ovary. Maternal aging‐related construction defects in this vascular network can cause ovarian hypoxia, which impedes oocyte nutrient supply, leading to physiological changes in the ovaries and oocytes. The anti‐aging gene Sirtuin 1 (SIRT1) senses and adapts to ambient stress and is associated with hypoxic environments and mitochondrial biogenesis. Methods The present study is a literature review focusing on investigations involving the changes in SIRT1 and mitochondrial expression during hypoxia and the cytoprotective effects of the SIRT1 activator, resveratrol. Main findings Hypoxia suppresses SIRT1 and mitochondrial expression. Resveratrol can reverse the hypoxia‐induced decrease in mitochondrial and SIRT1 activity. Resveratrol suppresses the production of hypoxia‐inducible factor‐1α and vascular endothelial growth factor proteins. Conclusion Resveratrol exhibits protective activity against hypoxic stress and may prevent hypoxia‐ or aging‐related mitochondrial dysfunction. Resveratrol treatment may be a potential option for infertility therapy.
Collapse
Affiliation(s)
- Akemi Nishigaki
- Department of Obstetrics and Gynecology Kansai Medical University Osaka Japan
| | - Hiroaki Tsubokura
- Department of Obstetrics and Gynecology Kansai Medical University Osaka Japan
| | | | - Hidetaka Okada
- Department of Obstetrics and Gynecology Kansai Medical University Osaka Japan
| |
Collapse
|
9
|
Luan Y, Ren KD, Luan Y, Chen X, Yang Y. Mitochondrial Dynamics: Pathogenesis and Therapeutic Targets of Vascular Diseases. Front Cardiovasc Med 2021; 8:770574. [PMID: 34938787 PMCID: PMC8685340 DOI: 10.3389/fcvm.2021.770574] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular diseases, particularly atherosclerosis, are associated with high morbidity and mortality. Endothelial cell (EC) or vascular smooth muscle cell (VSMC) dysfunction leads to blood vessel abnormalities, which cause a series of vascular diseases. The mitochondria are the core sites of cell energy metabolism and function in blood vessel development and vascular disease pathogenesis. Mitochondrial dynamics, including fusion and fission, affect a variety of physiological or pathological processes. Multiple studies have confirmed the influence of mitochondrial dynamics on vascular diseases. This review discusses the regulatory mechanisms of mitochondrial dynamics, the key proteins that mediate mitochondrial fusion and fission, and their potential effects on ECs and VSMCs. We demonstrated the possibility of mitochondrial dynamics as a potential target for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xing Chen
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases. Front Cell Dev Biol 2021; 9:774989. [PMID: 34858991 PMCID: PMC8631538 DOI: 10.3389/fcell.2021.774989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular remodeling occurs in cardiomyocytes, collagen meshes, and vascular beds in the progress of cardiac insufficiency caused by a variety of cardiac diseases such as chronic ischemic heart disease, chronic overload heart disease, myocarditis, and myocardial infarction. The morphological changes that occur as a result of remodeling are the critical pathological basis for the occurrence and development of serious diseases and also determine morbidity and mortality. Therefore, the inhibition of remodeling is an important approach to prevent and treat heart failure and other related diseases. The endoplasmic reticulum (ER) and mitochondria are tightly linked by ER-mitochondria contacts (ERMCs). ERMCs play a vital role in different signaling pathways and provide a satisfactory structural platform for the ER and mitochondria to interact and maintain the normal function of cells, mainly by involving various cellular life processes such as lipid metabolism, calcium homeostasis, mitochondrial function, ER stress, and autophagy. Studies have shown that abnormal ERMCs may promote the occurrence and development of remodeling and participate in the formation of a variety of cardiovascular remodeling-associated diseases. This review focuses on the structure and function of the ERMCs, and the potential mechanism of ERMCs involved in cardiovascular remodeling, indicating that ERMCs may be a potential target for new therapeutic strategies against cardiovascular remodeling-induced diseases.
Collapse
Affiliation(s)
- Yu Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinrong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya Wen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sixuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Lu
- Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Xu
- Jinan Tianqiao People's Hospital, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Khodzhaeva V, Schreiber Y, Geisslinger G, Brandes RP, Brüne B, Namgaladze D. Mitofusin 2 Deficiency Causes Pro-Inflammatory Effects in Human Primary Macrophages. Front Immunol 2021; 12:723683. [PMID: 34456930 PMCID: PMC8397414 DOI: 10.3389/fimmu.2021.723683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/28/2021] [Indexed: 01/23/2023] Open
Abstract
Mitofusin 2 (MFN2) is a mitochondrial outer membrane GTPase, which modulates mitochondrial fusion and affects the interaction between endoplasmic reticulum and mitochondria. Here, we explored how MFN2 influences mitochondrial functions and inflammatory responses towards zymosan in primary human macrophages. A knockdown of MFN2 by small interfering RNA decreased mitochondrial respiration without attenuating mitochondrial membrane potential and reduced interactions between endoplasmic reticulum and mitochondria. A MFN2 deficiency potentiated zymosan-elicited inflammatory responses of human primary macrophages, such as expression and secretion of pro-inflammatory cytokines interleukin-1β, -6, -8 and tumor necrosis factor α, as well as induction of cyclooxygenase 2 and prostaglandin E2 synthesis. MFN2 silencing also increased zymosan-induced nuclear factor kappa-light-chain-enhancer of activated B cells and mitogen-activated protein kinases inflammatory signal transduction, without affecting mitochondrial reactive oxygen species production. Mechanistic studies revealed that MFN2 deficiency enhanced the toll-like receptor 2-dependent branch of zymosan-triggered responses upstream of inhibitor of κB kinase. This was associated with elevated, cytosolic expression of interleukin-1 receptor-associated kinase 4 in MFN2-deficient cells. Our data suggest pro-inflammatory effects of MFN2 deficiency in human macrophages.
Collapse
Affiliation(s)
- Vera Khodzhaeva
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany.,Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
| | - Dmitry Namgaladze
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
12
|
Han S, Zhao F, Hsia J, Ma X, Liu Y, Torres S, Fujioka H, Zhu X. The role of Mfn2 in the structure and function of endoplasmic reticulum-mitochondrial tethering in vivo. J Cell Sci 2021; 134:269077. [PMID: 34110411 DOI: 10.1242/jcs.253443] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs) play an essential role in multiple cell physiological processes. Although Mfn2 was the first protein implicated in the formation of MERCs, there is debate as to whether it acts as a tether or antagonizer, largely based on in vitro studies. To understand the role of Mfn2 in MERCs in vivo, we characterized ultrastructural and biochemical changes of MERCs in pyramidal neurons of hippocampus in Mfn2 conditional knockout mice and in Mfn2 overexpressing mice, and found that Mfn2 ablation caused reduced close contacts, whereas Mfn2 overexpression caused increased close contacts between the endoplasmic reticulum (ER) and mitochondria in vivo. Functional studies on SH-SY5Y cells with Mfn2 knockout or overexpression demonstrating similar biochemical changes found that mitochondrial calcium uptake along with IP3R3-Grp75 interaction was decreased in Mfn2 knockout cells but increased in Mfn2 overexpressing cells. Lastly, we found Mfn2 knockout decreased and Mfn2 overexpression increased the interaction between the ER-mitochondria tethering pair of VAPB-PTPIP51. In conclusion, our study supports the notion that Mfn2 plays a critical role in ER-mitochondrial tethering and the formation of close contacts in neuronal cells in vivo.
Collapse
Affiliation(s)
- Song Han
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey Hsia
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiaopin Ma
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yi Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sandy Torres
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hisashi Fujioka
- Cryo-Electron Microscopy Core Facility, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Chen L, Liu B, Qin Y, Li A, Gao M, Liu H, Gong G. Mitochondrial Fusion Protein Mfn2 and Its Role in Heart Failure. Front Mol Biosci 2021; 8:681237. [PMID: 34026850 PMCID: PMC8138128 DOI: 10.3389/fmolb.2021.681237] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Mitofusin 2 (Mfn2) is a transmembrane GTPase located on the mitochondrial outer membrane that contributes to mitochondrial network regulation. It is an essential multifunctional protein that participates in various biological processes under physical and pathological conditions, including mitochondrial fusion, reticulum-mitochondria contacts, mitochondrial quality control, and apoptosis. Mfn2 dysfunctions have been found to contribute to cardiovascular diseases, such as ischemia-reperfusion injury, heart failure, and dilated cardiomyopathy. Here, this review mainly focuses on what is known about the structure and function of Mfn2 and its crucial role in heart failure.
Collapse
Affiliation(s)
- Lei Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Qin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hanyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Gastroenterology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Xin Y, Li J, Wu W, Liu X. Mitofusin-2: A New Mediator of Pathological Cell Proliferation. Front Cell Dev Biol 2021; 9:647631. [PMID: 33869201 PMCID: PMC8049505 DOI: 10.3389/fcell.2021.647631] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/02/2021] [Indexed: 02/05/2023] Open
Abstract
Cell proliferation is an important cellular process for physiological tissue homeostasis and remodeling. The mechanisms of cell proliferation in response to pathological stresses are not fully understood. Mitochondria are highly dynamic organelles whose shape, number, and biological functions are modulated by mitochondrial dynamics, including fusion and fission. Mitofusin-2 (Mfn-2) is an essential GTPase-related mitochondrial dynamics protein for maintaining mitochondrial network and bioenergetics. A growing body of evidence indicates that Mfn-2 has a potential role in regulating cell proliferation in various cell types. Here we review these new functions of Mfn-2, highlighting its crucial role in several signaling pathways during the process of pathological cell proliferation. We conclude that Mfn-2 could be a new mediator of pathological cell proliferation and a potential therapeutic target.
Collapse
Affiliation(s)
- Yanguo Xin
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Junli Li
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Phadwal K, Vrahnas C, Ganley IG, MacRae VE. Mitochondrial Dysfunction: Cause or Consequence of Vascular Calcification? Front Cell Dev Biol 2021; 9:611922. [PMID: 33816463 PMCID: PMC8010668 DOI: 10.3389/fcell.2021.611922] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are crucial bioenergetics powerhouses and biosynthetic hubs within cells, which can generate and sequester toxic reactive oxygen species (ROS) in response to oxidative stress. Oxidative stress-stimulated ROS production results in ATP depletion and the opening of mitochondrial permeability transition pores, leading to mitochondria dysfunction and cellular apoptosis. Mitochondrial loss of function is also a key driver in the acquisition of a senescence-associated secretory phenotype that drives senescent cells into a pro-inflammatory state. Maintaining mitochondrial homeostasis is crucial for retaining the contractile phenotype of the vascular smooth muscle cells (VSMCs), the most prominent cells of the vasculature. Loss of this contractile phenotype is associated with the loss of mitochondrial function and a metabolic shift to glycolysis. Emerging evidence suggests that mitochondrial dysfunction may play a direct role in vascular calcification and the underlying pathologies including (1) impairment of mitochondrial function by mineral dysregulation i.e., calcium and phosphate overload in patients with end-stage renal disease and (2) presence of increased ROS in patients with calcific aortic valve disease, atherosclerosis, type-II diabetes and chronic kidney disease. In this review, we discuss the cause and consequence of mitochondrial dysfunction in vascular calcification and underlying pathologies; the role of autophagy and mitophagy pathways in preventing mitochondrial dysfunction during vascular calcification and finally we discuss mitochondrial ROS, DRP1, and HIF-1 as potential novel markers and therapeutic targets for maintaining mitochondrial homeostasis in vascular calcification.
Collapse
Affiliation(s)
- Kanchan Phadwal
- Functional Genetics and Development Division, The Roslin Institute and The Royal (Dick) School of Veterinary Studies (R(D)SVS), University of Edinburgh, Midlothian, United Kingdom
| | - Christina Vrahnas
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Ian G. Ganley
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Vicky E. MacRae
- Functional Genetics and Development Division, The Roslin Institute and The Royal (Dick) School of Veterinary Studies (R(D)SVS), University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
16
|
Gao P, Yan Z, Zhu Z. Mitochondria-Associated Endoplasmic Reticulum Membranes in Cardiovascular Diseases. Front Cell Dev Biol 2020; 8:604240. [PMID: 33240899 PMCID: PMC7680862 DOI: 10.3389/fcell.2020.604240] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) and mitochondria are physically connected to form dedicated structural domains known as mitochondria-associated ER membranes (MAMs), which participate in fundamental biological processes, including lipid and calcium (Ca2+) homeostasis, mitochondrial dynamics and other related cellular behaviors such as autophagy, ER stress, inflammation and apoptosis. Many studies have proved the importance of MAMs in maintaining the normal function of both organelles, and the abnormal amount, structure or function of MAMs is related to the occurrence of cardiovascular diseases. Here, we review the knowledge regarding the components of MAMs according to their different functions and the specific roles of MAMs in cardiovascular physiology and pathophysiology, focusing on some highly prevalent cardiovascular diseases, including ischemia-reperfusion, diabetic cardiomyopathy, heart failure, pulmonary arterial hypertension and systemic vascular diseases. Finally, we summarize the possible mechanisms of MAM in cardiovascular diseases and put forward some obstacles in the understanding of MAM function we may encounter.
Collapse
Affiliation(s)
- Peng Gao
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
17
|
Liao Y, Dong Y, Cheng J. The Molecular Determinants of Mitochondrial Membrane Contact With ER, Lysosomes and Peroxisomes in Neuronal Physiology and Pathology. Front Cell Neurosci 2020; 14:194. [PMID: 32848610 PMCID: PMC7427582 DOI: 10.3389/fncel.2020.00194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/05/2020] [Indexed: 11/24/2022] Open
Abstract
Membrane tethering is an important communication method for membrane-packaged organelles. Mitochondria are organelles with a bilayer membrane, and the membrane contact between mitochondria and other organelles is indispensable for maintaining cellular homeostasis. Increased levels of molecular determinants that mediate the membrane contact between mitochondria and other organelles, and their functions, have been revealed in recent years. In this review article, we aim to summarize the findings on the tethering between mitochondria and other organelles in physiological or pathological conditions, and discuss their roles in cellular homeostasis, neural activity, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yajin Liao
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, China
| | - Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, China
| | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, China
| |
Collapse
|
18
|
Wu CM, Zheng L, Wang Q, Hu YW. The emerging role of cell senescence in atherosclerosis. Clin Chem Lab Med 2020; 59:27-38. [PMID: 32692694 DOI: 10.1515/cclm-2020-0601] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
Cell senescence is a fundamental mechanism of aging and appears to play vital roles in the onset and prognosis of cardiovascular disease, fibrotic pulmonary disease, liver disease and tumor. Moreover, an increasing body of evidence shows that cell senescence plays an indispensable role in the formation and development of atherosclerosis. Multiple senescent cell types are associated with atherosclerosis, senescent human vascular endothelial cells participated in atherosclerosis via regulating the level of endothelin-1 (ET-1), nitric oxide (NO), angiotensin II and monocyte chemoattractant protein-1 (MCP-1), senescent human vascular smooth muscle cells-mediated plaque instability and vascular calcification via regulating the expression level of BMP-2, OPN, Runx-2 and inflammatory molecules, and senescent macrophages impaired cholesterol efflux and promoted the development of senescent-related cardiovascular diseases. This review summarizes the characteristics of cell senescence and updates the molecular mechanisms underlying cell senescence. Moreover, we also discuss the recent advances on the molecular mechanisms that can potentially regulate the development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Chang-Meng Wu
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Lei Zheng
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Qian Wang
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Yan-Wei Hu
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.,Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| |
Collapse
|
19
|
Kuo IY, Brill AL, Lemos FO, Jiang JY, Falcone JL, Kimmerling EP, Cai Y, Dong K, Kaplan DL, Wallace DP, Hofer AM, Ehrlich BE. Polycystin 2 regulates mitochondrial Ca 2+ signaling, bioenergetics, and dynamics through mitofusin 2. Sci Signal 2019; 12:12/580/eaat7397. [PMID: 31064883 DOI: 10.1126/scisignal.aat7397] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria and the endoplasmic reticulum (ER) have an intimate functional relationship due to tethering proteins that bring their membranes in close (~30 nm) apposition. One function of this interorganellar junction is to increase the efficiency of Ca2+ transfer into mitochondria, thus stimulating mitochondrial respiration. Here, we showed that the ER cation-permeant channel polycystin 2 (PC2) functions to reduce mitochondria-ER contacts. In cell culture models, PC2 knockdown led to a 50% increase in mitofusin 2 (MFN2) expression, an outer mitochondrial membrane GTPase. Live-cell super-resolution and electron microscopy analyses revealed enhanced MFN2-dependent tethering between the ER and mitochondria in PC2 knockdown cells. PC2 knockdown also led to increased ER-mediated mitochondrial Ca2+ signaling, bioenergetic activation, and mitochondrial density. Mutation or deletion of the gene encoding for PC2 results in autosomal dominant polycystic kidney disease (ADPKD), a condition characterized by numerous fluid-filled cysts. In cell culture models and mice with kidney-specific PC2 knockout, knockdown of MFN2 rescued defective mitochondrial Ca2+ transfer and diminished cell proliferation in kidney cysts. Consistent with these results, cyst-lining epithelial cells from human ADPKD kidneys had a twofold increase in mitochondria and MFN2 expression. Our data suggest that PC2 normally serves to limit key mitochondrial proteins at the ER-mitochondrial interface and acts as a checkpoint for mitochondrial biogenesis and bioenergetics. Loss of this regulation may contribute to the increased oxidative metabolism and aberrant cell proliferation typical of kidney cysts in ADPKD.
Collapse
Affiliation(s)
- Ivana Y Kuo
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Allison L Brill
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Fernanda O Lemos
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jason Y Jiang
- Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, MA 02132, USA.,VA Boston Healthcare System, West Roxbury, MA 02132, USA
| | - Jeffrey L Falcone
- Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, MA 02132, USA.,VA Boston Healthcare System, West Roxbury, MA 02132, USA
| | - Erica P Kimmerling
- Department of Biomedical Engineering, Tufts University. Medford, MA 02155, USA
| | - Yiqiang Cai
- Department of Internal Medicine, Yale University School of Medicine. New Haven, CT 06510, USA
| | - Ke Dong
- Department of Internal Medicine, Yale University School of Medicine. New Haven, CT 06510, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University. Medford, MA 02155, USA
| | - Darren P Wallace
- Department of Medicine and the Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Aldebaran M Hofer
- Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, MA 02132, USA.,VA Boston Healthcare System, West Roxbury, MA 02132, USA
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA. .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
20
|
Braganza A, Quesnelle K, Bickta J, Reyes C, Wang Y, Jessup M, St Croix C, Arlotti J, Singh SV, Shiva S. Myoglobin induces mitochondrial fusion, thereby inhibiting breast cancer cell proliferation. J Biol Chem 2019; 294:7269-7282. [PMID: 30872402 DOI: 10.1074/jbc.ra118.006673] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/21/2019] [Indexed: 01/11/2023] Open
Abstract
Myoglobin is a monomeric heme protein expressed ubiquitously in skeletal and cardiac muscle and is traditionally considered to function as an oxygen reservoir for mitochondria during hypoxia. It is now well established that low concentrations of myoglobin are aberrantly expressed in a significant proportion of breast cancer tumors. Despite being expressed only at low levels in these tumors, myoglobin is associated with attenuated tumor growth and a better prognosis in breast cancer patients, but the mechanism of this myoglobin-mediated protection against further cancer growth remains unclear. Herein, we report a signaling pathway by which myoglobin regulates mitochondrial dynamics and thereby decreases cell proliferation. We demonstrate in vitro that expression of human myoglobin in MDA-MB-231, MDA-MB-468, and MCF7 breast cancer cells induces mitochondrial hyperfusion by up-regulating mitofusins 1 and 2, the predominant catalysts of mitochondrial fusion. This hyperfusion causes cell cycle arrest and subsequent inhibition of cell proliferation. Mechanistically, increased mitofusin expression was due to myoglobin-dependent free-radical production, leading to the oxidation and degradation of the E3 ubiquitin ligase parkin. We recapitulated this pathway in a murine model in which myoglobin-expressing xenografts exhibited decreased tumor volume with increased mitofusin, markers of cell cycle arrest, and decreased parkin expression. Furthermore, in human triple-negative breast tumor tissues, mitofusin and myoglobin levels were positively correlated. Collectively, these results elucidate a new function for myoglobin as a modulator of mitochondrial dynamics and reveal a novel pathway by which myoglobin decreases breast cancer cell proliferation and tumor growth by up-regulating mitofusin levels.
Collapse
Affiliation(s)
| | | | - Janelle Bickta
- the Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania 15261
| | - Christopher Reyes
- the Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania 15261
| | - Yinna Wang
- From the Vascular Medicine Institute and
| | | | | | - Julie Arlotti
- Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and.,University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232
| | - Shivendra V Singh
- Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and.,University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232
| | - Sruti Shiva
- From the Vascular Medicine Institute and .,Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
21
|
Shao Y, Li X, Wood JW, Ma JX. Mitochondrial dysfunctions, endothelial progenitor cells and diabetic retinopathy. J Diabetes Complications 2018; 32:966-973. [PMID: 30068485 DOI: 10.1016/j.jdiacomp.2018.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
AIM Diabetic retinopathy (DR) is the leading cause of vision loss in the working age population. Endothelial progenitor cells (EPC) play a vital role in vascular damage repair. This article will review recent progress regarding mitochondrial and EPC dysfunction associated with DR. RESULTS EPCs represent a limited population of adult stem cells possessing vasculogenic potential postnatally; their number and function are changed in DR. Among all the function changes, mitochondrial dysfunction plays an important role in the dysregulation of EPCs, as mitochondria regulate energy balance, and cell fate determination. CONCLUSIONS Although the mechanism for the role of mitochondria dysregulation in EPC function remains elusive, mitochondria of EPCs represent a promising target for the treatment of the vasculopathy presented within DR.
Collapse
Affiliation(s)
- Yan Shao
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin, China; Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA
| | - Xiaorong Li
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin, China
| | - John W Wood
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA
| | - Jian-Xing Ma
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA.
| |
Collapse
|
22
|
Durgin BG, Straub AC. Redox control of vascular smooth muscle cell function and plasticity. J Transl Med 2018; 98:1254-1262. [PMID: 29463879 PMCID: PMC6102093 DOI: 10.1038/s41374-018-0032-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023] Open
Abstract
Vascular smooth muscle cells (SMC) play a major role in vascular diseases, such as atherosclerosis and hypertension. It has long been established in vitro that contractile SMC can phenotypically switch to function as proliferative and/or migratory cells in response to stimulation by oxidative stress, growth factors, and inflammatory cytokines. Reactive oxygen species (ROS) are oxidative stressors implicated in driving vascular diseases, shifting cell bioenergetics, and increasing SMC proliferation, migration, and apoptosis. In this review, we summarize our current knowledge of how disruptions to redox balance can functionally change SMC and how this may influence vascular disease pathogenesis. Specifically, we focus on our current understanding of the role of vascular nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) 1, 4, and 5 in SMC function. We also review the evidence implicating mitochondrial fission in SMC phenotypic transitions and mitochondrial fusion in maintenance of SMC homeostasis. Finally, we discuss the importance of the redox regulation of the soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway as a potential oxidative and therapeutic target for regulating SMC function.
Collapse
Affiliation(s)
- Brittany G Durgin
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Abstract
Mitochondrial dysfunction underlines a multitude of pathologies; however, studies are scarce that rescue the mitochondria for cellular resuscitation. Exploration into the protective role of mitochondrial transcription factor A (TFAM) and its mitochondrial functions respective to cardiomyocyte death are in need of further investigation. TFAM is a gene regulator that acts to mitigate calcium mishandling and ROS production by wrapping around mitochondrial DNA (mtDNA) complexes. TFAM's regulatory functions over serca2a, NFAT, and Lon protease contribute to cardiomyocyte stability. Calcium- and ROS-dependent proteases, calpains, and matrix metalloproteinases (MMPs) are abundantly found upregulated in the failing heart. TFAM's regulatory role over ROS production and calcium mishandling leads to further investigation into the cardioprotective role of exogenous TFAM. In an effort to restabilize physiological and contractile activity of cardiomyocytes in HF models, we propose that TFAM-packed exosomes (TFAM-PE) will act therapeutically by mitigating mitochondrial dysfunction. Notably, this is the first mention of exosomal delivery of transcription factors in the literature. Here we elucidate the role of TFAM in mitochondrial rescue and focus on its therapeutic potential.
Collapse
Affiliation(s)
- George H Kunkel
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA
| | - Pankaj Chaturvedi
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA.
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA
| |
Collapse
|
24
|
SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition. Cell Death Differ 2017; 25:1131-1145. [PMID: 29229997 PMCID: PMC5988678 DOI: 10.1038/s41418-017-0033-z] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 01/06/2023] Open
Abstract
Contact sites are discrete areas of organelle proximity that coordinate essential physiological processes across membranes, including Ca2+ signaling, lipid biosynthesis, apoptosis, and autophagy. However, tools to easily image inter-organelle proximity over a range of distances in living cells and in vivo are lacking. Here we report a split-GFP-based contact site sensor (SPLICS) engineered to fluoresce when organelles are in proximity. Two SPLICS versions efficiently measured narrow (8–10 nm) and wide (40–50 nm) juxtapositions between endoplasmic reticulum and mitochondria, documenting the existence of at least two types of contact sites in human cells. Narrow and wide ER–mitochondria contact sites responded differently to starvation, ER stress, mitochondrial shape modifications, and changes in the levels of modulators of ER–mitochondria juxtaposition. SPLICS detected contact sites in soma and axons of D. rerio Rohon Beard (RB) sensory neurons invivo, extending its use to analyses of organelle juxtaposition in the whole animal.
Collapse
|
25
|
Kunkel GH, Chaturvedi P, Thelian N, Nair R, Tyagi SC. Mechanisms of TFAM-mediated cardiomyocyte protection. Can J Physiol Pharmacol 2017; 96:173-181. [PMID: 28800400 DOI: 10.1139/cjpp-2016-0718] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although mitochondrial transcription factor A (TFAM) is a protective component of mitochondrial DNA and a regulator of calcium and reactive oxygen species (ROS) production, the mechanism remains unclear. In heart failure, TFAM is significantly decreased and cardiomyocyte instability ensues. TFAM inhibits nuclear factor of activated T cells (NFAT), which reduces ROS production; additionally, TFAM transcriptionally activates SERCA2a to decrease free calcium. Therefore, decreasing TFAM vastly increases protease expression and hypertrophic factors, leading to cardiomyocyte functional decline. To examine this hypothesis, treatments of 1.0 μg of a TFAM vector and 1.0 μg of a CRISPR-Cas9 TFAM plasmid were administered to HL-1 cardiomyocytes via lipofectamine transfection. Western blotting and confocal microscopy analysis show that CRISPR-Cas9 knockdown of TFAM significantly increased proteases Calpain1, MMP9, and regulators Serca2a, and NFAT4 protein expression. CRISPR knockdown of TFAM in HL-1 cardiomyocytes upregulates degradation factors, leading to cardiomyocyte instability. Hydrogen peroxide oxidative stress decreased TFAM expression and increased Calpain1, MMP9, and NFAT4 protein expression. TFAM overexpression normalizes pathological hypertrophic factor NFAT4 in the presence of oxidative stress.
Collapse
Affiliation(s)
- George H Kunkel
- Department of Physiology and Biophysics, University of Louisville, KY, USA.,Department of Physiology and Biophysics, University of Louisville, KY, USA
| | - Pankaj Chaturvedi
- Department of Physiology and Biophysics, University of Louisville, KY, USA.,Department of Physiology and Biophysics, University of Louisville, KY, USA
| | - Nicholas Thelian
- Department of Physiology and Biophysics, University of Louisville, KY, USA.,Department of Physiology and Biophysics, University of Louisville, KY, USA
| | - Rohit Nair
- Department of Physiology and Biophysics, University of Louisville, KY, USA.,Department of Physiology and Biophysics, University of Louisville, KY, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville, KY, USA.,Department of Physiology and Biophysics, University of Louisville, KY, USA
| |
Collapse
|
26
|
Naon D, Zaninello M, Giacomello M, Varanita T, Grespi F, Lakshminaranayan S, Serafini A, Semenzato M, Herkenne S, Hernández-Alvarez MI, Zorzano A, De Stefani D, Dorn GW, Scorrano L. Reply to Filadi et al.: Does Mitofusin 2 tether or separate endoplasmic reticulum and mitochondria? Proc Natl Acad Sci U S A 2017; 114:E2268-E2269. [PMID: 28289205 PMCID: PMC5373396 DOI: 10.1073/pnas.1618610114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Deborah Naon
- Department of Biology, University of Padua, 35121 Padua, Italy
- Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Marta Zaninello
- Department of Biology, University of Padua, 35121 Padua, Italy
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padua, Italy
- Fondazione S. Lucia Istituto di Recovero e Cura a Carattere Scientifico, 00161 Rome, Italy
| | - Marta Giacomello
- Department of Biology, University of Padua, 35121 Padua, Italy
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - Tatiana Varanita
- Department of Biology, University of Padua, 35121 Padua, Italy
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - Francesca Grespi
- Department of Biology, University of Padua, 35121 Padua, Italy
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - Sowmya Lakshminaranayan
- Department of Biology, University of Padua, 35121 Padua, Italy
- Fondazione S. Lucia Istituto di Recovero e Cura a Carattere Scientifico, 00161 Rome, Italy
| | - Annalisa Serafini
- Department of Biology, University of Padua, 35121 Padua, Italy
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - Martina Semenzato
- Department of Biology, University of Padua, 35121 Padua, Italy
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - Stephanie Herkenne
- Department of Biology, University of Padua, 35121 Padua, Italy
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | | | - Antonio Zorzano
- Institute for Research in Biomedicine, 08028 Barcelona, Spain
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Gerald W Dorn
- Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO 63110
| | - Luca Scorrano
- Department of Biology, University of Padua, 35121 Padua, Italy;
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| |
Collapse
|
27
|
Lopez-Crisosto C, Pennanen C, Vasquez-Trincado C, Morales PE, Bravo-Sagua R, Quest AFG, Chiong M, Lavandero S. Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol 2017; 14:342-360. [PMID: 28275246 DOI: 10.1038/nrcardio.2017.23] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Repetitive, calcium-mediated contractile activity renders cardiomyocytes critically dependent on a sustained energy supply and adequate calcium buffering, both of which are provided by mitochondria. Moreover, in vascular smooth muscle cells, mitochondrial metabolism modulates cell growth and proliferation, whereas cytosolic calcium levels regulate the arterial vascular tone. Physical and functional communication between mitochondria and sarco/endoplasmic reticulum and balanced mitochondrial dynamics seem to have a critical role for optimal calcium transfer to mitochondria, which is crucial in calcium homeostasis and mitochondrial metabolism in both types of muscle cells. Moreover, mitochondrial dysfunction has been associated with myocardial damage and dysregulation of vascular smooth muscle proliferation. Therefore, sarco/endoplasmic reticulum-mitochondria coupling and mitochondrial dynamics are now viewed as relevant factors in the pathogenesis of cardiac and vascular diseases, including coronary artery disease, heart failure, and pulmonary arterial hypertension. In this Review, we summarize the evidence related to the role of sarco/endoplasmic reticulum-mitochondria communication in cardiac and vascular muscle physiology, with a focus on how perturbations contribute to the pathogenesis of cardiovascular disorders.
Collapse
Affiliation(s)
- Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Christian Pennanen
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Cesar Vasquez-Trincado
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Instituto de Nutricion y Tecnologia de los Alimentos (INTA), Universidad de Chile, Avenida El Líbano 5524, Santiago 7830490, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Centro de Estudios Moleculares de la Celula (CEMC), Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Centro de Estudios Moleculares de la Celula (CEMC), Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75235, USA
| |
Collapse
|
28
|
Yuan Y, Cruzat VF, Newsholme P, Cheng J, Chen Y, Lu Y. Regulation of SIRT1 in aging: Roles in mitochondrial function and biogenesis. Mech Ageing Dev 2016; 155:10-21. [DOI: 10.1016/j.mad.2016.02.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/28/2015] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
|