1
|
Gilad Y, Shimon O, Han SJ, Lonard DM, O’Malley BW. Steroid receptor coactivators in Treg and Th17 cell biology and function. Front Immunol 2024; 15:1389041. [PMID: 38698860 PMCID: PMC11063348 DOI: 10.3389/fimmu.2024.1389041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Steroid receptor coactivators (SRCs) are master regulators of transcription that play key roles in human physiology and pathology. SRCs are particularly important for the regulation of the immune system with major roles in lymphocyte fate determination and function, macrophage activity, regulation of nuclear factor κB (NF-κB) transcriptional activity and other immune system biology. The three members of the p160 SRC family comprise a network of immune-regulatory proteins that can function independently or act in synergy with each other, and compensate for - or moderate - the activity of other SRCs. Recent evidence indicates that the SRCs are key participants in governing numerous aspects of CD4+ T cell biology. Here we review findings that establish the SRCs as essential regulators of regulatory T cells (Tregs) and T helper 17 (Th17) cells, with a focus on their crucial roles in Treg immunity in cancer and Treg-Th17 cell phenotypic plasticity.
Collapse
Affiliation(s)
- Yosi Gilad
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
| | - Ortal Shimon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Doostmohammadi A, Jooya H, Ghorbanian K, Gohari S, Dadashpour M. Potentials and future perspectives of multi-target drugs in cancer treatment: the next generation anti-cancer agents. Cell Commun Signal 2024; 22:228. [PMID: 38622735 PMCID: PMC11020265 DOI: 10.1186/s12964-024-01607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Cancer is a major public health problem worldwide with more than an estimated 19.3 million new cases in 2020. The occurrence rises dramatically with age, and the overall risk accumulation is combined with the tendency for cellular repair mechanisms to be less effective in older individuals. Conventional cancer treatments, such as radiotherapy, surgery, and chemotherapy, have been used for decades to combat cancer. However, the emergence of novel fields of cancer research has led to the exploration of innovative treatment approaches focused on immunotherapy, epigenetic therapy, targeted therapy, multi-omics, and also multi-target therapy. The hypothesis was based on that drugs designed to act against individual targets cannot usually battle multigenic diseases like cancer. Multi-target therapies, either in combination or sequential order, have been recommended to combat acquired and intrinsic resistance to anti-cancer treatments. Several studies focused on multi-targeting treatments due to their advantages include; overcoming clonal heterogeneity, lower risk of multi-drug resistance (MDR), decreased drug toxicity, and thereby lower side effects. In this study, we'll discuss about multi-target drugs, their benefits in improving cancer treatments, and recent advances in the field of multi-targeted drugs. Also, we will study the research that performed clinical trials using multi-target therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Ali Doostmohammadi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Jooya
- Biochemistry Group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Kimia Ghorbanian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sargol Gohari
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
3
|
Gilad Y, Lonard DM, O’Malley BW. Steroid receptor coactivators - their role in immunity. Front Immunol 2022; 13:1079011. [PMID: 36582250 PMCID: PMC9793089 DOI: 10.3389/fimmu.2022.1079011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Steroid Receptor Coactivators (SRCs) are essential regulators of transcription with a wide range of impact on human physiology and pathology. In immunology, SRCs play multiple roles; they are involved in the regulation of nuclear factor-κB (NF-κB), macrophage (MΦ) activity, lymphoid cells proliferation, development and function, to name just a few. The three SRC family members, SRC-1, SRC-2 and SRC-3, can exert their immunological function either in an independent manner or act in synergy with each other. In certain biological contexts, one SRC family member can compensate for lack of activity of another member, while in other cases one SRC can exert a biological function that competes against the function of another family counterpart. In this review we illustrate the diverse biological functionality of the SRCs with regard to their role in immunity. In the light of recent development of SRC small molecule inhibitors and stimulators, we discuss their potential relevance as modulators of the immunological activity of the SRCs for therapeutic purposes.
Collapse
Affiliation(s)
- Yosi Gilad
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States,CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States,*Correspondence: Yosi Gilad, ; David M. Lonard, ; Bert W. O’Malley,
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States,CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States,*Correspondence: Yosi Gilad, ; David M. Lonard, ; Bert W. O’Malley,
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States,CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States,*Correspondence: Yosi Gilad, ; David M. Lonard, ; Bert W. O’Malley,
| |
Collapse
|
4
|
SRC-3, a Steroid Receptor Coactivator: Implication in Cancer. Int J Mol Sci 2021; 22:ijms22094760. [PMID: 33946224 PMCID: PMC8124743 DOI: 10.3390/ijms22094760] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Steroid receptor coactivator-3 (SRC-3), also known as amplified in breast cancer 1 (AIB1), is a member of the SRC family. SRC-3 regulates not only the transcriptional activity of nuclear receptors but also many other transcription factors. Besides the essential role of SRC-3 in physiological functions, it also acts as an oncogene to promote multiple aspects of cancer. This review updates the important progress of SRC-3 in carcinogenesis and summarizes its mode of action, which provides clues for cancer therapy.
Collapse
|
5
|
Theodosi A, Ouzounis S, Kostopoulos S, Glotsos D, Kalatzis I, Asvestas P, Tzelepi V, Ravazoula P, Cavouras D, Sakellaropoulos G. Employing machine learning and microscopy images of AIB1-stained biopsy material to assess the 5-year survival of patients with colorectal cancer. Microsc Res Tech 2021; 84:2421-2433. [PMID: 33929071 DOI: 10.1002/jemt.23797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/04/2021] [Accepted: 04/10/2021] [Indexed: 01/07/2023]
Abstract
Our purpose was to employ microscopy images of amplified in breast cancer 1 (AIB1)-stained biopsy material of patients with colorectal cancer (CRC) to: (a) find statistically significant differences (SSDs) in the texture and color of the epithelial gland tissue, between 5-year survivors and non-survivors after the first diagnosis and (b) employ machine learning (ML) methods for predicting the CRC-patient 5-year survival. We collected biopsy material from 54 patients with diagnosed CRC from the archives of the University Hospital of Patras, Greece. Twenty-six of the patients had survived 5 years after the first diagnosis. We selected regions of interest containing the epithelial gland at different microscope lens magnifications. We computed 69 textural and color features. Furthermore, we identified features with SSDs between the two groups of patients and we designed a supervised ML system for predicting the CRC-patient 5-year survival. Additionally, we employed the VGG16 pretrained convolution neural network to extract deep learning (DL) features, the support vector machines classifier, and the bootstrap cross-validation method for boosting the accuracy of predicting 5-year survival. Fourteen features sustained SSDs between the two groups of patients. The supervised ML system achieved 87% accuracy in predicting 5-year survival. In comparison, the DL system, using images from all magnifications, gave 97% classification accuracy. Glandular texture in 5-year non-survivors appeared to be of lower contrast, coarseness, roughness, local pixel correlation, and lower AIB1 variation, all indicating loss of textural definition. The supervised ML system revealed useful information regarding features that discriminate between 5-year survivors and non-survivors while the DL system displayed superior accuracy by employing DL features.
Collapse
Affiliation(s)
- Angeliki Theodosi
- Department of Medical Physics, School of Health Sciences, Faculty of Medicine, University of Patras, Patras, Greece
| | - Sotiris Ouzounis
- Department of Biomedical Engineering, Medical Image and Signal Processing Laboratory, University of West Attica, Athens, Greece
| | - Spiros Kostopoulos
- Department of Biomedical Engineering, Medical Image and Signal Processing Laboratory, University of West Attica, Athens, Greece
| | - Dimitris Glotsos
- Department of Biomedical Engineering, Medical Image and Signal Processing Laboratory, University of West Attica, Athens, Greece
| | - Ioannis Kalatzis
- Department of Biomedical Engineering, Medical Image and Signal Processing Laboratory, University of West Attica, Athens, Greece
| | - Pantelis Asvestas
- Department of Biomedical Engineering, Medical Image and Signal Processing Laboratory, University of West Attica, Athens, Greece
| | - Vassiliki Tzelepi
- Department of Pathology, University Hospital of Patras, Patras, Greece
| | | | - Dionisis Cavouras
- Department of Biomedical Engineering, Medical Image and Signal Processing Laboratory, University of West Attica, Athens, Greece
| | - George Sakellaropoulos
- Department of Medical Physics, School of Health Sciences, Faculty of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
6
|
Zhang D, Dai J, Pan Y, Wang X, Qiao J, Sasano H, Zhao B, McNamara KM, Guan X, Liu L, Zhang Y, Chan MSM, Cao S, Liu M, Song S, Wang L. Overexpression of PELP1 in Lung Adenocarcinoma Promoted E 2 Induced Proliferation, Migration and Invasion of the Tumor Cells and Predicted a Worse Outcome of the Patients. Pathol Oncol Res 2021; 27:582443. [PMID: 34257530 PMCID: PMC8262236 DOI: 10.3389/pore.2021.582443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 02/10/2021] [Indexed: 11/13/2022]
Abstract
The expression of Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) has been reported to be dysregulated in non-small cell lung carcinoma, especially in lung adenocarcinoma (LUAD). Therefore, we aimed to investigate the functional and prognostic roles of PELP1 in LUAD in this study. We first immunolocalized PELP1 in 76 cases of LUAD and 17 non-pathological or tumorous lung (NTL) tissue specimens and correlated the findings with the clinicopathological parameters of the patients. We then performed in vitro analysis including MTT, flow cytometry, wound healing, and transwell assays in order to further explore the biological roles of PELP1 in 17-β-estradiol (E2) induced cell proliferation, migration, and invasion of LUAD cells. We subsequently evaluated the prognostic significance of PELP1 in LUAD patients using the online survival analysis tool Kaplan-Meier Plotter. The status of PELP1 immunoreactivity in LUAD was significantly higher than that in the NTL tissues and significantly positively correlated with less differentiated features of carcinoma cells, positive lymph node metastasis, higher clinical stage as well as the status of ERα, ERβ, and PCNA. In vitro study did reveal that E2 promoted cell proliferation and migration and elevated PELP1 protein level in PELP1-high A549 and H1975 cells but not in PELP1-low H-1299 cells. Knock down of PELP1 significantly attenuated E2 induced cell proliferation, colony formation, cell cycle progress as well as migration and invasion of A549 and H1975 cells. Kaplan-Meier Plotter revealed that LUAD cases harboring higher PELP1 expression had significantly shorter overall survival. In summary, PELP1 played a pivotal role in the estrogen-induced aggressive transformation of LUAD and could represent adverse clinical outcome of the LUAD patients.
Collapse
Affiliation(s)
- Dongmei Zhang
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| | - Jiali Dai
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China.,Traditional Psychological Unit, The Third Hospital of Daqing, Daqing, China
| | - Yu Pan
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| | - Xiuli Wang
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| | - Juanjuan Qiao
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Baoshan Zhao
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| | - Keely M McNamara
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Xue Guan
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| | - Lili Liu
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| | - Yanzhi Zhang
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| | - Monica S M Chan
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Shuwen Cao
- Department of Pathology, Daqing Oilfield General Hospital, Daqing, China
| | - Ming Liu
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China.,Department of Pathology, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Sihang Song
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| | - Lin Wang
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| |
Collapse
|
7
|
Jahangiri R, Mosaffa F, Emami Razavi A, Teimoori-Toolabi L, Jamialahmadi K. PAX2 promoter methylation and AIB1 overexpression promote tamoxifen resistance in breast carcinoma patients. J Oncol Pharm Pract 2021; 28:310-325. [PMID: 33509057 DOI: 10.1177/1078155221989404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Disease recurrence is an important obstacle in estrogen receptor positive (ER+) tamoxifen treated breast carcinoma patients. Tamoxifen resistance-related molecular mechanisms are not fully understood. Alteration in DNA methylation which contributes to transcriptional regulation of cancer-related genes plays a crucial role in tamoxifen response. In the present study, the contribution of promoter methylation and mRNA expression of PAX2 and AIB1 in the development of breast carcinoma and tamoxifen refractory was assessed. METHODS Methylation specific-high resolution melting (MS-HRM) analysis and Real-time quantitative PCR (RT-qPCR) experiment were performed to analyze the promoter methylation and mRNA expression levels of PAX2 and AIB1 genes in 102 breast tumors and adjacent normal breast specimens. RESULTS We indicated that PAX2 expression is decreased in breast tissues due to hypermethylation in its promoter region. Compared to the adjacent normal tissues, the tumors exhibited significantly lower relative mRNA levels of PAX2 and increased expression of AIB1. Aberrant promoter methylation of PAX2 and overexpression of AIB1 was observed in tamoxifen resistance patients compared to the sensitive ones. Cox regression analysis exhibited that the increased promoter methylation status of PAX2 and overexpression of AIB1 remained as unfavorable identifiers which influence patients' survival independently. CONCLUSIONS Our results revealed that the aberration in PAX2 promoter methylation and AIB1 overexpression are associated with the tamoxifen response in breast carcinoma patients. Further research is needed to demonstrate the potential of using PAX2 and AIB1 expression and their methylation-mediated regulation as predictive or prognostic biomarkers or as a new target therapy for better disease management.
Collapse
Affiliation(s)
- Rosa Jahangiri
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Yao C, Su L, Zhang F, Zhu X, Zhu Y, Wei L, Jiao X, Hou Y, Chen X, Wang W, Wang J, Zhu X, Zou C, Zhu S, Xu Z. Thevebioside, the active ingredient of traditional Chinese medicine, promotes ubiquitin-mediated SRC-3 degradation to induce NSCLC cells apoptosis. Cancer Lett 2020; 493:167-177. [PMID: 32829007 DOI: 10.1016/j.canlet.2020.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/15/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Non-small cell lung cancer (NSCLC) accounts for more than 85% of lung cancer with high incidence and mortality. Accumulating studies have shown that traditional Chinese medicine (TCM) and its active ingredients have good anti-tumor activity. However, the anti-tumor effect of Thevebioside (THB), an active ingredient from TCM, is still unknown in NSCLC. In this study, to our best knowledge, it was the first time to report the underlying mechanism of its tumor-suppressive activity in NSCLC based on our previous high-throughput screening data. We further demonstrated that THB effectively inhibited the proliferation of NSCLC cells (A549 and H460) by inducing cellular apoptosis rather than cell cycle arrest. Notably, it was demonstrated that SRC-3 was significantly down-regulated after THB treatment dependent on ubiquitin-proteasome-mediated degradation, which subsequently inhibited the IGF-1R-PI3K-AKT signaling pathway and promoted apoptosis via both in vivo and in vitro experiments. Collectively, THB exerted inhibitory effect on tumor growth of NSCLC through inhibiting SRC-3 mediated IGF-1R-PI3K-AKT signaling by ubiquitination to induce cellular apoptosis with minimal toxicity no matter in vitro or vivo.
Collapse
Affiliation(s)
- Chao Yao
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lin Su
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fei Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200092, China
| | - Xiaowen Zhu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yangzhuangzhuang Zhu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Luyao Wei
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoning Jiao
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yifei Hou
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao Chen
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wantao Wang
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Wang
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiandan Zhu
- Experimental Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chunpu Zou
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shiguo Zhu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zihang Xu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Elevated SRC3 expression predicts pemetrexed resistance in lung adenocarcinoma. Biomed Pharmacother 2020; 125:109958. [PMID: 32036219 DOI: 10.1016/j.biopha.2020.109958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/12/2020] [Accepted: 01/23/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has been the leading cause of cancer-related death for many years worldwide. Pemetrexed, either as monotherapy or combined with other agents, is the preferred chemotherapy regimen for lung adenocarcinoma. However, both de novo and acquired resistance against pemetrexed frequently occur and lead to poor prognosis of patients. The underlying mechanisms remain poorly characterized. Here, RNA-seq analysis is utilized to compare gene expression levels in an adenocarcinoma cell line A549 with those in its pemetrexed-resistant counterpart, A549/PEM. We show that SRC3 is one of the most significantly upregulated genes in pemetrexed-resistant cells. SRC3 specifically enhances pemetrexed resistance in cultured adenocarcinoma cells. In addition, SRC3 increases pemetrexed resistance by decreasing chemotherapy-induced apoptosis via downregulating ROS level. Mechanistically, SRC3 enhances pemetrexed resistance via regulating Nrf2 and AKT signaling pathway. High SRC3 expression is positively correlated with decreased responsiveness to pemetrexed rather than other chemotherapeutic agents and predicts a poorer clinical outcome in lung adenocarcinoma patients. These data indicate that knockdown of SRC3 may be useful to treat pemetrexed-resistant lung cancer and may also provide a specific biomarker to predict pemetrexed responsiveness in lung cancer.
Collapse
|
10
|
Overexpression of amplified in breast cancer 1 (AIB1) gene promotes lung adenocarcinoma aggressiveness in vitro and in vivo by upregulating C-X-C motif chemokine receptor 4. Cancer Commun (Lond) 2018; 38:53. [PMID: 30103827 PMCID: PMC6090807 DOI: 10.1186/s40880-018-0320-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 07/11/2018] [Indexed: 02/08/2023] Open
Abstract
Background We previously found that overexpression of the gene known as amplified in breast cancer 1 (AIB1) was associated with lymph node metastasis and poor prognosis in patients with lung adenocarcinoma. However, the role of AIB1 in that malignancy remains unknown. The present study aimed to investigate the function of AIB1 in the process of lung adenocarcinoma cell metastasis. Methods A series of in vivo and in vitro assays were performed to elucidate the function of AIB1, while real-time PCR and Western blotting were utilized to identify the potential downstream targets of AIB1 in the process of lung adenocarcinoma metastasis. Rescue experiments and in vitro assays were performed to investigate whether the invasiveness of AIB1-induced lung adenocarcinoma was mediated by C-X-C motif chemokine receptor 4 (CXCR4). Results The ectopic overexpression of AIB1 in lung adenocarcinoma cells substantially enhanced cell migration and invasive abilities in vitro and tumor metastasis in vivo, whereas the depletion of AIB1 expression substantially inhibited lung adenocarcinoma cell migration and invasion. CXCR4 was identified as a potential downstream target of AIB1 in lung adenocarcinoma. The knockdown of AIB1 greatly reduced CXCR4 gene expression at both the transcription and protein levels, whereas the knockdown of CXCR4 in cells with AIB1 ectopic overexpression diminished AIB1-induced migration and invasion in vitro and tumor metastasis in vivo. Furthermore, we found a significant positive association between the expression of AIB1 and CXCR4 in lung adenocarcinoma patients (183 cases), and the co-overexpression of AIB1 and CXCR4 predicted the poorest prognosis. Conclusions These findings suggest that AIB1 promotes the aggressiveness of lung adenocarcinoma in vitro and in vivo by upregulating CXCR4 and that it might be usable as a novel prognostic marker and/or therapeutic target for this disease. Electronic supplementary material The online version of this article (10.1186/s40880-018-0320-1) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Chen L, Wang C, Zhang X, Gao K, Liu R, Shi B, Hou P. AIB1 Genomic Amplification Predicts Poor Clinical Outcomes in Female Glioma Patients. J Cancer 2016; 7:2052-2060. [PMID: 27877220 PMCID: PMC5118668 DOI: 10.7150/jca.16069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/14/2016] [Indexed: 11/05/2022] Open
Abstract
Amplified in breast cancer 1 (AIB1) gene, a coactivator for steroid receptor, is frequently amplified in diverse cancers and is considered as an oncogene in tumorigenesis. However, the prognostic significance of AIB1 amplification in gliomas remains totally unclear. In this study, 115 gliomas and 16 benign meningiomas as control subjects were enrolled, and the copy number of AIB1 was analyzed in these samples. In addition, we explored potential correlation of AIB1 amplification with clinicopathological characteristics and clinical outcomes of glioma patients. Our data showed that glioma samples exhibited a significantly higher AIB1 copy number than control subjects as determined by quantitative polymerase chain reaction (qPCR) approach. Moreover, univariate analysis showed that AIB1 amplification (≥3.5 copies) was strongly correlated with cancer-related death (P =0.03). Interestingly, our data revealed a significant association of AIB1 amplification with WHO grade (P =0.03), tumor recurrence (P =0.03) and survival status (P =0.03) in female patients but not in male patients. Multivariate analysis further demonstrated that AIB1 amplification was independent factor for cancer-related death in female patients. Importantly, AIB1 amplification was closely relevant to worse survival in female patients (P =0.001), but not in male patients (P =1.00). In addition, the patients with AIB1 amplification were resistant to radiotherapy. Altogether, our data demonstrate that AIB1 amplification is a common genetic event in glioma tumorigenesis, and suggest that AIB1 amplification is not only a prognostic factor for poor clinical outcomes in glioma patients, but also a predictor of radiotherapy resistance in gliomas.
Collapse
Affiliation(s)
- Lihong Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, The People's Republic of China
| | - Changwei Wang
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, The People's Republic of China
| | - Xinyuan Zhang
- Department of Biochemistry, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Ke Gao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, The People's Republic of China
| | - Rui Liu
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, The People's Republic of China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, The People's Republic of China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, The People's Republic of China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, The People's Republic of China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, The People's Republic of China
| |
Collapse
|
12
|
Lonard DM, O'Malley BW. Molecular Pathways: Targeting Steroid Receptor Coactivators in Cancer. Clin Cancer Res 2016; 22:5403-5407. [PMID: 27654711 DOI: 10.1158/1078-0432.ccr-15-1958] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 11/16/2022]
Abstract
Coactivators represent a large class of proteins that partner with nuclear receptors and other transcription factors to regulate gene expression. Given their pleiotropic roles in the control of transcription, coactivators have been implicated in a broad range of human disease states, including cancer. This is best typified by the three members of the steroid receptor coactivator (SRC) family, each of which integrates steroid hormone signaling and growth factor pathways to drive oncogenic gene expression programs in breast, endometrial, ovarian, prostate, and other cancers. Because of this, coactivators represent emerging targets for cancer therapeutics, and efforts are now being made to develop SRC-targeting agents, such as the SI-2 inhibitor and the novel SRC stimulator, MCB-613, that are able to block cancer growth in cell culture and animal model systems. Here, we will discuss the mechanisms through which coactivators drive cancer progression and how targeting coactivators represent a novel conceptual approach to combat tumor growth that is distinct from the use of other targeted therapeutic agents. We also will describe efforts to develop next-generation SRC inhibitors and stimulators that can be taken into the clinic for the treatment of recurrent, drug-resistant cancers. Clin Cancer Res; 22(22); 5403-7. ©2016 AACR.
Collapse
Affiliation(s)
- David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
13
|
Nikolai BC, Lanz RB, York B, Dasgupta S, Mitsiades N, Creighton CJ, Tsimelzon A, Hilsenbeck SG, Lonard DM, Smith CL, O'Malley BW. HER2 Signaling Drives DNA Anabolism and Proliferation through SRC-3 Phosphorylation and E2F1-Regulated Genes. Cancer Res 2016; 76:1463-75. [PMID: 26833126 PMCID: PMC4794399 DOI: 10.1158/0008-5472.can-15-2383] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/22/2015] [Indexed: 12/29/2022]
Abstract
Approximately 20% of early-stage breast cancers display amplification or overexpression of the ErbB2/HER2 oncogene, conferring poor prognosis and resistance to endocrine therapy. Targeting HER2(+) tumors with trastuzumab or the receptor tyrosine kinase (RTK) inhibitor lapatinib significantly improves survival, yet tumor resistance and progression of metastatic disease still develop over time. Although the mechanisms of cytosolic HER2 signaling are well studied, nuclear signaling components and gene regulatory networks that bestow therapeutic resistance and limitless proliferative potential are incompletely understood. Here, we use biochemical and bioinformatic approaches to identify effectors and targets of HER2 transcriptional signaling in human breast cancer. Phosphorylation and activity of the Steroid Receptor Coactivator-3 (SRC-3) is reduced upon HER2 inhibition, and recruitment of SRC-3 to regulatory elements of endogenous genes is impaired. Transcripts regulated by HER2 signaling are highly enriched with E2F1 binding sites and define a gene signature associated with proliferative breast tumor subtypes, cell-cycle progression, and DNA replication. We show that HER2 signaling promotes breast cancer cell proliferation through regulation of E2F1-driven DNA metabolism and replication genes together with phosphorylation and activity of the transcriptional coactivator SRC-3. Furthermore, our analyses identified a cyclin-dependent kinase (CDK) signaling node that, when targeted using the CDK4/6 inhibitor palbociclib, defines overlap and divergence of adjuvant pharmacologic targeting. Importantly, lapatinib and palbociclib strictly block de novo synthesis of DNA, mostly through disruption of E2F1 and its target genes. These results have implications for rational discovery of pharmacologic combinations in preclinical models of adjuvant treatment and therapeutic resistance.
Collapse
Affiliation(s)
- Bryan C Nikolai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Subhamoy Dasgupta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Nicholas Mitsiades
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas. Department of Medicine, Baylor College of Medicine, Houston, Texas. Center for Drug Discovery, Baylor College of Medicine, Houston, Texas
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, Texas. Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas
| | - Anna Tsimelzon
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Carolyn L Smith
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
14
|
Lindskog C, Edlund K, Mattsson JSM, Micke P. Immunohistochemistry-based prognostic biomarkers in NSCLC: novel findings on the road to clinical use? Expert Rev Mol Diagn 2015; 15:471-90. [DOI: 10.1586/14737159.2015.1002772] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Zhao HY, Ma GW, Zou BY, Li M, Lin SX, Zhao LP, Guo Y, Huang Y, Tian Y, Xie D, Zhang L. Prognostic significance of thymidylate synthase in postoperative non-small cell lung cancer patients. Onco Targets Ther 2014; 7:1301-10. [PMID: 25114572 PMCID: PMC4109640 DOI: 10.2147/ott.s65067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The aim of the present study was to investigate the clinicopathologic/prognostic significance of thymidylate synthase (TS), orotate phosphoribosyltransferase (OPRT), and thymidine phosphorylase (TP) proteins in postoperative non-small cell lung cancer (NSCLC) patients. Microarray slides from a set of 178 NSCLC patients were used for the detection of TS, OPRT, and TP expression by immunohistochemistry. The correlation between clinicopathologic factors and protein expression of three proteins was analyzed. Ninety seven carcinomas (57.4%) were TS-positive, 90 carcinomas (53.9%) were OPRT-positive, and 102 carcinomas (69.4%) were TP-positive. Compared with the TS-positive patients, the overall survival (OS) was significantly lower in the TS-negative patients (hazard ratio [HR] =1.766, 95% confidence interval [CI] =1.212–2.573, P=0.003). Significant differences between TS-positive and TS-negative patients was also observed in the following stratified analyses: 1) adenocarcinoma subgroup (HR =2.079, 95% CI =1.235–3.500, P=0.006); 2) less than 60-year-old subgroup (HR =1.890, 95% CI =1.061–3.366, P=0.031); 3) stage II/III subgroup (HR =1.594, 95% CI =1.036–2.453, P=0.034); and 4) surgery plus adjuvant therapy subgroup (HR =1.976, 95% CI =1.226–3.185, P=0.005). However, the OS was not significantly correlated with OPRT or TP protein expression. This study demonstrates that the TS level in tumor tissues may be a useful marker to predict the postoperative OS in NSCLC patients.
Collapse
Affiliation(s)
- Hong-Yun Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Guo-Wei Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Ben-Yan Zou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Mei Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Su-Xia Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Li-Ping Zhao
- Department of Medical Oncology, Zhongshan Hospital of Sun Yat-Sen University, Zhongshan People's City Hospital, Zhongshan, People's Republic of China
| | - Ying Guo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Yan Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Ying Tian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Dan Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Li Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Xin YH, Bian BSJ, Yang XJ, Cui W, Cui HJ, Cui YH, Zhang X, Xu C, Bian XW. POU5F1 enhances the invasiveness of cancer stem-like cells in lung adenocarcinoma by upregulation of MMP-2 expression. PLoS One 2013; 8:e83373. [PMID: 24386189 PMCID: PMC3875455 DOI: 10.1371/journal.pone.0083373] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/01/2013] [Indexed: 11/30/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related human deaths. Exploration of the mechanisms underlying the metastasis of cancer stem-like cells (CSLCs) will open new avenues in lung cancer diagnosis and therapy. Here, we demonstrated that CSLCs-derived from lung adenocarcinoma (LAC) cells displayed highly invasive and migratory capabilities via expressing high levels of POU5F1 and MMP-2. We found that POU5F1 directly regulated MMP-2 transcription via interaction with the promoter of MMP-2. POU5F1 knockdown in LACSLCs reduced MMP-2 protein abundance, leading to inhibition of the cell invasion, migration and tumorigenesis potentials of LAC cells. Clinically, aberrantly high expressions of POU5F1 and MMP-2 were inversely correlated with the survival of LAC patients, and the double-positive POU5F1 and MMP-2 showed the worst prediction for the patient’s poor survival. These results indicate that POU5F1 can bind to the MMP-2 promoter for the degradation of surrounding extracellular matrix, and therefore promote invasive and migratory capabilities of LACSLCs. Moreover, our data implicate that the pathological detection of the double-positive expressions for POU5F1 and MMP-2 will be useful as diagnostic and prognostic biomarkers in LAC to advance anti-metastasis therapy.
Collapse
Affiliation(s)
- Yan-hong Xin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Bai-shi-jiao Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
- Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xiao-jun Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Wei Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Hong-juan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - You-hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Chuan Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
- Department of Oncology, General Hospital of PLA Chengdu Military Area Command, Chengdu, China
- * E-mail: (CX); (XB)
| | - Xiu-wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
- * E-mail: (CX); (XB)
| |
Collapse
|
17
|
Xu C, Xie D, Yu SC, Yang XJ, He LR, Yang J, Ping YF, Wang B, Yang L, Xu SL, Cui W, Wang QL, Fu WJ, Liu Q, Qian C, Cui YH, Rich JN, Kung HF, Zhang X, Bian XW. β-Catenin/POU5F1/SOX2 transcription factor complex mediates IGF-I receptor signaling and predicts poor prognosis in lung adenocarcinoma. Cancer Res 2013; 73:3181-9. [PMID: 23539445 DOI: 10.1158/0008-5472.can-12-4403] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer stem-like cells (CSLC) are crucial in tumor initiation and progression; however, the underlying mechanism for the self-renewal of cancer cells remains undefined. In the study, immunohistochemical analysis of specimens freshly excised from patients with lung adenocarcinoma showed that high expression of insulin-like growth factor I receptor (IGF-IR) in lung adenocarcinoma cells was positively correlated with the expressions of cancer stem cell markers CD133 and aldehyde dehydrogenase 1 family member A1 (ALDH1A1). IGF-IR activation enhanced POU class 5 homeobox 1 (POU5F1) expression on human lung adenocarcinoma stem-like cells (LACSLC) through PI3K/AKT/GSK3β/β-catenin cascade. POU5F1 could form a novel complex with β-catenin and SOX2 to bind Nanog promoter for transcription to maintain self-renewal of LACSLCs, which was dependent on the functional IGF-IR. Genetic and pharmacologic inhibition of IGF-IR abrogated LACSLC capabilities for self-renewal and tumorigenicity in vitro. In an in vivo xenograft tumor model, knockdown of either IGF-IR or POU5F1 impeded tumorigenic potentials of LACSLCs. By analyzing pathologic specimens excised from 200 patients with lung adenocarcinoma, we found that colocalization of highly expressed IGF-IR with β-catenin and POU5F1 predicted poor prognosis. Taken together, we show that IGF-IR-mediated POU5F1 expression to form a complex with β-catenin and SOX2 is crucial for the self-renewal and oncogenic potentials of LACSLCs, and the integrative clinical detection of the expressions of IGF-IR, β-catenin, and POU5F1 is indicatory for predicting prognosis in the patients of lung adenocarcinoma.
Collapse
Affiliation(s)
- Chuan Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhao H, Huang Y, Xue C, Chen Y, Hou X, Guo Y, Zhao L, Hu ZH, Huang Y, Luo Y, Zhang L. Prognostic significance of the combined score of endothelial expression of nucleolin and CD31 in surgically resected non-small cell lung cancer. PLoS One 2013; 8:e54674. [PMID: 23382938 PMCID: PMC3561357 DOI: 10.1371/journal.pone.0054674] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022] Open
Abstract
Nucleolin is implicated to play a role in angiogenesis, a vital process in tumor growth and metastasis. However, the presence and clinical relevance of nucleolin in human non small cell lung cancer (NSCLC) remains largely unknown. In this study, we explored the expression and prognostic implication of nucleolin in surgically resected NSCLC patients. A cohort of 146 NSCLC patients who underwent surgical resection was selected for tissue microarray. In this tissue microarray, nucleolin expression was measured by immunofluorescence. Staining for CD31, a marker of endothelial cells, was performed to mark blood vessels. A Cox proportional hazards model was used to assess the prognostic significance of nucleolin. Nucleolin expression was observed in 34.2% of all patients, and 64.1% in high CD31 expression patients. The disease-free survival (DFS) was significantly shorter in patients with high nucleolin (CD31(hi)NCL(hi)) compared to patients with low tumor blood vessels (CD31(lo)NCL(lo)) (5 ys of DFS 24% vs 64%, p = 0.002). Such a difference was demonstrated in the following stratified analyses: stage I (p<0.001), squamous cell carcinoma and adenosquamous cell carcinoma (p = 0.028), small tumor (<5 cm, p = 0.008), and surgery alone (p = 0.015). Multivariate analysis further revealed that nucleolin expression independently predicted for worse survival (p = 0.003). This study demonstrates that nucleolin is associated with the clinical outcomes in postoperative NSCLC patients. Thus, the expression levels of nucleolin may provide a new prognostic marker to identify patients at higher risk for treatment failure, especially in some subgroups.
Collapse
Affiliation(s)
- Hongyun Zhao
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yan Huang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Cong Xue
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yang Chen
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, Beijing Key Laboratory for Protein Therapeutics, and Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xue Hou
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Ying Guo
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Liping Zhao
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhi huang Hu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yujie Huang
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, Beijing Key Laboratory for Protein Therapeutics, and Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongzhang Luo
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, Beijing Key Laboratory for Protein Therapeutics, and Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
19
|
Wei J, Cheang T, Tang B, Xia H, Xing Z, Chen Z, Fang Y, Chen W, Xu A, Wang S, Luo J. The inhibition of human bladder cancer growth by calcium carbonate/CaIP6 nanocomposite particles delivering AIB1 siRNA. Biomaterials 2013; 34:1246-54. [DOI: 10.1016/j.biomaterials.2012.09.068] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/26/2012] [Indexed: 12/31/2022]
|
20
|
Tyrosine-Protein Phosphatase Nonreceptor Type 12 Is a Novel Prognostic Biomarker for Esophageal Squamous Cell Carcinoma. Ann Thorac Surg 2012; 93:1674-80. [DOI: 10.1016/j.athoracsur.2011.12.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 12/11/2022]
|
21
|
Song JM, Lu M, Liu FF, Du XJ, Xing BC. AIB1 as an independent prognostic marker in hepatocellular carcinoma after hepatic resection. J Gastrointest Surg 2012; 16:356-60. [PMID: 22052107 DOI: 10.1007/s11605-011-1762-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 10/16/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND Amplified in breast cancer 1 (AIB1) has been shown to promote growth and invasion in several types of human cancers and to have a prognostic role in some of cancers. However, its prognostic significance in hepatocellular carcinoma (HCC) remains unknown. This study aimed to address the issue. METHODS Immunohistochemical staining of AIB1 was performed for HCC and paired paratumorous liver (PTL) tissues from 139 patients. Associations between AIB1 expression with clinicopathological variables and patient survival were evaluated. RESULTS The expression rate of AIB1 was significantly higher in HCC (71/139, 51.1%) than in PTL tissues (1/139, 0.72%, P < 0.001). AIB1 expression in HCC was significantly associated with serum α-fetoprotein levels (P = 0.001) and Edmondson-Steiner grade (P = 0.038). Higher AIB1 expression in HCC was associated with shorter cumulative overall survival of the patients. Multivariate Cox regression analysis revealed that AIB1 was of independent prognostic significance for HCC. CONCLUSIONS AIB1 is independently associated with poor prognosis of HCC.
Collapse
Affiliation(s)
- Jun-Min Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepatic, Biliary, and Pancreatic Surgery Unit I, Peking University School of Oncology, Beijing Cancer Hospital and Institute, 52 Fu Cheng Road, Beijing, 100142, China
| | | | | | | | | |
Collapse
|
22
|
Johnson AB, O'Malley BW. Steroid receptor coactivators 1, 2, and 3: critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol Cell Endocrinol 2012; 348:430-9. [PMID: 21664237 PMCID: PMC3202666 DOI: 10.1016/j.mce.2011.04.021] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 04/04/2011] [Accepted: 04/22/2011] [Indexed: 01/17/2023]
Abstract
Coactivators are a diverse group of non-DNA binding proteins that induce structural changes in agonist-bound nuclear receptors (NRs) that are essential for NR-mediated transcriptional activation. Once bound, coactivators function to bridge enhancer binding proteins to the general transcription machinery, as well as to recruit secondary coactivators that modify promoter and enhancer chromatin in a manner permissive for transcriptional activation. In the following review article, we focus on one of the most in-depth studied families of coactivators, the steroid receptor coactivators (SRC) 1, 2, and 3. SRCs are widely implicated in NR-mediated diseases, especially in cancers, with the majority of studies focused on their roles in breast cancer. We highlight the relevant literature supporting the oncogenic activity of SRCs and their future as diagnostic and prognostic indicators. With much interest in the development of selective receptor modulators (SRMs), we focus on how these coactivators regulate the interactions between SRMs and their respective NRs; and, importantly, the influence that coactivators have on the functional output of SRMs. Furthermore, we speculate that coactivator-specific inhibitors could provide powerful, all-encompassing treatments that target multiple modes of oncogenic regulation in cancers resistant to typical anti-endocrine treatments.
Collapse
Affiliation(s)
- Amber B Johnson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | | |
Collapse
|
23
|
Prognostic value of novel biomarkers in astrocytic brain tumors: nuclear receptor co-regulators AIB1, TIF2, and PELP1 are associated with high tumor grade and worse patient prognosis. J Neurooncol 2011; 106:23-31. [PMID: 21735116 DOI: 10.1007/s11060-011-0637-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/17/2011] [Indexed: 02/06/2023]
Abstract
Estrogen receptors alpha (ERα) and beta (ERβ) and their co-regulatory proteins are key components of complex signaling networks that specifically regulate the growth and development of various tissues and tumors. Still, their protein expression profiles and possible role in the pathogenesis of astrocytic tumors remain largely unknown. The purpose of the present study is to evaluate the differential protein expression of ΕRα, ERβ, and their co-activators, AIB1, TIF2, and PELP1 in astrocytic tumors of World Health Organization (WHO) grade II-IV, using immunohistochemistry. Potential correlations with clinicopathological parameters and patient prognosis were also explored. ERα protein expression was undetectable while ERβ levels were significantly decreased with progression of tumor grade (P < 0.001). High expression of ERβ was an independent favorable prognostic factor on multivariate analysis (P = 0.003). Expression of AIB1, TIF2, and PELP1 was not correlated with ERβ expression and followed an opposite trend, with increasing levels in high-grade relative to low-grade tumors (P < 0.001). Univariate survival analysis revealed that high AIB1, TIF2, and PELP1 expression was associated with worse prognosis (P = 0.049, P = 0.033, and P = 0.020, respectively). ERβ and ER co-activators AIB1, TIF2, and PELP1 appear to play an important role in the pathogenesis and progression of astrocytic tumors and might have prognostic significance. The mechanisms underlying their involvement in astrocytic tumorigenesis, as well as their utility for prognostic and therapeutic purposes merit further investigation.
Collapse
|
24
|
Current World Literature. Curr Opin Pulm Med 2011. [DOI: 10.1097/mcp.0b013e328348331c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Ma G, Ren Y, Wang K, He J. SRC-3 has a role in cancer other than as a nuclear receptor coactivator. Int J Biol Sci 2011; 7:664-72. [PMID: 21647249 PMCID: PMC3107475 DOI: 10.7150/ijbs.7.664] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/01/2011] [Indexed: 01/01/2023] Open
Abstract
Steroid receptor coactivator-3 (SRC-3), also known as AIB1, is a member of the p160 steroid receptor coactivator family. Since SRC-3 was found to be amplified in breast cancer in 1997, the role of SRC-3 in cancer has been broadly investigated. SRC-3 initially was identified as a transcriptional coactivator for nuclear receptors such as the estrogen receptor (ER), involved in the proliferation of hormone-dependent cancers. However, increasing clinical evidence shows that dysregulation of SRC-3 expression in several human hormone-independent cancers is correlated with pathological factors and clinical prognosis. Recently, both in vivo and in vitro studies demonstrate that SRC-3 may influence a number of cancer cellular processes in several ways independent of nuclear receptor signaling. In addition, an SRC-3 transgenic mice model shows that SRC-3 induces tumors in several mouse tissues. These results indicate that the role of SRC-3 in cancer is not just as a nuclear receptor coactivator. The focus of this review is to examine possible SRC-3 roles in cancer, other than as a nuclear receptor coactivator.
Collapse
Affiliation(s)
- Gang Ma
- Department of Surgical Oncology, First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P. R. China
| | | | | | | |
Collapse
|
26
|
Cai D, Shames DS, Raso MG, Xie Y, Kim YH, Pollack JR, Girard L, Sullivan JP, Gao B, Peyton M, Nanjundan M, Heymach J, Mills G, Gazdar AF, Wistuba I, Kodadek TJ, Minna JD. Steroid receptor coactivator-3 expression in lung cancer and its role in the regulation of cancer cell survival and proliferation. Cancer Res 2010; 70:6477-85. [PMID: 20663904 PMCID: PMC2922434 DOI: 10.1158/0008-5472.can-10-0005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Steroid receptor coactivator-3 (SRC-3) is a histone acetyltransferase and nuclear hormone receptor coactivator, located on 20q12, which is amplified in several epithelial cancers and well studied in breast cancer. However, its possible role in lung cancer pathogenesis is unknown. We found SRC-3 to be overexpressed in 27% of non-small cell lung cancer (NSCLC) patients (n = 311) by immunohistochemistry, which correlated with poor disease-free (P = 0.0015) and overall (P = 0.0008) survival. Twenty-seven percent of NSCLCs exhibited SRC-3 gene amplification, and we found that lung cancer cell lines expressed higher levels of SRC-3 than did immortalized human bronchial epithelial cells (HBEC), which in turn expressed higher levels of SRC-3 than did cultured primary human HBECs. Small interfering RNA-mediated downregulation of SRC-3 in high-expressing, but not in low-expressing, lung cancer cells significantly inhibited tumor cell growth and induced apoptosis. Finally, we found that SRC-3 expression is inversely correlated with gefitinib sensitivity and that SRC-3 knockdown results in epidermal growth factor receptor tyrosine kinase inhibitor-resistant lung cancers becoming more sensitive to gefitinib. Taken together, these data suggest that SRC-3 may be an important oncogene and therapeutic target for lung cancer.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/enzymology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Cell Survival/physiology
- Cetuximab
- Disease-Free Survival
- Drug Synergism
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/metabolism
- Gefitinib
- Gene Dosage
- Gene Knockdown Techniques
- Humans
- Immunohistochemistry
- Lung Neoplasms/drug therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Nuclear Receptor Coactivator 3/antagonists & inhibitors
- Nuclear Receptor Coactivator 3/biosynthesis
- Nuclear Receptor Coactivator 3/genetics
- Protein Kinase Inhibitors/pharmacology
- Quinazolines/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Di Cai
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX
- Division of Translational Research, UT Southwestern Medical Center, Dallas, TX
| | - David S. Shames
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX
| | | | - Yang Xie
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX
| | - Young H Kim
- Department of Pathology, Stanford University Medical Center, Stanford, CA
| | | | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX
| | - James P. Sullivan
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX
| | - Michael Peyton
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida
| | - John Heymach
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX
| | - Gordon Mills
- Department of Molecular Therapeutics, MD Anderson Cancer Center, Houston, TX
| | - Adi F. Gazdar
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX
| | - Ignacio Wistuba
- Department of Pathology, MD Anderson Cancer Center, Houston, TX
| | - Thomas J. Kodadek
- Division of Translational Research, UT Southwestern Medical Center, Dallas, TX
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX
- The Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
27
|
Torres-Arzayus MI, Zhao J, Bronson R, Brown M. Estrogen-dependent and estrogen-independent mechanisms contribute to AIB1-mediated tumor formation. Cancer Res 2010; 70:4102-11. [PMID: 20442283 PMCID: PMC2879596 DOI: 10.1158/0008-5472.can-09-4080] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously reported the oncogenic properties of the gene amplified in breast cancer 1 (AIB1), a member of the p160 family of hormone receptor coactivators. In a transgenic mouse model, AIB1 overexpression resulted in a high incidence of tumors in various tissues, including mammary gland, uterus, lung, and pituitary. To determine whether the AIB1 oncogenicity in this model depended on its function as an estrogen receptor (ER) coactivator, we abolished ER signaling through two independent approaches, by performing ovariectomy on AIB1 transgenic (AIB1-tg) mice to prevent gonadal estrogen production and by crossing AIB1-tg mice with ERalpha-null mutant mice. Ovariectomized (ovx) mice, but not AIB1 x ERalpha-/- mice, still developed mammary gland hyperplasia and ductal carcinoma in situ. Both approaches, however, completely prevented the development of invasive mammary tumors, indicating that invasive mammary tumor formation is strictly estrogen dependent. Once developed, AIB1-induced mammary tumors can subsequently lose their dependence on estrogen: Injection of ERalpha(+) tumor cell lines derived from such tumors into ovx or untreated wild-type mice resulted in a similar rate of tumor growth in both groups. Surprisingly, however, ovx mice had an approximately 4-fold higher rate of metastasis formation, suggesting that estrogen provided some protection from metastasis formation. Lastly, our experiments identified oncogenic functions of AIB1 that are independent of its ER coactivation, as both approaches, ovariectomy and ER-/- crosses, still resulted in a high incidence of tumors in the lung and pituitary. We therefore conclude that AIB1 can exert its oncogenicity through tissue-specific estrogen-dependent and estrogen-independent functions.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Estrogen Receptor alpha/metabolism
- Estrogens/physiology
- Female
- Incidence
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Nuclear Receptor Coactivator 3/antagonists & inhibitors
- Nuclear Receptor Coactivator 3/metabolism
- Ovariectomy
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
Collapse
Affiliation(s)
- Maria I. Torres-Arzayus
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School. 44 Binney Street Boston, MA, 02115
| | - Jin Zhao
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School. 44 Binney Street Boston, MA, 02115
| | - Roderick Bronson
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Myles Brown
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School. 44 Binney Street Boston, MA, 02115
| |
Collapse
|