1
|
Lerner UH. Vitamin A - discovery, metabolism, receptor signaling and effects on bone mass and fracture susceptibility. Front Endocrinol (Lausanne) 2024; 15:1298851. [PMID: 38711977 PMCID: PMC11070503 DOI: 10.3389/fendo.2024.1298851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
The first evidence of the existence of vitamin A was the observation 1881 that a substance present in small amounts in milk was necessary for normal development and life. It was not until more than 100 years later that it was understood that vitamin A acts as a hormone through nuclear receptors. Unlike classical hormones, vitamin A cannot be synthesized by the body but needs to be supplied by the food as retinyl esters in animal products and ß-carotene in vegetables and fruits. Globally, vitamin A deficiency is a huge health problem, but in the industrialized world excess of vitamin A has been suggested to be a risk factor for secondary osteoporosis and enhanced susceptibility to fractures. Preclinical studies unequivocally have shown that increased amounts of vitamin A cause decreased cortical bone mass and weaker bones due to enhanced periosteal bone resorption. Initial clinical studies demonstrated a negative association between intake of vitamin A, as well as serum levels of vitamin A, and bone mass and fracture susceptibility. In some studies, these observations have been confirmed, but in other studies no such associations have been observed. One meta-analysis found that both low and high serum levels of vitamin A were associated with increased relative risk of hip fractures. Another meta-analysis also found that low levels of serum vitamin A increased the risk for hip fracture but could not find any association with high serum levels of vitamin A and hip fracture. It is apparent that more clinical studies, including large numbers of incident fractures, are needed to determine which levels of vitamin A that are harmful or beneficial for bone mass and fracture. It is the aim of the present review to describe how vitamin A was discovered and how vitamin A is absorbed, metabolized and is acting as a ligand for nuclear receptors. The effects by vitamin A in preclinical studies are summarized and the clinical investigations studying the effect by vitamin A on bone mass and fracture susceptibility are discussed in detail.
Collapse
Affiliation(s)
- Ulf H. Lerner
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Shastak Y, Pelletier W. Pet Wellness and Vitamin A: A Narrative Overview. Animals (Basel) 2024; 14:1000. [PMID: 38612239 PMCID: PMC11010875 DOI: 10.3390/ani14071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The health of companion animals, particularly dogs and cats, is significantly influenced by nutrition, with vitamins playing a crucial role. Vitamin A, in particular, is indispensable, with diverse roles ranging from vision to immune modulation and reproduction. Despite its importance, the metabolism and dietary requirements of vitamin A in companion animals remain complex and not fully understood. This review provides a comprehensive overview of the historical perspective, the digestion, the metabolism, the physiological roles, the deficiency, the excess, and the interactions with other micronutrients of vitamin A in companion animals. Additionally, it highlights future research directions and gaps in our understanding. Insights into the metabolism of vitamin A in companion animals, personalized nutrition strategies based on genetic variability, longitudinal studies tracking the status of vitamin A, and investigations into its immunomodulatory effects are crucial for optimizing pet health and wellness. Furthermore, understanding the stability and bioavailability of vitamin A in pet food formulations is essential for ensuring the provision of adequate micronutrients. Overall, this review underscores the importance of vitamin A in companion animal nutrition and the need for further research to enhance our understanding and to optimize dietary recommendations for pet health and well-being.
Collapse
Affiliation(s)
- Yauheni Shastak
- Nutrition & Health Division, BASF SE, 67063 Ludwigshafen am Rhein, Germany
| | | |
Collapse
|
3
|
Sheftel J, van Stuijvenberg ME, Dhansay MA, Suri DJ, Grahn M, Keuler NS, Binkley NC, Tanumihardjo SA. Chronic and acute hypervitaminosis A are associated with suboptimal anthropometric measurements in a cohort of South African preschool children. Am J Clin Nutr 2022; 115:1059-1068. [PMID: 35030234 DOI: 10.1093/ajcn/nqab422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Excessive vitamin A (VA) can cause bone resorption and impair growth. Government-mandated VA supplementation (VAS) and adequate intake through dietary fortification and liver consumption led to excessive VA in South African children. OBJECTIVES We evaluated the relation between VAS and underlying hypervitaminosis A assessed by retinol isotope dilution (RID) with measures of growth and bone turnover in this cohort. METHODS Primary outcomes in these children (n = 94, 36-60 mo) were anthropometric measurements [height-for-age (HAZ), weight-for-age (WAZ), and weight-for-height (WHZ) z scores], serum bone turnover markers [C-terminal telopeptide of type I collagen (CTX) and N-terminal propeptide of type I procollagen (P1NP)], and inflammation defined as C-reactive protein (CRP; ≥5 mg/L) and/or α1-acid glycoprotein (AGP; ≥1 g/L). VA status was previously measured by RID-estimated total body VA stores (TBSs) and total liver VA reserves (TLRs), and serum retinol and carotenoid concentrations, before and 4 wk after children were administered 200,000 IU VAS. Serum 25-hydroxyvitamin D3 was measured by ultra-performance LC. RESULTS In this largely hypervitaminotic A cohort, HAZ, WAZ, and WHZ were negatively associated with increasing TLRs, where TLRs predicted 6-10% of the variation before VAS (P < 0.05), increasing to 14-19% 4 wk after VAS (P < 0.01). Bone resorption decreased after VAS (P < 0.0001), whereas formation was unaffected. Neither CTX nor P1NP were correlated with TLRs at either time. Serum carotenoids were low. One child at each time point was vitamin D deficient (<50 nmol/L). CRP and AGP were not associated with growth measurements. CONCLUSIONS Excessive TLRs due to dietary VA intake and VAS are associated with lower anthropometric measures and bone resorption decreased after supplementation. VA supplementation programs should monitor VA status with biomarkers sensitive to TLRs to avoid causing negative consequences in children with hypervitaminosis A. This trial is registered at clinicaltrials.gov as NCT02915731.
Collapse
Affiliation(s)
- Jesse Sheftel
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Martha E van Stuijvenberg
- Non-Communicable Diseases Research Unit, South African Medical Research Council, and Division of Human Nutrition, Stellenbosch University, Stellenbosch, South Africa
| | - Muhammad A Dhansay
- Burden of Disease Research Unit, South African Medical Research Council, and Division of Human Nutrition and Department of Pediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - Devika J Suri
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Grahn
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas S Keuler
- Department of Statistics, University of Wisconsin-Madison, Madison WI, USA
| | - Neil C Binkley
- Osteoporosis Clinical Research Program, University of Wisconsin-Madison, Madison WI, USA
| | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|
5
|
Khojah Q, AlRumaihi S, AlRajeh G, Aburas A, AlOthman A, Ferwana M. Vitamin A and its dervatives effect on bone mineral density, a systematic review. J Family Med Prim Care 2021; 10:4089-4095. [PMID: 35136772 PMCID: PMC8797105 DOI: 10.4103/jfmpc.jfmpc_663_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/04/2022] Open
|
6
|
van Stuijvenberg ME, Dhansay MA, Nel J, Suri D, Grahn M, Davis CR, Tanumihardjo SA. South African preschool children habitually consuming sheep liver and exposed to vitamin A supplementation and fortification have hypervitaminotic A liver stores: a cohort study. Am J Clin Nutr 2019; 110:91-101. [PMID: 31089689 DOI: 10.1093/ajcn/nqy382] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/12/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND In some regions, multiple vitamin A (VA) interventions occur in the same target groups, which may lead to excessive stores. Retinol isotope dilution (RID) is a more sensitive technique than serum retinol to measure VA status. OBJECTIVE We evaluated VA status before and after a high-dose supplement in preschool children living in a region in South Africa with habitual liver consumption and exposed to VA supplementation and fortification. METHODS After baseline blood samples, subjects (46.7 ± 8.4 mo; n = 94) were administered 1.0 μmol [14,15]-13C2-retinyl acetate to estimate total liver retinol reserves by RID with a follow-up 14-d blood sample. Liver intake was assessed with a frequency questionnaire. In line with current practice, a routine 200,000 IU VA capsule was administered after the RID test. RID was repeated 1 mo later. Serum retinyl esters were evaluated using ultra-performance liquid chromatography. RESULTS At baseline, 63.6% of these children had hypervitaminosis A defined as total liver retinol reserves ≥1.0 μmol/g liver, which increased to 71.6% after supplementation (1.13 ± 0.43 to 1.29 ± 0.46 μmol/g; P < 0.001). Total serum VA as retinyl esters was elevated in 4.8% and 6.1% of children before and after supplementation. The odds of having hypervitaminosis A at baseline were higher in children consuming liver ≥1/mo (ratio 3.70 [95% CI: 1.08, 12.6]) and in children receiving 2 (4.28 [1.03, 17.9]) or 3 (6.45 [0.64, 65.41]) supplements in the past 12 mo. Total body stores decreased after the supplement in children in the highest quartile at baseline compared with children with lower stores, who showed an increase (P = 0.007). CONCLUSIONS In children, such as this cohort in South Africa, with adequate VA intake through diet, and overlapping VA fortification and supplementation, preschool VA capsule distribution should be re-evaluated. This trial was registered at https://clinicaltrials.gov/ct2/show/NCT02915731 as NCT02915731.
Collapse
Affiliation(s)
- Martha E van Stuijvenberg
- Non-Communicable Diseases Research Unit, South African Medical Research Council.,Division of Human Nutrition, Cape Town, South Africa
| | - Muhammad A Dhansay
- Burden of Disease Research Unit, South African Medical Research Council.,Division of Human Nutrition, Cape Town, South Africa.,Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Jana Nel
- Integrated Nutrition Programme, Northern Cape Department of Health, Kimberley, South Africa
| | - Devika Suri
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Michael Grahn
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Christopher R Davis
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | | |
Collapse
|
7
|
Olsen K, Suri DJ, Davis C, Sheftel J, Nishimoto K, Yamaoka Y, Toya Y, Welham NV, Tanumihardjo SA. Serum retinyl esters are positively correlated with analyzed total liver vitamin A reserves collected from US adults at time of death. Am J Clin Nutr 2018; 108:997-1005. [PMID: 30475970 PMCID: PMC6692705 DOI: 10.1093/ajcn/nqy190] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
Background Minimal human data exist on liver vitamin A (VA) compared with serum biomarkers. Cutoffs of 5% and 10% total serum VA as retinyl esters (REs) suggest a VA intoxication diagnosis. Objectives We compared total liver VA reserves (TLRs) with the percentage of total serum VA as REs to evaluate hypervitaminosis with the use of US adult autopsy samples. Secondary objectives evaluated serum retinol sensitivity, TLRs among lobes, and hepatic α-retinol concentrations, an α-carotene cleavage product. Design Matched serum and liver samples were procured from cadavers (n = 27; mean ± SD age: 70.7 ± 14.9 y; range: 49-101 y). TLRs and α-REs were quantified by ultra-performance liquid chromatography. Pearson correlations showed liver and serum associations. Sensitivity and specificity were calculated for >5%, 7.5%, and 10% total serum VA as REs to predict TLRs and for serum retinol <0.7 and 1 μmol/L to predict deficiency. Results Serum RE concentrations were correlated with TLRs (r = 0.497, P < 0.001). Nine subjects (33%) had hypervitaminosis A (≥1.0 μmol VA/g liver), 2 of whom had >7.5% total serum VA as REs; histologic indicators corroborated toxicity at 3 μmol/g liver. No subject had >10% total serum VA as REs. Serum retinol sensitivity to determine deficiency (TLRs <0.1 μmol VA/g) was 83% at 0.7 and 1 μmol/L. Hepatic α-retinol was positively correlated with age (P = 0.047), but removing an outlier nullified significance. Conclusions This study evaluated serum REs as a biomarker of VA status against TLRs (gold standard), and abnormal histology suggested that 7.5% total serum VA as REs is diagnostic for toxicity at the individual level in adults. The long-term impact of VA supplements and fortificants on VA status is currently unknown. Considering the high prevalence of hypervitaminotic TLRs in this cohort, and given that many countries are adding preformed VA to processed products, population biomarkers diagnosing hypervitaminosis before toxicity are urgently needed. This trial was registered at clinicaltrials.govas NCT03305042.
Collapse
Affiliation(s)
- Kiersten Olsen
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin–Madison, Madison, WI
| | - Devika J Suri
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin–Madison, Madison, WI
| | - Christopher Davis
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin–Madison, Madison, WI
| | - Jesse Sheftel
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin–Madison, Madison, WI
| | - Kohei Nishimoto
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI,Present address for KN and YT: Department of Otolaryngology, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Yusuke Yamaoka
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI,Present address for YY: Kyoto University Faculty of Medicine, Kyoto, Japan
| | - Yutaka Toya
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI,Present address for KN and YT: Department of Otolaryngology, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Nathan V Welham
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin–Madison, Madison, WI,Address correspondence to SAT (e-mail: )
| |
Collapse
|
8
|
Navarro-Valverde C, Caballero-Villarraso J, Mata-Granados JM, Casado-Díaz A, Sosa-Henríquez M, Malouf-Sierra J, Nogués-Solán X, Rodríguez-Mañas L, Cortés-Gil X, Delgadillo-Duarte J, Quesada-Gómez JM. High Serum Retinol as a Relevant Contributor to Low Bone Mineral Density in Postmenopausal Osteoporotic Women. Calcif Tissue Int 2018; 102:651-656. [PMID: 29294148 DOI: 10.1007/s00223-017-0379-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
There is controversial information about the impact of vitamin A on bone. Some epidemiological studies show that excessive intake of vitamin A, or an excess of serum vitamin A, has related with adverse impact on bone mass; however, other studies did not find these links, and some authors have proposed that this vitamin might promote a better bone health. The present work aims to contribute to clarify the real role of vitamin A in bone tissue. For this purpose, a cross-sectional study of 154 osteoporotic non-treated postmenopausal women (> 65 years old) was carried out. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. We assessed concentrations of serum retinol, osteocalcin, parathyroid hormone, alkaline phosphatase, calcium, and phosphorus. We also studied demographic and anthropometric parameters. Spearman's correlations between retinol levels and other variables found negative correlations with BMD in both lumbar spine (R = - 0.162, P < 0.01) and femoral neck (R = - 0.182, P < 0.01), as well as alkaline phosphatase (R = - 0.110; P < 0.05) and phosphorus (R = - 0.110; P < 0.05). A positive correlation between retinol and fertile window was observed (R = 0.158; P < 0.01). After multivariable adjustment, we still found a negative correlation between serum retinol and BMD, both at the lumbar spine (R = - 0.210; P < 0.01) and at the femoral neck (R = - 0.324, P < 0.001). It is concluded that elevated serum-retinol levels are associated with an increased risk of low bone mass and thus with osteoporotic fractures. Therefore, osteoporosis-risk assessment should include quantification of serum metabolite of vitamin A.
Collapse
Affiliation(s)
| | - Javier Caballero-Villarraso
- IMIBIC (Instituto Maimónides de Investigación Biomédica de Córdoba)/Hospital Universitario Reina Sofía/ Universidad de Córdoba & RETICEF, CIBERFES (ISCIII), Córdoba, Spain.
| | - José M Mata-Granados
- IMIBIC (Instituto Maimónides de Investigación Biomédica de Córdoba)/Hospital Universitario Reina Sofía/ Universidad de Córdoba & RETICEF, CIBERFES (ISCIII), Córdoba, Spain
| | - Antonio Casado-Díaz
- IMIBIC (Instituto Maimónides de Investigación Biomédica de Córdoba)/Hospital Universitario Reina Sofía/ Universidad de Córdoba & RETICEF, CIBERFES (ISCIII), Córdoba, Spain
| | | | - Jorge Malouf-Sierra
- Servicio de Medicina Interna, Hospital de la Santa Creu i Sant Pau & RETICEF (ISCIII), Barcelona, Spain
| | - Xavier Nogués-Solán
- Servicio de Medicina Interna (Hospital del Mar Medical Research Institute), Universitat Autònoma de Barcelona & RETICEF, CIBERFES (ISCIII), Barcelona, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación para la Investigación Biomédica, Servicio de Geriatría, Hospital Universitario de Getafe & RETICEF, CIBERFES (ISCIII), Madrid, Spain
| | | | - Joaquín Delgadillo-Duarte
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Manuel Quesada-Gómez
- IMIBIC (Instituto Maimónides de Investigación Biomédica de Córdoba)/Hospital Universitario Reina Sofía/ Universidad de Córdoba & RETICEF, CIBERFES (ISCIII), Córdoba, Spain
| |
Collapse
|
9
|
Tanumihardjo SA, Russell RM, Stephensen CB, Gannon BM, Craft NE, Haskell MJ, Lietz G, Schulze K, Raiten DJ. Biomarkers of Nutrition for Development (BOND)-Vitamin A Review. J Nutr 2016; 146:1816S-48S. [PMID: 27511929 PMCID: PMC4997277 DOI: 10.3945/jn.115.229708] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/01/2016] [Accepted: 06/29/2016] [Indexed: 12/15/2022] Open
Abstract
The Biomarkers of Nutrition for Development (BOND) project is designed to provide evidence-informed advice to anyone with an interest in the role of nutrition in health. The BOND program provides information with regard to selection, use, and interpretation of biomarkers of nutrient exposure, status, function, and effect, which will be especially useful for readers who want to assess nutrient status. To accomplish this objective, expert panels are recruited to evaluate the literature and to draft comprehensive reports on the current state of the art with regard to specific nutrient biology and available biomarkers for assessing nutritional status at the individual and population levels. Phase I of the BOND project includes the evaluation of biomarkers for 6 nutrients: iodine, folate, zinc, iron, vitamin A, and vitamin B-12. This review of vitamin A is the current article in this series. Although the vitamin was discovered >100 y ago, vitamin A status assessment is not trivial. Serum retinol concentrations are under homeostatic control due in part to vitamin A's use in the body for growth and cellular differentiation and because of its toxic properties at high concentrations. Furthermore, serum retinol concentrations are depressed during infection and inflammation because retinol-binding protein (RBP) is a negative acute-phase reactant, which makes status assessment challenging. Thus, this review describes the clinical and functional indicators related to eye health and biochemical biomarkers of vitamin A status (i.e., serum retinol, RBP, breast-milk retinol, dose-response tests, isotope dilution methodology, and serum retinyl esters). These biomarkers are then related to liver vitamin A concentrations, which are usually considered the gold standard for vitamin A status. With regard to biomarkers, future research questions and gaps in our current understanding as well as limitations of the methods are described.
Collapse
Affiliation(s)
- Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | | | | | - Bryan M Gannon
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | | | | | - Georg Lietz
- Newcastle University, Newcastle, United Kingdom
| | - Kerry Schulze
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD; and
| | - Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| |
Collapse
|
10
|
Holvik K, Ahmed LA, Forsmo S, Gjesdal CG, Grimnes G, Samuelsen SO, Schei B, Blomhoff R, Tell GS, Meyer HE. No increase in risk of hip fracture at high serum retinol concentrations in community-dwelling older Norwegians: the Norwegian Epidemiologic Osteoporosis Studies. Am J Clin Nutr 2015; 102:1289-96. [PMID: 26377161 DOI: 10.3945/ajcn.115.110528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Norway has the highest hip fracture rates worldwide and a relatively high vitamin A intake. Increased fracture risk at high intakes and serum concentrations of retinol (s-retinol) have been observed in epidemiologic studies. OBJECTIVE We aimed to study the association between s-retinol and hip fracture and whether high s-retinol may counteract a preventive effect of vitamin D. DESIGN We conducted the largest prospective analysis of serum retinol and hip fracture to date in 21,774 men and women aged 65-79 y (mean age: 72 y) who attended 4 community-based health studies during 1994-2001. Incident hip fractures occurring up to 10.7 y after baseline were retrieved from electronic hospital discharge registers. Retinol determined by high-pressure liquid chromatography with ultraviolet detection in stored serum was available in 1154 incident hip fracture cases with valid body mass index (BMI) data and in a subcohort defined as a sex-stratified random sample (n = 1418). Cox proportional hazards regression weighted according to the stratified case-cohort design was performed. RESULTS There was a modest increased risk of hip fracture in the lowest compared with the middle quintile of s-retinol (HR: 1.41; 95% CI: 1.09, 1.82) adjusted for sex and study center. The association was attenuated after adjustment for BMI and serum concentrations of α-tocopherol (HR: 1.16; 95% CI: 0.88, 1.51). We found no increased risk in the upper compared with the middle quintile. No significant interaction between serum concentrations of 25-hydroxyvitamin D and s-retinol on hip fracture was observed (P = 0.68). CONCLUSIONS We found no evidence of an adverse effect of high serum retinol on hip fracture or any interaction between retinol and 25-hydroxyvitamin D. If anything, there tended to be an increased risk at low retinol concentrations, which was attenuated after control for confounders. We propose that cod liver oil, a commonly used food supplement in Norway, should not be discouraged as a natural source of vitamin D for fracture prevention.
Collapse
Affiliation(s)
- Kristin Holvik
- Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway; Department of Global Public Health and Primary Care and
| | - Luai A Ahmed
- Department of Health and Care Sciences, Faculty of Health Sciences, and Institute of Public Health, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Siri Forsmo
- Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway
| | - Clara G Gjesdal
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Guri Grimnes
- Tromsø Endocrine Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Sven Ove Samuelsen
- Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway; Department of Mathematics
| | - Berit Schei
- Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway; Department of Obstetrics and Gynecology, St. Olav's Hospital, Trondheim, Norway
| | - Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, and
| | - Grethe S Tell
- Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway; Department of Global Public Health and Primary Care and
| | - Haakon E Meyer
- Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway; Institute of Health and Society, University of Oslo, Oslo, Norway; and
| |
Collapse
|
11
|
Mondloch S, Gannon BM, Davis CR, Chileshe J, Kaliwile C, Masi C, Rios-Avila L, Gregory JF, Tanumihardjo SA. High provitamin A carotenoid serum concentrations, elevated retinyl esters, and saturated retinol-binding protein in Zambian preschool children are consistent with the presence of high liver vitamin A stores. Am J Clin Nutr 2015; 102:497-504. [PMID: 26178727 PMCID: PMC6546228 DOI: 10.3945/ajcn.115.112383] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/10/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Biomarkers of micronutrient status are needed to best define deficiencies and excesses of essential nutrients. OBJECTIVE We evaluated several supporting biomarkers of vitamin A status in Zambian children to determine whether any of the biomarkers were consistent with high liver retinol stores determined by using retinol isotope dilution (RID). DESIGN A randomized, placebo-controlled, biofortified maize efficacy trial was conducted in 140 rural Zambian children from 4 villages. A series of biomarkers were investigated to better define the vitamin A status of these children. In addition to the assessment of total-body retinol stores (TBSs) by using RID, tests included analyses of serum carotenoids, retinyl esters, and pyridoxal-5'-phosphate (PLP) by using high-pressure liquid chromatography, retinol-binding protein by using ELISA, and alanine aminotransferase (ALT) activity by using a colorimetric assay. RESULTS Children (n = 133) were analyzed quantitatively for TBSs by using RID. TBSs, retinyl esters, some carotenoids, and PLP differed by village site. Serum carotenoids were elevated above most nonintervened reference values for children. α-Carotene, β-carotene, and lutein values were >95th percentile from children in the US NHANES III, and 13% of children had hypercarotenemia (defined as total carotenoid concentration >3.7 μmol/L). Although only 2% of children had serum retinyl esters >10% of total retinol plus retinyl esters, 16% of children had >5% as esters, which was consistent with high liver retinol stores. Ratios of serum retinol to retinol-binding protein did not deviate from 1.0, which indicated full saturation. ALT activity was low, which was likely due to underlying vitamin B-6 deficiency, which was confirmed by very low serum PLP concentrations. CONCLUSIONS The finding of hypervitaminosis A in Zambian children was supported by high circulating concentrations of carotenoids and mildly elevated serum retinyl esters. ALT-activity assays may be compromised with co-existing vitamin B-6 deficiency. Nutrition education to improve intakes of whole grains and animal-source foods may enhance vitamin B-6 status in Zambians.
Collapse
Affiliation(s)
- Stephanie Mondloch
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Bryan M Gannon
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Christopher R Davis
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | | | - Chisela Kaliwile
- National Food and Nutrition Commission of Zambia, Lusaka, Zambia; and
| | - Cassim Masi
- National Food and Nutrition Commission of Zambia, Lusaka, Zambia; and
| | | | | | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI;
| |
Collapse
|
12
|
Vitamin A intake, serum vitamin D and bone mineral density: analysis of the Korea National Health and Nutrition Examination Survey (KNHANES, 2008-2011). Nutrients 2015; 7:1716-27. [PMID: 25763530 PMCID: PMC4377877 DOI: 10.3390/nu7031716] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 01/01/2023] Open
Abstract
The association of high vitamin A intake and low bone mineral density (BMD) is still controversial. To determine the association of dietary vitamin A intake and serum 25-hydroxyvitamin D (25(OH)D) concentration with BMD, a total of 6481 subjects (2907 men and 3574 women) aged ≥50 years from the Korean National Health and Nutrition Examination Survey (2008–2011) were divided into groups according to dietary vitamin A intake (tertiles) and serum 25(OH)D (<50, 50–75, >75 nmol/L), and evaluated for BMD after adjusting for relevant variables. Mean dietary vitamin A intakes were 737 and 600 μg RE (Retinol Equivalents) in men and women, respectively. Total hip and femoral neck BMD in men and lumbar spine BMD in women were both positively correlated with dietary vitamin A intake in subjects with serum 25(OH)D >75 nmol/L. Among men with serum 25(OH)D <50 nmol/L, both the top (mean 1353 μg RE) and bottom (mean 218 μg RE) tertiles of dietary vitamin A intake had lower BMD than the middle group (mean 577 μg RE). In this population, BMD was the highest among men and women with serum 25(OH)D = 50–75 nmol/L and that there were no differences in BMD by vitamin A intake in these vitamin D adequate groups. This cross-sectional study indicates that vitamin A intake does not affect bone mineral density as long as the serum 25(OH)D concentration is maintained in the moderate level of 50–75 nmol/L.
Collapse
|
13
|
Henning P, Conaway HH, Lerner UH. Retinoid receptors in bone and their role in bone remodeling. Front Endocrinol (Lausanne) 2015; 6:31. [PMID: 25814978 PMCID: PMC4356160 DOI: 10.3389/fendo.2015.00031] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/22/2015] [Indexed: 11/23/2022] Open
Abstract
Vitamin A (retinol) is a necessary and important constituent of the body which is provided by food intake of retinyl esters and carotenoids. Vitamin A is known best for being important for vision, but in addition to the eye, vitamin A is necessary in numerous other organs in the body, including the skeleton. Vitamin A is converted to an active compound, all-trans-retinoic acid (ATRA), which is responsible for most of its biological actions. ATRA binds to intracellular nuclear receptors called retinoic acid receptors (RARα, RARβ, RARγ). RARs and closely related retinoid X receptors (RXRα, RXRβ, RXRγ) form heterodimers which bind to DNA and function as ligand-activated transcription factors. It has been known for many years that hypervitaminosis A promotes skeleton fragility by increasing osteoclast formation and decreasing cortical bone mass. Some epidemiological studies have suggested that increased intake of vitamin A and increased serum levels of retinoids may decrease bone mineral density and increase fracture rate, but the literature on this is not conclusive. The current review summarizes how vitamin A is taken up by the intestine, metabolized, stored in the liver, and processed to ATRA. ATRA's effects on formation and activity of osteoclasts and osteoblasts are outlined, and a summary of clinical data pertaining to vitamin A and bone is presented.
Collapse
Affiliation(s)
- Petra Henning
- Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - H. Herschel Conaway
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ulf H. Lerner
- Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
- *Correspondence: Ulf H. Lerner, Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy, University of Gothenburg, Vita Straket 11, 413 45 Gothenburg, Sweden e-mail:
| |
Collapse
|
14
|
Abstract
Vitamin A (retinol) is ingested as either retinyl esters or carotenoids and metabolized to active compounds such as 11-cis-retinal, which is important for vision, and all-trans-retinoic acid, which is the primary mediator of biological actions of vitamin A. All-trans-retinoic acid binds to retinoic acid receptors (RARs), which heterodimerize with retinoid X receptors. RAR-retinoid X receptor heterodimers function as transcription factors, binding RAR-responsive elements in promoters of different genes. Numerous cellular functions, including bone cell functions, are mediated by vitamin A; however, it has long been recognized that increased levels of vitamin A can have deleterious effects on bone, resulting in increased skeletal fragility. Bone mass is dependent on the balance between bone resorption and bone formation. A decrease in bone mass may be caused by either an excess of resorption or decreased bone formation. Early studies indicated that the primary skeletal effect of vitamin A was to increase bone resorption, but later studies have shown that vitamin A can not only stimulate the formation of bone-resorbing osteoclasts but also inhibit their formation. Effects of vitamin A on bone formation have not been studied in as great a detail and are not as well characterized as effects on bone resorption. Several epidemiological studies have shown an association between vitamin A, decreased bone mass, and osteoporotic fractures, but the data are not conclusive because other studies have found no associations, and some studies have suggested that vitamin A primarily promotes skeletal health. In this presentation, we have summarized how vitamin A is absorbed and metabolized and how it functions intracellularly. Vitamin A deficiency and excess are introduced, and detailed descriptions of clinical and preclinical studies of the effects of vitamin A on the skeleton are presented.
Collapse
Affiliation(s)
- H Herschel Conaway
- Department of Molecular Periodontology, University of Umeå, SE-901 87 Umeå, Sweden.
| | | | | |
Collapse
|
15
|
Mata-Granados JM, Cuenca-Acevedo JR, Luque de Castro MD, Holick MF, Quesada-Gómez JM. Vitamin D insufficiency together with high serum levels of vitamin A increases the risk for osteoporosis in postmenopausal women. Arch Osteoporos 2013; 8:124. [PMID: 23417776 DOI: 10.1007/s11657-013-0124-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 01/07/2013] [Indexed: 02/03/2023]
Abstract
UNLABELLED Postmenopausal women who were vitamin D deficient and had high serum levels of retinol had an eight times higher risk of having osteoporosis. A high retinol level together with vitamin D deficiency/insufficiency is an additional risk factor for osteoporosis. PURPOSE The aim of this study was to evaluate the association between vitamin D deficiency/insufficiency and excess of vitamin A intake as an osteoporosis risk factor in healthy postmenopausal women DESIGN The design is a cross-sectional study of 232 healthy postmenopausal women. METHODS Bone mass was evaluated by dual energy X-ray absorptiometry. Serum calcium, albumin phosphorus, creatinine, total high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol, and triglycerides analyzed by standard methods and retinol and 25-hydroxyvitamin D [25(OH)D] measured by an online solid-phase extraction coupled with high-pressure liquid chromatography-ultraviolet detection. RESULTS Prevalence of vitamin D deficiency [25(OH)D < 20 ng/mL] was 70.1 %; 14.3 % had a 25(OH)D < 10 ng/mL, and 23.6 % had insufficiency [25(OH)D 21-29 ng/mL]. Prevalence of high serum levels of retinol (>80 μg/dL) was 36.4 %. Among subjects with 25(OH)D <20 ng/mL (n = 152), 60.4 % (n = 92) had serum levels of retinol > 80 μg/dL. Bone density measurements revealed that the risk of osteoporosis was ~8 times higher in women with the highest retinol levels, as compared with women with the lowest retinol levels. In women with 25(OH)D < 20 ng/mL, the risk for osteoporosis increased substantially in women who had the highest blood levels of retinol compared to the women with lowest retinol levels. CONCLUSIONS Higher retinol levels together with vitamin D deficiency could be a significant additional risk factor for osteoporosis, underscoring the need for improved physician and public education regarding optimization of vitamin D status in postmenopausal women and developing policies to avoid high serum levels of vitamin A.
Collapse
|
16
|
Engström A, Håkansson H, Skerfving S, Bjellerup P, Lidfeldt J, Lundh T, Samsioe G, Vahter M, Akesson A. Retinol may counteract the negative effect of cadmium on bone. J Nutr 2011; 141:2198-203. [PMID: 22031662 DOI: 10.3945/jn.111.146944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cadmium and high vitamin A intake are both proposed risk factors for low bone mineral density (BMD), but potential interactions have not been studied. Within the Women's Health in the Lund Area, a population-based study in southern Sweden, we measured retinol in serum among 606 women aged 54-64 y. Data on BMD were measured by DXA at the distal forearm. Parathyroid hormone (PTH), bone alkaline phosphatase (bALP), and osteocalcin in serum and deoxypyridinoline (DPD) and cadmium in urine were available. Associations were evaluated using multivariable-adjusted linear regression analysis. Serum retinol concentrations (median, 1.9; range, 0.97-4.3 μmol/L) were inversely associated with the bone formation markers bALP and osteocalcin (P ≤ 0.04) and with PTH (P = 0.07) and tended to be positively associated with BMD (P = 0.08) but not with the bone resorption marker DPD, indicating different effects on bone compared to urinary cadmium (median, 0.66; range, 0.12-3.6 nmol/mmol creatinine). Women with serum retinol less than the median and cadmium greater than the median had lower BMD than those with retinol greater than the median and cadmium less than the median (P = 0.016 among all women and P = 0.010 among never-smokers). Our findings suggest that adequate vitamin A status may counteract the adverse association between cadmium and BMD.
Collapse
Affiliation(s)
- Annette Engström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wray AE, Okita N, Ross AC. Cortical and trabecular bone, bone mineral density, and resistance to ex vivo fracture are not altered in response to life-long vitamin A supplementation in aging rats. J Nutr 2011; 141:660-6. [PMID: 21310867 PMCID: PMC3056581 DOI: 10.3945/jn.110.132126] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High vitamin A (VA) intakes have been correlated with increased risk of bone fracture. Over 50% of the U.S. adult population reports use of dietary supplements, which can result in VA intakes > 200% of the RDA. In this study, 2 experiments were designed to determine the effect of dietary VA on cortical and trabecular bone properties and resistance to ex vivo fracture. In Expt. 1, we investigated whether orally administered VA accumulates in bone. Seven-week-old rats were treated daily with VA (6 mg/d for 14 d). Total retinol increased in both the tibia and femur (P < 0.01). In Expt. 2, we conducted a longitudinal study in which rats were fed 1 of 3 levels of dietary VA (marginal, adequate, and supplemented, equal to 0.35, 4, and 50 μg retinol/g diet, respectively) from weaning until the ages of 2-3 mo (young), 8-10 mo (middle-age), and 18-20 mo (old). Tibial trabecular and cortical bone structure, bone mineral density, and resistance to fracture were measured using micro-computed tomography and material testing system analysis, respectively. The VA-marginal diet affected measures of cortical bone dimension, suggesting bone remodeling was altered. VA supplementation increased medullary area and decreased cortical thickness in young rats (P < 0.05), but these changes were not present during aging. VA supplementation did not affect resistance to fracture or bone mineral content in old rats. From these results, we conclude that VA-marginal status affects trabecular bone more than cortical bone, and VA supplementation at a moderate level over the lifetime is unlikely to increase the risk of age-related bone fracture in rats.
Collapse
Affiliation(s)
- Amanda E. Wray
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Nori Okita
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Behr GA, Schnorr CE, Moreira JCF. Increased blood oxidative stress in experimental menopause rat model: the effects of vitamin A low-dose supplementation upon antioxidant status in bilateral ovariectomized rats. Fundam Clin Pharmacol 2011; 26:235-49. [PMID: 21226757 DOI: 10.1111/j.1472-8206.2010.00923.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Menopause has been reported to be associated with increased oxidative stress and metabolic disorders among women worldwide. Disarrangements in the redox state similar to those observed in women during the decline of ovarian hormonal activity can be obtained experimentally through rat bilateral ovariectomy. The search for alternative treatments to improve life quality in postmenopausal woman is really important. The aim of this study was to evaluate biochemical and oxidative stress parameters that distinguish sham-operated female rats from Wistar rats bilaterally ovariectomized (OVX). Additionally, we have also investigated the effects of retinol palmitate (a vitamin A supplement) low-dose supplementation (500 or 1500 IU/kg/day, during 30 days) upon blood and plasma antioxidant status in OVX rats. Ovariectomy caused an increase in body weight gain, pronounced uterine atrophy, decreased plasma triglycerides and increased total cholesterol levels, and reduced acid uric content. Moreover, we found increased blood peroxidase activities (catalase and glutathione peroxidase), decreased plasma non-enzymatic antioxidant defenses total reactive antioxidant potential and total antioxidant reactivity, decreased protein and non-protein SH levels, accompanied by increased protein oxidative damage (carbonyl). In addition, vitamin A low-dose supplementation was capable to ameliorate antioxidant status in OVX rats, restoring both enzymatic and non-enzymatic defenses, promoting reduction in plasma SH content, and decreasing protein oxidative damage levels. This is the first work in the literature showing that vitamin A at low dose may be beneficial in the treatment of menopause symptoms. Further studies will be made to better understand the effects of vitamin A supplementation in menopause rat model.
Collapse
Affiliation(s)
- Guilherme Antônio Behr
- Center of Oxidative Stress Research, Professor Tuiskon Dick Department of Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil.
| | | | | |
Collapse
|
19
|
Mills JP, Furr HC, Tanumihardjo SA. Retinol to retinol-binding protein (RBP) is low in obese adults due to elevated apo-RBP. Exp Biol Med (Maywood) 2008; 233:1255-61. [PMID: 18641048 DOI: 10.3181/0803-rm-94] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Elevated serum retinol-binding protein (RBP) concentration has been associated with obesity and insulin resistance, but accompanying retinol values have not been reported. Assessment of retinol is required to discriminate between apo-RBP, which may act as an adipokine, and holo-RBP, which transports vitamin A. The relations between serum RBP, retinol, retinyl esters, BMI, and measures of insulin resistance were determined in obese adults. Fasting blood (> or =8 h) was collected from obese men and women (n = 76) and blood chemistries were obtained. Retinol and retinyl esters were quantified by HPLC and RBP by ELISA. RBP and retinol were determined in age and sex-matched, nonobese individuals (n = 41) for comparison. Serum apo-RBP was two-fold higher in obese (0.90 +/- 0.62 microM) than nonobese subjects (0.44 +/- 0.56 microM) (P < 0.001). The retinol to RBP ratio (retinol:RBP) was significantly lower in obese (0.73 +/- 0.13) than nonobese subjects (0.90 +/- 0.22) (P < 0.001) and RBP was strongly associated with retinol in both groups (r = 0.71 and 0.90, respectively, P < 0.0001). In obese subjects, RBP was associated with insulin (r = 0.26, P < 0.05), homeostatic model assessment of insulin resistance (r = 0.29, P < 0.05), and quantitative insulin sensitivity check index (r = -0.27, P < 0.05). RBP was associated with BMI only when obese and nonobese subjects were combined (r = 0.25, P < 0.01). Elevated serum RBP, derived in part from apo-RBP, was more strongly associated with retinol than with BMI or measures of insulin resistance in obese adults. Investigations into the role of RBP in obesity and insulin resistance should include retinol to facilitate the measurement of apo-RBP and retinol:RBP. When evaluating the therapeutic potential of lowering serum RBP, consideration of the consequences of vitamin A metabolism is paramount.
Collapse
|
20
|
Yang Z, Zhang Z, Penniston KL, Binkley N, Tanumihardjo SA. Serum carotenoid concentrations in postmenopausal women from the United States with and without osteoporosis. INT J VITAM NUTR RES 2008; 78:105-11. [PMID: 19003732 PMCID: PMC2692339 DOI: 10.1024/0300-9831.78.3.105] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antioxidant defenses may be compromised in osteoporotic women. Little is known about fruit and vegetable or carotenoid consumption among postmenopausal women. The primary carotenoids in human serum are alpha- and beta-carotene, lycopene, beta-cryptoxanthin, lutein, and zeaxanthin. This study investigated the interrelationships among serum carotenoid concentrations, fruit and vegetable intake, and osteoporosis in postmenopausal women (n = 59, 62.7 +/- 8.8 y). Bone density was assessed by dual energy x-ray absorptiometry and osteoporosis diagnosis was based upon T-scores. Serum samples (n = 53) and three-day diet records (n = 49) were analyzed. Logistic regression analyzed differences between carotenoids after adjusting for serum retinol; supplement usage; milk, yogurt, fruit, and vegetable intake; and body mass index (BMI). Pearson statistics correlated carotenoids with specific fruit or vegetable intake. Serum lycopene concentrations were lower in the osteoporosis group than controls (p = 0.03). Beta-cryptoxanthin intake was higher in the osteoporosis group (p = 0.0046). Total fruit and vegetable intakes were correlated with serum lycopene and beta-cryptoxanthin (p = 0.03, 0.006, respectively). Serum alpha-carotene concentration was associated with carrot intake, and zeaxanthin and beta-cryptoxanthin with lettuce intake. Carotenoids that may have beneficial skeletal effects are lower in women with osteoporosis. Research is needed to identify potential protective mechanisms or utilization of carotenoids during osteoporosis.
Collapse
Affiliation(s)
- Zhifang Yang
- University of Wisconsin (UW)-Madison, Dept. Nutritional Sciences, Madison, WI 53706 USA
| | - Zhumin Zhang
- University of Wisconsin (UW)-Madison, Dept. Nutritional Sciences, Madison, WI 53706 USA
| | - Kristina L. Penniston
- University of Wisconsin (UW)-Madison, Dept. Nutritional Sciences, Madison, WI 53706 USA
| | - Neil Binkley
- UW-Medical School Institute on Aging Medicine, Madison, WI 53706 USA
| | - Sherry A. Tanumihardjo
- University of Wisconsin-Madison, Department of Nutritional Sciences, 1415 Linden Drive, Madison, WI 53706 USA, Phone: 608-265-0792., Fax: 608-262-5860.,
| |
Collapse
|
21
|
Ribaya-Mercado JD, Blumberg JB. Vitamin A: is it a risk factor for osteoporosis and bone fracture? Nutr Rev 2007; 65:425-38. [PMID: 17972437 DOI: 10.1111/j.1753-4887.2007.tb00268.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Results from observational studies of the association between vitamin A intake or serum concentration and bone mineral density or fracture are mixed. The inconsistencies may be due, in part, to difficulties in obtaining an accurate assessment of vitamin A intake or status. Serum retinol is a poor measure of vitamin A status because it is subject to homeostatic control. Stable-isotope-dilution methodology gives a validated assessment of the total-body and liver vitamin A stores and is recommended in future studies on vitamin A status and osteoporosis. The potential for exacerbating an already serious public health problem with intakes of vitamin A currently considered safe indicates further research into this matter is warranted.
Collapse
Affiliation(s)
- Judy D Ribaya-Mercado
- J Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA.
| | | |
Collapse
|