1
|
Ng JPZ, Mariati M, Bi J, Chang MW, Yang Y. A Targeted Integration-Based CHO Cell Platform for Simultaneous Antibody Display and Secretion. Antibodies (Basel) 2025; 14:38. [PMID: 40407690 PMCID: PMC12101391 DOI: 10.3390/antib14020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/26/2025] Open
Abstract
OBJECTIVE We developed a targeted integration-based CHO cell platform for simultaneous antibody display and secretion, enabling a streamlined transition from antibody library screening to production without requiring the re-cloning of antibody genes. METHODS The platform consists of a CHO master cell line with a single-copy landing pad, a helper vector expressing FLPe recombinase, and bi-functional targeting vectors. Recombinase-mediated cassette exchange was utilized to integrate targeting vectors into the landing pad. Bi-functional vectors were designed by incorporating a minimal furin cleavage sequence (mFCS), RRKR, and various 2A peptides between the heavy chain (HC) and a membrane anchor. RESULTS Incomplete cleavage at the mFCS and 2A sites facilitated the expression of both membrane-bound and secreted antibodies, while mutations in the 2A peptide produced a range of display-to-secretion ratios. However, a fraction of secreted antibodies retained 2A residues attached to the HC polypeptides. Further analysis demonstrated that modifying the first five amino acids of the 2A peptide significantly influenced furin cleavage efficiency, resulting in different display-to-secretion ratios for targeting vectors containing mFCS-2A variant combinations. To overcome this, we designed nine-amino-acid FCS variants that, when placed between the HC and membrane anchor, provided a range of display-to-secretion ratios and eliminated the issue of attached 2A residues in the secreted antibodies. Vectors with lower display levels proved more effective at distinguishing cells expressing high-affinity antibodies with closely matched binding affinities. The platform also demonstrated high sensitivity in isolating high-affinity antibody-expressing cells and supported robust antibody production. CONCLUSION This targeted integration-based CHO platform enables efficient, in-format screening and production of antibodies with tunable display-to-secretion profiles. It provides a powerful and scalable tool for accelerating the development of functional, manufacturable therapeutic antibodies.
Collapse
Affiliation(s)
- Jessica P. Z. Ng
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #03-01 Centros, Singapore 138668, Singapore
| | - Mariati Mariati
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #03-01 Centros, Singapore 138668, Singapore
| | - Jiawu Bi
- Institute of Molecular Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Dr, #07-01 Proteos, Singapore 138673, Singapore;
| | - Matthew Wook Chang
- Synthetic Biology Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117465, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Dr, #02-07 Centre for Life Sciences, Singapore 117456, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #03-01 Centros, Singapore 138668, Singapore
| |
Collapse
|
2
|
Slavny P, Hegde M, Doerner A, Parthiban K, McCafferty J, Zielonka S, Hoet R. Advancements in mammalian display technology for therapeutic antibody development and beyond: current landscape, challenges, and future prospects. Front Immunol 2024; 15:1469329. [PMID: 39381002 PMCID: PMC11459229 DOI: 10.3389/fimmu.2024.1469329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
The evolving development landscape of biotherapeutics and their growing complexity from simple antibodies into bi- and multi-specific molecules necessitates sophisticated discovery and engineering platforms. This review focuses on mammalian display technology as a potential solution to the pressing challenges in biotherapeutic development. We provide a comparative analysis with established methodologies, highlighting key aspects of mammalian display technology, including genetic engineering, construction of display libraries, and its pivotal role in hit selection and/or developability engineering. The review delves into the mechanisms underpinning developability-driven selection via mammalian display and their broader implications. Applications beyond antibody discovery are also explored, alongside advancements towards function-first screening technologies, precision genome engineering and AI/ML-enhanced libraries, situating them in the context of mammalian display. Overall, the review provides a comprehensive overview of the current mammalian display technology landscape, underscores the expansive potential of the technology for biotherapeutic development, addresses the critical challenges for the full realisation of this potential, and examines advances in related disciplines that might impact the future application of mammalian display technologies.
Collapse
Affiliation(s)
- Peter Slavny
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - Manjunath Hegde
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
| | - Achim Doerner
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Kothai Parthiban
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - John McCafferty
- Maxion Therapeutics, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Rene Hoet
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
- Technology Division, FairJourney Biologics, Porto, Portugal
| |
Collapse
|
3
|
Ferrara F, Fanni A, Teixeira AAR, Molina E, Leal-Lopes C, DeAguero A, D'Angelo S, Erasmus MF, Spector L, Rodriguez Carnero LA, Li J, Pohl TJ, Suslov N, Desrumeaux K, McMahon C, Kathuria S, Bradbury ARM. A next-generation Fab library platform directly yielding drug-like antibodies with high affinity, diversity, and developability. MAbs 2024; 16:2394230. [PMID: 39192463 DOI: 10.1080/19420862.2024.2394230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
We previously described an in vitro single-chain fragment (scFv) library platform originally designed to generate antibodies with excellent developability properties. The platform design was based on the use of clinical antibodies as scaffolds into which replicated natural complementarity-determining regions purged of sequence liabilities were inserted, and the use of phage and yeast display to carry out antibody selection. In addition to being developable, antibodies generated using our platform were extremely diverse, with most campaigns yielding sub-nanomolar binders. Here, we describe a platform advancement that incorporates Fab phage display followed by single-chain antibody-binding fragment Fab (scFab) yeast display. The scFab single-gene format provides balanced expression of light and heavy chains, with enhanced conversion to IgG, thereby combining the advantages of scFvs and Fabs. A meticulously engineered, quality-controlled Fab phage library was created using design principles similar to those used to create the scFv library. A diverse panel of binding scFabs, with high conversion efficiency to IgG, was isolated against two targets. This study highlights the compatibility of phage and yeast display with a Fab semi-synthetic library design, offering an efficient approach to generate drug-like antibodies directly, facilitating their conversion to potential therapeutic candidates.
Collapse
Affiliation(s)
| | - Adeline Fanni
- Specifica LLC, a Q2 Solutions Company, Santa Fe, NM, USA
| | | | - Esteban Molina
- Specifica LLC, a Q2 Solutions Company, Santa Fe, NM, USA
| | | | | | - Sara D'Angelo
- Specifica LLC, a Q2 Solutions Company, Santa Fe, NM, USA
| | | | - Laura Spector
- Specifica LLC, a Q2 Solutions Company, Santa Fe, NM, USA
| | | | - Jianquan Li
- Specifica LLC, a Q2 Solutions Company, Santa Fe, NM, USA
| | - Thomas J Pohl
- Specifica LLC, a Q2 Solutions Company, Santa Fe, NM, USA
| | | | | | | | | | | |
Collapse
|
4
|
Dübel S. Can antibodies be "vegan"? A guide through the maze of today's antibody generation methods. MAbs 2024; 16:2343499. [PMID: 38634488 PMCID: PMC11028021 DOI: 10.1080/19420862.2024.2343499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
There is no doubt that today's life sciences would look very different without the availability of millions of research antibody products. Nevertheless, the use of antibody reagents that are poorly characterized has led to the publication of false or misleading results. The use of laboratory animals to produce research antibodies has also been criticized. Surprisingly, both problems can be addressed with the same technology. This review charts today's maze of different antibody formats and the various methods for antibody production and their interconnections, ultimately concluding that sequence-defined recombinant antibodies offer a clear path to both improved quality of experimental data and reduced use of animals.
Collapse
Affiliation(s)
- Stefan Dübel
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|