1
|
Yu J, Li L, Kraithong S, Zou L, Zhang X, Huang R. Comprehensive review on human Milk oligosaccharides: Biosynthesis, structure, intestinal health benefits, immune regulation, neuromodulation mechanisms, and applications. Food Res Int 2025; 209:116328. [PMID: 40253162 DOI: 10.1016/j.foodres.2025.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/15/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
This review provides a comprehensive analysis of the biosynthetic pathways of various oligosaccharides in Escherichia coli, structural characteristics, and bioactive mechanisms of human milk oligosaccharides (HMOs), with a particular emphasis on their roles in gut health, immune modulation, and neurodevelopment. HMOs primarily function as prebiotics, facilitating the growth of beneficial bacteria such as Bifidobacterium to maintain microbial homeostasis, with a discussion on the synergistic role of carbohydrate-binding modules (CBMs). In immune modulation, HMOs interact with lectins on immune and epithelial cells, influencing immune responses via pathways such as Toll-like receptors (TLRs). Additionally, HMOs have been linked to enhanced cognitive, motor, and language development in infants, influencing genes such as GABRB2, SLC1A7, GLRA4, and CHRM3. The review also examines commercially available HMO-containing products and highlights future research directions and potential applications in nutrition and healthcare.
Collapse
Affiliation(s)
- Jieting Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Le Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Supaluck Kraithong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Lingshan Zou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Häsler R, Mikš MH, Bajic D, Soyyilmaz B, Bendik I, van Buul VJ, Steinert RE, Rehman A. Human milk oligosaccharides modulating inflammation in infants, adults and older individuals - from concepts to applications. Adv Nutr 2025:100433. [PMID: 40287068 DOI: 10.1016/j.advnut.2025.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
The increasing global prevalence of inflammatory diseases such as ulcerative colitis and irritable bowel syndrome, represents a challenging task for healthcare systems. Several approaches to disease management target the intestinal microbiome, which plays a key role in health and disease. One promising approach is modulating the microbiome using human milk oligosaccharides (HMOs). Originating from human milk, HMOs are indigestible carbohydrates which act in a host-optimized prebiotic fashion by providing an energy source for health-promoting intestinal bacteria and exhibiting systemic effects. Commercial products supporting infant health and development have been the primary fields of HMO application. Advancements in the large-scale production of HMOs through bioengineering and precision fermentation have led to evaluating their potential for managing inflammatory diseases. Several in vitro studies and observations on model systems have been clinically validated in infants, resulting in a large body of evidence supporting the safety and efficacy of HMOs in inflammatory disorders. While novel approaches seek to explore interventions in adults, the primary goal for the future is to provide cost-efficient, safe, and reliable healthcare compounds across all age groups.
Collapse
Affiliation(s)
- Robert Häsler
- Department of Dermatology and Allergology, University Kiel, Rosalind-Franklin-Straße 9, 24105 Kiel, Germany
| | - Marta Hanna Mikš
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Plac Cieszynski 1, 10-726, Olsztyn, Poland; dsm-firmenich, Kogle Allé 4, Hørsholm, DK-2970, Denmark
| | - Danica Bajic
- dsm-firmenich, Wurmisweg 576, CH-4303 Kaiseraugst, Switzerland
| | | | - Igor Bendik
- dsm-firmenich, Wurmisweg 576, CH-4303 Kaiseraugst, Switzerland
| | | | | | - Ateequr Rehman
- dsm-firmenich, Wurmisweg 576, CH-4303 Kaiseraugst, Switzerland
| |
Collapse
|
3
|
Sheng M, Liu Y, Zhu Y, Wang R, Zhang W, Mu W. Efficient Biosynthesis of Sialyllacto- N-tetraose a by a Metabolically Engineered Escherichia coli BL21(DE3) Strain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6820-6827. [PMID: 40036487 DOI: 10.1021/acs.jafc.4c12332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Recently, the construction of metabolically engineered strains for the microbial synthesis of human milk oligosaccharides (HMOs) has attracted increasing attention. However, fewer efforts were made in the in vivo biosynthesis of complex HMOs, especially sialylated complex HMOs. In this study, we engineered Escherichia coli BL21(DE3) to efficiently produce sialyllacto-N-tetraose a (LST-a) efficiently. Three sequential glycosylation steps were introduced to construct the LST-a pathway, catalyzed by β1,3-N-acetylglucosaminylation, β1,3-galactosylation, and α2,3-sialylation. Pathway genes for cytidine 5'-monophospho (CMP)-N-acetylneuraminic acid (Neu5Ac) were introduced to support the sialylation donor supply. Production of LST-a was improved by deleting competitive genes of CMP-Neu5Ac synthesis, screening a more efficient α2,3-sialyltransferase, and combinatorial optimization of pathway gene expression. LST-a was finally produced with the titer of 1.235 and 4.85 g/L by shake-flask and fed-batch cultivation, respectively, demonstrating the feasibility of efficient microbial production of complex sialylated HMOs.
Collapse
Affiliation(s)
- Mian Sheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ruiyan Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
Chen Q, Wang X, Zhang P, Li B. Recent trends in human milk oligosaccharides: New synthesis technology, regulatory effects, and mechanisms of non-intestinal functions. Compr Rev Food Sci Food Saf 2025; 24:e70147. [PMID: 40091651 DOI: 10.1111/1541-4337.70147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
Recently, the non-intestinal functions of human milk oligosaccharides (HMOs) have been widely documented, including their roles in promoting brain development and growth, as well as ameliorating anxiety, allergies, and obesity. Understanding their mechanisms of action is becoming increasingly critical. Furthermore, these effects are frequently associated with the type and structure of HMOs. As an innovative technology, "plant factory" is expected to complement traditional synthesis technology. This study reviews the novel "plant factory" synthesis techniques. Particular emphasis is placed on the processes, advantages, and limitations of "plant factory" synthesis of HMOs. This technology can express genes related to HMO synthesis instantaneously in plant leaves, thereby enabling the rapid and cost-effective generation of HMOs. However, "plant factory" technology remains underdeveloped, and challenges related to low yield and unsustainable production must be addressed. Furthermore, we present an overview of the most recent clinical and preclinical studies on the non-intestinal functions of HMOs. This review emphasizes the mechanisms of action underlying the non-intestinal functions of HMOs. HMOs primarily exert non-intestinal functions through the cleavage of beneficial monomer components, metabolism to produce advantageous metabolites, and regulation of immune responses.
Collapse
Affiliation(s)
- Qingxue Chen
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiangxin Wang
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Peng Zhang
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Wejryd E, Freiholtz Jern E, Marchini G, Åden U, Landberg E, Abrahamsson T. Human Milk Oligosaccharides in Breast Milk at Two Weeks of Age in Relation to Neurodevelopment in 2-Year-Old Children Born Extremely Preterm: An Explorative Trial. Nutrients 2025; 17:832. [PMID: 40077703 PMCID: PMC11902041 DOI: 10.3390/nu17050832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Preventing neurodevelopmental impairment after extremely preterm birth remains challenging. While breast milk feeding is linked to better neurodevelopment, the underlying mechanisms are unclear. This study explored the association between individual human milk oligosaccharides (HMO) and neurodevelopment at two years of age in extremely preterm children. Methods: Milk samples from mothers of 76 extremely preterm infants collected at two weeks after birth were analyzed for 15 dominant HMOs. Register data from examination and Bayley-III neurodevelopmental assessment at two years' corrected age was retrieved and categorized into levels of impairment. An exploratory analysis examined associations between the HMO composition and neurodevelopment. Results: Bioinformatic volcano plots revealed associations between specific HMOs and outcomes: 3FL with less neurodevelopmental impairment, LSTb with higher Bayley-III cognitive scores, and LSTa with worse neurodevelopmental impairment outcomes. Spearman correlations indicated LSTa was linked to more neurodevelopmental impairment (p = 0.018), lower language (p = 0.009), and motor (p = 0.02) scores, whereas 3FL correlated with less neurodevelopmental impairment (p = 0.02). Dichotomized analysis showed LSTa was associated with more neurodevelopmental impairment and lower language scores (p < 0.05), 3FL with milder neurodevelopmental impairment (p < 0.05), and LSTb with better cognitive (p < 0.01) and language (p < 0.05) scores. No significant associations were found for HMO diversity, total sialic acid content, or secretor/Lewis patterns. Conclusions: In this explorative hypothesis-generating study, certain HMOs appeared to be associated with both potentially beneficial and adverse neurodevelopmental outcomes in extremely preterm infants. However, these findings should be interpreted with caution, as they do not constitute evidence but rather serve as a preliminary foundation for future hypothesis-driven research.
Collapse
Affiliation(s)
- Erik Wejryd
- Division of Children’s and Women’s Health, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden; (E.W.); (E.F.J.)
- Department of Pediatrics, Vrinnevi Hospital, 601 82 Norrköping, Sweden
| | - Erik Freiholtz Jern
- Division of Children’s and Women’s Health, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden; (E.W.); (E.F.J.)
| | - Giovanna Marchini
- Department of Neonatology, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Ulrika Åden
- Division of Children’s and Women’s Health, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden; (E.W.); (E.F.J.)
- Department of Neonatology, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Women’s and Children’s Health, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Eva Landberg
- Department of Clinical Chemistry and Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden;
| | - Thomas Abrahamsson
- Division of Children’s and Women’s Health, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden; (E.W.); (E.F.J.)
- Crown Princess Victoria Children’s Hospital, Linköping University Hospital, 581 85 Linköping, Sweden
| |
Collapse
|
6
|
Urashima T, Ajisaka K, Ujihara T, Nakazaki E. Recent advances in the science of human milk oligosaccharides. BBA ADVANCES 2025; 7:100136. [PMID: 39991261 PMCID: PMC11847054 DOI: 10.1016/j.bbadva.2024.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 02/25/2025] Open
Abstract
Human colostrum and mature milk contain oligosaccharides (Os), designated as human milk oligosaccharides (HMOs). Approximately 200 varieties of HMOs have been characterized. Although HMOs are not utilized as an energy source by infants, they have important protective functions, including pathogenic bacteria and viral infection inhibitors and immune modulators, among other functions, and HMOs stimulate brain-nerve development. The Os concentration is average 11 g/L in human milk but >100 mg/L in mature bovine milk, which is used to manufacture infant formula, suggesting that human-identical milk oligosaccharides (HiMOs) should be incorporated into milk substitutes. Some infant formulas incorporating 2'-fucosyllactose and lacto-N-neotetraose are now commercially available, and intervention trials have been concluded. We review basic HMO information, including their chemical structures and concentrations, attempts to synthesize HMOs at small and plant scale, studies that clarified HMO biological functions, and interventions with milk substitutes incorporating HiMOs in formula-fed infants.
Collapse
Affiliation(s)
- Tadasu Urashima
- Department of Food and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi2sen 11banchi, Inada cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Katsumi Ajisaka
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-Ku, Niigata City, Niigata, 956-8603, Japan
| | - Tetsuro Ujihara
- Kyowa Hakko Bio Co., Ltd. 4-10-2, Nakano-ku, Nakano, Tokyo, 164-0001, Japan
| | - Eri Nakazaki
- Kyowa Hakko Bio Co., Ltd. 4-10-2, Nakano-ku, Nakano, Tokyo, 164-0001, Japan
| |
Collapse
|
7
|
Duman H, Bechelany M, Karav S. Human Milk Oligosaccharides: Decoding Their Structural Variability, Health Benefits, and the Evolution of Infant Nutrition. Nutrients 2024; 17:118. [PMID: 39796552 PMCID: PMC11723173 DOI: 10.3390/nu17010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Human milk oligosaccharides (HMOs), the third most abundant solid component in human milk, vary significantly among women due to factors such as secretor status, race, geography, season, maternal nutrition and weight, gestational age, and delivery method. In recent studies, HMOs have been shown to have a variety of functional roles in the development of infants. Because HMOs are not digested by infants, they act as metabolic substrates for certain bacteria, helping to establish the infant's gut microbiota. By encouraging the growth of advantageous intestinal bacteria, these sugars function as prebiotics and produce short-chain fatty acids (SCFAs), which are essential for gut health. HMOs can also specifically reduce harmful microbes and viruses binding to the gut epithelium, preventing illness. HMO addition to infant formula is safe and promotes healthy development, infection prevention, and microbiota. Current infant formulas frequently contain oligosaccharides (OSs) that differ structurally from those found in human milk, making it unlikely that they would reproduce the unique effects of HMOs. However, there is a growing trend in producing OSs resembling HMOs, but limited data make it unclear whether HMOs offer additional therapeutic benefits compared to non-human OSs. Better knowledge of how the human mammary gland synthesizes HMOs could direct the development of technologies that yield a broad variety of complex HMOs with OS compositions that closely mimic human milk. This review explores HMOs' complex nature and vital role in infant health, examining maternal variation in HMO composition and its contributing factors. It highlights recent technological advances enabling large-scale studies on HMO composition and its effects on infant health. Furthermore, HMOs' multifunctional roles in biological processes such as infection prevention, brain development, and gut microbiota and immune response regulation are investigated. The structural distinctions between HMOs and other mammalian OSs in infant formulas are discussed, with a focus on the trend toward producing more precise replicas of HMOs found in human milk.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| |
Collapse
|
8
|
Sato K, Nakamura Y, Fujiyama K, Ohneda K, Nobukuni T, Ogishima S, Mizuno S, Koshiba S, Kuriyama S, Jinno S. Absolute quantification of eight human milk oligosaccharides in breast milk to evaluate their concentration profiles and associations with infants' neurodevelopmental outcomes. J Food Sci 2024; 89:10152-10170. [PMID: 39656795 DOI: 10.1111/1750-3841.17597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/03/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Human milk oligosaccharides (HMOs) have been positively associated with child neurodevelopment in some cohort studies. However, there is a lack of consistency in the association between HMOs and benefits to infants' brains. Moreover, the quantification methods for HMOs have not yet been standardized. In this study, we developed a quantification method for evaluating eight HMOs (2'-fucosyllactose [2'-FL], 3'-fucosyllactose [3'-FL], 3'-sialyllactose [3'-SL], 6'-sialyllactose [6'-SL], lactosialyltetrasaccharide a [LSTa], lactosialyltetrasaccharide b [LSTb], lactosialyltetrasaccharide c [LSTc], and disialyllacto-N-tetraose [DSLNT]) in breast milk. After validating the method, we applied it to 1-month breast milk samples (n = 150) from the Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study to assess HMO profiles in breast milk and their possible association with changes in head circumference z-score (ΔHCZ) and neurodevelopmental scores of children (as measured by the Ages and Stages Questionnaire, Third Edition). The validation demonstrated that the method had relative standard deviation ≤ 12.7% of precision and 79.5-110.9% of accuracy. Using this method, eight HMO levels (2'-FL, 0-4.74 mg/mL; 3'-FL, 0.02-1.52 mg/mL; 3'-SL, 0.07-0.32 mg/mL; 6'-SL, 0.01-0.70 mg/mL; LSTa, 0.002-0.043 mg/mL; LSTb, 0.02-0.31 mg/mL; LSTc, 0.001-0.47 mg/mL; and DSLNT, 0.09-0.71 mg/mL [min-max, all participants]) and the ratio of low secretors (16.0%) in the Japanese cohort were obtained. The obtained HMO levels in breast milk were subjected to multivariate analysis to screen for HMOs showing a positive association with ΔHCZ and neurodevelopmental scores. The results proposed that ΔHCZ was positively associated with LSTb and 2'-FL levels, whereas neurodevelopmental scores were positively associated with 2'-FL levels (among all participants) and 3'-SL and DSLNT levels (among secretor participants). This study showed that the developed method provides HMO profiles in Japanese breast milk, as well as additional information on the associations between specific HMOs and neurodevelopment, reinforcing the sum of evidence for the role of HMOs in the brain.
Collapse
Affiliation(s)
- Keigo Sato
- Food Microbiology and Function Research Laboratory, Meiji Co., Ltd., Hachioji, Japan
- Wellness Science Labs, Meiji Holdings Co., Ltd., Hachioji, Japan
- International Centre for Biotechnology, Osaka University, Suita, Japan
| | - Yoshitaka Nakamura
- Food Microbiology and Function Research Laboratory, Meiji Co., Ltd., Hachioji, Japan
| | - Kazuhito Fujiyama
- International Centre for Biotechnology, Osaka University, Suita, Japan
| | - Kinuko Ohneda
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takahiro Nobukuni
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Soichi Ogishima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Satoshi Mizuno
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Shinichi Kuriyama
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
- International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Shinji Jinno
- Food Microbiology and Function Research Laboratory, Meiji Co., Ltd., Hachioji, Japan
- Wellness Science Labs, Meiji Holdings Co., Ltd., Hachioji, Japan
| |
Collapse
|
9
|
Wichmann A. Biological effects of combinations of structurally diverse human milk oligosaccharides. Front Pediatr 2024; 12:1439612. [PMID: 39564380 PMCID: PMC11573541 DOI: 10.3389/fped.2024.1439612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are a diverse group of structures and an abundant bioactive component of breastmilk that contribute to infant health and development. Preclinical studies indicate roles for HMOs in shaping the infant gut microbiota, inhibiting pathogens, modulating the immune system, and influencing cognitive development. In the past decade, several industrially produced HMOs have become available to fortify infant formula. Clinical intervention trials with manufactured HMOs have begun to corroborate some of the physiological effects reported in preclinical studies, especially modulation of the gut microbiota in the direction of breastfed infants. As more HMOs become commercially available and as HMOs have some shared mechanisms of action, there is a need to better understand the unique and differential effects of individual HMOs and the benefits of combining multiple HMOs. This review focuses on the differential effects of different HMO structural classes and individual structures and presents a scientific rationale for why combining multiple structurally diverse HMOs is expected to exert greater biological effects.
Collapse
Affiliation(s)
- Anita Wichmann
- Global Regulatory Affairs HMOs, Early Life & Medical Nutrition, DSM-Firmenich, Hørsholm, Denmark
| |
Collapse
|
10
|
Falsaperla R, Sortino V, Gambilonghi F, Vitaliti G, Striano P. Human Milk Oligosaccharides and Their Pivotal Role in Gut-Brain Axis Modulation and Neurologic Development: A Narrative Review to Decipher the Multifaceted Interplay. Nutrients 2024; 16:3009. [PMID: 39275324 PMCID: PMC11397282 DOI: 10.3390/nu16173009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs), which are unique bioactive components in human milk, are increasingly recognized for their multifaceted roles in infant health. A deeper understanding of the nexus between HMOs and the gut-brain axis can revolutionize neonatal nutrition and neurodevelopmental strategies. METHODS We performed a narrative review using PubMed, Embase, and Google Scholar to source relevant articles. The focus was on studies detailing the influence of HMOs on the gut and brain systems, especially in neonates. Articles were subsequently synthesized based on their exploration into the effects and mechanisms of HMOs on these interconnected systems. RESULTS HMOs significantly influence the neonatal gut-brain axis. Specific concentrations of HMO, measured 1 and 6 months after birth, would seem to agree with this hypothesis. HMOs are shown to influence gut microbiota composition and enhance neurotransmitter production, which are crucial for brain development. For instance, 2'-fucosyllactose has been demonstrated to support cognitive development by fostering beneficial gut bacteria that produce essential short-chain fatty acids. CONCLUSIONS HMOs serve as crucial modulators of the neonatal gut-brain axis, underscoring their importance in infant nutrition and neurodevelopment. Their dual role in shaping the infant gut while influencing brain function presents them as potential game-changers in neonatal health strategies.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatal Accompaniment Unit, Azienda Ospedaliero-Universitaria Policlinico “Rodolico-San Marco”, San Marco Hospital, University of Catania, 95123 Catania, Italy
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico “Rodolico-San Marco”, San Marco Hospital, University of Catania, 95123 Catania, Italy; (V.S.); (G.V.)
- Department of Medical Science-Pediatrics, University of Ferrara, 44124 Ferrara, Italy
| | - Vincenzo Sortino
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico “Rodolico-San Marco”, San Marco Hospital, University of Catania, 95123 Catania, Italy; (V.S.); (G.V.)
| | - Francesco Gambilonghi
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Giovanna Vitaliti
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico “Rodolico-San Marco”, San Marco Hospital, University of Catania, 95123 Catania, Italy; (V.S.); (G.V.)
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy
| |
Collapse
|
11
|
Ottino-González J, Adise S, Machle CJ, Mokhtari P, Holzhausen EA, Furst A, Yonemitsu C, Alderete TL, Bode L, Peterson BS, Goran MI. Consumption of different combinations of human milk oligosaccharides in the first 6 mo of infancy is positively associated with early cognition at 2 y of age in a longitudinal cohort of Latino children. Am J Clin Nutr 2024; 120:593-601. [PMID: 39059708 PMCID: PMC11393400 DOI: 10.1016/j.ajcnut.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Lactation has been widely associated with optimal neurocognitive development, but the underlying mechanism remains unknown. Human milk oligosaccharides (HMOs) are complex sugars that support brain development, but previous studies examining their associations with cognition have yielded inconsistent findings. OBJECTIVES This study aimed to provide a broader understanding of how HMOs jointly influence cognition. METHODS We used data from an ongoing longitudinal cohort of Latino mother-infant dyads. Human milk samples from 1 mo (n = 157) and 6 mo (n = 107) postpartum were assessed for the 19 most abundant HMOs. Cognitive performance was assessed at 2 y using the Bayley Scale of Infant and Toddler Development. A partial least squares model identified HMO combinations predictive of cognitive scores. RESULTS At 1 mo, the combination of higher concentrations of lacto-N-neotetraose (LNnT), lacto-N-tetraose (LNT), lacto-N-fucopentaose (LNFP)-III, 6'-sialyllactose, and 2'-fucosyllactose (FL) with lower concentrations of sialyllacto-N-tetraose (LST) b, LNFP-II, fucodisialyllacto-N-hexaose, and 3-FL significantly predicted higher cognitive scores (β: 0.61; 95% confidence interval [CI]: 0.30, 0.92), explaining an additional 8% of the variance over a model with only nuisance covariates (11%). Additional analyses revealed that the combination of higher LNFP-III and lower LSTb alone explained 5% more of the variation in cognitive scores (β: 0.66; 95% CI: 0.24, 1.09). At 6 mo (n = 107), higher LNnT, LNT, and LNFP-III and lower 3FL and LSTb concentrations explained an extra 6% of the variance in cognitive scores (β: 0.43; 95% CI: 0.12, 0.75). CONCLUSIONS This study highlights specific HMO combinations in early life influencing cognitive performance at 2 y.
Collapse
Affiliation(s)
- Jonatan Ottino-González
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Shana Adise
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Christopher J Machle
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Psychology, University of Oregon, Eugene, OR, United States
| | - Pari Mokhtari
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Elizabeth A Holzhausen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Annalee Furst
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, CA, United States
| | - Chloe Yonemitsu
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, CA, United States
| | - Tanya L Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, CA, United States
| | - Bradley S Peterson
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Psychiatry and Behavioral Sciences, Keck School of Medicine at the University of Southern California, Los Angeles, CA, United States
| | - Michael I Goran
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
12
|
Gormley A, Garavito-Duarte Y, Kim SW. The Role of Milk Oligosaccharides in Enhancing Intestinal Microbiota, Intestinal Integrity, and Immune Function in Pigs: A Comparative Review. BIOLOGY 2024; 13:663. [PMID: 39336091 PMCID: PMC11428639 DOI: 10.3390/biology13090663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
The objective of this review was to identify the characteristics and functional roles of milk coproducts from human, bovine, and porcine sources and their impacts on the intestinal microbiota and intestinal immunity of suckling and nursery pigs. Modern pig production weans piglets at 3 to 4 weeks of age, which is earlier than pigs would naturally be weaned outside of artificial rearing. As a result, the immature intestines of suckling and nursery pigs face many challenges associated with intestinal dysbiosis, which can be caused by weaning stress or the colonization of the intestines by enteric pathogens. Milk oligosaccharides are found in sow milk and function as a prebiotic in the intestines of pigs as they cannot be degraded by mammalian enzymes and are thus utilized by intestinal microbial populations. The consumption of milk oligosaccharides during suckling and through the nursery phase can provide benefits to young pigs by encouraging the proliferation of beneficial microbial populations, preventing pathogen adhesion to enterocytes, and through directly modulating immune responses. Therefore, this review aims to summarize the specific functional components of milk oligosaccharides from human, bovine, and porcine sources, and identify potential strategies to utilize milk oligosaccharides to benefit young pigs through the suckling and nursery periods.
Collapse
Affiliation(s)
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (A.G.); (Y.G.-D.)
| |
Collapse
|
13
|
Welp A, Laser E, Seeger K, Haiß A, Hanke K, Faust K, Stichtenoth G, Fortmann-Grote C, Pagel J, Rupp J, Göpel W, Gembicki M, Scharf JL, Rody A, Herting E, Härtel C, Fortmann I. Effects of multistrain Bifidobacteria and Lactobacillus probiotics on HMO compositions after supplementation to pregnant women at threatening preterm delivery: design of the randomized clinical PROMO trial. Mol Cell Pediatr 2024; 11:6. [PMID: 39085734 PMCID: PMC11291828 DOI: 10.1186/s40348-024-00179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND As an indigestible component of human breast milk, Human Milk Oligosaccharides (HMOs) play an important role as a substrate for the establishing microbiome of the newborn. They have further been shown to have beneficial effects on the immune system, lung and brain development. For preterm infants HMO composition of human breast milk may be of particular relevance since the establishment of a healthy microbiome is challenged by multiple disruptive factors associated with preterm birth, such as cesarean section, hospital environment and perinatal antibiotic exposure. In a previous study it has been proposed that maternal probiotic supplementation during late stages of pregnancy may change the HMO composition in human milk. However, there is currently no study on pregnancies which are threatened to preterm birth. Furthermore, HMO composition has not been investigated in association with clinically relevant outcomes of vulnerable infants including inflammation-mediated diseases such as sepsis, necrotizing enterocolitis (NEC) or chronic lung disease. MAIN BODY A randomized controlled intervention study (PROMO = probiotics for human milk oligosaccharides) has been designed to analyze changes in HMO composition of human breast milk after supplementation of probiotics (Lactobacillus acidophilus, Bifidobacterium lactis and Bifidobacterium infantis) in pregnancies at risk for preterm birth. The primary endpoint is HMO composition of 3-fucosyllactose and 3'-sialyllactose in expressed breast milk. We estimate that probiotic intervention will increase these two HMO levels by 50% according to the standardized mean difference between treatment and control groups. As secondary outcomes we will measure preterm infants' clinical outcomes (preterm birth, sepsis, weight gain growth, gastrointestinal complications) and effects on microbiome composition in the rectovaginal tract of mothers at delivery and in the gut of term and preterm infants by sequencing at high genomic resolution. Therefore, we will longitudinally collect bio samples in the first 4 weeks after birth as well as in follow-up investigations at 3 months, one year, and five years of age. CONCLUSIONS We estimate that probiotic intervention will increase these two HMO levels by 50% according to the standardized mean difference between treatment and control groups. The PROMO study will gain insight into the microbiome-HMO interaction at the fetomaternal interface and its consequences for duration of pregnancy and outcome of infants.
Collapse
Affiliation(s)
- A Welp
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany.
| | - E Laser
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - K Seeger
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - A Haiß
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - K Hanke
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - K Faust
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - G Stichtenoth
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - C Fortmann-Grote
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - J Pagel
- Department of Pediatrics, University Hospital of Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Lübeck, Germany
| | - J Rupp
- German Center for Infection Research, Lübeck, Germany
- Institute for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - W Göpel
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - M Gembicki
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany
| | - J L Scharf
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany
| | - A Rody
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany
| | - E Herting
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - C Härtel
- Department of Pediatrics, University of Würzburg, Würzburg, Germany
| | - I Fortmann
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
- German Center for Infection Research, Lübeck, Germany
| |
Collapse
|
14
|
Perez KM, Strobel KM, Hendrixson DT, Brandon O, Hair AB, Workneh R, Abayneh M, Nangia S, Hoban R, Kolnik S, Rent S, Salas A, Ojha S, Valentine GC. Nutrition and the gut-brain axis in neonatal brain injury and development. Semin Perinatol 2024; 48:151927. [PMID: 38897828 DOI: 10.1016/j.semperi.2024.151927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Early nutritional exposures, including during embryogenesis and the immediate postnatal period, affect offspring outcomes in both the short- and long-term. Alterations of these modifiable exposures shape the developing gut microbiome, intestinal development, and even neurodevelopmental outcomes. A gut-brain axis exists, and it is intricately connected to early life feeding and nutritional exposures. Here, we seek to discuss the (1) origins of the gut-brain access and relationship with neurodevelopment, (2) components of human milk (HM) beyond nutrition and their role in the developing newborn, and (3) clinical application of nutritional practices, including fluid management and feeding on the development of the gut-brain axis, and long-term neurodevelopmental outcomes. We conclude with a discussion on future directions and unanswered questions that are critical to provide further understanding and insight into how clinicians and healthcare providers can optimize early nutritional practices to ensure children not only survive, but thrive, free of neurodevelopmental impairment.
Collapse
Affiliation(s)
- Krystle M Perez
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Katie M Strobel
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - D Taylor Hendrixson
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Olivia Brandon
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Amy B Hair
- Division of Neonatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Redeat Workneh
- St Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Mahlet Abayneh
- St Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Sushma Nangia
- Department of Neonatology, Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| | - Rebecca Hoban
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Sarah Kolnik
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Sharla Rent
- Division of Neonatology, Duke University, Durham, NC, United States of America
| | - Ariel Salas
- Department of Pediatrics, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Shalini Ojha
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Gregory C Valentine
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America; Department of Oral Health Sciences, University of Washington, Seattle, WA, United States of America; Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, United States of America.
| |
Collapse
|
15
|
Mulinge MM, Abisi HK, Kabahweza HM, Okutoyi L, Wamalwa DC, Nduati RW. The Role of Maternal Secretor Status and Human Milk Oligosaccharides on Early Childhood Development: A Systematic Review and Meta-Analysis. Breastfeed Med 2024; 19:409-424. [PMID: 38577928 DOI: 10.1089/bfm.2023.0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Background: Breast milk is the gold standard of infant nutrition, delivering nutrients and bioactive molecules as needed to support optimal infant growth and cognitive development. Increasing evidence links human milk oligosaccharides (HMOs) to these early childhood development milestones. Aims: To summarize and synthesize the evidence relating to HMOs and infant brain development, physical growth, and cognitive development. In addition, HMO concentrations in secretor and nonsecretor mothers were compared via a meta-analysis. Study Design: A systematic review and meta-analysis were carried out in accordance with the PRISMA statement. This review used three databases (PubMed, Scopus, and Web of Science) and was limited to English-language articles published between 2000 and June 30, 2023. Results: The initial searches yielded 245 articles, 27 of which were included in the systematic review and 12 in the meta-analysis. The meta-analysis revealed a substantial between-study heterogeneity, I2 = 97.3%. The pooled effect was 0.21 (95% CI: -0.41 to 0.83; p = 0.484), indicating that secretors had higher HMO concentrations, although this difference was not statistically significant. At one month of age, 2'FL, 3FL, and 3'SL play an important role in brain maturation and thus play a critical role in cognitive development. Secretors produce higher concentrations of 2'FL and 3'SL, explaining the benefits to infants of secretor mothers. Growth velocity was correlated to fucosylated and sialylated HMO concentrations, with lower concentrations linked to stunting. Conclusions: According to evidence from the systematically reviewed articles, HMOs are essential for a child's early development, but the extent to which they have an impact depends on maternal secretor status.
Collapse
Affiliation(s)
- Martin M Mulinge
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Hellen K Abisi
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Hellen M Kabahweza
- Department of Pediatric Hematology & Oncology, Joint Clinical Research Centre, Kampala, Uganda
| | - Lydia Okutoyi
- Department of Health Care Quality, Kenyatta National Hospital, Nairobi, Kenya
| | - Dalton C Wamalwa
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Ruth W Nduati
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
16
|
Zhang W, Zhu Y, Wang H, Huang Z, Liu Y, Xu W, Mu W. Highly efficient biosynthesis of 3'-sialyllactose in engineered Escherichia coli. Int J Biol Macromol 2024; 269:132081. [PMID: 38705330 DOI: 10.1016/j.ijbiomac.2024.132081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
3'-Sialyllactose (3'-SL), one of the abundant and important sialylated human milk oligosaccharides, is an emerging food ingredient used in infant formula milk. We previously developed an efficient route for 3'-SL biosynthesis in metabolically engineered Escherichia coli BL21(DE3). Here, several promising α2,3-sialyltransferases were re-evaluated from the byproduct synthesis perspective. The α2,3-sialyltransferase from Neisseria meningitidis MC58 (NST) with great potential and the least byproducts was selected for subsequent molecular modification. Computer-assisted mutation sites combined with a semi-rational modification were designed and performed. A combination of two mutation sites (P120H/N113D) of NST was finally confirmed as the best one, which significantly improved 3'-SL biosynthesis, with extracellular titers of 24.5 g/L at 5-L fed-batch cultivations. When NST-P120H/N113D was additionally integrated into the genome of host EZAK (E. coli BL21(DE3)ΔlacZΔnanAΔnanT), the final strain generated 32.1 g/L of extracellular 3'-SL in a 5-L fed-batch fermentation. Overall, we underscored the existence of by-products and improved 3'-SL production by engineering N. meningitidis α2,3-sialyltransferase.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
17
|
Golden RK, Sutkus LT, Donovan SM, Dilger RN. Dietary supplementation of 3'-sialyllactose or 6'-sialyllactose elicits minimal influence on cognitive and brain development in growing pigs. Front Behav Neurosci 2024; 17:1337897. [PMID: 38268796 PMCID: PMC10806065 DOI: 10.3389/fnbeh.2023.1337897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Sialylated human milk oligosaccharides (HMO), such as 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL), are abundant throughout lactation and at much higher concentrations than are present in bovine milk or infant formulas. Previous studies have suggested that sialylated HMO may have neurocognitive benefits in early life. Recent research has focused on infant formula supplementation with key nutrients and bioactives to narrow the developmental gap between formula-fed and breastfed infants. Herein, we investigated the impact of supplemental 3'-SL or 6'-SL on cognitive and brain development at two time-points [postnatal days (PND) 33 and 61]. Two-day-old piglets (N = 75) were randomly assigned to commercial milk replacer ad libitum without or with 3'-SL or 6'-SL (added in a powdered form at a rate of 0.2673% on an as-is weight basis). Cognitive development was assessed via novel object recognition and results were not significant at both time-points (p > 0.05). Magnetic resonance imaging was used to assess structural brain development. Results varied between scan type, diet, and time-point. A main effect of diet was observed for absolute volume of white matter and 9 other regions of interest (ROI), as well as for relative volume of the pons on PND 30 (p < 0.05). Similar effects were observed on PND 58. Diffusion tensor imaging indicated minimal differences on PND 30 (p > 0.05). However, several dietary differences across the diffusion outcomes were observed on PND 58 (p < 0.05) indicating dietary impacts on brain microstructure. Minimal dietary differences were observed from myelin water fraction imaging at either time-point. Overall, sialyllactose supplementation had no effects on learning and memory as assessed by novel object recognition, but may influence temporally-dependent aspects of brain development.
Collapse
Affiliation(s)
- Rebecca K. Golden
- Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Loretta T. Sutkus
- Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Ryan N. Dilger
- Neuroscience Program, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
18
|
Zhu L, Li H, Luo T, Deng Z, Li J, Zheng L, Zhang B. Human Milk Oligosaccharides: A Critical Review on Structure, Preparation, Their Potential as a Food Bioactive Component, and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15908-15925. [PMID: 37851533 DOI: 10.1021/acs.jafc.3c04412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Human milk is the gold standard for infant feeding. Human milk oligosaccharides (HMOs) are a unique group of oligosaccharides in human milk. Great interest in HMOs has grown in recent years due to their positive effects on various aspects of infant health. HMOs provide various physiologic functions, including establishing a balanced infant's gut microbiota, strengthening the gastrointestinal barrier, preventing infections, and potential support to the immune system. However, the clinical application of HMOs is challenging due to their specificity to human milk and the difficulties and high costs associated with their isolation and synthesis. Here, the differences in oligosaccharides in human and other mammalian milk are compared, and the synthetic strategies to access HMOs are summarized. Additionally, the potential use and molecular mechanisms of HMOs as a new food bioactive component in different diseases, such as infection, necrotizing enterocolitis, diabetes, and allergy, are critically reviewed. Finally, the current challenges and prospects of HMOs in basic research and application are discussed.
Collapse
Affiliation(s)
- Liuying Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
19
|
Rajhans P, Mainardi F, Austin S, Sprenger N, Deoni S, Hauser J, Schneider N. The Role of Human Milk Oligosaccharides in Myelination, Socio-Emotional and Language Development: Observational Data from Breast-Fed Infants in the United States of America. Nutrients 2023; 15:4624. [PMID: 37960278 PMCID: PMC10649431 DOI: 10.3390/nu15214624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Infancy is a critical period for neurodevelopment, which includes myelination, synaptogenesis, synaptic pruning, and the development of motor, social-emotional, and cognitive functions. Human milk provides essential nutrients to the infant's developing brain, especially during the first postnatal months. Human milk oligosaccharides (HMOs) are a major component of human milk, and there is growing evidence of the association of individual HMOs with cognitive development in early life. However, to our knowledge, no study has explained these associations with a mechanism of action. Here, we investigated possible mediating associations between HMOs in human milk, brain myelination (measured via myelin water fraction), and measures of motor, language (collected via the Bayley Scales of Infant and Toddler Development (Bayley-III)), and socioemotional development (collected via the Ages and Stages Questionnaire: Social-Emotional Version (ASQ-SE)) in healthy term-born breast-fed infants. The results revealed an association between 6'Sialyllactose and social skills that was mediated by myelination. Furthermore, associations of fucosylated HMOs with language outcomes were observed that were not mediated by myelination. These observations indicate the roles of specific HMOs in neurodevelopment and associated functional outcomes, such as social-emotional function and language development.
Collapse
Affiliation(s)
- Purva Rajhans
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (J.H.); (N.S.)
| | - Fabio Mainardi
- Department of Data Sciences & Precision Nutrition, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland;
| | - Sean Austin
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland;
| | - Norbert Sprenger
- Gastro-Intestinal Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland;
| | - Sean Deoni
- Advanced Baby Imaging Lab, Rhode Island Hospital, Providence, RI 02912, USA;
- Department of Radiology, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
- Spinn Neuroscience, Seattle, WA 98275, USA
| | - Jonas Hauser
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (J.H.); (N.S.)
| | - Nora Schneider
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (J.H.); (N.S.)
| |
Collapse
|
20
|
Arellano Spadaro J, Hishida Y, Matsunaga Y, van Es‐Remers M, Korthout H, Kim HK, Poppelaars E, Keizer H, Iliopoulou E, van Duijn B, Wildwater M, van Rijnberk L. 3'sialyllactose and 6'sialyllactose enhance performance in endurance-type exercise through metabolic adaptation. Food Sci Nutr 2023; 11:6199-6212. [PMID: 37823127 PMCID: PMC10563706 DOI: 10.1002/fsn3.3559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 10/13/2023] Open
Abstract
Human milk oligosaccharides (HMOs) belong to a group of multifunctional glycans that are abundantly present in human breast milk. While health effects of neutral oligosaccharides have been investigated extensively, a lot remains unknown regarding health effects of acidic oligosaccharides, such as the two sialyllactoses (SLs), 3'sialyllactose (3'SL), and 6'sialyllactose (6'SL). We utilized Caenorhabditis elegans (C. elegans) to investigate the effects of SLs on exercise performance. Using swimming as an endurance-type exercise, we found that SLs decrease exhaustion, signifying an increase in endurance that is strongest for 6'SL. Through an unbiased metabolomics approach, we identified changes in energy metabolism that correlated with endurance performance. Further investigation suggested that these metabolic changes were related to adaptations of muscle mitochondria that facilitated a shift from beta oxidation to glycogenolysis during exercise. We found that the effect of SLs on endurance performance required AMPK- (aak-1/aak-2) and adenosine receptor (ador-1) signaling. We propose a model where SLs alter the metabolic status in the gut, causing a signal from the intestine to the nervous system toward muscle cells, where metabolic adaptation increases exercise performance. Together, our results underline the potential of SLs in exercise-associated health and contribute to our understanding of the molecular processes involved in nutritionally-induced health benefits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bert van Duijn
- Fytagoras B.V.LeidenThe Netherlands
- Institute Biology LeidenLeiden UniversityLeidenThe Netherlands
| | | | | |
Collapse
|
21
|
Nagel E, Elgersma KM, Gallagher TT, Johnson KE, Demerath E, Gale CA. Importance of human milk for infants in the clinical setting: Updates and mechanistic links. Nutr Clin Pract 2023; 38 Suppl 2:S39-S55. [PMID: 37721461 PMCID: PMC10513735 DOI: 10.1002/ncp.11037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 06/10/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION Human milk (HM) is the optimal source of nutrition for infants and has been implicated in multiple aspects of infant health. Although much of the existing literature has focused on the individual components that drive its nutrition content, examining HM as a biological system is needed for meaningful advancement of the field. Investigation of the nonnutritive bioactive components of HM and the maternal, infant, and environmental factors which affect these bioactives is important to better understand the importance of HM provision to infants. This information may inform care of clinical populations or infants who are critically ill, hospitalized, or who have chronic diseases and may benefit most from receiving HM. METHODS In this narrative review, we reviewed literature examining maternal and infant influences on HM composition with a focus on studies published in the last 10 years that were applicable to clinical populations. RESULTS We found multiple studies examining HM components implicated in infant immune and gut health and neurodevelopment. Additional work is needed to understand how donor milk and formula may be used in situations of inadequate maternal HM. Furthermore, a better understanding of how maternal factors such as maternal genetics and metabolic health influence milk composition is needed. CONCLUSION In this review, we affirm the importance of HM for all infants, especially clinical populations. An understanding of how HM composition is modulated by maternal and environmental factors is important to progress the field forward with respect to mechanistic links between HM biology and infant health outcomes.
Collapse
Affiliation(s)
- Emily Nagel
- School of Public Health, University of Minnesota-Twin Cities, Minnesota, USA
| | | | | | - Kelsey E Johnson
- Department of Genetics, Cell Biology, and Development, University of Minnesota-Twin Cities, Minnesota, USA
| | - Ellen Demerath
- School of Public Health, University of Minnesota-Twin Cities, Minnesota, USA
| | - Cheryl A. Gale
- Department of Pediatrics, University of Minnesota-Twin Cities, Minnesota, USA
| |
Collapse
|
22
|
Kanellopoulos AK, Costello S, Mainardi F, Koshibu K, Deoni S, Schneider N. Dynamic Interplay between Social Brain Development and Nutrient Intake in Young Children. Nutrients 2023; 15:3754. [PMID: 37686785 PMCID: PMC10490067 DOI: 10.3390/nu15173754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Myelination of the brain structures underlying social behavior in humans is a dynamic process that parallels the emergence of social-emotional development and social skills in early life. Of the many genetic and environmental factors regulating the myelination processes, nutrition is considered as a critical and modifiable early-life factor for establishing healthy social brain networks. However, the impact of nutrition on the longitudinal development of social brain myelination remains to be fully understood. This study examined the interplay between childhood nutrient intake and social brain development across the first 5 years of life. Myelin-sensitive neuroimaging and food-intake data were analyzed in 293 children, 0.5 to 5 years of age, and explored for dynamic patterns of nutrient-social brain myelin associations. We found three data-driven age windows with specific nutrient correlation patterns, 63 individual nutrient-myelin correlations, and six nutrient combinations with a statistically significant predictive value for social brain myelination. These results provide novel insights into the impact of specific nutrient intakes on early brain development, in particular social brain regions, and suggest a critical age-sensitive opportunity to impact these brain regions for potential longer-term improvements in socio-emotional development and related executive-function and critical-thinking skills.
Collapse
Affiliation(s)
- Alexandros K. Kanellopoulos
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Sarah Costello
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Fabio Mainardi
- Data Science Group, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Kyoko Koshibu
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Sean Deoni
- Advanced Baby Imaging Lab, Rhode Island Hospital, 1 Hoppin Street, Providence, RI 20903, USA
- Department of Radiology, Warren Alpert Medical School of Brown University, 222 Richmond St., Providence, RI 02912, USA
- Spinn Neuroscience, Seattle, WA 98275, USA
| | - Nora Schneider
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| |
Collapse
|
23
|
Fan Y, McMath AL, Donovan SM. Review on the Impact of Milk Oligosaccharides on the Brain and Neurocognitive Development in Early Life. Nutrients 2023; 15:3743. [PMID: 37686775 PMCID: PMC10490528 DOI: 10.3390/nu15173743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Milk Oligosaccharides (MOS), a group of complex carbohydrates found in human and bovine milk, have emerged as potential modulators of optimal brain development for early life. This review provides a comprehensive investigation of the impact of milk oligosaccharides on brain and neurocognitive development of early life by synthesizing current literature from preclinical models and human observational studies. The literature search was conducted in the PubMed search engine, and the inclusion eligibility was evaluated by three reviewers. Overall, we identified 26 articles for analysis. While the literature supports the crucial roles of fucosylated and sialylated milk oligosaccharides in learning, memory, executive functioning, and brain structural development, limitations were identified. In preclinical models, the supplementation of only the most abundant MOS might overlook the complexity of naturally occurring MOS compositions. Similarly, accurately quantifying MOS intake in human studies is challenging due to potential confounding effects such as formula feeding. Mechanistically, MOS is thought to impact neurodevelopment through modulation of the microbiota and enhancement of neuronal signaling. However, further advancement in our understanding necessitates clinical randomized-controlled trials to elucidate the specific mechanisms and long-term implications of milk oligosaccharides exposure. Understanding the interplay between milk oligosaccharides and cognition may contribute to early nutrition strategies for optimal cognitive outcomes in children.
Collapse
Affiliation(s)
- Yuting Fan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Arden L. McMath
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| |
Collapse
|
24
|
Wijenayake S, Martz J, Lapp HE, Storm JA, Champagne FA, Kentner AC. The contributions of parental lactation on offspring development: It's not udder nonsense! Horm Behav 2023; 153:105375. [PMID: 37269591 PMCID: PMC10351876 DOI: 10.1016/j.yhbeh.2023.105375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/05/2023]
Abstract
The Developmental Origins of Health and Disease (DOHaD) hypothesis describes how maternal stress exposures experienced during critical periods of perinatal life are linked to altered developmental trajectories in offspring. Perinatal stress also induces changes in lactogenesis, milk volume, maternal care, and the nutritive and non-nutritive components of milk, affecting short and long-term developmental outcomes in offspring. For instance, selective early life stressors shape the contents of milk, including macro/micronutrients, immune components, microbiota, enzymes, hormones, milk-derived extracellular vesicles, and milk microRNAs. In this review, we highlight the contributions of parental lactation to offspring development by examining changes in the composition of breast milk in response to three well-characterized maternal stressors: nutritive stress, immune stress, and psychological stress. We discuss recent findings in human, animal, and in vitro models, their clinical relevance, study limitations, and potential therapeutic significance to improving human health and infant survival. We also discuss the benefits of enrichment methods and support tools that can be used to improve milk quality and volume as well as related developmental outcomes in offspring. Lastly, we use evidence-based primary literature to convey that even though select maternal stressors may modulate lactation biology (by influencing milk composition) depending on the severity and length of exposure, exclusive and/or prolonged milk feeding may attenuate the negative in utero effects of early life stressors and promote healthy developmental trajectories. Overall, scientific evidence supports lactation to be protective against nutritive and immune stressors, but the benefits of lactation in response to psychological stressors need further investigation.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada.
| | - Julia Martz
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Hannah E Lapp
- Deparment of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Jasmyne A Storm
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | | | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA.
| |
Collapse
|
25
|
Cho S, Samuel TM, Li T, Howell BR, Baluyot K, Hazlett HC, Elison JT, Zhu H, Hauser J, Sprenger N, Lin W. Interactions between Bifidobacterium and Bacteroides and human milk oligosaccharides and their associations with infant cognition. Front Nutr 2023; 10:1216327. [PMID: 37457984 PMCID: PMC10345227 DOI: 10.3389/fnut.2023.1216327] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
While ample research on independent associations between infant cognition and gut microbiota composition and human milk (HM) oligosaccharides (HMOs) has been reported, studies on how the interactions between gut microbiota and HMOs may yield associations with cognitive development in infancy are lacking. We aimed to determine how HMOs and species of Bacteroides and Bifidobacterium genera interact with each other and their associations with cognitive development in typically developing infants. A total of 105 mother-infant dyads were included in this study. The enrolled infants [2.9-12 months old (8.09 ± 2.48)] were at least predominantly breastfed at 4 months old. A total of 170 HM samples from the mothers and fecal samples of the children were collected longitudinally. Using the Mullen Scales of Early Learning to assess cognition and the scores as the outcomes, linear mixed effects models including both the levels of eight HMOs and relative abundance of Bacteroides and Bifidobacterium species as main associations and their interactions were employed with adjusting covariates; infant sex, delivery mode, maternal education, site, and batch effects of HMOs. Additionally, regression models stratifying infants based on the A-tetrasaccharide (A-tetra) status of the HM they received were also employed to determine if the associations depend on the A-tetra status. With Bacteroides species, we observed significant associations with motor functions, while Bif. catenulatum showed a negative association with visual reception in the detectable A-tetra group both as main effect (value of p = 0.012) and in interaction with LNFP-I (value of p = 0.007). Additionally, 3-FL showed a positive association with gross motor (p = 0.027) and visual reception (p = 0.041). Furthermore, significant associations were observed with the interaction terms mainly in the undetectable A-tetra group. Specifically, we observed negative associations for Bifidobacterium species and LNT [breve (p = 0.011) and longum (p = 0.022)], and positive associations for expressive language with 3'-SL and Bif. bifidum (p = 0.01), 6'-SL and B. fragilis (p = 0.019), and LNFP-I and Bif. kashiwanohense (p = 0.048), respectively. Our findings suggest that gut microbiota and HMOs are both independently and interactively associated with early cognitive development. In particular, the diverse interactions between HMOs and Bacteroides and Bifidobacterium species reveal different candidate pathways through which HMOs, Bifidobacterium and Bacteroides species potentially interact to impact cognitive development in infancy.
Collapse
Affiliation(s)
- Seoyoon Cho
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tinu M. Samuel
- Nestle Product Technology Center-Nutrition, Société des Produits Nestlé S.A., Vevey, Switzerland
| | - Tengfei Li
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Brittany R. Howell
- Fralin Biomedical Research Institute at VTC, Department of Human Development and Family Science, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Kristine Baluyot
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Heather C. Hazlett
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jed T. Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, United States
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jonas Hauser
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Norbert Sprenger
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Weili Lin
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
26
|
Abstract
Sialic acids (Sias), a group of over 50 structurally distinct acidic saccharides on the surface of all vertebrate cells, are neuraminic acid derivatives. They serve as glycan chain terminators in extracellular glycolipids and glycoproteins. In particular, Sias have significant implications in cell-to-cell as well as host-to-pathogen interactions and participate in various biological processes, including neurodevelopment, neurodegeneration, fertilization, and tumor migration. However, Sia is also present in some of our daily diets, particularly in conjugated form (sialoglycans), such as those in edible bird's nest, red meats, breast milk, bovine milk, and eggs. Among them, breast milk, especially colostrum, contains a high concentration of sialylated oligosaccharides. Numerous reviews have concentrated on the physiological function of Sia as a cellular component of the body and its relationship with the occurrence of diseases. However, the consumption of Sias through dietary sources exerts significant influence on human health, possibly by modulating the gut microbiota's composition and metabolism. In this review, we summarize the distribution, structure, and biological function of particular Sia-rich diets, including human milk, bovine milk, red meat, and egg.
Collapse
Affiliation(s)
- Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
27
|
Fan Y, Vinjamuri A, Tu D, Lebrilla CB, Donovan SM. Determinants of human milk oligosaccharides profiles of participants in the STRONG kids 2 cohort. Front Nutr 2023; 10:1105668. [PMID: 37057069 PMCID: PMC10086122 DOI: 10.3389/fnut.2023.1105668] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionHuman milk oligosaccharides (HMOS) are indigestible carbohydrates that support infant development by establishing a healthy microbiota, preventing infectious diseases, and promoting immune and cognitive development. Individual HMOS have distinct functions based on their chemical structures. HMO profiles can vary largely among mothers, but the research on factors other than genetic background affecting HMO composition are limited.MethodsIn the present analysis, we examined the relationships between maternal characteristics and the HMO profiles of breastfeeding mothers (n = 392) in the STRONG kids 2 with the following demographic characteristics: average age: 30.8 y, 74.5% White, and 75.5% exclusively breastfeeding. Human milk samples were collected at 6 weeks postpartum and maternal information was obtained from self-reported surveys. Information on dietary intake changes since the participants have been breastfeeding was collected. HMO profiles were analyzed by high performance liquid chromatography coupled with mass spectrometry and secretor status was determined by the presence of four secretor markers [2′-fucosyllactose (2′-FL), LNFP I, LDFT, and TFLNH]. Spearmen correlation test was utilized to determine the relationships between individual HMOS and associations with maternal factors. Between-group differences in HMO relative abundances were examined with Kruskal-Wallis test.ResultsAmong all participants, 71.9% were secretors and 28.1% were non-secretors. The relative abundances of all HMOS differed (p < 0.05) by secretor status, with the exception for 6′-SL and 3′-SL. Positive correlations were observed among HMOS with similar structures, such as the 1,2-fucosylated HMOS. The abundances of selected HMOS were associated with maternal body weight, pregnancy complications, and dietary characteristics. Based on pre-pregnancy BMI, in all mothers, relative abundance of 3′-SL was significantly higher in overweight mothers than obese mothers (p = 0.013). In milk produced by non-secretor mothers, LNPF I + III abundances were greater in overweight than normal weight mothers (p = 0.020). Several HMO abundances were found to be associated with Gestational diabetes mellitus (GDM). Variations of HMO abundances were also observed with dietary food intake. In all mothers, egg consumption was positively correlated with LNT + LNnT (R = 0.13; p = 0.012) and cheese intake was positively associated with 2′-FL (R = 0.10; p = 0.046) and S-LNnH II (R = 0.11; p = 0.026) abundances.DiscussionHMO profiles were found to be associated with maternal characteristics and intake. Future research will investigate associations between HMOS and maternal and infant outcomes.
Collapse
Affiliation(s)
- Yuting Fan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States
| | - Anita Vinjamuri
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Diane Tu
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States
- *Correspondence: Sharon M. Donovan,
| |
Collapse
|
28
|
Willemsen Y, Beijers R, Gu F, Vasquez AA, Schols HA, de Weerth C. Fucosylated Human Milk Oligosaccharides during the First 12 Postnatal Weeks Are Associated with Better Executive Functions in Toddlers. Nutrients 2023; 15:nu15061463. [PMID: 36986193 PMCID: PMC10057664 DOI: 10.3390/nu15061463] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are one of the most abundant solid components in a mother's milk. Animal studies have confirmed a link between early life exposure to HMOs and better cognitive outcomes in the offspring. Human studies on HMOs and associations with later child cognition are scarce. In this preregistered longitudinal study, we investigated whether human milk 2'-fucosyllactose, 3'-sialyllactose, 6'-sialyllactose, grouped fucosylated HMOs, and grouped sialylated HMOs, assessed during the first twelve postnatal weeks, are associated with better child executive functions at age three years. At infant age two, six, and twelve weeks, a sample of human milk was collected by mothers who were exclusively (n = 45) or partially breastfeeding (n = 18). HMO composition was analysed by use of porous graphitized carbon-ultra high-performance liquid chromatography-mass spectrometry. Executive functions were assessed at age three years with two executive function questionnaires independently filled in by mothers and their partners, and four behavioural tasks. Multiple regression analyses were performed in R. Results indicated that concentrations of 2'-fucosyllactose and grouped fucosylated HMOs were associated with better executive functions, while concentrations of grouped sialylated HMOs were associated with worse executive functions at age three years. Future studies on HMOs that sample frequently during the first months of life and experimental HMO administration studies in exclusively formula-fed infants can further reveal associations with child cognitive development and uncover potential causality and sensitive periods.
Collapse
Affiliation(s)
- Yvonne Willemsen
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN Nijmegen, The Netherlands
| | - Roseriet Beijers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN Nijmegen, The Netherlands
- Behavioural Science Institute, Radboud University, 6525 GD Nijmegen, The Netherlands
| | - Fangjie Gu
- Laboratory of Food Chemistry, Wageningen University & Research, 6708 WG Wageningen, The Netherlands
| | - Alejandro Arias Vasquez
- Donders Center for Medical Neuroscience, Department of Psychiatry and Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Henk Arie Schols
- Laboratory of Food Chemistry, Wageningen University & Research, 6708 WG Wageningen, The Netherlands
| | - Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN Nijmegen, The Netherlands
| |
Collapse
|
29
|
Berger PK, Ong ML, Bode L, Belfort MB. Human Milk Oligosaccharides and Infant Neurodevelopment: A Narrative Review. Nutrients 2023; 15:719. [PMID: 36771425 PMCID: PMC9918893 DOI: 10.3390/nu15030719] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The objective of this narrative review was to synthesize the literature on human milk oligosaccharides (HMOs) and neurodevelopmental outcomes in human milk-fed infants. We conducted a scoping review of the literature indexed in PubMed reporting observational or interventional studies on HMO exposure in relation to psychometric measures in infants. Studies were characterized based on study design and definitions of HMO exposure and neurodevelopmental outcomes. Six studies were identified; all were observational in design, and five were conducted in full-term infants. Sample sizes ranged from 35-659 infants. HMOs were defined as individual concentrations or relative abundances assessed at 1 and/or 6 months of age. Studies accounted for differences in HMO exposure based on maternal secretor status. Neurodevelopmental outcomes were assessed between 6 and 24 months of age and included four domains. Studies in full-term infants reported that total and individual fucosylated and sialylated HMOs were positively associated with cognitive, language, and motor skill domains between 18 and 24 months of age, while the single study in preterm infants reported no statistically significant findings in the full cohort. The presence of a maternal secretor did not consistently alter the associations between HMO exposure and neurodevelopmental outcomes. Emerging evidence from observational studies suggests that HMO exposure may be beneficial for neurodevelopment in infants.
Collapse
Affiliation(s)
- Paige K. Berger
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Margaret L. Ong
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lars Bode
- Department of Pediatrics, Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Human Milk Institute (HMI), University of California, La Jolla, CA 92093, USA
| | - Mandy B. Belfort
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
30
|
Zhu Y, Zhang J, Zhang W, Mu W. Recent progress on health effects and biosynthesis of two key sialylated human milk oligosaccharides, 3'-sialyllactose and 6'-sialyllactose. Biotechnol Adv 2023; 62:108058. [PMID: 36372185 DOI: 10.1016/j.biotechadv.2022.108058] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/25/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Human milk oligosaccharides (HMOs), the third major solid component in breast milk, are recognized as the first prebiotics for health benefits in infants. Sialylated HMOs are an important type of HMOs, accounting for approximately 13% of total HMOs. 3'-Sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL) are two simplest sialylated HMOs. Both SLs display promising prebiotic effects, especially in promoting the proliferation of bifidobacteria and shaping the gut microbiota. SLs exhibit several health effects, including antiadhesive antimicrobial ability, antiviral activity, prevention of necrotizing enterocolitis, immunomodulatory activity, regulation of intestinal epithelial cell response, promotion of brain development, and cognition improvement. Both SLs have been approved as "Generally Recognized as Safe" by the American Food and Drug Administration and are commercially added to infant formula. The biosynthesis of SLs using enzymatic or microbial approaches has been widely studied. The enzymatic synthesis of SLs can be realized by two types of enzymes, sialidases with trans-sialidase activity and sialyltransferases. Microbial synthesis can be achieved by the multiple recombinant bacteria in one-pot reaction, which express the enzymes involved in SL synthesis pathways separately or in combination, or by metabolically engineered strains in a fermentation process. In this article, the physiological properties of 3'-SL and 6'-SL are summarized in detail and the biosynthesis of these SLs via enzymatic and microbial synthesis is comprehensively reviewed.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiameng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
31
|
Abstract
Human milk oligosaccharides (HMOs) are the third most important solid component in human milk and act in tandem with other bioactive components. Individual HMO levels and distribution vary greatly between mothers by multiple variables, such as secretor status, race, geographic region, environmental conditions, season, maternal diet, and weight, gestational age and mode of delivery. HMOs improve the gastrointestinal barrier and also promote a bifidobacterium-rich gut microbiome, which protects against infection, strengthens the epithelial barrier, and creates immunomodulatory metabolites. HMOs fulfil a variety of physiologic functions including potential support to the immune system, brain development, and cognitive function. Supplementing infant formula with HMOs is safe and promotes a healthy development of the infant revealing benefits for microbiota composition and infection prevention. Because of limited data comparing the effect of non-human oligosaccharides to HMOs, it is not known if HMOs offer an additional clinical benefit over non-human oligosaccharides. Better knowledge of the factors influencing HMO composition and their functions will help to understand their short- and long-term benefits.
Collapse
Affiliation(s)
- Meltem Dinleyici
- Department of Social Pediatrics, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Jana Barbieur
- UZ Brussel, KidZ Health Castle, Vrije Unversiteit Brussel, Brussels, Belgium
| | - Ener Cagri Dinleyici
- Department of Pediatrics, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Yvan Vandenplas
- UZ Brussel, KidZ Health Castle, Vrije Unversiteit Brussel, Brussels, Belgium
| |
Collapse
|
32
|
Li T, Samuel TM, Zhu Z, Howell B, Cho S, Baluyot K, Hazlett H, Elison JT, Wu D, Hauser J, Sprenger N, Zhu H, Lin W. Joint analyses of human milk fatty acids, phospholipids, and choline in association with cognition and temperament traits during the first 6 months of life. Front Nutr 2022; 9:919769. [PMID: 36091236 PMCID: PMC9449418 DOI: 10.3389/fnut.2022.919769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Early dietary exposure via human milk nutrients offers a window of opportunity to support cognitive and temperament development. While several studies have focused on associations of few pre-selected human milk nutrients with cognition and temperament, it is highly plausible that human milk nutrients synergistically and jointly support cognitive and behavioral development in early life. We aimed to discern the combined associations of three major classes of human milk nutrients with cognition and temperament during the first 6 months of life when human milk is the primary source of an infant’s nutrition and explore whether there were persistent effects up to 18 months old. The Mullen Scales of Early Learning and Infant Behavior Questionnaires—Revised were used to assess cognition and temperament, respectively, of 54 exclusively/predominantly breastfed infants in the first 6 months of life, whose follow-ups were conducted at 6–9, 9–12, and 12–18 months old. Human milk samples were obtained from the mothers of the participants at less than 6 months of age and analyzed for fatty acids [total monounsaturated fatty acids, polyunsaturated fatty acid, total saturated fatty acid (TSFA), arachidonic acid (ARA), docosahexaenoic acid (DHA), ARA/DHA, omega-6/omega-3 polyunsaturated fatty acids ratio (n-6/n-3)], phospholipids [phosphatidylcholine, phosphatidylethanolamine (PE), phosphatidylinositol (PI), sphingomyelin], and choline [free choline, phosphocholine (PCho), glycerophosphocholine]. Feature selection was performed to select nutrients associated with cognition and temperament. The combined effects of selected nutrients were analyzed using multiple regression. A positive association between the arachidonic acid (ARA) and surgency was observed (p = 0.024). A significant effect of DHA, n-6/n-3, PE, and TSFA concentrations on receptive language (R2 = 0.39, p = 0.025) and the elevated ARA, PCho, and PI with increased surgency (R2 = 0.43, p = 0.003) was identified, suggesting that DHA and ARA may have distinct roles for temperament and language functions. Furthermore, the exploratory association analyses suggest that the effects of human milk nutrients on R.L. and surgency may persist beyond the first 6 months of life, particularly surgency at 12–18 months (p = 0.002). Our study highlighted that various human milk nutrients work together to support the development of cognition and temperament traits during early infancy.
Collapse
Affiliation(s)
- Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tinu M. Samuel
- Nestlé Product Technology Center-Nutrition, Société des Produits Nestlé S.A., Vevey, Switzerland
| | - Ziliang Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Brittany Howell
- Department of Human Development and Family Science, Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Seoyoon Cho
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kristine Baluyot
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Heather Hazlett
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jed T. Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, United States
| | - Di Wu
- Division of Oral and Craniofacial Health Science, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jonas Hauser
- Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Norbert Sprenger
- Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Hongtu Zhu
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Weili Lin
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Weili Lin,
| |
Collapse
|
33
|
Human Milk Extracellular Vesicles: A Biological System with Clinical Implications. Cells 2022; 11:cells11152345. [PMID: 35954189 PMCID: PMC9367292 DOI: 10.3390/cells11152345] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
The consumption of human milk by a breastfeeding infant is associated with positive health outcomes, including lower risk of diarrheal disease, respiratory disease, otitis media, and in later life, less risk of chronic disease. These benefits may be mediated by antibodies, glycoproteins, glycolipids, oligosaccharides, and leukocytes. More recently, human milk extracellular vesicles (hMEVs) have been identified. HMEVs contain functional cargos, i.e., miRNAs and proteins, that may transmit information from the mother to promote infant growth and development. Maternal health conditions can influence hMEV composition. This review summarizes hMEV biogenesis and functional contents, reviews the functional evidence of hMEVs in the maternal–infant health relationship, and discusses challenges and opportunities in hMEV research.
Collapse
|
34
|
Bosheva M, Tokodi I, Krasnow A, Pedersen HK, Lukjancenko O, Eklund AC, Grathwohl D, Sprenger N, Berger B, Cercamondi CI. Infant Formula With a Specific Blend of Five Human Milk Oligosaccharides Drives the Gut Microbiota Development and Improves Gut Maturation Markers: A Randomized Controlled Trial. Front Nutr 2022; 9:920362. [PMID: 35873420 PMCID: PMC9298649 DOI: 10.3389/fnut.2022.920362] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Background Human milk oligosaccharides (HMOs) have important biological functions for a healthy development in early life. Objective This study aimed to investigate gut maturation effects of an infant formula containing five HMOs (2′-fucosyllactose, 2′,3-di-fucosyllactose, lacto-N-tetraose, 3′-sialyllactose, and 6′-sialyllactose). Methods In a multicenter study, healthy infants (7–21 days old) were randomly assigned to a standard cow’s milk-based infant formula (control group, CG); the same formula with 1.5 g/L HMOs (test group 1, TG1); or with 2.5 g/L HMOs (test group 2, TG2). A human milk-fed group (HMG) was enrolled as a reference. Fecal samples collected at baseline (n∼150/formula group; HMG n = 60), age 3 (n∼140/formula group; HMG n = 65) and 6 (n∼115/formula group; HMG n = 60) months were analyzed for microbiome (shotgun metagenomics), metabolism, and biomarkers. Results At both post-baseline visits, weighted UniFrac analysis indicated different microbiota compositions in the two test groups (TGs) compared to CG (P < 0.01) with coordinates closer to that of HMG. The relative abundance of Bifidobacterium longum subsp. infantis (B. infantis) was higher in TGs vs. CG (P < 0.05; except at 6 months: TG2 vs. CG P = 0.083). Bifidobacterium abundance was higher by ∼45% in TGs vs. CG at 6-month approaching HMG. At both post-baseline visits, toxigenic Clostridioides difficile abundance was 75–85% lower in TGs vs. CG (P < 0.05) and comparable with HMG. Fecal pH was significantly lower in TGs vs. CG, and the overall organic acid profile was different in TGs vs. CG, approaching HMG. At 3 months, TGs (vs. CG) had higher secretory immunoglobulin A (sIgA) and lower alpha-1-antitrypsin (P < 0.05). At 6 months, sIgA in TG2 vs. CG remained higher (P < 0.05), and calprotectin was lower in TG1 (P < 0.05) vs. CG. Conclusion Infant formula with a specific blend of five HMOs supports the development of the intestinal immune system and gut barrier function and shifts the gut microbiome closer to that of breastfed infants with higher bifidobacteria, particularly B. infantis, and lower toxigenic Clostridioides difficile. Clinical Trial Registration [https://clinicaltrials.gov/ct2/show/], identifier [NCT03722550].
Collapse
Affiliation(s)
- Miroslava Bosheva
- University Multiprofile Hospital for Active Treatment, St. George Medical University, Plovdiv, Bulgaria
| | - Istvan Tokodi
- Infant and Children’s Department, St. George’s Hospital, Székesfehérvár, Hungary
| | | | | | | | | | | | - Norbert Sprenger
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Bernard Berger
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- *Correspondence: Bernard Berger,
| | - Colin I. Cercamondi
- Nestlé Product Technology Center – Nutrition, Société des Produits Nestlé S.A., Vevey, Switzerland
| | - 5 HMO Study Investigator ConsortiumBauerViktorArciszewskaMalgorzataTarnevaMariaPopovaIrinaDosevSvilenDimitrovaSirmaNikolovaOlgaNowakMarzenaSzuflinska-SidorowiczMagdalenaKorczowskiBartoszKarcheva-BeloevaRositsaBanovStefanCimoszkoBoguslawaOlechowskiWieslawSimkoRobertTengelyiZsuzsannaKorbalPiotrZolnowskaMartaBilevAntonVasilopoulosGeorgiosKorzynskaSylwiaLakiIstvánKoleva-SyarovaMargaritaGrigorovToniKraevaSteliyanaKovácsÉvaMarkovaRadaJasieniak-PinisGrazynaFisterKatalinStoevaTatyanaDr. Kenessey Albert Hospital and Clinic, Balassagyarmat, Hungary; Polyclinic of Gynecology and Obstetrics Arciszewscy, Bialystok, Poland; University Multiprofile Hospital for Active Treatment Deva Mariya—Neonatology, Burgas, Bulgaria; Medical Center Prolet—Pediatrics department, Ruse, Bulgaria; Medical Center Excelsior, Sofia, Bulgaria; Multiprofile Hospital for Active Treatment Sveti Ivan Rilski, Kozloduy, Bulgaria; Medical Center PROMED, Krakow, Poland; Medical Center Pratia Warszawa, Warszawa, Poland; College of Medical Sciences, University of Rzeszów, Rzeszów, Poland; Medical Center-1, Sevlievo, Bulgaria; Individual Practice for Specialized Medical Assistance, Stara Zagora, Bulgaria; Primary Health Care Clinic Clinical Vitae, Gdansk, Poland; ALERGO-MED Specialist Medical Clinic, Tarnow, Poland; Futurenest Clinical Research, Miskolc, Hungary; Medical Center Clinexpert, Budapest, Hungary; Dr. Jan Biziel’s University Hospital No. 2, Bydgoszcz, Poland; Plejady Medical Center, Krakow, Poland; Medical Center Sveti Ivan Rilski Chudotvorets, Blagoevgrad, Bulgaria; Center of Innovative Therapies, Piaseczno, Poland; Medical Center Pratia Ostroleka, Ostroleka, Poland; Kanizsai Dorottya Hospital, Nagykanizsa, Hungary; Diagnostic Consultative Center Ritam, Stara Zagora, Bulgaria; Multiprofile Hospital for Active Treatment Sveti Georgi, Montana, Bulgaria; Alitera Medical Centre, Sofia, Bulgaria; Family Pediatric Surgery/Babadoki Ltd., Szeged, Hungary; Policlinic Bulgaria—Department of pediatrics; Sofia, Bulgaria; Non-public Health Care Institution Specialist Clinics ATOPIA, Krakow, Poland; Bugát Pál Hospital—Department of Pediatrics, Gyöngyös, Hungary; Medical Center—Izgrev Ltd., Sofia, Bulgaria.
| |
Collapse
|
35
|
Human milk oligosaccharides in breast milk and 2-year outcome in preterm infants: An exploratory analysis. Clin Nutr 2022; 41:1896-1905. [DOI: 10.1016/j.clnu.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/13/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022]
|
36
|
Wang J, Chen MS, Wang RS, Hu JQ, Liu S, Wang YYF, Xing XL, Zhang BW, Liu JM, Wang S. Current Advances in Structure-Function Relationships and Dose-Dependent Effects of Human Milk Oligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6328-6353. [PMID: 35593935 DOI: 10.1021/acs.jafc.2c01365] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
HMOs (human milk oligosaccharides) are the third most important nutrient in breast milk. As complex glycans, HMOs play an important role in regulating neonatal intestinal immunity, resisting viral and bacterial infections, displaying anti-inflammatory characteristics, and promoting brain development. Although there have been some previous reports of HMOs, a detailed literature review summarizing the structure-activity relationships and dose-dependent effects of HMOs is lacking. Hence, after introducing the structures and synthetic pathways of HMOs, this review summarizes and categorizes identified structure-function relationships of HMOs. Differential mechanisms of different structural HMOs utilization by microorganisms are summarized. This review also emphasizes the recent advances in the interactions between different health benefits and the variance of dosage effect based on in vitro cell tests, animal experiments, and human intervention studies. The potential relationships between the chemical structure, the dosage selection, and the physiological properties of HMOs as functional foods are vital for further understanding of HMOs and their future applications.
Collapse
Affiliation(s)
- Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Meng-Shan Chen
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Rui-Shan Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Jia-Qiang Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Shuang Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Yuan-Yi-Fei Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Xiao-Long Xing
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Bo-Wei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
37
|
de Weerth C, Aatsinki AK, Azad MB, Bartol FF, Bode L, Collado MC, Dettmer AM, Field CJ, Guilfoyle M, Hinde K, Korosi A, Lustermans H, Mohd Shukri NH, Moore SE, Pundir S, Rodriguez JM, Slupsky CM, Turner S, van Goudoever JB, Ziomkiewicz A, Beijers R. Human milk: From complex tailored nutrition to bioactive impact on child cognition and behavior. Crit Rev Food Sci Nutr 2022; 63:7945-7982. [PMID: 35352583 DOI: 10.1080/10408398.2022.2053058] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human milk is a highly complex liquid food tailor-made to match an infant's needs. Beyond documented positive effects of breastfeeding on infant and maternal health, there is increasing evidence that milk constituents also impact child neurodevelopment. Non-nutrient milk bioactives would contribute to the (long-term) development of child cognition and behavior, a process termed 'Lactocrine Programming'. In this review we discuss the current state of the field on human milk composition and its links with child cognitive and behavioral development. To promote state-of-the-art methodologies and designs that facilitate data pooling and meta-analytic endeavors, we present detailed recommendations and best practices for future studies. Finally, we determine important scientific gaps that need to be filled to advance the field, and discuss innovative directions for future research. Unveiling the mechanisms underlying the links between human milk and child cognition and behavior will deepen our understanding of the broad functions of this complex liquid food, as well as provide necessary information for designing future interventions.
Collapse
Affiliation(s)
- Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Anna-Katariina Aatsinki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Meghan B Azad
- Department of Pediatrics and Child Health, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frank F Bartol
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, California, USA
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Amanda M Dettmer
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, College of Basic and Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Meagan Guilfoyle
- Department of Anthropology, Indiana University, Bloomington, Indiana, USA
| | - Katie Hinde
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity group, University of Amsterdam, Amsterdam, The Netherlands
| | - Hellen Lustermans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Nurul Husna Mohd Shukri
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sophie E Moore
- Department of Women & Children's Health, King's College London, St Thomas' Hospital, London, UK
- School of Hygiene and Tropical Medicine, Nutrition Theme, MRC Unit The Gambia and the London, Fajara, The GambiaBanjul
| | - Shikha Pundir
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Juan Miguel Rodriguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Carolyn M Slupsky
- Department of Nutrition and Department of Food Science and Technology, University of California, Davis, California, USA
| | - Sarah Turner
- Department of Community Health Sciences, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Johannes B van Goudoever
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Anna Ziomkiewicz
- Department of Anthropology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Roseriet Beijers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
- Department of Social Development, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
38
|
Alliet P, Vandenplas Y, Roggero P, Jespers SNJ, Peeters S, Stalens JP, Kortman GAM, Amico M, Berger B, Sprenger N, Cercamondi CI, Corsello G. Safety and efficacy of a probiotic-containing infant formula supplemented with 2'-fucosyllactose: a double-blind randomized controlled trial. Nutr J 2022; 21:11. [PMID: 35193609 PMCID: PMC8862345 DOI: 10.1186/s12937-022-00764-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) have important and diverse biological functions in early life. This study tested the safety and efficacy of a starter infant formula containing Limosilactobacillus (L.) reuteri DSM 17938 and supplemented with 2'-fucosyllactose (2'FL). METHODS Healthy infants < 14 days old (n = 289) were randomly assigned to a bovine milk-based formula containing L. reuteri DSM 17938 at 1 × 107 CFU/g (control group; CG) or the same formula with added 1.0 g/L 2'FL (experimental group; EG) until 6 months of age. A non-randomized breastfed group served as reference (BF; n = 60). The primary endpoint was weight gain through 4 months of age in the formula-fed infants. Secondary endpoints included additional anthropometric measures, gastrointestinal tolerance, stooling characteristics, adverse events (AEs), fecal microbiota and metabolism, and gut immunity and health biomarkers in all feeding groups. RESULTS Weight gain in EG was non-inferior to CG as shown by a mean difference [95% CI] of 0.26 [-1.26, 1.79] g/day with the lower bound of the 95% CI above the non-inferiority margin (-3 g/day). Anthropometric Z-scores, parent-reported stooling characteristics, gastrointestinal symptoms and associated behaviors, and AEs were comparable between formula groups. Redundancy analysis indicated that the microbiota composition in EG was different from CG at age 2 (p = 0.050) and 3 months (p = 0.052), approaching BF. Similarly, between sample phylogenetic distance (weighted UniFrac) for BF vs EG was smaller than for BF vs CG at 3-month age (p = 0.045). At age 1 month, Clostridioides difficile counts were significantly lower in EG than CG. Bifidobacterium relative abundance in EG tracked towards that in BF. Fecal biomarkers and metabolic profile were comparable between CG and EG. CONCLUSION L. reuteri-containing infant formula with 2'FL supports age-appropriate growth, is well-tolerated and may play a role in shifting the gut microbial pattern towards that of breastfed infants. TRIAL REGISTRATION The trial was registered on ClinicalTrials.gov ( NCT03090360 ) on 24/03/2017.
Collapse
Affiliation(s)
| | - Yvan Vandenplas
- KidZ Health Castle, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Paola Roggero
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | | | | | | | - Mailis Amico
- Biostatistics & Data, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Bernard Berger
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Norbert Sprenger
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Colin I Cercamondi
- Nestlé Product Technology Center - Nutrition, Société des Produits Nestlé S.A., Vevey, Switzerland.
| | - Giovanni Corsello
- Department of Health Promotion Sciences Maternal and Infant Care, University of Palermo, Palermo, Italy
| |
Collapse
|
39
|
Sprenger N, Tytgat HL, Binia A, Austin S, Singhal A. Biology of human milk oligosaccharides: from Basic Science to Clinical Evidence. J Hum Nutr Diet 2022; 35:280-299. [PMID: 35040200 PMCID: PMC9304252 DOI: 10.1111/jhn.12990] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Human milk oligosaccharides (HMOs) have been researched by scientists for over 100 years, driven by the substantial evidence for the nutritional and health benefits of mother's milk. Yet research has truly bloomed during the last decade, thanks to the progress in biotechnology, which allowed the production of large amounts of bona fide HMOs. The availability of HMOs has been particularly crucial for the renewed interest in HMO research because of the low abundance or even absence of HMOs in farmed animal milk. This interest is reflected in the increasing number of original research publications and reviews on HMOs. Here, we provide an overview and critical discussion on structure function relations of HMOs that highlight why they are such interesting and important components of human milk. Clinical observations in breastfed infants backed by basic research from animal models provide guidance as to what physiological roles for HMOs are to be expected. From an evidence-based nutrition viewpoint, we discuss the current data supporting clinical relevance of specific HMOs based on randomized placebo controlled clinical intervention trials in formula-fed infants. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Norbert Sprenger
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Hanne Lp Tytgat
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Aristea Binia
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Sean Austin
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Atul Singhal
- Institute of Child Health, University College London, London, WC1N 1EH, United Kingdom
| |
Collapse
|
40
|
Pisa E, Martire A, Chiodi V, Traversa A, Caputo V, Hauser J, Macrì S. Exposure to 3'Sialyllactose-Poor Milk during Lactation Impairs Cognitive Capabilities in Adulthood. Nutrients 2021; 13:nu13124191. [PMID: 34959743 PMCID: PMC8707534 DOI: 10.3390/nu13124191] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Breast milk exerts pivotal regulatory functions early in development whereby it contributes to the maturation of brain and associated cognitive functions. However, the specific components of maternal milk mediating this process have remained elusive. Sialylated human milk oligosaccharides (HMOs) represent likely candidates since they constitute the principal neonatal dietary source of sialic acid, which is crucial for brain development and neuronal patterning. We hypothesize that the selective neonatal lactational deprivation of a specific sialylated HMOs, sialyl(alpha2,3)lactose (3′SL), may impair cognitive capabilities (attention, cognitive flexibility, and memory) in adulthood in a preclinical model. To operationalize this hypothesis, we cross-fostered wild-type (WT) mouse pups to B6.129-St3gal4tm1.1Jxm/J dams, knock-out (KO) for the gene synthesizing 3′SL, thereby providing milk with approximately 80% 3′SL content reduction. We thus exposed lactating WT pups to a selective reduction of 3′SL and investigated multiple cognitive domains (including memory and attention) in adulthood. Furthermore, to account for the underlying electrophysiological correlates, we investigated hippocampal long-term potentiation (LTP). Neonatal access to 3′SL-poor milk resulted in decreased attention, spatial and working memory, and altered LTP compared to the control group. These results support the hypothesis that early-life dietary sialylated HMOs exert a long-lasting role in the development of cognitive functions.
Collapse
Affiliation(s)
- Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Alberto Martire
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (V.C.)
| | - Valentina Chiodi
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (V.C.)
| | - Alice Traversa
- Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Jonas Hauser
- Brain Health, Nestlé Institute of Health Science, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne, Switzerland
- Correspondence: (J.H.); (S.M.); Tel.: +41-21-785-8933 (J.H.); +39-06-4990-6829 (S.M.); Fax: +39-06-4957-821 (S.M.)
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Correspondence: (J.H.); (S.M.); Tel.: +41-21-785-8933 (J.H.); +39-06-4990-6829 (S.M.); Fax: +39-06-4957-821 (S.M.)
| |
Collapse
|
41
|
Ferreira ALL, Alves-Santos NH, Freitas-Costa NC, Santos PPT, Batalha MA, Figueiredo ACC, Yonemitsu C, Manivong N, Furst A, Bode L, Kac G. Associations Between Human Milk Oligosaccharides at 1 Month and Infant Development Throughout the First Year of Life in a Brazilian Cohort. J Nutr 2021; 151:3543-3554. [PMID: 34313768 DOI: 10.1093/jn/nxab271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) are unconjugated glycans associated with infant health and development. OBJECTIVES To investigate the associations between HMO concentrations at 1 month and infant development throughout the first year of life. METHODS A prospective cohort of Brazilian women between 18-40 years of age and their infants was studied from baseline (between 28-35 gestational weeks) and followed at 1 (n = 73), 6 (n = 51), and 12 months (n = 45). A total of 19 HMOs were quantified by HPLC with fluorescence detection. Infant development was evaluated by the Brazilian Ages and Stages Questionnaire. A directed acyclic graph was used to define the minimally sufficient adjustment (gestational age at birth, gestational weight gain, prepregnancy BMI, maternal age, parity, and the mode of breastfeeding at 1 month). Cox regression models with HRs and Benjamini-Hochberg multiple corrections were performed to estimate associations of HMOs with the cumulative risk of inadequate development for 5 developmental domains or for ≥2 developmental domains in all women and in the subset of secretor women (defined as the presence or near absence of 2'-fucosyllactose and lacto-N-fucopentaose I). RESULTS The multivariate models with multiple corrections revealed an inverse association between lacto-N-tetrose (LNT) and the risk of inadequate development for personal-social skills (0.06; 95% CI: 0.01-0.76) and for ≥2 developmental domains (0.06; 95% CI: 0.01-0.59). The secretor mothers analysis also showed inverse associations with slightly different results for personal-social skills (0.09; 95% CI: 0.02-0.84) and ≥2 developmental domains (0.05; 95% CI: 0.01-0.70). CONCLUSIONS Higher concentrations of LNT HMOs in Brazilian women are associated with their infants being less likely to be at risk of inadequate development for personal-social skills or for ≥2 developmental domains during the first year of life.
Collapse
Affiliation(s)
- Ana Lorena L Ferreira
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Nadya H Alves-Santos
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Nathalia C Freitas-Costa
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Pedro P T Santos
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Mônica A Batalha
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Amanda C C Figueiredo
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Chloe Yonemitsu
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - Nadia Manivong
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - Annalee Furst
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - Gilberto Kac
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| |
Collapse
|