1
|
Saulnier PJ, Liu JJ, Croyal M, de Keizer J, Wang J, Zheng H, Nelson RG, Ragot S, Liu S, Halimi JM, Cariou B, Lim SC, Hadjadj S. Methylamine metabolites and progression to kidney failure in type 2 diabetes: An Asian and European prospective study. DIABETES & METABOLISM 2025; 51:101658. [PMID: 40315957 DOI: 10.1016/j.diabet.2025.101658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 05/04/2025]
Abstract
AIM Unlike trimethylamine N-oxide (TMAO), the role of methylamine pathway metabolites in diabetic kidney disease (DKD) remains unclear. We investigated the association of circulating methylamines with progression of DKD in a prospective cohort study of patients with type 2 diabetes of two different ethnic backgrounds. METHODS We analyzed two independent cohorts: a European-origin cohort (SURDIAGENE France; n = 1,357) and an Asian-origin cohort (Khoo Teck Puat Hospital-DKD [KTPH-DKD] Singapore, n = 1,868). The primary composite renal outcome in SURDIAGENE was sustained doubling of serum creatinine or kidney failure with replacement therapy (KFRT), while the secondary outcome was 40% renal function loss (RFL40). In KTPH-DKD, KFRT was the primary outcome. Baseline betaine, carnitine, choline, trimethylamine and TMAO concentrations were measured in plasma by mass-spectrometry. Cox regression models were used to estimate the risk of DKD progression, adjusting for demographics, clinical parameters, and comorbidities. RESULTS Over a median follow-up of 7.1 years (IQR 4.5-10.7), we registered 75 composite renal outcomes in SURDIAGENE and over 10.7 years (IQR 7.0-11.8), 149 KFRT in KTPH-DKD. Choline was the only consistently associated with progression of DKD in both cohorts: HR [95%CI] per 1 SD = 1.29 [1.02;1.62], P = 0.033 for composite renal outcome, 1.11 [1.01;1.23], P = 0.028 for RFL40 in SURDIAGENE, and 1.84 [1.30;2.61], P < 0.001 for KFRT in KTPH-DKD. CONCLUSION Plasma choline is an independent risk factor for DKD progression in two independent type 2 diabetes populations. Interventional trials are needed to assess whether reducing dietary choline intake could mitigate severe renal outcomes in type 2 diabetes.
Collapse
Affiliation(s)
- Pierre-Jean Saulnier
- University of Poitiers, INSERM, CHU Poitiers, Clinical Investigation Center CIC 1402, Poitiers, France.
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Mikael Croyal
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; CRNH-O, Plateforme Spectrométrie de Masse (PFSM, Mass Spectrometry Core Facility), F-44000 Nantes, France; BioCore, US16, SFR Bonamy, Inserm, CNRS, CHU de Nantes, Nantes Université, F-44000, France
| | - Joe de Keizer
- University of Poitiers, INSERM, CHU Poitiers, Clinical Investigation Center CIC 1402, Poitiers, France
| | - Jiexun Wang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Huili Zheng
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Robert G Nelson
- Diabetes Institute, University of Washington, Seattle, WA, USA; Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Stéphanie Ragot
- University of Poitiers, INSERM, CHU Poitiers, Clinical Investigation Center CIC 1402, Poitiers, France
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Jean-Michel Halimi
- UMR1327, Université de Tours, France; Service de Néphrologie, Hôpital Bretonneau, CHU Tours, Tours, France; INI-CRCT, Tours, France
| | - Bertrand Cariou
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232;; Saw Swee Hock School of Public Heath, National University of Singapore, Singapore 119077
| | - Samy Hadjadj
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; CRNH-O, Plateforme Spectrométrie de Masse (PFSM, Mass Spectrometry Core Facility), F-44000 Nantes, France
| |
Collapse
|
2
|
Sprinkles JK, Lulla A, Hullings AG, Trujillo-Gonzalez I, Klatt KC, Jacobs DR, Shah RV, Murthy VL, Howard AG, Gordon-Larsen P, Meyer KA. Choline Metabolites and 15-Year Risk of Incident Diabetes in a Prospective Cohort of Adults: Coronary Artery Risk Development in Young Adults (CARDIA) Study. Diabetes Care 2024; 47:1985-1994. [PMID: 39259767 PMCID: PMC11502527 DOI: 10.2337/dc24-1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE The potential for choline metabolism to influence the development of diabetes has received increased attention. Previous studies on circulating choline metabolites and incident diabetes have been conducted in samples of older adults, often with a high prevalence of risk factors. RESEARCH DESIGN AND METHODS Participants were from year 15 of follow-up (2000-2001) in the Coronary Artery Risk Development in Young Adults (CARDIA) Study (n = 3,133, aged 33-45 years) with plasma choline metabolite (choline, betaine, and trimethylamine N-oxide [TMAO]) data. We quantified associations between choline metabolites and 15-year risk of incident diabetes (n = 387) among participants free of diabetes at baseline using Cox proportional hazards regression models adjusted for sociodemographics, health behaviors, and clinical variables. RESULTS Betaine was inversely associated with 15-year risk of incident diabetes (hazard ratio 0.76 [95% CI 0.67, 0.88] per 1-SD unit betaine), and TMAO was positively associated with 15-year risk of incident diabetes (1.11 [1.01, 1.22] per 1-SD unit). Choline was not significantly associated with 15-year risk of incident diabetes (1.05 [0.94, 1.16] per 1-SD). CONCLUSIONS Our findings are consistent with other published literature supporting a role for choline metabolism in diabetes. Our study extends the current literature by analyzing a racially diverse population-based cohort of early middle-aged individuals in whom preventive activities may be most relevant.
Collapse
Affiliation(s)
- Jessica K. Sprinkles
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anju Lulla
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
| | - Autumn G. Hullings
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Isis Trujillo-Gonzalez
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kevin C. Klatt
- Department of Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN
| | - Ravi V. Shah
- Department of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Annie Green Howard
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Penny Gordon-Larsen
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Katie A. Meyer
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
3
|
Sharifi-Zahabi E, Soltani S, Asiaei S, Dehesh P, Mohsenpour MA, Shidfar F. Higher dietary choline intake is associated with increased risk of all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of cohort studies. Nutr Res 2024; 130:48-66. [PMID: 39341000 DOI: 10.1016/j.nutres.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024]
Abstract
Evidence indicates that choline and betaine intakes are associated with mortality. Based on the available evidence, we hypothesized that dietary choline and betaine do not increase mortality risk. This meta-analysis was conducted to investigate the association of dietary choline and betaine with mortality from all causes, cardiovascular diseases, and stroke. Online databases including PubMed, Scopus, Web of Science, Embase, and Google Scholar were searched up to 9 March 2024. Six cohort studies comprising 482,778 total participants, 57,235 all-cause, 9351 cardiovascular disease, and 4,400 stroke deaths were included in this study. The linear dose-response analysis showed that each 100 mg/day increase in choline intake was significantly associated with 6% and 11% increases in risk of all-cause (RR = 1.06, 95% CI: 1.03, 1.10, I2 =83.7%, P < .001) and cardiovascular diseases mortality (RR = 1.11, 95% CI: 1.06, 1.16, I2 = 54.3%, P = .02) respectively. However, dietary betaine, was not associated with the risk of mortality. Furthermore, the result of the nonlinear dose-response analysis showed a significant relationship between betaine intake and stroke mortality at the dosages of 50 to 250 mg/day (Pnon-linearity= .0017). This study showed that each 100 mg/day increment in choline consumption was significantly associated with a 6% and 11% higher risk of all-cause and cardiovascular disease mortality respectively. In addition, a significant positive relationship between betaine intake and stroke mortality at doses of 50 to 250 mg/day was observed. Due to the small number of the included studies and heterogeneity among them more well-designed prospective observational studies considering potential confounding variables are required.
Collapse
Affiliation(s)
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Noncommunicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sahar Asiaei
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Paria Dehesh
- Social Determinants of Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran; Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Ali Mohsenpour
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Figueiredo JC, Bhowmick NA, Karlstaedt A. Metabolic basis of cardiac dysfunction in cancer patients. Curr Opin Cardiol 2024; 39:138-147. [PMID: 38386340 PMCID: PMC11185275 DOI: 10.1097/hco.0000000000001118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
PURPOSE OF REVIEW The relationship between metabolism and cardiovascular diseases is complex and bidirectional. Cardiac cells must adapt metabolic pathways to meet biosynthetic demands and energy requirements to maintain contractile function. During cancer, this homeostasis is challenged by the increased metabolic demands of proliferating cancer cells. RECENT FINDINGS Tumors have a systemic metabolic impact that extends beyond the tumor microenvironment. Lipid metabolism is critical to cancer cell proliferation, metabolic adaptation, and increased cardiovascular risk. Metabolites serve as signals which provide insights for diagnosis and prognosis in cardio-oncology patients. SUMMARY Metabolic processes demonstrate a complex relationship between cancer cell states and cardiovascular remodeling with potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jane C. Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Neil Adri Bhowmick
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anja Karlstaedt
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
5
|
Li Y, Bai B, Wang H, Wu H, Deng Y, Shen C, Zhang Q, Shi L. Plasma metabolomic profile in orthostatic intolerance children with high levels of plasma homocysteine. Ital J Pediatr 2024; 50:52. [PMID: 38486257 PMCID: PMC10941598 DOI: 10.1186/s13052-024-01601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/27/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Orthostatic intolerance, which includes vasovagal syncope and postural orthostatic tachycardia syndrome, is common in children and adolescents. Elevated plasma homocysteine levels might participate in the pathogenesis of orthostatic intolerance. This study was designed to analyze the plasma metabolomic profile in orthostatic intolerance children with high levels of plasma homocysteine. METHODS Plasma samples from 34 orthostatic intolerance children with a plasma homocysteine concentration > 9 µmol/L and 10 healthy children were subjected to ultra-high-pressure liquid chromatography and quadrupole-time-of-flight mass spectrometry analysis. RESULTS A total of 875 metabolites were identified, 105 of which were significantly differential metabolites. Choline, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine, 1-(1Z-octadecenyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine, histidine, isocitric acid, and DL-glutamic acid and its downstream metabolites were upregulated, whereas 1-palmitoyl-sn-glycero-3-phosphocholine, 1-stearoyl-sn-glycerol 3-phosphocholine, sphingomyelin (d18:1/18:0), betaine aldehyde, hydroxyproline, and gamma-aminobutyric acid were downregulated in the orthostatic intolerance group compared with the control group. All these metabolites were related to choline and glutamate. Heatmap analysis demonstrated a common metabolic pattern of higher choline, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine, and DL-glutamic acid, and lower sphingomyelin (d18:1/18:0), 1-stearoyl-sn-glycerol 3-phosphocholine, and 1-palmitoyl-sn-glycero-3-phosphocholine in patients with certain notable metabolic changes (the special group) than in the other patients (the common group). The maximum upright heart rate, the change in heart rate from the supine to the upright position, and the rate of change in heart rate from the supine to the upright position of vasovagal syncope patients were significantly higher in the special group than in the common group (P < 0.05). Choline, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine, and DL-glutamic acid were positively correlated with the rate of change in heart rate from the supine to the upright position in vasovagal syncope patients (P < 0.05). CONCLUSIONS The levels of choline-related metabolites and glutamate-related metabolites changed significantly in orthostatic intolerance children with high levels of plasma homocysteine, and these changes were associated with the severity of illness. These results provided new light on the pathogenesis of orthostatic intolerance.
Collapse
Affiliation(s)
- Yaqi Li
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics, No 2 Yabao Road, Beijing, Chaoyang District, 100020, China
| | - Baoling Bai
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, No 2 Yabao Road, Beijing, Chaoyang District, 100020, China
| | - Hui Wang
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics, No 2 Yabao Road, Beijing, Chaoyang District, 100020, China
| | - Haojie Wu
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics, No 2 Yabao Road, Beijing, Chaoyang District, 100020, China
| | - Yanjun Deng
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics, No 2 Yabao Road, Beijing, Chaoyang District, 100020, China
| | - Chen Shen
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics, No 2 Yabao Road, Beijing, Chaoyang District, 100020, China
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, No 2 Yabao Road, Beijing, Chaoyang District, 100020, China.
| | - Lin Shi
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics, No 2 Yabao Road, Beijing, Chaoyang District, 100020, China.
| |
Collapse
|
6
|
Prince N, Liang D, Tan Y, Alshawabkeh A, Angel EE, Busgang SA, Chu SH, Cordero JF, Curtin P, Dunlop AL, Gilbert-Diamond D, Giulivi C, Hoen AG, Karagas MR, Kirchner D, Litonjua AA, Manjourides J, McRitchie S, Meeker JD, Pathmasiri W, Perng W, Schmidt RJ, Watkins DJ, Weiss ST, Zens MS, Zhu Y, Lasky-Su JA, Kelly RS. Metabolomic data presents challenges for epidemiological meta-analysis: a case study of childhood body mass index from the ECHO consortium. Metabolomics 2024; 20:16. [PMID: 38267770 PMCID: PMC11099615 DOI: 10.1007/s11306-023-02082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
INTRODUCTION Meta-analyses across diverse independent studies provide improved confidence in results. However, within the context of metabolomic epidemiology, meta-analysis investigations are complicated by differences in study design, data acquisition, and other factors that may impact reproducibility. OBJECTIVE The objective of this study was to identify maternal blood metabolites during pregnancy (> 24 gestational weeks) related to offspring body mass index (BMI) at age two years through a meta-analysis framework. METHODS We used adjusted linear regression summary statistics from three cohorts (total N = 1012 mother-child pairs) participating in the NIH Environmental influences on Child Health Outcomes (ECHO) Program. We applied a random-effects meta-analysis framework to regression results and adjusted by false discovery rate (FDR) using the Benjamini-Hochberg procedure. RESULTS Only 20 metabolites were detected in all three cohorts, with an additional 127 metabolites detected in two of three cohorts. Of these 147, 6 maternal metabolites were nominally associated (P < 0.05) with offspring BMI z-scores at age 2 years in a meta-analytic framework including at least two studies: arabinose (Coefmeta = 0.40 [95% CI 0.10,0.70], Pmeta = 9.7 × 10-3), guanidinoacetate (Coefmeta = - 0.28 [- 0.54, - 0.02], Pmeta = 0.033), 3-ureidopropionate (Coefmeta = 0.22 [0.017,0.41], Pmeta = 0.033), 1-methylhistidine (Coefmeta = - 0.18 [- 0.33, - 0.04], Pmeta = 0.011), serine (Coefmeta = - 0.18 [- 0.36, - 0.01], Pmeta = 0.034), and lysine (Coefmeta = - 0.16 [- 0.32, - 0.01], Pmeta = 0.044). No associations were robust to multiple testing correction. CONCLUSIONS Despite including three cohorts with large sample sizes (N > 100), we failed to identify significant metabolite associations after FDR correction. Our investigation demonstrates difficulties in applying epidemiological meta-analysis to clinical metabolomics, emphasizes challenges to reproducibility, and highlights the need for standardized best practices in metabolomic epidemiology.
Collapse
Affiliation(s)
- Nicole Prince
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Akram Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Elizabeth Esther Angel
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Stefanie A Busgang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Su H Chu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - José F Cordero
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, USA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
- Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Anne G Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - David Kirchner
- Department of Nutrition, Gillings School of Global Public Health, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital at Strong, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Susan McRitchie
- Department of Nutrition, Gillings School of Global Public Health, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Wimal Pathmasiri
- Department of Nutrition, Gillings School of Global Public Health, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Wei Perng
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- MIND Institute, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael S Zens
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Yeyi Zhu
- Kaiser Permanente Northern California Division of Research, Oakland, CA, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Yang Q, Han H, Sun Z, Liu L, Zheng X, Meng Z, Tao N, Liu J. Association of choline and betaine with the risk of cardiovascular disease and all-cause mortality: Meta-analysis. Eur J Clin Invest 2023; 53:e14041. [PMID: 37318151 DOI: 10.1111/eci.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/23/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND This study aimed to systematically evaluate the role of circulating levels of choline and betaine in the risk of cardiovascular disease (CVD) and all-cause mortality by comprehensively reviewing observational studies. METHODS This study was conducted according to PRISMA 2020 statement. Six electronic databases, including PubMed, Embase and China National Knowledge Infrastructure (CNKI), were searched for cohort studies and derivative research design types (nested case-control and case-cohort studies) from the date of inception to March 2022. We pooled relative risk (RR) and 95% confidence interval (CI) of the highest versus lowest category and per SD of circulating choline and betaine concentrations in relation to the risk of CVD and all-cause mortality. RESULTS In the meta-analysis, 17 studies with a total of 33,009 participants were included. Random-effects model results showed that highest versus lowest quantile of circulating choline concentrations were associated with the risk of CVD (RR = 1.29, 95% CI: 1.04-1.61) and all-cause mortality (RR = 1.62, 95% CI: 1.12-2.36). We also observed the risk of CVD were increased 13% (5%-22%) with per SD increment. Furthermore, highest versus lowest quantile of circulating betaine concentrations were not associated with the risk of CVD (RR = 1.07, 95% CI: 0.92-1.24) and all-cause mortality (RR = 1.39, 95% CI: 0.96-2.01). However, the risk of CVD was increased 14% (5%-23%) with per SD increment. CONCLUSIONS Higher levels of circulating choline were associated with a higher risk of CVD and all-cause mortality.
Collapse
Affiliation(s)
- Qinglin Yang
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Hua Han
- Department of Clinical Nutrition, The First People's Hospital of Zunyi, Zunyi, China
| | - Zhongming Sun
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Lu Liu
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xingting Zheng
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Zeyu Meng
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Na Tao
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Liu
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Yu CT, Farhat Z, Livinski AA, Loftfield E, Zanetti KA. Characteristics of Cancer Epidemiology Studies That Employ Metabolomics: A Scoping Review. Cancer Epidemiol Biomarkers Prev 2023; 32:1130-1145. [PMID: 37410086 PMCID: PMC10472112 DOI: 10.1158/1055-9965.epi-23-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/26/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
An increasing number of cancer epidemiology studies use metabolomics assays. This scoping review characterizes trends in the literature in terms of study design, population characteristics, and metabolomics approaches and identifies opportunities for future growth and improvement. We searched PubMed/MEDLINE, Embase, Scopus, and Web of Science: Core Collection databases and included research articles that used metabolomics to primarily study cancer, contained a minimum of 100 cases in each main analysis stratum, used an epidemiologic study design, and were published in English from 1998 to June 2021. A total of 2,048 articles were screened, of which 314 full texts were further assessed resulting in 77 included articles. The most well-studied cancers were colorectal (19.5%), prostate (19.5%), and breast (19.5%). Most studies used a nested case-control design to estimate associations between individual metabolites and cancer risk and a liquid chromatography-tandem mass spectrometry untargeted or semi-targeted approach to measure metabolites in blood. Studies were geographically diverse, including countries in Asia, Europe, and North America; 27.3% of studies reported on participant race, the majority reporting White participants. Most studies (70.2%) included fewer than 300 cancer cases in their main analysis. This scoping review identified key areas for improvement, including needs for standardized race and ethnicity reporting, more diverse study populations, and larger studies.
Collapse
Affiliation(s)
- Catherine T. Yu
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, Maryland
| | - Zeinab Farhat
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Alicia A. Livinski
- National Institutes of Health Library, Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - Erikka Loftfield
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Krista A. Zanetti
- Office of Nutrition Research, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
9
|
Huang RZ, Ma JF, Chen S, Chen YM, Fang AP, Lu XT, Huang ZH, Zhu HL, Huang BX. Associations of serum betaine with blood pressure and hypertension incidence in middle-aged and older adults: a prospective cohort study. Food Funct 2023; 14:4881-4890. [PMID: 37144398 DOI: 10.1039/d3fo00325f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The impact of betaine on the development of hypertension remains unclear, and prospective data are sparse. We aimed to investigate the association of serum betaine with repeated measurements of blood pressure (BP) and hypertension incidence. This study was based on the Guangzhou Nutrition and Health Study (GNHS), a community-based prospective cohort study in China. Baseline serum betaine was measured by high-performance liquid chromatography-tandem mass spectrometry. BP and hypertension status were assessed at the baseline and 3-year intervals. Linear mixed-effects models (LMEMs) were used to analyze the longitudinal association of serum betaine with BP (n = 1996). Cox proportional hazard models were used to evaluate the association of baseline serum betaine with hypertension incidence (n = 1339). LMEMs showed that compared with the lowest quartile group, the higher quartile groups had lower systolic blood pressure (SBP), diastolic blood pressure (DBP) and pulse pressure (all P-trend < 0.05). Each standard deviation (16.3 μmol L-1) increase in serum betaine was associated with -0.92 (-1.52, -0.32) mmHg of SBP, -0.49 (-0.84, -0.13) mmHg of DBP and -0.43 (-0.81, -0.05) mmHg of pulse pressure. During a median follow-up of 9.2 years, 371 incident cases of hypertension were identified. Serum betaine was associated with lower risk of hypertension only when comparing the third quartile level with the lowest quartile (HR, 0.74; 95% CI, 0.56-0.99). A nonlinear association between serum betaine and the risk of hypertension was found (P-nonlinear = 0.040). A higher serum betaine level was associated with lower risk of hypertension below 54.5 μmol L-1. Our findings suggested that higher serum betaine was associated with favorable blood pressure in middle-aged and older Chinese adults. Higher concentrations of serum betaine were related to lower hypertension risk in people with relatively low serum betaine concentrations.
Collapse
Affiliation(s)
- Rong-Zhu Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Jing-Fei Ma
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Si Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Department of Medical Statistics & Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ai-Ping Fang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Ting Lu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Zi-Hui Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hui-Lian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bi-Xia Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
10
|
Association of Choline Intake with Blood Pressure and Effects of Its Microbiota-Dependent Metabolite Trimethylamine-N-Oxide on Hypertension. Cardiovasc Ther 2022; 2022:9512401. [PMID: 36082192 PMCID: PMC9436605 DOI: 10.1155/2022/9512401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022] Open
Abstract
Background The association of total choline (TC) intake and its metabolite trimethylamine-N-oxide (TMAO) with hypertension and blood pressure (BP) has not been elucidated. Methods For the population study, the association of TC intake with hypertension, as well as blood pressure, was determined through logistic along with multiple linear regression analysis from the National Health and Nutrition Examination Survey 2007 to 2018, respectively. For the animal experimental study, spontaneously hypertensive rats (SHRs) were assigned to the water group or water containing 333 mg/L or 1 g/L TMAO group. After 22 weeks treatment of TMAO, blood pressure measurement, echocardiography, and histopathology of the heart and arteries were evaluated. Results No significant association of TC with hypertension was observed but the trend for ORs of hypertension was decreased with the increased level of TC. Negative association between TC and BP was significant in quintile 4 and quintile 5 range of TC, and the negative trend was significant. The SHR-TMAO groups showed significant higher urine output levels in contrast with the SHR-water group. No difference of diastolic BP was observed, but there was a trend towards lower systolic BP with the increase doses of TMAO in the SHR group. The SHR 1 g/L TMAO rats had a remarkably lower systolic blood pressure than the SHR-water group. Echocardiography showed a diastolic dysfunction alleviating effect in the 1 g/L TMAO group. Conclusion High TC intake was not linked to elevated risk of hypertension. An inverse relationship of choline intake with systolic BP was observed. The mechanism for the beneficial effect of TC might be associated with the diuretic effect of its metabolite TMAO.
Collapse
|
11
|
Ge P, Zhao Y, Zhai Y, Zhang Q, Ye X, Wang J, Wang R, Zhang Y, Zhang D, Zhao J. Circulating choline pathway nutrients and risk of moyamoya disease. Front Nutr 2022; 9:953426. [PMID: 35978955 PMCID: PMC9376360 DOI: 10.3389/fnut.2022.953426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background Circulating choline pathway nutrients play a critical role in first stroke and recurrent stroke. However, there is limited information available on the effects of choline pathway nutrients on the risk of moyamoya disease (MMD) and its subtypes. We investigated the association between circulating choline and betaine and the incident risk of MMD and its subtypes. Methods The case-control study enrolled 385 patients with MMD [i.e., 110 transient ischemic attack (TIA)-type MMD, 157 infarction-type MMD, and 118 hemorrhagic-type MMD] and 89 matched healthy controls. Results Serum choline and betaine were inversely related to the risk of MMD and its subtypes. The risk of MMD was decreased with each increment in choline level [per 1 μmol increase: odds ratio (OR), 0.756; 95% CI, 0.678–0.843] and betaine level (per 1 μmol increase: OR, 0.952; 95% CI, 0.932–0.972), respectively. When choline and betaine were assessed as quartiles, compared with the lowest quartile of serum choline and betaine levels, those in the highest quartile had a significantly decreased risk of MMD (choline, Q4 vs. Q1: OR, 0.023; 95% CI, 0.005–0.118; betaine, Q4 vs. Q1: OR, 0.058; 95% CI, 0.018–0.184). Conclusions Serum choline and betaine were associated with the decreased risk of MMD and its subtypes.
Collapse
Affiliation(s)
- Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Yaobo Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuanren Zhai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jia Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China.,Department of Neurosurgery, Beijing Hospital, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Wu XM, Yang X, Fan XC, Chen X, Wang YX, Zhang LX, Song JK, Zhao GH. Serum metabolomics in chickens infected with Cryptosporidium baileyi. Parasit Vectors 2021; 14:336. [PMID: 34174965 PMCID: PMC8235856 DOI: 10.1186/s13071-021-04834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background Cryptosporidium baileyi is an economically important zoonotic pathogen that causes serious respiratory symptoms in chickens for which no effective control measures are currently available. An accumulating body of evidence indicates the potential and usefulness of metabolomics to further our understanding of the interaction between pathogens and hosts, and to search for new diagnostic or pharmacological biomarkers of complex microorganisms. The aim of this study was to identify the impact of C. baileyi infection on the serum metabolism of chickens and to assess several metabolites as potential diagnostic biomarkers for C. baileyi infection. Methods Ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) and subsequent multivariate statistical analysis were applied to investigate metabolomics profiles in the serum samples of chickens infected with C. baileyi, and to identify potential metabolites that can be used to distinguish chickens infected with C. baileyi from non-infected birds. Results Multivariate statistical analysis identified 138 differential serum metabolites between mock- and C. baileyi-infected chickens at 5 days post-infection (dpi), including 115 upregulated and 23 downregulated compounds. These metabolites were significantly enriched into six pathways, of which two pathways associated with energy and lipid metabolism, namely glycerophospholipid metabolism and sphingolipid metabolism, respectively, were the most enriched. Interestingly, some important immune-related pathways were also significantly enriched, including the intestinal immune network for IgA production, autophagy and cellular senescence. Nine potential C. baileyi-responsive metabolites were identified, including choline, sirolimus, all-trans retinoic acid, PC(14:0/22:1(13Z)), PC(15:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE(16:1(9Z)/24:1(15Z)), phosphocholine, SM(d18:0/16:1(9Z)(OH)) and sphinganine. Conclusions This is the first report on serum metabolic profiling of chickens with early-stage C. baileyi infection. The results provide novel insights into the pathophysiological mechanisms of C. baileyi in chickens. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04834-y.
Collapse
Affiliation(s)
- Xue-Mei Wu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Xin Yang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Xian-Cheng Fan
- Center of Animal Disease Prevention and Control of Huyi District, Xi'an, 710300, People's Republic of China
| | - Xi Chen
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Yu-Xin Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Long-Xian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Jun-Ke Song
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Guang-Hui Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China.
| |
Collapse
|