1
|
Tunio MA, Hinder D, Emery B, Riaz MH, Ibraheem YA, Nayak KK, Mohamed W. Modern Therapeutic Approaches in Anaplastic Thyroid Cancer: A Meta-Analytic Review of Randomised and Single Arm Studies on Efficacy and Survival. Cancers (Basel) 2025; 17:777. [PMID: 40075624 PMCID: PMC11898454 DOI: 10.3390/cancers17050777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Meta-analyses aimed to assess the effectiveness and safety of targeted and contemporary therapies utilised in locally advanced and metastatic anaplastic thyroid cancer (ATC). Methods: Employing PRISMA and MOOSE guidelines, PubMed, Scopus, Cochrane Library and Web of Science were explored from the inception of targeted therapy until December 2024. A meta-analysis was performed to evaluate the effectiveness, toxicity and survival outcomes of various mutationally directed agents, chemotherapy and radiotherapy in locally advanced/metastatic ATC cases. Results: A total of 47 studies (26 prospective phase II trials and 21 retrospective studies) involving 980 patients met the inclusion criteria. The pooled results showed an overall response rate (ORR) of 29.7% (95% CI: 25.4-34.2%; I2 = 42.4%; p < 0.0001). A total of 49.9% deaths were reported, although a significant number remained alive compared to baseline (mean difference [MD]: 2.07, 95% CI: 1.90-2.24; I2 = 88.6%; p < 0.0001). The pooled median progression-free survival (PFS) was 5.4 months (95% CI: 4.0-6.7 months; I2 = 97.9%; p < 0.0001). Dabrafenib/trametinib (DT) with and without pembrolizumab and lenvatinib plus pembrolizumab (LP) were associated with higher ORR rates and improved OS and PFS. About 51.% of studies mentioned bio-marker analysis (BRAFV600 [14.7%], PDL1 [9.2%], RAS [1.1%], PIK3CA [1.0%] and NTRK1/3 [0.7%]). Toxicity was reported in 94.7% of patients. Conclusions: This meta-analysis found that DT could be a promising first-line treatment option for BRAFV600-mutated ATC, with or without immunotherapy. Alternatively, LP shows potential in BRAFV600 wild-type and PDL1-overexpressing cases. Routine biomarker analysis remains critical for optimising ATC management strategies.
Collapse
Affiliation(s)
- Mutahar A. Tunio
- South West Wales Cancer Center, Swansea Bay University Health Board, Singleton Hospital, Swansea SA2 8QA, UK (W.M.)
| | - Donna Hinder
- South West Wales Cancer Center, Swansea Bay University Health Board, Singleton Hospital, Swansea SA2 8QA, UK (W.M.)
| | - Blaise Emery
- South West Wales Cancer Center, Swansea Bay University Health Board, Singleton Hospital, Swansea SA2 8QA, UK (W.M.)
| | - Muhammad H. Riaz
- Department of Medicine, Swansea Bay University Health Board, Swansea SA2 8QA, UK
| | | | - Krishnendu Kumar Nayak
- South West Wales Cancer Center, Swansea Bay University Health Board, Singleton Hospital, Swansea SA2 8QA, UK (W.M.)
| | - Wael Mohamed
- South West Wales Cancer Center, Swansea Bay University Health Board, Singleton Hospital, Swansea SA2 8QA, UK (W.M.)
| |
Collapse
|
2
|
Bronowicka-Szydełko A, Rabczyński M, Dumas I, Fiodorenko-Dumas Ż, Wojtczak B, Kotyra Ł, Kustrzeba-Wójcicka I, Lewandowski Ł, Ponikowska B, Kuzan A, Kluz J, Gamian A, Madziarska K. State of Knowledge About Thyroid Cancers in the Era of COVID-19-A Narrative Review. Biomedicines 2024; 12:2829. [PMID: 39767735 PMCID: PMC11672969 DOI: 10.3390/biomedicines12122829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 01/03/2025] Open
Abstract
Thyroid cancer (TC), due to its heterogeneous nature, remains a clinical challenge. Many factors can initiate the carcinogenesis process of various types of TC, which complicates diagnosis and treatment. The presented review gathers current information on specific types of TC, taking into account the effects of the COVID-19 pandemic. It is likely that COVID-19 has influenced and continues to influence the function of the thyroid gland. A high percentage of patients with COVID-19 showing simultaneous pathological changes in the thyroid suggests that SARS-CoV-2 may disrupt the function of this gland and initiate pro-oxidative mechanisms, inflammatory states, and autoimmune diseases, thereby promoting the formation of neoplastic changes. Furthermore, changes in the expression of the ACE2, TMPRSS2, CLEC4M and DPP4 genes, observed in TC, also occur in COVID-19. Therefore, it is probable that the interaction of SARS-CoV-2 with thyroid cell receptors may initiate carcinogenesis in this gland. Additionally, some drugs used in TC therapy (e.g., levothyroxine) may increase the affinity of SARS-CoV-2 for cells, which could contribute to a more severe course of COVID-19 and the emergence of long-term symptoms (post-COVID-19). Moreover, the consequences of sanitary restrictions (limited access to medical services, reduction in endocrinological and oncological procedures) that took place in many countries during the COVID-19 pandemic may lead in the future to an increased number of missed diagnoses and the emergence of aggressive cancers.
Collapse
Affiliation(s)
- Agnieszka Bronowicka-Szydełko
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.B.-S.); (Ł.K.); (I.K.-W.); (Ł.L.)
| | - Maciej Rabczyński
- Clinical Department of Diabetology, Hypertension and Internal Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (M.R.); (J.K.); (K.M.)
| | - Ilias Dumas
- Department of Clinical Physiotherapy and Rehabilitation, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Żanna Fiodorenko-Dumas
- Department of Clinical Physiotherapy and Rehabilitation, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Beata Wojtczak
- University Center for General and Oncological Surgery, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Łukasz Kotyra
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.B.-S.); (Ł.K.); (I.K.-W.); (Ł.L.)
| | - Irena Kustrzeba-Wójcicka
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.B.-S.); (Ł.K.); (I.K.-W.); (Ł.L.)
| | - Łukasz Lewandowski
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.B.-S.); (Ł.K.); (I.K.-W.); (Ł.L.)
| | - Beata Ponikowska
- Department of Physiology and Pathophysiology, Division of Physiology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Aleksandra Kuzan
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Wroclaw University of Science and Technology, 51-377 Wroclaw, Poland;
| | - Joanna Kluz
- Clinical Department of Diabetology, Hypertension and Internal Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (M.R.); (J.K.); (K.M.)
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimantal Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Katarzyna Madziarska
- Clinical Department of Diabetology, Hypertension and Internal Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (M.R.); (J.K.); (K.M.)
| |
Collapse
|
3
|
Ferrari SM, Patrizio A, Stoppini G, Elia G, Ragusa F, Balestri E, Botrini C, Rugani L, Barozzi E, Mazzi V, La Motta C, Antonelli A, Fallahi P. Recent advances in the use of tyrosine kinase inhibitors against thyroid cancer. Expert Opin Pharmacother 2024; 25:1667-1676. [PMID: 39161995 DOI: 10.1080/14656566.2024.2393281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Oncogenic tyrosine kinases (TK) are enzymes that play a key role in cell growth and proliferation and their mutations can lead to uncontrolled cell growth and development of aggressive cancer. This knowledge has led to the development of new classes of drugs, Tyrosine kinase inhibitors (TKI). They target oncogenic kinases who are associated with advanced radioactive iodine (RAI) refractory TC, which is not able to uptake RAI anymore and/or still grows between consecutive treatments with Iodine 131 (I131). AREAS COVERED Since Lenvatinib and Sorafenib approval, several other molecular inhibitors have been studied and then introduced for the treatment of aggressive and refractory thyroid cancer (TC), and, although the development of adverse effects or tumor resistance mechanisms, more and more compounds are still under investigation. The literature search was executed in PubMed and ClinicalTrials.gov to identify relevant articles and clinical trials published until December 2023. EXPERT OPINION In the context of clinical trials, driven by the presence of specific molecular mutations or even in the absence of both conditions, systemic therapy TKIs are valuable weapons to be used in patients affected by aggressive forms of TC, waiting for further expansion of the treatment landscape with more efficacious and safer drugs.
Collapse
Affiliation(s)
| | - Armando Patrizio
- Department of Emergency Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Giulio Stoppini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Eugenia Balestri
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Chiara Botrini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Licia Rugani
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Emilio Barozzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Valeria Mazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | | | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Sekihara K, Himuro H, Toda S, Saito N, Hirayama R, Suganuma N, Sasada T, Hoshino D. Recent Trends and Potential of Radiotherapy in the Treatment of Anaplastic Thyroid Cancer. Biomedicines 2024; 12:1286. [PMID: 38927493 PMCID: PMC11201408 DOI: 10.3390/biomedicines12061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare but highly aggressive malignancy characterized by advanced disease at diagnosis and a poor prognosis. Despite multimodal therapeutic approaches that include surgery, radiotherapy, and chemotherapy, an optimal treatment strategy remains elusive. Current developments in targeted therapies and immunotherapy offer promising avenues for improved outcomes, particularly for BRAF-mutant patients. However, challenges remain regarding overcoming drug resistance and developing effective treatments for BRAF-wild-type tumors. This comprehensive review examines the clinical and biological features of ATC, outlines the current standards of care, and discusses recent developments with a focus on the evolving role of radiotherapy. Moreover, it emphasizes the necessity of a multidisciplinary approach and highlights the urgent need for further research to better understand ATC pathogenesis and identify new therapeutic targets. Collaborative efforts, including large-scale clinical trials, are essential for translating these findings into improved patient outcomes.
Collapse
Affiliation(s)
- Kazumasa Sekihara
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (K.S.); (S.T.); (N.S.)
- Biospecimen Center, Kanagawa Cancer Center, Yokohama 2418515, Japan
| | - Hidetomo Himuro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (H.H.); (T.S.)
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama 2418515, Japan
| | - Soji Toda
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (K.S.); (S.T.); (N.S.)
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama 2320024, Japan
| | - Nao Saito
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (K.S.); (S.T.); (N.S.)
- Biospecimen Center, Kanagawa Cancer Center, Yokohama 2418515, Japan
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, QST Hospital, National Institutes for Quantum Science and Technology, Chiba 2638555, Japan;
| | - Nobuyasu Suganuma
- Department of Surgery, Yokohama City University, Yokohama 2360004, Japan;
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (H.H.); (T.S.)
| | - Daisuke Hoshino
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (K.S.); (S.T.); (N.S.)
- Biospecimen Center, Kanagawa Cancer Center, Yokohama 2418515, Japan
| |
Collapse
|
5
|
Califano I, Smulever A, Jerkovich F, Pitoia F. Advances in the management of anaplastic thyroid carcinoma: transforming a life-threatening condition into a potentially treatable disease. Rev Endocr Metab Disord 2024; 25:123-147. [PMID: 37648897 DOI: 10.1007/s11154-023-09833-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Anaplastic thyroid cancer (ATC) is an infrequent thyroid tumor that usually occurs in elderly patients. There is often a history of previous differentiated thyroid cancer suggesting a biological progression. It is clinically characterized by a locally invasive cervical mass of rapid onset. Metastases are found at diagnosis in 50% of patients. Due to its adverse prognosis, a prompt diagnosis is crucial. In patients with unresectable or metastatic disease, multimodal therapy (chemotherapy and external beam radiotherapy) has yielded poor outcomes with 12-month overall survival of less than 20%. Recently, significant progress has been made in understanding the oncogenic pathways of ATC, leading to the identification of BRAF V600E mutations as the driver oncogene in nearly 40% of cases. The combination of the BRAF inhibitor dabrafenib (D) and MEK inhibitor trametinib (T) showed outstanding response rates in BRAF-mutated ATC and is now considered the standard of care in this setting. Recently, it was shown that neoadjuvant use of DT followed by surgery achieved 24-month overall survival rates of 80%. Although these approaches have changed the management of ATC, effective therapies are still needed for patients with BRAF wild-type ATC, and high-quality evidence is lacking for most aspects of this neoplasia. Additionally, in real-world settings, timely access to multidisciplinary care, molecular testing, and targeted therapies continues to be a challenge. Health policies are warranted to ensure specialized treatment for ATC.The expanding knowledge of ATC´s molecular biology, in addition to the ongoing clinical trials provides hope for the development of further therapeutic options.
Collapse
Affiliation(s)
- Inés Califano
- Endocrinology Division, Instituto de Oncología AH Roffo, University of Buenos Aires, Buenos Aires, Argentina.
| | - Anabella Smulever
- Endocrinology Division, Instituto de Investigaciones Médicas A. Lanari, University of Buenos Aires, Buenos Aires, Argentina
| | - Fernando Jerkovich
- Endocrinology Division, Hospital de Clínicas, University of Buenos Aires, Buenos Aires, Argentina
| | - Fabian Pitoia
- Endocrinology Division, Hospital de Clínicas, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Oh Y, Park JH, Djunadi TA, Shah Z, Chung LIY, Chae YK. Deep response to a combination of mTOR inhibitor temsirolimus and dual immunotherapy of nivolumab/ipilimumab in poorly differentiated thyroid carcinoma with PTEN mutation: a case report and literature review. Front Endocrinol (Lausanne) 2024; 15:1304188. [PMID: 38356955 PMCID: PMC10864638 DOI: 10.3389/fendo.2024.1304188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Treating advanced thyroid cancer presents challenges due to its resistance to various treatment modalities, thereby limiting therapeutic options. To our knowledge, this study is the first to report the efficacy of temsirolimus in conjunction with dual immunotherapy of nivolumab/ipilimumab to treat heavily treated advanced PDTC. A 50-year-old female initially presented with a rapidly enlarging mass on her right neck. Subsequent diagnosis revealed poorly differentiated thyroid carcinoma, leading to a total thyroidectomy followed by post-operative radioablation therapy. After four years, an examination for persistent cough revealed a recurrence of the disease within multiple mediastinal nodes. Genetic analysis of blood samples uncovered somatic mutations in the tumor, specifically involving PTEN and TP53. The disease progressed despite palliative radiation, lenvatinib, and nivolumab/ipilimumab therapy. Consequently, temsirolimus, functioning as an mTOR inhibitor, was introduced as an adjunct to the nivolumab/ipilimumab regimen. This combination approach yielded remarkable clinical improvement and disease control for a duration of approximately six months. Temsirolimus likely suppressed the aberrantly activated PI3K/AKT/mTOR signaling pathway, facilitated by the PTEN genetic alteration, thus engendering an effective treatment response. This synergy between targeted agents and immunotherapy presents a promising therapeutic strategy for advanced PDTC patients with limited treatment alternatives. In previous clinical trials, mTOR inhibitors have demonstrated the ability to maintain stable disease (SD) in 65% to 74% for advanced thyroid cancer patients, including those with PDTC. When combined with other targeted therapies, the observed SD or partial response rates range from 80% to 97%. Many of these trials primarily involved differentiated thyroid carcinoma, with diverse genetic mutations. Thyroid cancer patients with alterations in the PI3K/mTOR/Akt appeared to benefit most from mTOR inhibitors. However, no clear association between the efficacy of mTOR inhibitors and specific histologies or genetic mutations has been established. Future studies are warranted to elucidate these associations.
Collapse
Affiliation(s)
- Youjin Oh
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Medicine, John H. Stroger Jr. Hospital of Cook County, Chicago, IL, United States
| | - Joo Hee Park
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Trie Arni Djunadi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Zunairah Shah
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Liam Il-Young Chung
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Young Kwang Chae
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
7
|
Uppalapati SS, Guha L, Kumar H, Mandoli A. Nanotechnological Advancements for the Theranostic Intervention in Anaplastic Thyroid Cancer: Current Perspectives and Future Direction. Curr Cancer Drug Targets 2024; 24:245-270. [PMID: 37424349 DOI: 10.2174/1568009623666230707155145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Anaplastic thyroid cancer is the rarest, most aggressive, and undifferentiated class of thyroid cancer, accounting for nearly forty percent of all thyroid cancer-related deaths. It is caused by alterations in many cellular pathways like MAPK, PI3K/AKT/mTOR, ALK, Wnt activation, and TP53 inactivation. Although many treatment strategies, such as radiation therapy and chemotherapy, have been proposed to treat anaplastic thyroid carcinoma, they are usually accompanied by concerns such as resistance, which may lead to the lethality of the patient. The emerging nanotechnology-based approaches cater the purposes such as targeted drug delivery and modulation in drug release patterns based on internal or external stimuli, leading to an increase in drug concentration at the site of the action that gives the required therapeutic action as well as modulation in diagnostic intervention with the help of dye property materials. Nanotechnological platforms like liposomes, micelles, dendrimers, exosomes, and various nanoparticles are available and are of high research interest for therapeutic intervention in anaplastic thyroid cancer. The pro gression of the disease can also be traced by using magnetic probes or radio-labeled probes and quantum dots that serve as a diagnostic intervention in anaplastic thyroid cancer.
Collapse
Affiliation(s)
- Sai Swetha Uppalapati
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| |
Collapse
|
8
|
Cortas C, Charalambous H. Tyrosine Kinase Inhibitors for Radioactive Iodine Refractory Differentiated Thyroid Cancer. Life (Basel) 2023; 14:22. [PMID: 38255638 PMCID: PMC10817256 DOI: 10.3390/life14010022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
Patients with differentiated thyroid cancer usually present with early-stage disease and undergo surgery followed by adjuvant radioactive iodine ablation, resulting in excellent clinical outcomes and prognosis. However, a minority of patients relapse with metastatic disease, and eventually develop radioactive iodine refractory disease (RAIR). In the past there were limited and ineffective options for systemic therapy for RAIR, but over the last ten to fifteen years the emergence of tyrosine kinase inhibitors (TKIs) has provided important new avenues of treatment for these patients, that are the focus of this review. Currently, Lenvatinib and Sorafenib, multitargeted TKIs, represent the standard first-line systemic treatment options for RAIR thyroid carcinoma, while Cabozantinib is the standard second-line treatment option. Furthermore, targeted therapies for patients with specific targetable molecular abnormalities include Latrectinib or Entrectinib for patients with NTRK gene fusions and Selpercatinib or Pralsetinib for patients with RET gene fusions. Dabrafenib plus Trametinib currently only have tumor agnostic approval in the USA for patients with BRAF V600E mutations, including thyroid cancer. Redifferentiation therapy is an area of active research, with promising initial results, while immunotherapy studies with checkpoint inhibitors in combination with tyrosine kinase inhibitors are underway.
Collapse
Affiliation(s)
| | - Haris Charalambous
- Medical Oncology Department, Bank of Cyprus Oncology Centre, Nicosia 2006, Cyprus;
| |
Collapse
|
9
|
Hamidi S, Hofmann MC, Iyer PC, Cabanillas ME, Hu MI, Busaidy NL, Dadu R. Review article: new treatments for advanced differentiated thyroid cancers and potential mechanisms of drug resistance. Front Endocrinol (Lausanne) 2023; 14:1176731. [PMID: 37435488 PMCID: PMC10331470 DOI: 10.3389/fendo.2023.1176731] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
The treatment of advanced, radioiodine refractory, differentiated thyroid cancers (RR-DTCs) has undergone major advancements in the last decade, causing a paradigm shift in the management and prognosis of these patients. Better understanding of the molecular drivers of tumorigenesis and access to next generation sequencing of tumors have led to the development and Food and Drug Administration (FDA)-approval of numerous targeted therapies for RR-DTCs, including antiangiogenic multikinase inhibitors, and more recently, fusion-specific kinase inhibitors such as RET inhibitors and NTRK inhibitors. BRAF + MEK inhibitors have also been approved for BRAF-mutated solid tumors and are routinely used in RR-DTCs in many centers. However, none of the currently available treatments are curative, and most patients will ultimately show progression. Current research efforts are therefore focused on identifying resistance mechanisms to tyrosine kinase inhibitors and ways to overcome them. Various novel treatment strategies are under investigation, including immunotherapy, redifferentiation therapy, and second-generation kinase inhibitors. In this review, we will discuss currently available drugs for advanced RR-DTCs, potential mechanisms of drug resistance and future therapeutic avenues.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ramona Dadu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
10
|
Gao X, Hong C, Xie Y, Zeng X. Immunotherapy or targeted therapy: What will be the future treatment for anaplastic thyroid carcinoma? Front Oncol 2023; 13:1103147. [PMID: 37007127 PMCID: PMC10063970 DOI: 10.3389/fonc.2023.1103147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a rare and aggressive form of thyroid carcinoma (TC). Currently, there are no effective treatments for this condition. In the past few years, targeted therapy and immunotherapy have made significant progress in ATC treatment. Several common genetic mutations have been found in ATC cells, involving different molecular pathways related to tumor progression, and new therapies that act on these molecular pathways have been studied to improve the quality of life of these patients. In 2018, the FDA approved dabrafenib combined with trametinib to treat BRAF-positive ATC, confirming its therapeutic potential. At the same time, the recent emergence of immunotherapy has also attracted wide attention from researchers. While immunotherapy for ATC is still in the experimental stage, numerous studies have shown that immunotherapy is a potential therapy for ATC. In addition, it has also been found that the combination of immunotherapy and targeted therapy may enhance the anti-tumor effect of targeted therapy. In recent years, there has been some progress in the study of targeted therapy or immunotherapy combined with radiotherapy or chemotherapy, showing the prospect of combined therapy in ATC. In this review, we analyze the response mechanism and potential effects of targeted therapy, immunotherapy, and combination therapy in ATC treatment and explore the future of treatment for ATC.
Collapse
Affiliation(s)
- Xiaoni Gao
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chengcheng Hong
- Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yang Xie
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiangtai Zeng
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Thyroid Diseases, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Xiangtai Zeng,
| |
Collapse
|
11
|
Clinical Implications of mTOR Expression in Papillary Thyroid Cancer—A Systematic Review. Cancers (Basel) 2023; 15:cancers15061665. [PMID: 36980552 PMCID: PMC10046096 DOI: 10.3390/cancers15061665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Papillary thyroid cancer (PTC) comprises approximately 80% of all thyroid malignancies. Although several etiological factors, such as age, gender, and irradiation, are already known to be involved in the development of PTC, the genetics of cancerogenesis remain undetermined. The mTOR pathway regulates several cellular processes that are critical for tumorigenesis. Activated mTOR is involved in the development and progression of PTC. Therefore, we performed a systematic review of papers studying the expression of the mTOR gene and protein and its relationship with PTC risk and clinical outcome. A systematic literature search was performed using PubMed, Embase, and Scopus databases (the search date was 2012–2022). Studies investigating the expression of mTOR in the peripheral blood or tissue of patients with PTC were deemed eligible for inclusion. Seven of the 286 screened studies met the inclusion criteria for mTOR gene expression and four for mTOR protein expression. We also analyzed the data on mTOR protein expression in PTC. We analyzed the association of mTOR expression with papillary thyroid cancer clinicopathological features, such as the TNM stage, BRAF V600E mutation, sex distribution, lymph node and distant metastases, and survival prognosis. Understanding specific factors involved in PTC tumorigenesis provides opportunities for targeted therapies. We also reviewed the possible new targeted therapies and the use of mTOR inhibitors in PTC. This topic requires further research with novel techniques to translate the achieved results to clinical application.
Collapse
|
12
|
Chu YH. This is Your Thyroid on Drugs: Targetable Mutations and Fusions in Thyroid Carcinoma. Surg Pathol Clin 2023; 16:57-73. [PMID: 36739167 DOI: 10.1016/j.path.2022.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review aims to provide an overview of the molecular pathogenesis thyroid carcinomas, emphasizing genetic alterations that are therapeutically actionable. The main pathways in thyroid carcinogenesis are the MAPK and PI3K pathways. Point mutations and gene rearrangements affecting the pathway effectors and receptor tyrosine kinases are well-known drivers of thyroid cancer. Research over the past few decades has successfully introduced highly effective treatments for unresectable thyroid cancer, evolving from multi-kinase inhibitors to structurally selective agents, with constantly improving toxicity profiles and coverage of resistance mechanisms. The pros and cons of major laboratory techniques for therapeutic target identification are discussed.
Collapse
Affiliation(s)
- Ying-Hsia Chu
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan.
| |
Collapse
|
13
|
Lang M, Longerich T, Anamaterou C. Targeted therapy with vemurafenib in BRAF(V600E)-mutated anaplastic thyroid cancer. Thyroid Res 2023; 16:5. [PMID: 36855200 PMCID: PMC9976495 DOI: 10.1186/s13044-023-00147-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/08/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) is one of the most aggressive malignancies, representing less than 5% of all thyroid carcinomas. Τhe median survival is limited to months due to the resistance of ATC to surgery, radioiodine therapy, radiotherapy and chemotherapy. This review will cover novel agents involving several cellular signaling pathways including the BRAF pathway. The BRAF inhibitor vemurafenib improves survival among patients with metastatic melanoma, hairy-cell leukemia and intracranial neoplasms with BRAF gene mutations. The frequency of a BRAF (V600E) mutation in ATC is about 25%. CASE PRESENTATION We report the first case of a marked partial response to adjuvant first line monotherapy with vemurafenib in BRAF V600E-mutated ATC. The 78-year-old man showed a sustained response for 7 months, thereafter scans revealed progressive disease and the patient died 10 months after first diagnosis. This case report is accompanied by a comprehensive review of current strategies and tools for ATC treatment. CONCLUSIONS This case and the review of current data confirm the benefit of BRAF inhibition in BRAF-mutated ATC, limited by acquired resistance to targeted therapy.
Collapse
Affiliation(s)
- Matthias Lang
- Department of General-, Visceral- and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany.
| | - Thomas Longerich
- grid.5253.10000 0001 0328 4908Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Chrysanthi Anamaterou
- grid.7700.00000 0001 2190 4373Department of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
Li Q, Tie Y, Alu A, Ma X, Shi H. Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:31. [PMID: 36646686 PMCID: PMC9842704 DOI: 10.1038/s41392-022-01297-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Head and neck cancer (HNC) is malignant, genetically complex and difficult to treat and is the sixth most frequent cancer, with tobacco, alcohol and human papillomavirus being major risk factors. Based on epigenetic data, HNC is remarkably heterogeneous, and treatment remains challenging. There is a lack of significant improvement in survival and quality of life in patients with HNC. Over half of HNC patients experience locoregional recurrence or distal metastasis despite the current multiple traditional therapeutic strategies and immunotherapy. In addition, resistance to chemotherapy, radiotherapy and some targeted therapies is common. Therefore, it is urgent to explore more effective and tolerable targeted therapies to improve the clinical outcomes of HNC patients. Recent targeted therapy studies have focused on identifying promising biomarkers and developing more effective targeted therapies. A well understanding of the pathogenesis of HNC contributes to learning more about its inner association, which provides novel insight into the development of small molecule inhibitors. In this review, we summarized the vital signaling pathways and discussed the current potential therapeutic targets against critical molecules in HNC, as well as presenting preclinical animal models and ongoing or completed clinical studies about targeted therapy, which may contribute to a more favorable prognosis of HNC. Targeted therapy in combination with other therapies and its limitations were also discussed.
Collapse
Affiliation(s)
- Qingfang Li
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Abstract
Anaplastic thyroid cancer (ATC) is one of the most lethal of all cancers. It is more common in women and occurs primarily in older patients. ATC has a median overall survival of 3-5 months and a nearly 100% disease-specific mortality. It is known to spread rapidly to locoregional structures as well as outside the neck to distant sites, hence ATC is always considered stage IV. With better understanding of the disease at a molecular level, the introduction of newer treatment strategies has been possible and is part of the multimodal (surgery, radiation, and systemic therapy) therapeutic approach. However, there is extensive work needed to achieve better survival outcomes.
Collapse
Affiliation(s)
- Sarika N Rao
- Mayo Clinic School of Medicine, Dual Appointment in the Divisions of Endocrinology/Metabolism and Hematology/Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Robert C Smallridge
- Mayo Clinic School of Medicine, Division of Endocrinology/Metabolism, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
16
|
Jungels C, Pita JM, Costante G. Anaplastic thyroid carcinoma: advances in molecular profiling and targeted therapy. Curr Opin Oncol 2023; 35:1-9. [PMID: 36398690 DOI: 10.1097/cco.0000000000000918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PURPOSE OF REVIEW Anaplastic thyroid carcinomas (ATCs) are rare cancers with a globally very poor prognosis, because of their immensely aggressive behaviour, resulting in predominantly advanced stage of disease at diagnosis. Response to available therapies is still disappointing. Aim of the present review is to illustrate the diverse new strategies under investigation, to improve the poor outcome of these patients. RECENT FINDINGS Applying molecular analysis in ATC is unravelling potentially actionable targets of therapy. If a mutation of BRAF V600E is found, a combination of Dabrafenib and Trametinib is the recommended treatment. In the presence of another druggable mutation, a specific targeted therapy may be proposed. In the absence of druggable mutations, immunotherapy is an alternative approach, especially in case of significant PD-L1 expression. SUMMARY The molecular profiling of tumour samples is elucidating the genetic alterations involved in ATC development, and new preclinical models are under study to define innovative approaches for individualized treatment of such patients. Hopefully this approach could improve ATC prognosis.
Collapse
Affiliation(s)
- Christiane Jungels
- Department of Oncologic Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Jaime Miguel Pita
- Institute of Interdisciplinary Research (IRIBHM) and ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles, Bruxelles, Belgium
| | - Giuseppe Costante
- Department of Oncologic Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
- Department of Endocrinology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
17
|
Abstract
Differentiated thyroid carcinoma (DTC) is the most common endocrine cancer. Particularly the incidence of small clinically indolent tumors has been increasing significantly during the last decades because of increased diagnostic scrutiny, while the DTC-related mortality remained unchanged. In light of the increased awareness of the significant risk of detecting clinically indolent tumors and the potential harm and burden associated with overly diagnosis and the treatment, the approach towards management of DTC recently underwent a critical appraisal. The focus lays on reducing the unnecessary burden for patients with very low risk DTC and the correct identification of those who require treatment that is more intensive and/or follow-up. Management of DTC includes a range of different modalities, making multidisciplinary collaboration expedient. In this review, we elaborate on the recent developments in diagnosis, staging and management of DTC with specific focus on the more individualized risk assessment-based approach.
Collapse
Affiliation(s)
- Pepijn van Houten
- Department of Internal Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands.
| | - Johannes W Smit
- Department of Internal Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
18
|
Yuan J, Guo Y. Targeted Therapy for Anaplastic Thyroid Carcinoma: Advances and Management. Cancers (Basel) 2022; 15:cancers15010179. [PMID: 36612173 PMCID: PMC9818071 DOI: 10.3390/cancers15010179] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a rare and highly fatal cancer with the worst prognosis of all thyroid carcinoma (TC) histological subtypes and no standard treatment. In recent years, the explosion of investigations on ATC-targeted agents has provided a new treatment strategy for this malignant condition, and a review of these studies is warranted. We conducted a comprehensive literature search for ATC-targeted drug studies and compiled a summary of their efficacy and adverse effects (AEs) to provide new insights. Multiple clinical trials have demonstrated the efficacy and safety of dabrafenib in combination with trametinib for the treatment of ATC, but vemurafenib and NTRK inhibitors showed limited clinical responses. We found that the previously valued therapeutic effect of lenvatinib may be unsatisfactory; combining tyrosine kinase (TK) inhibitors (TKIs) with other agents results in a higher rate of clinical benefit. In addition, specific medications, including RET inhibitors, mTOR inhibitors, CDK4/6 inhibitors, and Combretastatin A4-phosphate (CA4P), offer tremendous therapeutic potential. The AEs reported for all agents are relatively numerous but largely manageable clinically. More clinical trials are expected to further confirm the effectiveness and safety of these targeted drugs for ATC.
Collapse
Affiliation(s)
- Jiaqian Yuan
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yong Guo
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310001, China
- Correspondence:
| |
Collapse
|
19
|
Integrated proteogenomic characterization of medullary thyroid carcinoma. Cell Discov 2022; 8:120. [DOI: 10.1038/s41421-022-00479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractMedullary thyroid carcinoma (MTC) is a rare neuroendocrine malignancy derived from parafollicular cells (C cells) of the thyroid. Here we presented a comprehensive multi-omics landscape of 102 MTCs through whole-exome sequencing, RNA sequencing, DNA methylation array, proteomic and phosphoproteomic profiling. Integrated analyses identified BRAF and NF1 as novel driver genes in addition to the well-characterized RET and RAS proto-oncogenes. Proteome-based stratification of MTCs revealed three molecularly heterogeneous subtypes named as: (1) Metabolic, (2) Basal and (3) Mesenchymal, which are distinct in genetic drivers, epigenetic modification profiles, clinicopathologic factors and clinical outcomes. Furthermore, we explored putative therapeutic targets of each proteomic subtype, and found that two tenascin family members TNC/TNXB might serve as potential prognostic biomarkers for MTC. Collectively, our study expands the knowledge of MTC biology and therapeutic vulnerabilities, which may serve as an important resource for future investigation on this malignancy.
Collapse
|
20
|
Bareli Y, Shimon I, Tobar A, Rubinfeld H. PICT-1 regulates p53 splicing and sensitivity of medullary thyroid carcinoma cells to everolimus. J Neuroendocrinol 2022; 34:e13187. [PMID: 36306198 DOI: 10.1111/jne.13187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/12/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Protein interacting with carboxyl terminus 1 (PICT-1) is a nucleolar protein shown to act as a tumor suppressor that interacts with PTEN, or in a contrasting manner to facilitate the accessibility of p53 to ubiquitination and degradation, thus to function as an oncogene. The aim of the study was to examine the potential role of PICT-1 in neuroendocrine neoplasm (NEN) tumorigenesis and response to mTOR inhibitor treatment. PICT-1 was overexpressed in medullary thyroid (TT) and pancreatic (BON1) NEN cell lines using lentiviral vector. Whereas in BON1 cells PICT-1 overexpression exhibited no significant impact, in TT cells it induced the appearance of p53β lacking the C-terminus end. This was accompanied by a robust decrease in p21 expression and elevation of cell viability. Remarkably, PICT-1 overexpression completely reversed the reduction in cell viability of medullary thyroid neoplasm cells induced by everolimus, a therapeutic option for patients with progressive NENs. mTOR pathway investigations revealed that PICT-1 overexpression induced a reduction in PTEN expression and a robust increase in the expression level of phospho-Akt-Ser47 only partially inhibited by everolimus. These findings suggest a possible role of PICT-1 in the spliceosome machinery and provide functional involvement of PICT-1 in the complex network of mTOR.
Collapse
Affiliation(s)
- Yifat Bareli
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Ilan Shimon
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Ana Tobar
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Hadara Rubinfeld
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| |
Collapse
|
21
|
Yu Q, Zhang X, Li L, Zhang C, Huang J, Huang W. Molecular basis and targeted therapies for radioiodine refractory thyroid cancer. Asia Pac J Clin Oncol 2022; 19:279-289. [PMID: 35950297 DOI: 10.1111/ajco.13836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/26/2021] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Patients diagnosed with radioiodine refractory thyroid cancer (RAIR-TC) are not amenable to novel 131 I therapy due to the reduced expression of sodium iodide symporter (Na+/I- symporter, NIS) and/or the impairment of NIS trafficking to the plasma membrane. RAIR-TC patients have a relatively poor prognosis with a mean life expectancy of 3-5 years, contributing to the majority of TC-associated mortality. Identifying RAIR-TC patients and selecting proper treatment strategies remain challenging for clinicians. In this review, we demonstrate the updated clinical scenarios or the so-called "definitions" of RAIR-TC suggested by several associations based on 131 I uptake ability and tumor response post-131 I therapy. We also discuss current knowledge of the molecular alterations involved in membrane-localized NIS loss, which provides a preclinical basis for the development of targeted therapies, in particular, tyrosine kinase inhibitors (TKIs), redifferentiation approaches, and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Qiuxiao Yu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, P. R. China
| | - Xuwen Zhang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, P. R. China
| | - Li Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, P. R. China
| | - Chi Zhang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, P. R. China
| | - Jian Huang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, P. R. China
| | - Wenting Huang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, P. R. China
| |
Collapse
|
22
|
Angelousi A, Hayes AR, Chatzellis E, Kaltsas GA, Grossman AB. Metastatic medullary thyroid carcinoma: a new way forward. Endocr Relat Cancer 2022; 29:R85-R103. [PMID: 35521769 PMCID: PMC9175549 DOI: 10.1530/erc-21-0368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022]
Abstract
Medullary thyroid carcinoma (MTC) is a rare malignancy comprising 1-2% of all thyroid cancers in the United States. Approximately 20% of cases are familial, secondary to a germline RET mutation, while the remaining 80% are sporadic and also harbour a somatic RET mutation in more than half of all cases. Up to 15-20% of patients will present with distant metastatic disease, and retrospective series report a 10-year survival of 10-40% from time of first metastasis. Historically, systemic therapies for metastatic MTC have been limited, and cytotoxic chemotherapy has demonstrated poor objective response rates. However, in the last decade, targeted therapies, particularly multitargeted tyrosine kinase inhibitors (TKIs), have demonstrated prolonged progression-free survival in advanced and progressive MTC. Both cabozantinib and vandetanib have been approved as first-line treatment options in many countries; nevertheless, their use is limited by high toxicity rates and dose reductions are often necessary. New generation TKIs, such as selpercatinib or pralsetinib, that exhibit selective activity against RET, have recently been approved as a second-line treatment option, and they exhibit a more favourable side-effect profile. Peptide receptor radionuclide therapy or immune checkpoint inhibitors may also constitute potential therapeutic options in specific clinical settings. In this review, we aim to present all current therapeutic options available for patients with progressive MTC, as well as new or as yet experimental treatments.
Collapse
Affiliation(s)
- Anna Angelousi
- Unit of Endocrinology, First Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Correspondence should be addressed to A Angelousi or A B Grossman: or
| | - Aimee R Hayes
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | - Eleftherios Chatzellis
- Endocrinology Diabetes and Metabolism Department, 251 Hellenic Air Force and VA General Hospital, Athens, Greece
| | - Gregory A Kaltsas
- First Department of Propaedeutic Internal Medicine, Laiko Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Ashley B Grossman
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
- Green Templeton College, University of Oxford, Oxford, UK
- Centre for Endocrinology, Barts and the London School of Medicine, London, UK
- Correspondence should be addressed to A Angelousi or A B Grossman: or
| |
Collapse
|
23
|
Ragusa F, Ferrari SM, Elia G, Paparo SR, Balestri E, Botrini C, Patrizio A, Mazzi V, Guglielmi G, Foddis R, Spinelli C, Ulisse S, Antonelli A, Fallahi P. Combination Strategies Involving Immune Checkpoint Inhibitors and Tyrosine Kinase or BRAF Inhibitors in Aggressive Thyroid Cancer. Int J Mol Sci 2022; 23:ijms23105731. [PMID: 35628540 PMCID: PMC9144613 DOI: 10.3390/ijms23105731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Thyroid cancer is the most common (~90%) type of endocrine-system tumor, accounting for 70% of the deaths from endocrine cancers. In the last years, the high-throughput genomics has been able to identify pathways/molecular targets involved in survival and tumor progression. Targeted therapy and immunotherapy individually have many limitations. Regarding the first one, although it greatly reduces the size of the cancer, clinical responses are generally transient and often lead to cancer relapse after initial treatment. For the second one, although it induces longer-lasting responses in cancer patients than targeted therapy, its response rate is lower. The individual limitations of these two different types of therapies can be overcome by combining them. Here, we discuss MAPK pathway inhibitors, i.e., BRAF and MEK inhibitors, combined with checkpoint inhibitors targeting PD-1, PD-L1, and CTLA-4. Several mutations make tumors resistant to treatments. Therefore, more studies are needed to investigate the patient's individual tumor mutation burden in order to overcome the problem of resistance to therapy and to develop new combination therapies.
Collapse
Affiliation(s)
- Francesca Ragusa
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Sabrina Rosaria Paparo
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Eugenia Balestri
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Chiara Botrini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Armando Patrizio
- Department of Emergency Medicine, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy;
| | - Valeria Mazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Giovanni Guglielmi
- U.O. Medicina Preventiva Del Lavoro, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy;
| | - Rudy Foddis
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (R.F.); (P.F.)
| | - Claudio Spinelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Salvatore Ulisse
- Department of Surgical Sciences, ‘Sapienza’ University of Rome, 00161 Rome, Italy;
| | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
- Correspondence: ; Tel.: +39-050-992318
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (R.F.); (P.F.)
| |
Collapse
|
24
|
Qu N, Hui Z, Shen Z, Kan C, Hou N, Sun X, Han F. Thyroid Cancer and COVID-19: Prospects for Therapeutic Approaches and Drug Development. Front Endocrinol (Lausanne) 2022; 13:873027. [PMID: 35600591 PMCID: PMC9114699 DOI: 10.3389/fendo.2022.873027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/04/2022] [Indexed: 02/05/2023] Open
Abstract
Thyroid cancer is the most prevalent endocrine malignancy and the reported incidence of thyroid cancer has continued to increase in recent years. Since 2019, coronavirus disease 2019 (COVID-19) has been spreading worldwide in a global pandemic. COVID-19 aggravates primary illnesses and affects disease management; relevant changes include delayed diagnosis and treatment. The thyroid is an endocrine organ that is susceptible to autoimmune attack; thus, thyroid cancer after COVID-19 has gradually attracted attention. Whether COVID-19 affects the diagnosis and treatment of thyroid cancer has also attracted the attention of many researchers. This review examines the literature regarding the influence of COVID-19 on the pathogenesis, diagnosis, and treatment of thyroid cancer; it also focuses on drug therapies to promote research into strategies for improving therapy and management in thyroid cancer patients with COVID-19.
Collapse
Affiliation(s)
- Na Qu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zongguang Hui
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zhixin Shen
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
25
|
Hescheler DA, Hartmann MJM, Riemann B, Michel M, Bruns CJ, Alakus H, Chiapponi C. Anaplastic thyroid cancer: genome-based search for new targeted therapy options. Endocr Connect 2022; 11:EC-21-0624. [PMID: 35275096 PMCID: PMC9066601 DOI: 10.1530/ec-21-0624] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Anaplastic thyroid cancer (ATC) is one of the most lethal human cancers with meager treatment options. We aimed to identify the targeted drugs already approved by the Food and Drug Administration (FDA) for solid cancer in general, which could be effective in ATC. DESIGN Database mining. METHODS FDA-approved drugs for targeted therapy were identified by screening the databases of MyCancerGenome and the National Cancer Institute. Drugs were linked to the target genes by querying Drugbank. Subsequently, MyCancerGenome, CIViC, TARGET and OncoKB were mined for genetic alterations which are predicted to lead to drug sensitivity or resistance. We searched the Cancer Genome Atlas database (TCGA) for patients with ATC and probed their sequencing data for genetic alterations which predict a drug response. RESULTS In the study,155 FDA-approved drugs with 136 potentially targetable genes were identified. Seventeen (52%) of 33 patients found in TCGA had at least one genetic alteration in targetable genes. The point mutation BRAF V600E was seen in 45% of patients. PIK3CA occurred in 18% of cases. Amplifications of ALK and SRC were detected in 3% of cases, respectively. Fifteen percent of the patients displayed a co-mutation of BRAF and PIK3CA. Besides BRAF-inhibitors, the PIK3CA-inhibitor copanlisib showed a genetically predicted response. The 146 (94%) remaining drugs showed no or low (under 4% cases) genetically predicted drug response. CONCLUSIONS While ATC carrying BRAF mutations can benefit from BRAF inhibitors and this effect might be enhanced by a combined strategy including PIK3CA inhibitors in some of the patients, alterations in BRAFWT ATC are not directly targeted by currently FDA-approved options.
Collapse
Affiliation(s)
- Daniel Alexander Hescheler
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | | | - Burkhard Riemann
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Maximilian Michel
- Institute of Zoology, University of Cologne Germany, Cologne, Germany
| | - Christiane Josephine Bruns
- Department of General, Visceral, Tumor and Transplant Surgery, University Hospital Cologne, Cologne, Germany
| | - Hakan Alakus
- Department of General, Visceral, Tumor and Transplant Surgery, University Hospital Cologne, Cologne, Germany
- Correspondence should be addressed to H Alakus:
| | - Costanza Chiapponi
- Department of General, Visceral, Tumor and Transplant Surgery, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
26
|
Jannin A, Escande A, Al Ghuzlan A, Blanchard P, Hartl D, Chevalier B, Deschamps F, Lamartina L, Lacroix L, Dupuy C, Baudin E, Do Cao C, Hadoux J. Anaplastic Thyroid Carcinoma: An Update. Cancers (Basel) 2022; 14:cancers14041061. [PMID: 35205809 PMCID: PMC8869821 DOI: 10.3390/cancers14041061] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 01/13/2023] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a rare and undifferentiated form of thyroid cancer. Its prognosis is poor: the median overall survival (OS) of patients varies from 4 to 10 months after diagnosis. However, a doubling of the OS time may be possible owing to a more systematic use of molecular tests for targeted therapies and integration of fast-track dedicated care pathways for these patients in tertiary centers. The diagnostic confirmation, if needed, requires an urgent biopsy reread by an expert pathologist with additional immunohistochemical and molecular analyses. Therapeutic management, defined in multidisciplinary meetings, respecting the patient's choice, must start within days following diagnosis. For localized disease diagnosed after primary surgical treatment, adjuvant chemo-radiotherapy is recommended. In the event of locally advanced or metastatic disease, the prognosis is very poor. Treatment should then involve chemotherapy or targeted therapy and decompressive cervical radiotherapy. Here we will review current knowledge on ATC and provide perspectives to improve the management of this deadly disease.
Collapse
Affiliation(s)
- Arnaud Jannin
- Department of Endocrinology, Diabetology, Metabolism and Nutrition, Lille University Hospital, 59000 Lille, France; (A.J.); (B.C.); (C.D.C.)
- H. Warembourg School of Medicine, University of Lille, 59000 Lille, France;
| | - Alexandre Escande
- H. Warembourg School of Medicine, University of Lille, 59000 Lille, France;
- Academic Radiation Oncology Department, Oscar Lambret Center, 59000 Lille, France
| | - Abir Al Ghuzlan
- Cancer Medical Pathology and Biology Department, Institute Gustave Roussy, 94805 Villejuif, France;
| | - Pierre Blanchard
- Department of Radiation Oncology, Institute Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France;
| | - Dana Hartl
- Département d’Anesthésie, Chirurgie et Interventionnel (DACI), Institute Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France;
| | - Benjamin Chevalier
- Department of Endocrinology, Diabetology, Metabolism and Nutrition, Lille University Hospital, 59000 Lille, France; (A.J.); (B.C.); (C.D.C.)
- H. Warembourg School of Medicine, University of Lille, 59000 Lille, France;
| | - Frédéric Deschamps
- Department of Head and Neck Oncology, Institute Gustave Roussy, Université Paris Saclay, 94805 Paris, France;
| | - Livia Lamartina
- Cancer Medicine Department, Institute Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France; (L.L.); (E.B.)
| | - Ludovic Lacroix
- Department of Medical Oncology, Institute Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France;
| | | | - Eric Baudin
- Cancer Medicine Department, Institute Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France; (L.L.); (E.B.)
| | - Christine Do Cao
- Department of Endocrinology, Diabetology, Metabolism and Nutrition, Lille University Hospital, 59000 Lille, France; (A.J.); (B.C.); (C.D.C.)
| | - Julien Hadoux
- Cancer Medicine Department, Institute Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France; (L.L.); (E.B.)
- Correspondence: ; Tel.: +33-142116361
| |
Collapse
|
27
|
Mahmood U, Lorch JH. Precision medicine in aggressive thyroid cancer: Moving beyond multitargeted tyrosine kinase inhibitors. Cancer Cytopathol 2021; 130:8-11. [PMID: 34748686 DOI: 10.1002/cncy.22516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/10/2022]
|
28
|
Abstract
PURPOSE OF REVIEW We review the new systemic treatment strategies for differentiated thyroid carcinoma, as well as the acquaintance of its molecular biology. RECENT FINDINGS Multiple kinase inhibitor drugs have become the standard therapy for thyroid cancer, albeit several adverse effects. In the last few years, new molecules have raised with an overall safety profile. Most of them, are considered targeted therapies directed toward driven-molecules alterations, such as neurotrophic tyrosine kinase receptor (NTRK) inhibitors for NTRK-fusion thyroid cancer and rearranged during transfection (RET) inhibitors for RET-fusion thyroid cancer. Recently, promising outcomes and safety data have been presented. Furthermore, other novel strategies for advanced thyroid carcinoma are currently investigated in clinical trials.The ability to provide precision medicine to patients in routine clinical settings depends on the availability of molecular profiling test at their cancer centers. The impossibility to perform molecular characterization could turn out to be a diagnostic and treatment limitation for some patients. SUMMARY The treatment of advanced differentiated thyroid carcinoma has undergone rapid evolution in the last decade. An emerging treatment era is coming. From now to then, we will need to face the different types of diagnostic tools for molecular characterization, their interpretation and, finally the access to targeted therapies.
Collapse
|
29
|
Lin YS, Zhang X, Wang C, Liu YQ, Guan WM, Liang J. Long-Term Results of a Phase II Trial of Apatinib for Progressive Radioiodine Refractory Differentiated Thyroid Cancer. J Clin Endocrinol Metab 2021; 106:e3027-e3036. [PMID: 33769497 DOI: 10.1210/clinem/dgab196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Radioiodine refractory differentiated thyroid cancer (RAIR-DTC) has been a global challenge due to its poor prognosis and limited treatment options. OBJECTIVE We report here the long-term results of the phase II clinical trial of apatinib, an anti-angiogenic tyrosine kinase inhibitor, for RAIR-DTC. METHODS This was an open-label, exploratory phase II clinical trial among progressive RAIR-DTC patients. Apatinib treatment was given once daily until disease progression, unmanageable toxicity, withdrawal, or death. The primary end points were objective response rate (ORR) and disease control rate (DCR). Progression-free survival (PFS), overall survival (OS), duration of response, long-term safety, and the association between patients with different tumor genotype (BRAFV600E and TERT promotor mutation) and their PFS rates were also assessed. RESULTS The ORR was 80%, and the DCR was 95%. The overall median PFS was 18.4 months (95% CI, 9.2-36.8 months) and the median OS was 51.6 months (95% CI, 29.2-not reached [NR]). Patients with BRAFV600E mutation (10 of 18 evaluated) had a longer median PFS compared with patients with BRAF wild-type (NR vs 9.2 months; P = 0.002). The most common adverse events included palmar-plantar erythrodysesthesia syndrome (19/20), proteinuria (18/20), and hypertension (16/20). CONCLUSION In this long-term evaluation, apatinib displayed sustainable efficacy and tolerable safety profile, warranting it as a promising treatment option for progressive RAIR-DTC.
Collapse
Affiliation(s)
- Yan-Song Lin
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Beijing, Chinese Academy of Medical Sciences & PUMC, 100730, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, 100730, Beijing, China
| | - Xin Zhang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Beijing, Chinese Academy of Medical Sciences & PUMC, 100730, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, 100730, Beijing, China
| | - Chen Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Beijing, Chinese Academy of Medical Sciences & PUMC, 100730, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, 100730, Beijing, China
| | - Yan-Qing Liu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Beijing, Chinese Academy of Medical Sciences & PUMC, 100730, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, 100730, Beijing, China
| | - Wen-Min Guan
- Department of Radiology, Peking Union Medical College (PUMC) Hospital, Beijing, Chinese Academy of Medical Sciences & PUMC, Beijing, 100730, China
| | - Jun Liang
- Department of Oncology, Peking University International Hospital, Beijing, 102206, China
| |
Collapse
|
30
|
Marotta V, Chiofalo MG, Di Gennaro F, Daponte A, Sandomenico F, Vallone P, Costigliola L, Botti G, Ionna F, Pezzullo L. Kinase-inhibitors for iodine-refractory differentiated thyroid cancer: still far from a structured therapeutic algorithm. Crit Rev Oncol Hematol 2021; 162:103353. [PMID: 34000414 DOI: 10.1016/j.critrevonc.2021.103353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/16/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
The kinase-inhibitors (KIs) sorafenib and lenvatinib demonstrated efficacy in iodine-refractory DTC upon phase III studies. However, evidence allowing a punctual balance of benefits and risks is poor. Furthermore, the lack of a direct comparison hampers to establish the proper sequence of administration. However, some insights may provided: a) indirect comparison between phase III trials showed milder toxicity for sorafenib, which should be preferred in case of cardiovascular comorbidities; b) prospective evidence of efficacy in KIs pre-treated patients is available only for lenvatinib, which should be used as second-line. Promising activity was found for the majority of other tested KIs, but no placebo-controlled trials are available. Emerging, but still early, frontiers include the restoration of iodine-sensitivity and the selective activity on pathogenic mutations. In conclusion, the use of KIs in iodine-refractory DTC is far from a structured therapeutic algorithm.
Collapse
Affiliation(s)
- Vincenzo Marotta
- Struttura Complessa Chirurgia Oncologica Della Tiroide, Istituto Nazionale Tumori - Irccs - Fondazione G.Pascale, Napoli, Italy.
| | - Maria Grazia Chiofalo
- Struttura Complessa Chirurgia Oncologica Della Tiroide, Istituto Nazionale Tumori - Irccs - Fondazione G.Pascale, Napoli, Italy
| | - Francesca Di Gennaro
- Struttura Complessa Medicina Nucleare e Terapia Metabolica, Istituto Nazionale Tumori - Irccs - Fondazione G.Pascale, Napoli, Italy
| | - Antonio Daponte
- Struttura Complessa Oncologia Clinica Sperimentale Testa-Collo e Muscolo-Scheletrica, Istituto Nazionale Tumori - Irccs - Fondazione G.Pascale, Napoli, Italy
| | - Fabio Sandomenico
- Struttura Complessa Radiodiagnostica, Istituto Nazionale Tumori - Irccs - Fondazione G.Pascale, Napoli, Italy
| | - Paolo Vallone
- Struttura Complessa Radiodiagnostica, Istituto Nazionale Tumori - Irccs - Fondazione G.Pascale, Napoli, Italy
| | - Luciana Costigliola
- Unità Operativa Compessa Di Chirugia Generale, d'Urgenza e Metabolica, Pineta Grande Hospital, Castel Volturno, Italy
| | - Gerardo Botti
- Struttura Complessa Anatomia Patologica e Citopatologia, Istituto Nazionale Tumori - Irccs - Fondazione G.Pascale, Napoli, Italy
| | - Franco Ionna
- Struttura Complessa Chirurgia Oncologica Maxillo-Facciale Ed ORL, Istituto Nazionale Tumori - Irccs - Fondazione G.Pascale, Napoli, Italy
| | - Luciano Pezzullo
- Struttura Complessa Chirurgia Oncologica Della Tiroide, Istituto Nazionale Tumori - Irccs - Fondazione G.Pascale, Napoli, Italy.
| |
Collapse
|
31
|
Barletta JA, Nosé V, Sadow PM. Genomics and Epigenomics of Medullary Thyroid Carcinoma: From Sporadic Disease to Familial Manifestations. Endocr Pathol 2021; 32:35-43. [PMID: 33492588 PMCID: PMC9353617 DOI: 10.1007/s12022-021-09664-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/11/2022]
Abstract
Our understanding of the genomics and epigenomics of medullary thyroid carcinoma (MTC) has advanced since the initial recognition of RET as a driver of MTC tumorigenesis in familial MTC. We now have insight into the frequency and prognostic significance of specific RET mutations in sporadic MTC. For example, the most common RET mutation in sporadic MTC is the RET Met918Thr mutation, the same mutation that underlies MEN2B and a poor prognosticator. This mutation is relatively infrequent in medullary thyroid microcarcinomas but is over-represented in advanced-stage disease. RAS mutations are detected in 70% of sporadic, RET wild-type MTC. Although next-generation and whole-exome sequencing studies have shown that tumors that are wild-type for RET and RAS mutations essentially lack other recurrent mutations, additional pathways and epigenetic alterations have been implicated in MTC tumorigenesis. Increased insight into the clinical course of patients with familial MTC with specific RET mutations has guided treatment recommendations for these patients. Finally, an understanding of the genomics has informed treatment for patients with advanced MTC. In this review, we will examine the genomics and epigenomics of sporadic and familial MTC, along with the prognostic significance of molecular alterations, management of patients with germline RET mutations, and treatment strategies for MTC patients.
Collapse
Affiliation(s)
- Justine A Barletta
- Departments of Pathology, Brigham and Women's Hospital, Boston, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Vânia Nosé
- Massachusetts General Hospital, Boston, USA
- Harvard Medical School, Boston, MA, USA
| | - Peter M Sadow
- Massachusetts General Hospital, Boston, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Bible KC, Kebebew E, Brierley J, Brito JP, Cabanillas ME, Clark TJ, Di Cristofano A, Foote R, Giordano T, Kasperbauer J, Newbold K, Nikiforov YE, Randolph G, Rosenthal MS, Sawka AM, Shah M, Shaha A, Smallridge R, Wong-Clark CK. 2021 American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer. Thyroid 2021; 31:337-386. [PMID: 33728999 PMCID: PMC8349723 DOI: 10.1089/thy.2020.0944] [Citation(s) in RCA: 337] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Anaplastic thyroid cancer (ATC) is a rare but highly lethal form of thyroid cancer. Since the guidelines for the management of ATC by the American Thyroid Association were first published in 2012, significant clinical and scientific advances have occurred in the field. The aim of these guidelines is to inform clinicians, patients, and researchers on published evidence relating to the diagnosis and management of ATC. Methods: The specific clinical questions and topics addressed in these guidelines were based on prior versions of the guidelines, stakeholder input, and input of the Task Force members (authors of the guideline). Relevant literature was reviewed, including serial PubMed searches supplemented with additional articles. The American College of Physicians Guideline Grading System was used for critical appraisal of evidence and grading strength of recommendations. Results: The guidelines include the diagnosis, initial evaluation, establishment of treatment goals, approaches to locoregional disease (surgery, radiotherapy, targeted/systemic therapy, supportive care during active therapy), approaches to advanced/metastatic disease, palliative care options, surveillance and long-term monitoring, and ethical issues, including end of life. The guidelines include 31 recommendations and 16 good practice statements. Conclusions: We have developed evidence-based recommendations to inform clinical decision-making in the management of ATC. While all care must be individualized, such recommendations provide, in our opinion, optimal care paradigms for patients with ATC.
Collapse
Affiliation(s)
- Keith C. Bible
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Electron Kebebew
- Stanford University, School of Medicine, Stanford, California, USA
| | - James Brierley
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Juan P. Brito
- Division of Diabetes, Endocrinology, Metabolism, and Nutrition, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria E. Cabanillas
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Robert Foote
- Department of Radiation Oncology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Thomas Giordano
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jan Kasperbauer
- Department of Otolaryngology, Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Kate Newbold
- The Royal Marsden NHS Foundation Trust, Fulham Road, London, United Kingdom
| | - Yuri E. Nikiforov
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gregory Randolph
- Division of Thyroid and Parathyroid Endocrine Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - M. Sara Rosenthal
- Program for Bioethics and Markey Cancer Center Oncology Ethics Program, Departments Internal Medicine, Pediatrics and Behavioral Science, University of Kentucky, Lexington, Kentucky, USA
| | - Anna M. Sawka
- Division of Endocrinology, Department of Medicine, University Health Network and University of Toronto, Toronto, Canada
| | - Manisha Shah
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Ashok Shaha
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | |
Collapse
|
33
|
Okafor C, Hogan J, Raygada M, Thomas BJ, Akshintala S, Glod JW, Del Rivero J. Update on Targeted Therapy in Medullary Thyroid Cancer. Front Endocrinol (Lausanne) 2021; 12:708949. [PMID: 34489865 PMCID: PMC8416904 DOI: 10.3389/fendo.2021.708949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is a rare neuroendocrine tumor that accounts for 2-4% of all thyroid cancers. All inherited MTC and approximately 50% of sporadic cases are driven by mutations in the REarranged during Transfection (RET) proto-oncogene. The recent expansion of the armamentarium of RET-targeting tyrosine kinase inhibitors (TKIs) has provided effective options for systemic therapy for patients with metastatic and progressive disease. However, patients that develop resistant disease as well as those with other molecular drivers such as RAS have limited options. An improved understanding of mechanisms of resistance to TKIs as well as identification of novel therapeutic targets is needed to improve outcomes for patients with MTC.
Collapse
Affiliation(s)
- Christian Okafor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Julie Hogan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Margarita Raygada
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Barbara J. Thomas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Srivandana Akshintala
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - John W. Glod
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Jaydira Del Rivero,
| |
Collapse
|
34
|
Fullmer T, Cabanillas ME, Zafereo M. Novel Therapeutics in Radioactive Iodine-Resistant Thyroid Cancer. Front Endocrinol (Lausanne) 2021; 12:720723. [PMID: 34335481 PMCID: PMC8321684 DOI: 10.3389/fendo.2021.720723] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 01/18/2023] Open
Abstract
Iodine-resistant cancers account for the vast majority of thyroid related mortality and, until recently, there were limited therapeutic options. However, over the last decade our understanding of the molecular foundation of thyroid function and carcinogenesis has driven the development of many novel therapeutics. These include FDA approved tyrosine kinase inhibitors and small molecular inhibitors of VEGFR, BRAF, MEK, NTRK and RET, which collectively have significantly changed the prognostic outlook for this patient population. Some therapeutics can re-sensitize de-differentiated cancers to iodine, allowing for radioactive iodine treatment and improved disease control. Remarkably, there is now an FDA approved treatment for BRAF-mutated patients with anaplastic thyroid cancer, previously considered invariably and rapidly fatal. The treatment landscape for iodine-resistant thyroid cancer is changing rapidly with many new targets, therapeutics, clinical trials, and approved treatments. We provide an up-to-date review of novel therapeutic options in the treatment of iodine-resistant thyroid cancer.
Collapse
Affiliation(s)
- Tanner Fullmer
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria E. Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mark Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Mark Zafereo,
| |
Collapse
|
35
|
De Leo S, Trevisan M, Fugazzola L. Recent advances in the management of anaplastic thyroid cancer. Thyroid Res 2020; 13:17. [PMID: 33292371 PMCID: PMC7684758 DOI: 10.1186/s13044-020-00091-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is undoubtedly the thyroid cancer histotype with the poorest prognosis. The conventional treatment includes surgery, radiotherapy, and conventional chemotherapy. Surgery should be as complete as possible, securing the airway and ensuring access for nutritional support; the current standard of care of radiotherapy is the intensity-modulated radiation therapy; chemotherapy includes the use of doxorubicin or taxanes (paclitaxel or docetaxel) generally with platin (cisplatin or carboplatin). However, frequently, these treatments are not sufficient and a systemic treatment with kinase inhibitors is necessary. These include multitarget tyrosine kinase inhibitors (Lenvatinib, Sorafenib, Sunitinib, Vandetanib, Axitinib, Pazopanib, Pyrazolo-pyrimidine compounds), single target tyrosine kinase inhibitors (Dabrafenib plus Trametinib and Vemurafenib against BRAF, Gefitinib against EGFR, PPARγ ligands (e.g. Efatutazone), Everolimus against mTOR, vascular disruptors (e.g. Fosbretabulin), and immunotherapy (e.g. Spartalizumab and Pembrolizumab, which are anti PD-1/PD-L1 molecules). Therapy should be tailored to the patients and to the tumor genetic profile. A BRAF mutation analysis is mandatory, but a wider evaluation of tumor mutational status (e.g. by next-generation sequencing) is desirable. When a BRAFV600E mutation is detected, treatment with Dabrafenib and Trametinib should be preferred: this combination has been approved by the Food and Drug Administration for the treatment of patients with locally advanced or metastatic ATC with BRAFV600E mutation and with no satisfactory locoregional treatment options. Alternatively, Lenvatinib, regardless of mutational status, reported good results and was approved in Japan for treating unresectable tumors. Other single target mutation agents with fair results are Everolimus when a mutation involving the PI3K/mTOR pathway is detected, Imatinib in case of PDGF-receptors overexpression, and Spartalizumab in case of PD-L1 positive tumors. Several trials are currently evaluating the possible beneficial role of a combinatorial therapy in ATC. Since in this tumor several genetic alterations are usually found, the aim is to inhibit or disrupt several pathways: these combination strategies use therapy targeting angiogenesis, survival, proliferation, and may act against both MAPK and PI3K pathways. Investigating new treatment options is eagerly awaited since, to date, even the molecules with the best radiological results have not been able to provide a durable disease control.
Collapse
Affiliation(s)
- Simone De Leo
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Piazzale Brescia, 20, 20149, Milan, Italy.
| | - Matteo Trevisan
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Laura Fugazzola
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Piazzale Brescia, 20, 20149, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
36
|
The Possible Role of Cancer Stem Cells in the Resistance to Kinase Inhibitors of Advanced Thyroid Cancer. Cancers (Basel) 2020; 12:cancers12082249. [PMID: 32796774 PMCID: PMC7465706 DOI: 10.3390/cancers12082249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Target therapy with various kinase inhibitors (KIs) has been extended to patients with advanced thyroid cancer, but only a subset of these compounds has displayed efficacy in clinical use. However, after an initial response to KIs, dramatic disease progression occurs in most cases. With the discovery of cancer stem cells (CSCs), it is possible to postulate that thyroid cancer resistance to KI therapies, both intrinsic and acquired, may be sustained by this cell subtype. Indeed, CSCs have been considered as the main drivers of metastatic activity and therapeutic resistance, because of their ability to generate heterogeneous secondary cell populations and survive treatment by remaining in a quiescent state. Hence, despite the impressive progress in understanding of the molecular basis of thyroid tumorigenesis, drug resistance is still the major challenge in advanced thyroid cancer management. In this view, definition of the role of CSCs in thyroid cancer resistance may be crucial to identifying new therapeutic targets and preventing resistance to anti-cancer treatments and tumor relapse. The aim of this review is to elucidate the possible role of CSCs in the development of resistance of advanced thyroid cancer to current anti-cancer therapies and their potential implications in the management of these patients.
Collapse
|
37
|
Abstract
OPINION STATEMENT Anaplastic thyroid cancer (ATC) is a rare but very aggressive form of undifferentiated thyroid cancer. Due to its rapid rate of progression and invasive nature, ATC poses significant risks of morbidity and mortality. The cornerstone in the management of ATC remains a prompt diagnosis of the disease and timely management of complications depending on the stage of disease. Surgery continues to offer a higher chance of a cure, although not all patients are candidates for surgical management. Patients with advanced disease may be considered for palliative surgery to reduce morbidity and complications from advanced disease. With the advent of new molecular testing and improved methods of diagnosis, novel therapeutic targets have been identified. Systemic therapy (chemotherapy and radiation therapy) as well as novel immunotherapy have shown some promise in patients with targetable genetic mutations. Patients should therefore have molecular testing of their tumor-if it is unresectable-and be tested for mutations that are targetable. Mutation-targeted therapy may be effective and may result in a significant response to allow surgical intervention for exceptional responders. Overall, patients who receive all three modalities of therapy (surgery, chemotherapy, and radiation therapy) have the highest overall survival.
Collapse
|
38
|
Abstract
The diagnostic modalities, stratification tools, and treatment options for patients with thyroid cancer have rapidly evolved since the development of the American Thyroid Association (ATA) guidelines in 2015. This review compiles newer concepts in diagnosis, stratification tools and treatment options for patients with differentiated thyroid cancer (DTC), medullary thyroid carcinoma (MTC) and anaplastic thyroid cancer (ATC). Newer developments apply precision medicine in thyroid cancer patients to avoid over-treatment in low risk disease and under-treatment in high risk disease. Among novel patient-tailored therapies are selective RET inhibitors that have shown efficacy in the treatment of MTC with limited systemic toxicity compared with non-specific tyrosine kinase inhibitors. The combination of BRAF and MEK inhibitors have revolutionized management of BRAF V600E mutant ATC. Several immunotherapeutic agents are being actively investigated in the treatment of all forms of thyroid cancer. In this review, we describe the recent advances in the diagnosis and management of DTC, MTC, and ATC, with an emphasis on novel treatment modalities.
Collapse
Affiliation(s)
- Katherine A. Araque
- Endocrinology Department, Pacific Neuroscience Institute, John Wayne Cancer Institute, Santa Monica, CA, USA
| | - Sriram Gubbi
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
39
|
Al-Jundi M, Thakur S, Gubbi S, Klubo-Gwiezdzinska J. Novel Targeted Therapies for Metastatic Thyroid Cancer-A Comprehensive Review. Cancers (Basel) 2020; 12:E2104. [PMID: 32751138 PMCID: PMC7463725 DOI: 10.3390/cancers12082104] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022] Open
Abstract
The knowledge on thyroid cancer biology has grown over the past decade. Thus, diagnostic and therapeutic strategies to manage thyroid cancer are rapidly evolving. With new insights into tumor biology and cancer genetics, several novel therapies have been approved for the treatment of thyroid cancer. Tyrosine kinase inhibitors (TKIs), such as lenvatinib and sorafenib, have been successfully utilized for the treatment of radioactive iodine (RAI)-refractory metastatic differentiated thyroid cancer (DTC). In addition, pretreatment with mitogen-activated protein kinase (MAPK) inhibitors (trametinib and selumetinib) has been shown to restore RAI avidity in previously RAI-refractory DTCs. Local therapies, such as external beam radiation and radiofrequency/ethanol ablation, have also been employed for treatment of DTC. Vandetanib and cabozantinib are the two TKIs currently approved by the Food and Drug Administration (FDA) for the treatment of medullary thyroid cancer (MTC). Other novel therapies, such as peptide receptor radionuclide therapy and carcinoembryonic antigen (CEA) vaccine, have also been utilized in treating MTC. Ongoing trials on selective rearranged-during-transfection (RET) protooncogene inhibitors, such as LOXO-292 and BLU-667, have demonstrated promising results in the treatment of metastatic MTC resistant to non-selective TKIs. The FDA-approved BRAF/MEK inhibitor combination of dabrafenib and trametinib has revolutionized treatment of BRAFV600E mutation positive anaplastic thyroid cancer. Several other emerging classes of medications, such as gene fusion inhibitors and immune checkpoint inhibitors, are being actively investigated in several clinical trials. In this review, we describe the molecular landscape of thyroid cancer and novel targeted therapies and treatment combinations available for the treatment of metastatic thyroid cancer.
Collapse
Affiliation(s)
| | | | | | - Joanna Klubo-Gwiezdzinska
- Thyroid Tumors and Functional Thyroid Disorders Section, Metabolic Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20814, USA; (M.A.-J.); (S.T.); (S.G.)
| |
Collapse
|
40
|
Harvey RD, Carthon BC, Lewis C, Hossain MS, Zhang C, Chen Z, Harris WB, Alese OB, Shaib W, Bilen MA, Lawson DH, Wu C, Steuer CE, El-Rayes BF, Khuri FR, Lonial S, Waller EK, Ramalingam SS, Owonikoko TK. Phase 1 safety and pharmacodynamic study of lenalidomide combined with everolimus in patients with advanced solid malignancies with efficacy signal in adenoid cystic carcinoma. Br J Cancer 2020; 123:1228-1234. [PMID: 32704173 PMCID: PMC7553949 DOI: 10.1038/s41416-020-0988-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 06/15/2020] [Accepted: 07/01/2020] [Indexed: 11/17/2022] Open
Abstract
Background Purpose: The combination of a mammalian target of rapamycin inhibitor and lenalidomide showed enhanced preclinical cytotoxicity. We conducted a phase 1 study in advanced solid tumour patients to assess safety, efficacy and pharmacodynamic (PD) outcomes. Methods We employed a 3+3 dose escalation design to establish the safety and recommended phase 2 doses (RP2D) of daily everolimus and lenalidomide in patients with advanced solid tumours. The starting doses were 5 and 10 mg, respectively, with planned escalation to maximum single-agent doses of 10 and 25 mg in the absence of dose-limiting toxicity. PD endpoints of lymphocyte subsets and immune cytokines were assessed in peripheral blood using multiparameter flow cytometry and LUMINEX assay. Efficacy was evaluated by cross-sectional imaging after every two cycles of treatment. Results The study enrolled 44 patients, median age of 58 years and 28 males (63.6%). The RP2D was established as 10 and 25 mg daily continuously for everolimus and lenalidomide. Common (>5%) grade ≥3 adverse events included rash (19%), neutropenia (19%), hypokalaemia (11%) and fatigue (9%). Best efficacy outcomes in 36 evaluable patients were partial response in 5 (13.8%), stable disease in 24 (55.8%) and progressive disease in 7 (19.4%) patients. PD assessment revealed significant association of cytokine levels (interleukin-2 (IL2), IL21 and IL17), baseline activated and total CD8+ lymphocytes and change in B cell lymphocytes and activated NK cells with clinical benefit. Conclusions The study demonstrated the safety of everolimus and lenalidomide with promising efficacy signal in thyroid and adenoid cystic cancers. Clinical Trial Registration NCT01218555
Collapse
Affiliation(s)
- R Donald Harvey
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.,Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Bradley C Carthon
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Colleen Lewis
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Mohammad S Hossain
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Chao Zhang
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.,Department of Statistics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Zhengjia Chen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.,Department of Statistics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Wayne B Harris
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Olatunji B Alese
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Walid Shaib
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Mehmet A Bilen
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - David H Lawson
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Christina Wu
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Conor E Steuer
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.,Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.,American University of Beirut, Beirut, Lebanon
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.,Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.,Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.,Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA. .,Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| |
Collapse
|
41
|
San Román Gil M, Pozas J, Molina-Cerrillo J, Gómez J, Pian H, Pozas M, Carrato A, Grande E, Alonso-Gordoa T. Current and Future Role of Tyrosine Kinases Inhibition in Thyroid Cancer: From Biology to Therapy. Int J Mol Sci 2020; 21:E4951. [PMID: 32668761 PMCID: PMC7403957 DOI: 10.3390/ijms21144951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022] Open
Abstract
Thyroid cancer represents a heterogenous disease whose incidence has increased in the last decades. Although three main different subtypes have been described, molecular characterization is progressively being included in the diagnostic and therapeutic algorithm of these patients. In fact, thyroid cancer is a landmark in the oncological approach to solid tumors as it harbors key genetic alterations driving tumor progression that have been demonstrated to be potential actionable targets. Within this promising and rapid changing scenario, current efforts are directed to improve tumor characterization for an accurate guidance in the therapeutic management. In this sense, it is strongly recommended to perform tissue genotyping to patients that are going to be considered for systemic therapy in order to select the adequate treatment, according to recent clinical trials data. Overall, the aim of this article is to provide a comprehensive review on the molecular biology of thyroid cancer focusing on the key role of tyrosine kinases. Additionally, from a clinical point of view, we provide a thorough perspective, current and future, in the treatment landscape of this tumor.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/enzymology
- Adenocarcinoma, Follicular/genetics
- Adenocarcinoma, Follicular/therapy
- Adenoma, Oxyphilic/enzymology
- Adenoma, Oxyphilic/genetics
- Adenoma, Oxyphilic/therapy
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Carcinoma, Medullary/enzymology
- Carcinoma, Medullary/genetics
- Carcinoma, Medullary/therapy
- Carcinoma, Papillary/enzymology
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/therapy
- Clinical Trials as Topic
- Combined Modality Therapy
- Disease Management
- Forecasting
- Genes, Neoplasm
- Humans
- Immune Checkpoint Inhibitors/therapeutic use
- Immunoconjugates/therapeutic use
- Immunotherapy
- Iodine Radioisotopes/therapeutic use
- Molecular Targeted Therapy
- Multicenter Studies as Topic
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Randomized Controlled Trials as Topic
- Thyroid Neoplasms/enzymology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/therapy
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- María San Román Gil
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.S.R.G.); (J.P.); (M.P.); (A.C.); (T.A.-G.)
| | - Javier Pozas
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.S.R.G.); (J.P.); (M.P.); (A.C.); (T.A.-G.)
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.S.R.G.); (J.P.); (M.P.); (A.C.); (T.A.-G.)
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain; (J.G.); (H.P.)
| | - Joaquín Gómez
- Medicine School, Alcalá University, 28805 Madrid, Spain; (J.G.); (H.P.)
- General Surgery Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Héctor Pian
- Medicine School, Alcalá University, 28805 Madrid, Spain; (J.G.); (H.P.)
- Pathology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Miguel Pozas
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.S.R.G.); (J.P.); (M.P.); (A.C.); (T.A.-G.)
| | - Alfredo Carrato
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.S.R.G.); (J.P.); (M.P.); (A.C.); (T.A.-G.)
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain; (J.G.); (H.P.)
| | - Enrique Grande
- Medical Oncology Department, MD Anderson Cancer Center, 28033 Madrid, Spain;
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.S.R.G.); (J.P.); (M.P.); (A.C.); (T.A.-G.)
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain; (J.G.); (H.P.)
| |
Collapse
|
42
|
Amaral M, Afonso RA, Gaspar MM, Reis CP. Anaplastic thyroid cancer: How far can we go? EXCLI JOURNAL 2020; 19:800-812. [PMID: 32636733 PMCID: PMC7332787 DOI: 10.17179/excli2020-1302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/05/2020] [Indexed: 01/08/2023]
Abstract
Globally, thyroid cancer accounts for 2 % of all cancer diagnoses, and can be classified as well-differentiated or undifferentiated. Currently, differentiated thyroid carcinomas have good prognoses, and can be treated with a combination of therapies, including surgical thyroidectomy, radioactive iodine therapy and hormone-based therapy. On the other hand, anaplastic thyroid carcinoma, a subtype of undifferentiated thyroid carcinoma characterized by the loss of thyroid-like phenotype and function, does not respond to either radioactive iodine or hormone therapies. In most cases, anaplastic thyroid carcinomas are diagnosed in later stages of the disease, deeming them inoperable, and showing poor response rates to systemic chemotherapy. Recently, treatment courses using multiple-target agents are being explored and clinical trials have shown very promising results, such as overall survival rates, progression-free survival and tumor shrinkage. This review is focused on thyroid carcinomas, with particular focus on anaplastic thyroid carcinoma, exploring its undifferentiated nature. Special interest will be given to the treatment approaches currently available and respective obstacles or drawbacks. Our purpose is to contribute to understand why this malignancy presents low responsiveness to current treatments, while overviewing novel therapies and clinical trials.
Collapse
Affiliation(s)
- Mariana Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo A Afonso
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, Lisboa, Portugal.,Área de Ensino e Investigação em Ciências Funcionais e Alvos Terapêuticos, NOVA Medical School, Faculdade de Ciências Médicas (NMS
- FCM), Universidade Nova de Lisboa, Lisboa, Portugal.,Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisboa, Portugal
| | - M Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.,IBEB, Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Portugal
| |
Collapse
|
43
|
Cabanillas ME, Ryder M, Jimenez C. Targeted Therapy for Advanced Thyroid Cancer: Kinase Inhibitors and Beyond. Endocr Rev 2019; 40:1573-1604. [PMID: 31322645 PMCID: PMC7341904 DOI: 10.1210/er.2019-00007] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
The treatment of advanced thyroid cancer has undergone rapid evolution in the last decade, with multiple kinase inhibitor drug approvals for each subtype of thyroid cancer and a number of other commercially available drugs that have been studied for this indication. Although most of the US Food and Drug Administration (FDA)-approved drugs are antiangiogenic multikinase inhibitors-vandetanib, cabozantinib, sorafenib, lenvatinib-there are two FDA indications that are mutation specific-dabrafenib/trametinib for BRAF-mutated anaplastic thyroid cancer and larotrectinib for NTRK-fusion thyroid cancer. Furthermore, other mutation-specific drugs, immunotherapies, and novel strategies for advanced thyroid cancer are under investigation. Understanding the molecular basis of thyroid cancer, the drugs of interest for treatment of advanced thyroid cancer, and how these drugs can be administered safely and in the appropriate clinical scenario are the topics of this review.
Collapse
Affiliation(s)
- Maria E Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mabel Ryder
- Department of Endocrinology and Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
44
|
Abstract
Although thyroid cancer generally has a good prognosis, there is a subset of patients for whom standard care (ie, treatment limited to surgery or surgery plus radioactive iodine) is either not appropriate because of the aggressive nature of their disease or not sufficient because of disease progression through standard treatment. Most of these tumors are in 3 groups: radioactive iodine-refractory differentiated thyroid carcinoma including poorly differentiated thyroid carcinoma anaplastic thyroid carcinoma, and progressive medullary thyroid carcinoma. Major classes of treatments in clinical development for these aggressive thyroid tumors include tyrosine kinase inhibitors, mammalian target of rapamycin inhibitors, and mitogen-activated protein kinase kinase inhibitors.
Collapse
Affiliation(s)
- Julian Huang
- Yale University School of Medicine, 123 York Street, 15A, New Haven, CT 06511, USA
| | - Ethan James Harris
- University of Illinois College of Medicine, 901 South Ashland Avenue, 01-715, Chicago, IL 60602, USA
| | - Jochen H Lorch
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, D2136, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Jin Y, Liu M, Sa R, Fu H, Cheng L, Chen L. Mouse models of thyroid cancer: Bridging pathogenesis and novel therapeutics. Cancer Lett 2019; 469:35-53. [PMID: 31589905 DOI: 10.1016/j.canlet.2019.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
Due to a global increase in the incidence of thyroid cancer, numerous novel mouse models were established to reveal thyroid cancer pathogenesis and test promising therapeutic strategies, necessitating a comprehensive review of translational medicine that covers (i) the role of mouse models in the research of thyroid cancer pathogenesis, and (ii) preclinical testing of potential anti-thyroid cancer therapeutics. The present review article aims to: (i) describe the current approaches for mouse modeling of thyroid cancer, (ii) provide insight into the biology and genetics of thyroid cancers, and (iii) offer guidance on the use of mouse models for testing potential therapeutics in preclinical settings. Based on research with mouse models of thyroid cancer pathogenesis involving the RTK, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, SRC, and JAK-STAT signaling pathways, inhibitors of VEGFR, MEK, mTOR, SRC, and STAT3 have been developed as anti-thyroid cancer drugs for "bench-to-bedside" translation. In the future, mouse models of thyroid cancer will be designed to be ''humanized" and "patient-like," offering opportunities to: (i) investigate the pathogenesis of thyroid cancer through target screening based on the CRISPR/Cas system, (ii) test drugs based on new mouse models, and (iii) explore the underlying mechanisms based on multi-omics.
Collapse
Affiliation(s)
- Yuchen Jin
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Min Liu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China; Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Ri Sa
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Hao Fu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Lin Cheng
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
46
|
Cuomo F, Altucci L, Cobellis G. Autophagy Function and Dysfunction: Potential Drugs as Anti-Cancer Therapy. Cancers (Basel) 2019; 11:cancers11101465. [PMID: 31569540 PMCID: PMC6826381 DOI: 10.3390/cancers11101465] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a highly conserved catabolic and energy-generating process that facilitates the degradation of damaged organelles or intracellular components, providing cells with components for the synthesis of new ones. Autophagy acts as a quality control system, and has a pro-survival role. The imbalance of this process is associated with apoptosis, which is a “positive” and desired biological choice in some circumstances. Autophagy dysfunction is associated with several diseases, including neurodegenerative disorders, cardiomyopathy, diabetes, liver disease, autoimmune diseases, and cancer. Here, we provide an overview of the regulatory mechanisms underlying autophagy, with a particular focus on cancer and the autophagy-targeting drugs currently approved for use in the treatment of solid and non-solid malignancies.
Collapse
Affiliation(s)
- Francesca Cuomo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", via L. De Crecchio, 7, 80138 Naples, Italy.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "L. Vanvitelli", via L. De Crecchio, 7, 80138 Naples, Italy.
| | - Gilda Cobellis
- Department of Precision Medicine, University of Campania "L. Vanvitelli", via L. De Crecchio, 7, 80138 Naples, Italy.
| |
Collapse
|
47
|
Molecular Alterations in Thyroid Cancer: From Bench to Clinical Practice. Genes (Basel) 2019; 10:genes10090709. [PMID: 31540307 PMCID: PMC6771012 DOI: 10.3390/genes10090709] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/26/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Thyroid cancer comprises different clinical and histological entities. Whereas differentiated (DTCs) malignancies are sensitive to radioiodine therapy, anaplastic (ATCs) and medullary (MTCs) tumors do not uptake radioactive iodine and display aggressive features associated with a poor prognosis. Moreover, in a majority of DTCs, disease evolution leads to the progressive loss of iodine sensitivity. Hence, iodine-refractory DTCs, along with ATCs and MTCs, require alternative treatments reflective of their different tumor biology. In the last decade, the molecular mechanisms promoting thyroid cancer development and progression have been extensively studied. This has led to a better understanding of the genomic landscape, displayed by thyroid malignancies, and to the identification of novel therapeutic targets. Indeed, several pharmacological compounds have been developed for iodine-refractory tumors, with four multi-target tyrosine kinase inhibitors already available for DTCs (sorafenib and lenvatinib) and MTCs (cabozantib and vandetanib), and a plethora of drugs currently being evaluated in clinical trials. In this review, we will describe the genomic alterations and biological processes intertwined with thyroid cancer development, also providing a thorough overview of targeted drugs already tested or under investigation for these tumors. Furthermore, given the existing preclinical evidence, we will briefly discuss the potential role of immunotherapy as an additional therapeutic strategy for the treatment of thyroid cancer.
Collapse
|
48
|
Anaplastic Thyroid Cancer: Clinical Picture of the Last Two Decades at a Single Oncology Referral Centre and Novel Therapeutic Options. Cancers (Basel) 2019; 11:cancers11081188. [PMID: 31443283 PMCID: PMC6721627 DOI: 10.3390/cancers11081188] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare tumour but also one of the most lethal malignancies. Therapeutic modalities have usually been limited, but clinical trials with new drugs are now being implemented. The aims of this study were to analyse the clinical presentation, therapeutic modalities and independent prognostic factors for survival. We also reviewed the most recent literature on novel ATC therapies. We performed a retrospective analysis of 79 patients diagnosed between 2000 and 2018. Variables with impact on survival were identified using the Cox proportional-hazard regression model. At presentation, 6.3% had thyroid-confined disease, 30.4% evidenced extrathyroidal extension and 60.8% were already metastatic. Surgery was feasible in 41.8% and radiotherapy was applied to 35.4%, with those receiving >45 Gy having longer estimated survival (p = 0.020). Chemotherapy, either conventional or with tyrosine kinase inhibitors, was performed in 17.7% and 7.6%, respectively. Multimodality therapy with surgery, radiotherapy and chemotherapy/tyrosine kinase inhibitors (TKI) had the greatest impact on disease specific survival (DSS), providing a risk reduction of death of 96.9% (hazard ratio (HR) = 0.031, 0.005–0.210, p < 0.001). We concluded that most of these patients join reference centres at advanced stages of disease and multimodality treatment may offer the best chances for prolonging survival.
Collapse
|
49
|
Aydemirli MD, Corver W, Beuk R, Roepman P, Solleveld-Westerink N, van Wezel T, Kapiteijn E, Morreau H. Targeted Treatment Options of Recurrent Radioactive Iodine Refractory Hürthle Cell Cancer. Cancers (Basel) 2019; 11:E1185. [PMID: 31443247 PMCID: PMC6721552 DOI: 10.3390/cancers11081185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 01/29/2023] Open
Abstract
Objective: To evaluate the efficacy and treatment rationale of Hürthle cell carcinoma (HCC) following a patient with progressive and metastatic HCC. HCC was recently shown to harbor a distinct genetic make-up and the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kiase (PI3K)/AKT signaling pathways are potential targets for anti-cancer agents in the management of recurrent HCC. The presence or absence of gene variants can give a rationale for targeted therapies that could be made available in the context of drug repurposing trials. Methods: Treatment included everolimus, sorafenib, nintedanib, lenvatinib, and panitumumab. Whole genome sequencing (WGS) of metastatic tumor material obtained before administration of the last drug, was performed. We subsequently evaluated the rationale and efficacy of panitumumab in thyroid cancer and control cell lines after epidermal growth factor (EGF) stimulation and treatment with panitumumab using immunofluorescent Western blot analysis. EGF receptor (EGFR) quantification was performed using flow cytometry. Results: WGS revealed a near-homozygous genome (NHG) and a somatic homozygous TSC1 variant, that was absent in the primary tumor. In the absence of RAS variants, panitumumab showed no real-life efficacy. This might be explained by high constitutive AKT signaling in the two thyroid cancer cell lines with NHG, with panitumumab only being a potent inhibitor of pEGFR in all cancer cell lines tested. Conclusions: In progressive HCC, several treatment options outside or inside clinical trials are available. WGS of metastatic tumors might direct the timing of therapy. Unlike other cancers, the absence of RAS variants seems to provide insufficient justification of single-agent panitumumab administration in HCC cases harboring a near-homozygous genome.
Collapse
Affiliation(s)
- Mehtap Derya Aydemirli
- Department of Medical Oncolosgy, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Willem Corver
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ruben Beuk
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, 1098 XH Amsterdam, The Netherlands
| | | | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncolosgy, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
50
|
A Systematic Review of Phase II Targeted Therapy Clinical Trials in Anaplastic Thyroid Cancer. Cancers (Basel) 2019; 11:cancers11070943. [PMID: 31277524 PMCID: PMC6678800 DOI: 10.3390/cancers11070943] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a rare, but devastating disease. Despite multimodal approaches combining surgery, chemotherapy and radiation therapy, ATC is associated with a dire prognosis, with a median overall survival of only three to ten months. Novel treatments are thus urgently needed. Recent efforts towards the characterization of the molecular landscape of ATC have led to the identification of pro-oncogenic targetable alterations, lending promise for novel targeted therapeutic approaches. This systematic review summarizes the results of phase II clinical trials of targeted therapy in ATC, providing an overview of efficacy and safety profiles. The majority of trials to date have consisted of small single-arm studies and have presented modest results. However, only a minority of trials have selected or stratified patients by molecular alterations. In the setting of BRAF V600E mutated ATC, dabrafenib/trametinib combination therapy and vemurafenib monotherapy have both demonstrated efficacy. Everolimus has furthermore shown promising results in patients with PI3K/mTOR/AKT pathway alterations. These studies underscore the importance of molecular profiling of tumors for appropriate patient selection and determination of genomic correlates of response. Clinical trials are underway testing additional targeted therapies as monotherapy, or as a part of multimodal treatment, and in combination with immunotherapy.
Collapse
|