1
|
Gurau A, Yamauchi S, Ecoff K, Rodgers KP, Eshleman JR, Jr CCT, Huang P, Choi J, Forde PM, Anagnostou V, Brock M, Mei Y. PD-L1 pfeRNAs as blood-based predictors of treatment response of unresectable malignant pleural mesothelioma patients administered Durvalumab with cisplatin and pemetrexed as first-line therapy. Noncoding RNA Res 2025; 12:34-41. [PMID: 40093961 PMCID: PMC11910356 DOI: 10.1016/j.ncrna.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/29/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Background A new therapeutic avenue combining Durvalumab with cisplatin-pemetrexed (Durva-CP) has delivered a promising outcome for previously untreated patients with unresectable malignant pleural mesothelioma (MPM) in clinical trials. However, the limited patient response to Durva-CP needs predictors to select optimal candidates and monitor the developed resistance. Protein functional effector sncRNA (pfeRNA) reveals a fundamental mechanism underlying the regulation of protein activity. The common mechanisms underlying durvalumab, cisplatin, and pemetrexed indicate that PD-L1 pfeRNAs (PDLpfeRNAs) are key molecules that control the treatment response. Methods We specified PDLpfeRNAs by sncRNA deep sequencing, confirmed their binding to PD-L1 by immunoprecipitation and reverse pull-down assays, and demonstrated their roles in controlling the interaction behaviors of PD1/L1 through quality-controlled drug development assays. Following the standards required for the CLIA-compliant LDT, we measured their expression levels in 60 plasma biospecimens from 30 unresectable MPM patients enrolled in the PrE0505 Phase II multicenter study. Using the Cox proportional hazards model and Kaplan-Meier analyses, we described their significance in predicting the treatment response of unresectable MPM patients administered Durva-CP as first-line therapy. Results Two PDLpfeRNAs, PDLpfeRNAa and PDLpfeRNAb, were characterized, confirmed to bind to PD-L1, and identified to control the interaction behaviors of PD-1/L1. Their plasma relative expression levels (REL) demonstrated significant prognostic value for both overall survival (p = 0.0019) and progression-free survival (p = 0.019), and the association remained significant after adjusting for histological subtype (HR 2.59, 95 % CI: 1.00-6.70, p = 0.050) and age (HR 1.03, 95 % CI: 0.98-1.07, p = 0.269). Conclusions Plasma PDLpfeRNAs are predictors of treatment response of unresectable MPM patients treated with Durva-CP as first-line therapy to select optimal candidates and monitor the developed resistance.
Collapse
Affiliation(s)
- Andrei Gurau
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | - Suguru Yamauchi
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
- Department of Esophageal and Gastroenterological Surgery, Faculty of Medicine, Juntendo University, 3-1-3, Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Kaitlyn Ecoff
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | - Kristen P. Rodgers
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | - James R. Eshleman
- The Pathology Molecular Diagnostics Laboratory, Johns Hopkins School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA
| | - Charles Conover Talbot Jr
- Institute for Basic Biomedical Sciences, Johns Hopkins School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA
| | - Peng Huang
- Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| | - Joshua Choi
- Department of Biology, Krieger School of Arts & Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Patrick M. Forde
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | - Malcolm Brock
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | - Yuping Mei
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| |
Collapse
|
2
|
Ma J, Zhu R, Li M, Jiao H, Fan S, Ma X, Xiang G. Proteolysis-targeting chimera-doxorubicin conjugate nanoassemblies for dual treatment of EGFR-TKI sensitive and resistant non-small cell lung cancer. Acta Biomater 2025; 195:421-435. [PMID: 39922514 DOI: 10.1016/j.actbio.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/12/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as a promising strategy for targeted protein degradation and drug discovery. However, traditional PROTACs face inherent limitations and may also contribute to induce drug resistance. These challenges have driven the development of innovative strategies to overcome these obstacles. In current study, a PROTAC-DOX conjugates (PDCs) nanoassembly strategy was introduced to enhance tumor-targeting capability and overcome the drawbacks of conventional PROTACs. The designed PDC-S nanoparticles (PDC-S NPs) demonstrated potent anti-tumor activity against drug-resistant strains (IC50 = 4.7 µM) and improved in vivo efficacy (TGI = 76 %) against drug-sensitive strains, while minimizing side effects. Additionally, PDC-S NPs have great potential in tumor immunotherapy. This study provides a novel and promising strategy for the development of PROTAC-Drug Conjugates (PDCs). STATEMENT OF SIGNIFICANCE: We developed a PROTAC-DOX conjugates (PDCs) nanoassembly strategy to address the limitations of traditional PROTACs, such as poor solubility, low targeting specificity, and drug resistance. PDC-S NPs were constructed via self-assembly, which simplified preparation and minimized the toxicity typically associated with carrier-assisted delivery systems. The PDC-S NPs showed improved aqueous solubility and cellular uptake, resulting in efficient EGFR degradation in HCC827 cells. In vivo, PDC-S NPs accumulated at tumor sites via the EPR effect, resulting in enhanced anti-tumor potency with reduced side effects. Furthermore, PDC-S NPs induced immunogenic cell death (ICD) and suppressed PD-L1 and VEGF expression, highlighting great potential in tumor immunotherapy.
Collapse
Affiliation(s)
- Junhui Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Ruixue Zhu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Meijing Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hui Jiao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Sijun Fan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Pharmacy, Tongren Polytechnic College, Tongren, Guizhou 554300, China.
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Pharmacy, Tongren Polytechnic College, Tongren, Guizhou 554300, China; The Higher Education Edible and Medicinal Fungi Engineering Research Center of Guizhou Province, Tongren, Guizhou 554300, China.
| |
Collapse
|
3
|
Almawash S. Revolutionary Cancer Therapy for Personalization and Improved Efficacy: Strategies to Overcome Resistance to Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2025; 17:880. [PMID: 40075727 PMCID: PMC11899125 DOI: 10.3390/cancers17050880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a significant public health issue worldwide, standing as a primary contributor to global mortality, accounting for approximately 10 million fatalities in 2020 [...].
Collapse
Affiliation(s)
- Saud Almawash
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
4
|
Zou J, Han W, Hu Y, Zeng C, Li J, Lei W, Cao J, Fei Q, Shao M, Yi J, Cheng Z, Wang L, Wu F, Liu W. Gene mutation, clinical characteristics and pathology in resectable lung adenocarcinoma. World J Surg Oncol 2025; 23:16. [PMID: 39844176 PMCID: PMC11752792 DOI: 10.1186/s12957-025-03680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/19/2025] [Indexed: 01/24/2025] Open
Abstract
OBJECTIVE With the wide use of CT scan in clinical practice, more lung cancer was diagnosed in resectable stage. Pathological examination and genetic testing have become a routine procedure for lung adenocarcinoma following radical resection. This study analyzed special pathological components and gene mutations to explore their relationship with clinical characteristics and overall survival. METHODS Clinical, pathological, and gene mutation data from 1,118 patients were collected. All patients underwent surgery at the Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University. Patients were grouped based on pathological components and gene mutations. Differences in clinical features and overall survival were analyzed as well. RESULTS Patients with mucinous, neuroendocrine, and poor-differentiated components were presented with more prognostic risk factors, including pleural invasion, carcinothrombosis, STAS, and advanced stages, along with varying frequencies of gene mutations. These factors significantly shortened overall survival. ALK and KRAS mutations were also associated with risk factors such as solid nodules, pleural invasion, STAS, and later stages. However, a significant reduction in overall survival was observed only in patients with the KRAS mutation. Relationship between gene mutations and pathological components still requires further investigation. CONCLUSION Special pathological components (mucinous, neuroendocrine, and poor-differentiated) and gene mutations had an influence on biological behavior of tumors, resulting in different clinical characteristics and prognosis.
Collapse
Affiliation(s)
- Ji'an Zou
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Han
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chao Zeng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jina Li
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weixuan Lei
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jieming Cao
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Quanming Fei
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mengqi Shao
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Junqi Yi
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zeyu Cheng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Wenliang Liu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
5
|
Schiele P, Kolling S, Rosnev S, Junkuhn C, Walter AL, von Einem JC, Stintzing S, Schöning W, Sauer IM, Modest DP, Heinrich K, Weiss L, Heinemann V, Bullinger L, Frentsch M, Na IK. Flow Cytometric Assessment of FcγRIIIa-V158F Polymorphisms and NK Cell Mediated ADCC Revealed Reduced NK Cell Functionality in Colorectal Cancer Patients. Cells 2024; 14:32. [PMID: 39791733 PMCID: PMC11720420 DOI: 10.3390/cells14010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells is a key mechanism in anti-cancer therapies with monoclonal antibodies, including cetuximab (EGFR-targeting) and avelumab (PDL1-targeting). Fc gamma receptor IIIa (FcγRIIIa) polymorphisms impact ADCC, yet their clinical relevance in NK cell functionality remains debated. We developed two complementary flow cytometry assays: one to predict the FcγRIIIa-V158F polymorphism using a machine learning model, and a 15-color flow cytometry panel to assess antibody-induced NK cell functionality and cancer-immune cell interactions. Samples were collected from healthy donors and metastatic colorectal cancer (mCRC) patients from the FIRE-6-Avelumab phase II study. The machine learning model accurately predicted the FcγRIIIa-V158F polymorphism in 94% of samples. FF homozygous patients showed diminished cetuximab-mediated ADCC compared to VF or VV carriers. In mCRC patients, NK cell dysfunctions were evident as impaired ADCC, decreased CD16 downregulation, and reduced CD137/CD107a induction. Elevated PD1+ NK cell levels, reduced lysis of PDL1-expressing CRC cells and improved NK cell activation in combination with the PDL1-targeting avelumab indicate that the PD1-PDL1 axis contributes to impaired cetuximab-induced NK cell function. Together, these optimized assays effectively identify NK cell dysfunctions in mCRC patients and offer potential for broader application in evaluating NK cell functionality across cancers and therapeutic settings.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/drug therapy
- Receptors, IgG/metabolism
- Receptors, IgG/genetics
- Antibody-Dependent Cell Cytotoxicity
- Flow Cytometry/methods
- Cetuximab/pharmacology
- Cetuximab/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Female
- Male
- Polymorphism, Genetic
- Middle Aged
- Cell Line, Tumor
Collapse
Affiliation(s)
- Phillip Schiele
- BIH Center for Regenerative Therapies (BCRT), Therapy-Induced Remodeling in Immuno-Oncology, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- Department of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 13353 Berlin, Germany
| | - Stefan Kolling
- BIH Center for Regenerative Therapies (BCRT), Therapy-Induced Remodeling in Immuno-Oncology, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- Department of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 13353 Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité Junior Digital Clinician Scientist Program, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10178 Berlin, Germany
- BSIO Berlin School of Integrative Oncology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10178 Berlin, Germany
| | - Stanislav Rosnev
- Department of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 13353 Berlin, Germany
| | - Charlotte Junkuhn
- BIH Center for Regenerative Therapies (BCRT), Therapy-Induced Remodeling in Immuno-Oncology, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- Department of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 13353 Berlin, Germany
- BSIO Berlin School of Integrative Oncology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10178 Berlin, Germany
| | - Anna Luzie Walter
- BIH Center for Regenerative Therapies (BCRT), Therapy-Induced Remodeling in Immuno-Oncology, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- Department of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 13353 Berlin, Germany
- BSIO Berlin School of Integrative Oncology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10178 Berlin, Germany
- Medical Department of Hematology, Oncology and Tumor Immunology, Molekulares Krebsforschungszentrum (MKFZ), Charité—Universitätsmedizin, 10117 Berlin, Germany
| | - Jobst Christian von Einem
- Department of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 13353 Berlin, Germany
- MVZ Onkologie Tiergarten, 10559 Berlin, Germany
| | - Sebastian Stintzing
- Department of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 13353 Berlin, Germany
| | - Wenzel Schöning
- Department of Surgery, Campus Charité Mitte—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 10117 Berlin, Germany
| | - Igor Maximilian Sauer
- Department of Surgery, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 13353 Berlin, Germany
| | - Dominik Paul Modest
- Department of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 13353 Berlin, Germany
- German Cancer Consortium (DKTK), 10115 Berlin, Germany
| | - Kathrin Heinrich
- Department of Medicine III, Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Lena Weiss
- Department of Hematology/Oncology and Comprehensive Cancer Center, University Hospital, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Volker Heinemann
- Department of Hematology/Oncology and Comprehensive Cancer Center, University Hospital, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 13353 Berlin, Germany
| | - Marco Frentsch
- BIH Center for Regenerative Therapies (BCRT), Therapy-Induced Remodeling in Immuno-Oncology, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- Department of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 13353 Berlin, Germany
| | - Il-Kang Na
- BIH Center for Regenerative Therapies (BCRT), Therapy-Induced Remodeling in Immuno-Oncology, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- Department of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 13353 Berlin, Germany
- BSIO Berlin School of Integrative Oncology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), 10115 Berlin, Germany
- ECRC Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 10178 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| |
Collapse
|
6
|
Greidinger D, Halperin R, Zemet R, Maixner N, Tirosh A. Somatic USP8 alteration affects the immune landscape of corticotroph pituitary adenomas- a pilot study. Hormones (Athens) 2024; 23:717-725. [PMID: 38819743 DOI: 10.1007/s42000-024-00569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
INTRODUCTION Somatic mutations in ubiquitin-specific protease-8 (USP8), encoding a deubiquinating protein, are found in approximately 30% of corticotroph-derived pituitary adenomas (CPAs). Stratifin, a protein encoded by SFN, inhibits USP8 catalytic activity. USP8 has immunomodulating properties that have been demonstrated in non-tumoral diseases. METHODS We assessed the influence of USP8 on the immune landscape of CPA and validated this effect and its dependency on stratifin in large cohorts of non-pituitary tumors. We analyzed data of CPA samples (n = 20) and additional non-pituitary tumors from the TCGA database, using transcriptome signature-recognition algorithms. Immune tumor microenvironment (iTME) was compared both by USP8 and SFN expression levels (n = 843) and by USP8 mutation status and SFN expression (n = 12,389). RESULTS CPA with activating USP8 mutations was associated with "cold" iTME compared with wild-type USP8 CPA, as reflected by lower fractions of immune cells, including B cells, CD4, regulatory and gamma/delta T cells, natural killer cells, M0 and M1 macrophages, dendritic cells, and eosinophils (p < 0.05 for all comparisons). Pathways altered by the presence of USP8 mutation, based on the most differentially expressed genes (3061 genes), included microglia pathogen phagocytosis and multiple toll-like receptor signaling pathways (p < 0.0001). In a validation analysis based on large cohorts of non-pituitary tumors, high expression of USP8 was associated with a suppressed iTME effect that was augmented by a low SFN expression. CONCLUSIONS Our data demonstrate for the first time, to our knowledge, a distinct immune landscape of tumors based on USP8 status and expression and the dependency of this immunological effect on SFN expression.
Collapse
Affiliation(s)
- Dahlia Greidinger
- Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Internal Medicine I, Tel HaShomer, Israel
| | - Reut Halperin
- Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
- ENTIRE - Endocrine Neoplasia Translational Research Center, Research Center for Endocrinology, Diabetes and Metabolism, The Chaim Sheba Medical Center, Tel HaShomer , Israel
| | - Roni Zemet
- Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Department of Obstetrics and Gynecology, Tel HaShomer, Israel
| | - Nitzan Maixner
- Cancer Center at Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Amit Tirosh
- Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel.
- ENTIRE - Endocrine Neoplasia Translational Research Center, Research Center for Endocrinology, Diabetes and Metabolism, The Chaim Sheba Medical Center, Tel HaShomer , Israel.
| |
Collapse
|
7
|
Kojima K, Samejima H, Okishio K, Tokunaga T, Yoon H, Atagi S. Impact of the number of dissected lymph nodes on machine learning-based prediction of postoperative lung cancer recurrence: a single-hospital retrospective cohort study. BMJ Open Respir Res 2024; 11:e001926. [PMID: 39327061 PMCID: PMC11429344 DOI: 10.1136/bmjresp-2023-001926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND The optimal number of lymph nodes to be dissected during lung cancer surgery to minimise the postoperative recurrence risk remains undetermined. This study aimed to elucidate the impact of the number of dissected lymph nodes on the risk of postoperative recurrence of non-small cell lung cancer (NSCLC) using machine learning algorithms and statistical analyses. METHODS We retrospectively analysed 650 patients with NSCLC who underwent complete resection. Five machine learning models were trained using clinicopathological variables to predict postoperative recurrence. The relationship between the number of dissected lymph nodes and postoperative recurrence was investigated in the best-performing model using Shapley additive explanations values and partial dependence plots. Multivariable Cox proportional hazard analysis was performed to estimate the HR for postoperative recurrence based on the number of dissected nodes. RESULTS The random forest model demonstrated superior predictive performance (area under the receiver operating characteristic curve: 0.92, accuracy: 0.83, F1 score: 0.64). The partial dependence plot of this model revealed a non-linear dependence of the number of dissected lymph nodes on recurrence prediction within the range of 0-20 nodes, with the weakest dependence at 10 nodes. A linear increase in the dependence was observed for ≥20 dissected nodes. A multivariable analysis revealed a significantly elevated risk of recurrence in the group with ≥20 dissected nodes in comparison to those with <20 nodes (adjusted HR, 1.45; 95% CI 1.003 to 2.087). CONCLUSIONS The number of dissected lymph nodes was significantly associated with the risk of postoperative recurrence of NSCLC. The risk of recurrence is minimised when approximately 10 nodes are dissected but may increase when >20 nodes are removed. Limiting lymph node dissection to approximately 20 nodes may help to preserve a favourable antitumour immune environment. These findings provide novel insights into the optimisation of lymph node dissection during lung cancer surgery.
Collapse
Affiliation(s)
- Kensuke Kojima
- Department of General Thoracic Surgery, NHO Kinki Chuo Chest Medical Center, Osaka, Japan
| | - Hironobu Samejima
- Department of General Thoracic Surgery, NHO Kinki Chuo Chest Medical Center, Osaka, Japan
| | - Kyoichi Okishio
- Clinical Research Center, NHO Kinki Chuo Chest Medical Center, Osaka, Japan
- Department of Thoracic Oncology, NHO Kinki Chuo Chest Medical Center, Osaka, Japan
| | - Toshiteru Tokunaga
- Department of General Thoracic Surgery, NHO Kinki Chuo Chest Medical Center, Osaka, Japan
| | - Hyungeun Yoon
- Department of General Thoracic Surgery, NHO Kinki Chuo Chest Medical Center, Osaka, Japan
| | - Shinji Atagi
- Japan Community Health Care Organization, Yamato Koriyama Hospital, Nara, Japan
| |
Collapse
|
8
|
Bashraheel SS, Al-Sulaiti H, Goda SK. Generation of Novel Tumour-Selective SEA Superantigen-Based Peptides with Improved Safety and Efficacy for Precision Cancer Immunotherapy. Int J Mol Sci 2024; 25:9423. [PMID: 39273378 PMCID: PMC11395200 DOI: 10.3390/ijms25179423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Bacterial superantigens are T-cell-stimulatory protein molecules which produce massive cytokines and cause human diseases. Due to their ability to activate up to 20% of resting T-cells, they have effectively killed T-cell-dependent tumours in vivo. However, the intrinsic toxicity of whole SAg molecules highlights the urgent need to develop more effective and safer SAg-based immunotherapy. With its unique approach, our study is a significant step towards developing safer tumour-targeted superantigen peptides (TTSP). We identified the T-cell activation function regions on the SEA superantigen and produced variants with minimal lethality, ensuring a safer approach to cancer treatment. This involved the creation of twenty 50-amino-acid-long overlapping peptides covering the full-length SEA superantigen (P1-P20). We then screened these peptides for T-cell activation, successfully isolating two peptides (P5 and P15) with significant T-cell activation. These selected peptides were used to design and synthesise tumour-targeted superantigen peptides, which were linked to a cancer-specific third loop (L3) of transforming growth factor-α (TGF-α), TGFαL3 from either a C' or N' terminal with an eight-amino-acid flexible linker in between. We also produced several P15 variants by changing single amino acids or by amino acid deletions. The novel molecules were then investigated for cytokine production and tumour-targeted killing. The findings from our previous study and the current work open up new avenues for peptide-based immunotherapy, particularly when combined with other immunotherapy techniques, thereby ensuring effective and safer cancer treatment.
Collapse
Affiliation(s)
- Sara S Bashraheel
- College of Medicine, QU Health, Qatar University (QU), Doha P.O. Box 2713, Qatar
| | - Haya Al-Sulaiti
- College of Health and Science, QU Health, Qatar University (QU), Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Sayed K Goda
- College of Science and Technology, University of Derby, Derby DE22 1GB, UK
| |
Collapse
|
9
|
Niu J, Jing X, Xu Q, Liu H, Tian Y, Yang Z, Zhu H, Sun Y. Strong PD-L1 affect clinical outcomes in advanced NSCLC treated with third-generation EGFR-TKIs. Future Oncol 2024; 20:2481-2490. [PMID: 39155845 PMCID: PMC11520565 DOI: 10.1080/14796694.2024.2385290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Background: In first/second generation EGFR-TKIs, strong PD-L1 expression contributes to primary resistance, significantly affecting patient prognosis. The relationship between PD-L1 expression levels and third-generation TKIs remains unclear.Methods: This study analyzed advanced NSCLC who received third-generation EGFR-TKIs as first-line systemic therapy from March 2019 to June 2022. The EGFR and PD-L1 status of the patients was also assessed.Results: Overall, 150 patients were included in this study. PD-L1 expression was negative (PD-L1 tumor proportion score <1%) in 89 cases, weak (1-49%) in 42 cases, and strong (≥50%) in 19 cases. mPFS for patients with negative, weak and strong PD-L1 expressions was 23.60, 26.12 and 16.60 months, respectively. The mPFS for strong PD-L1 expression was significantly shorter than that for with weak PD-L1 expression but was not associated with negativity. The same conclusions were shown in subgroup analyses of mutation types and TKI kinds. In addition, Relative to PD-L1-negative patients, resistance to TKIs may be associated with early progression for patients with strong PD-L1 expression.Conclusion: PD-L1 expression in tumor cells influenced the clinical outcomes of patients with advanced NSCLC treated with third-generation EGFR-TKIs. Stronger PD-L1 expression in TKIs-treated patients with advanced first-line EGFR-mutated NSCLC was associated with worse PFS.
Collapse
Affiliation(s)
- Jiling Niu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Xuquan Jing
- Department of Radiation Oncology, Shandong University Cancer Center, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Qinhao Xu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Haoyu Liu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yaru Tian
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Zhengqiang Yang
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yulan Sun
- Department of Internal Medicine Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Science, 250117, Jinan,China
| |
Collapse
|
10
|
Wang D, Li S, Yang Z, Yu C, Wu P, Yang Y, Zhang R, Li Q, Yang J, Li H, Ji G, Wang Y, Xie K, Liu Y, Wang K, Zhu D, Zhang W, Liu D, Chen B, Li W. Single-cell transcriptome analysis deciphers the CD74-mediated immune evasion and tumour growth in lung squamous cell carcinoma with chronic obstructive pulmonary disease. Clin Transl Med 2024; 14:e1786. [PMID: 39113235 PMCID: PMC11306293 DOI: 10.1002/ctm2.1786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) contributes to the incidence and prognosis of lung cancer. The presence of COPD significantly increases the risk of lung squamous cell carcinoma (LSCC). COPD may promote an immunosuppressive microenvironment in LSCC by regulating the expression of immune-inhibitory factors in T cells, although the mechanisms remain unclear. In this study, we aimed to decipher the tumour microenvironment signature for LSCC with COPD at a single-cell level. METHODS We performed single-cell RNA sequencing on tumour tissues from LSCC with or without COPD, then investigated the features of the immune and tumour cells. We employed multiple techniques, including multispectral imaging, flow cytometry, tissue microarray analysis, survival analysis, co-culture systems and in vitro and in vivo treatment experiments, to validate the findings obtained from single-cell analyses. RESULTS LSCC with COPD showed increased proportions of tumour-associated macrophages (TAMs) and higher levels of CD8+ T cell exhaustion molecules, which contributed to an immunosuppressive microenvironment. Further analysis revealed a critical cluster of CD74+ tumour cells that expressed both epithelial and immune cell signatures, exhibited a stronger capacity for tumorigenesis and predicted worse overall survival. Notably, migration inhibitory factor (MIF) secreted by TAMs from LSCC with COPD may promote the activation of CD74. MIF-CD74 may interact with CD8+ T cells and impair their anti-tumour activity by regulating the PI3K-STAT3-programmed cell death-1 ligand 1 signalling pathway, facilitating tumour proliferation and immune evasion. CONCLUSIONS Our comprehensive picture of the tumour ecosystem in LSCC with COPD provides deeper insights into relevant immune evasion mechanisms and potential targets for immunotherapy. HIGHLIGHT Our results demonstrated higher proportions of tumour-associated macrophages (TAMs) and higher levels of exhaustion molecules in CD8+ T cells in the microenvironment of LSCC with COPD. CD74+tumour cells were associated with poor disease prognosis. Migration inhibitory factor (MIF)-CD74 may interact with CD8+ T cells and impair their anti-tumour activity by regulating the PI3K-STAT3-PD-L1 signalling pathway, facilitating immune evasion.
Collapse
Affiliation(s)
- Denian Wang
- Precision Medicine Research CenterPrecision Medicine Key Laboratory of Sichuan ProvinceState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Respiratory and Critical Care MedicinePrecision Medicine CenterFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
- Research Units of West ChinaChinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| | - Sixiang Li
- Department of Respiratory and Critical Care MedicinePrecision Medicine CenterFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Respiratory and Critical Care MedicineNational Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhi Yang
- Department of NephrologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chunyan Yu
- Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Omics Technology and BioinformaticsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Pengfei Wu
- Department of Respiratory HealthFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
| | - Ying Yang
- Department of Respiratory HealthFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
| | - Rui Zhang
- Department of Respiratory and Critical Care MedicinePrecision Medicine CenterFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
| | - Qingyan Li
- Department of Respiratory HealthFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jian Yang
- Center of GrowthMetabolism, and AgingKey Laboratory of Bio‐Resources and Eco‐EnvironmentCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of DrugsState Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Guiyi Ji
- Health Management CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Wang
- Department of Thoracic SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Kang Xie
- Precision Medicine Research CenterPrecision Medicine Key Laboratory of Sichuan ProvinceState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yanyan Liu
- Lung Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Kaige Wang
- Department of Respiratory and Critical Care MedicinePrecision Medicine CenterFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daxing Zhu
- Lung Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Wengeng Zhang
- Precision Medicine Research CenterPrecision Medicine Key Laboratory of Sichuan ProvinceState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduSichuanChina
| | - Dan Liu
- Department of Respiratory and Critical Care MedicinePrecision Medicine CenterFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
| | - Bojiang Chen
- Precision Medicine Research CenterPrecision Medicine Key Laboratory of Sichuan ProvinceState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduSichuanChina
| | - Weimin Li
- Precision Medicine Research CenterPrecision Medicine Key Laboratory of Sichuan ProvinceState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Respiratory and Critical Care MedicinePrecision Medicine CenterFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
- Research Units of West ChinaChinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| |
Collapse
|
11
|
Li N, Zuo R, He Y, Gong W, Wang Y, Chen L, Luo Y, Zhang C, Liu Z, Chen P, Guo H. PD-L1 induces autophagy and primary resistance to EGFR-TKIs in EGFR-mutant lung adenocarcinoma via the MAPK signaling pathway. Cell Death Dis 2024; 15:555. [PMID: 39090096 PMCID: PMC11294607 DOI: 10.1038/s41419-024-06945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Resistance to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is a significant cause of treatment failure and cancer recurrence in non-small cell lung cancer (NSCLC). Approximately 30% of patients with EGFR-activating mutations exhibit primary resistance to EGFR-TKIs. However, the potential mechanisms of primary resistance to EGFR-TKIs remain poorly understood. Recent studies have shown that increased expression of programmed death ligand-1 (PD-L1) is associated with EGFR-TKIs resistance. Therefore, the present study aimed to investigate the mechanism of PD-L1 in primary resistance to EGFR-TKIs in EGFR-mutant lung adenocarcinoma (LUAD) cells. We found that PD-L1 was associated with poor prognosis in patients with EGFR-mutant LUAD, while the combination of EGFR-TKIs with chemotherapy could improve its therapeutic efficacy. In vitro and in vivo experiments revealed that PD-L1 promoted the proliferation and autophagy and inhibited the apoptosis of LUAD cells. Mechanistic studies demonstrated that upregulation of PD-L1 was critical in inducing autophagy through the mitogen-activated protein kinase (MAPK) signaling pathway, which was beneficial for tumor progression and the development of gefitinib resistance. Furthermore, we found that gefitinib combined with pemetrexed could synergistically enhance antitumor efficacy in PD-L1-overexpression LUAD cells. Overall, our study demonstrated that PD-L1 contributed to primary resistance to EGFR-TKIs in EGFR-mutant LUAD cells, which may be mediated by inducing autophagy via the MAPK signaling pathway. These findings not only help improve the prognosis of patients with EGFR-mutant LUAD but also provide a reference for the research of other cancer types.
Collapse
Affiliation(s)
- Na Li
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Oncology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| | - Ran Zuo
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yuchao He
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Wenchen Gong
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yu Wang
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Liwei Chen
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yi Luo
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Cuicui Zhang
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Zhiyong Liu
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| | - Peng Chen
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Hua Guo
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| |
Collapse
|
12
|
Akao K, Oya Y, Sato T, Ikeda A, Horiguchi T, Goto Y, Hashimoto N, Kondo M, Imaizumi K. It might be a dead end: immune checkpoint inhibitor therapy in EGFR-mutated NSCLC. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:826-840. [PMID: 39280252 PMCID: PMC11390290 DOI: 10.37349/etat.2024.00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/24/2024] [Indexed: 09/18/2024] Open
Abstract
Despite innovative advances in molecular targeted therapy, treatment strategies using immune checkpoint inhibitors (ICIs) for epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) have not progressed significantly. Accumulating evidence suggests that ICI chemotherapy is inadequate in this population. Biomarkers of ICI therapy, such as programmed cell death ligand 1 (PD-L1) and tumor-infiltrating lymphocytes (TILs), are not biomarkers in patients with EGFR mutations, and the specificity of the tumor microenvironment has been suggested as the reason for this. Combination therapy with PD-L1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors is a concern because of its severe toxicity and limited efficacy. However, early-stage NSCLC may differ from advanced-stage NSCLC. In this review, we comprehensively review the current evidence and summarize the potential of ICI therapy in patients with EGFR mutations after acquiring resistance to treatment with EGFR-tyrosine kinase inhibitors (TKIs) with no T790M mutation or whose disease has progressed on osimertinib.
Collapse
Affiliation(s)
- Ken Akao
- Department of Respiratory Medicine, School of medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Yuko Oya
- Department of Respiratory Medicine, School of medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Takaya Sato
- Department of Respiratory Medicine, School of medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Aki Ikeda
- Department of Respiratory Medicine, School of medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Tomoya Horiguchi
- Department of Respiratory Medicine, School of medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Yasuhiro Goto
- Department of Respiratory Medicine, School of medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, School of medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Masashi Kondo
- Department of Respiratory Medicine, School of medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine, School of medicine, Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
13
|
Zhu S, Jin Y, Zhou M, Li L, Song X, Su X, Liu B, Shen J. KK-LC-1, a biomarker for prognosis of immunotherapy for primary liver cancer. BMC Cancer 2024; 24:811. [PMID: 38972967 PMCID: PMC11229184 DOI: 10.1186/s12885-024-12586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
PURPOSE There is mounting evidence that patients with liver cancer can benefit from Immune checkpoint inhibitors. However, due to the high cost and low efficacy, we aimed to explore new biomarkers for predicting the efficacy of immunotherapy. METHODS Specimens and medical records of liver cancer patients treated at Drum Tower Hospital of Nanjing University were collected, and the expression of Kita-Kyushu lung cancer antigen-1 (KK-LC-1) in tissues as well as the corresponding antibodies in serum were examined to find biomarkers related to the prognosis of immunotherapy and to explore its mechanism in the development of liver cancer. RESULTS KK-LC-1 expression was found to be 34.4% in histopathological specimens from 131 patients and was significantly correlated with Foxp3 expression (P = 0.0356). The expression of Foxp3 in the tissues of 24 patients who received immunotherapy was significantly correlated with overall survival (OS) (P = 0.0247), and there was also a tendency for prolonged OS in patients with high expression of KK-LC-1. In addition, the expression of KK-LC-1 antibody in the serum of patients who received immunotherapy with a first efficacy evaluation of stable disease (SD) was significantly higher than those with partial response (PR) (P = 0.0413). CONCLUSIONS Expression of KK-LC-1 in both tissues and serum has been shown to correlate with the prognosis of patients treated with immunotherapy, and KK-LC-1 is a potential therapeutic target for oncological immunotherapy.
Collapse
Affiliation(s)
- Sihui Zhu
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Comprehensive Cancer Centre of Nanjing international Hospital, Medical School of Nanjing University, Nanjing, China
- Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yuncheng Jin
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Mingzhen Zhou
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lin Li
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Clinical Cancer Institute of Nanjing University, Nanjing, China
- Department of Pathologyof Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xueru Song
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xinyu Su
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
- Clinical Cancer Institute of Nanjing University, Nanjing, China.
| | - Jie Shen
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
- Clinical Cancer Institute of Nanjing University, Nanjing, China.
| |
Collapse
|
14
|
Yu D, Kane MJ, Koay EJ, Wistuba II, Hobbs BP. Machine learning identifies prognostic subtypes of the tumor microenvironment of NSCLC. Sci Rep 2024; 14:15004. [PMID: 38951567 PMCID: PMC11217297 DOI: 10.1038/s41598-024-64977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
The tumor microenvironment (TME) plays a fundamental role in tumorigenesis, tumor progression, and anti-cancer immunity potential of emerging cancer therapeutics. Understanding inter-patient TME heterogeneity, however, remains a challenge to efficient drug development. This article applies recent advances in machine learning (ML) for survival analysis to a retrospective study of NSCLC patients who received definitive surgical resection and immune pathology following surgery. ML methods are compared for their effectiveness in identifying prognostic subtypes. Six survival models, including Cox regression and five survival machine learning methods, were calibrated and applied to predict survival for NSCLC patients based on PD-L1 expression, CD3 expression, and ten baseline patient characteristics. Prognostic subregions of the biomarker space are delineated for each method using synthetic patient data augmentation and compared between models for overall survival concordance. A total of 423 NSCLC patients (46% female; median age [inter quantile range]: 67 [60-73]) treated with definite surgical resection were included in the study. And 219 (52%) patients experienced events during the observation period consisting of a maximum follow-up of 10 years and median follow up 78 months. The random survival forest (RSF) achieved the highest predictive accuracy, with a C-index of 0.84. The resultant biomarker subtypes demonstrate that patients with high PD-L1 expression combined with low CD3 counts experience higher risk of death within five-years of surgical resection.
Collapse
Affiliation(s)
- Duo Yu
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael J Kane
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Eugene J Koay
- Department Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brian P Hobbs
- Department of Population Health, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Austin, TX, 78712, USA.
| |
Collapse
|
15
|
Xu S, Wang H, Zhu Y, Han Y, Liu L, Zhang X, Hu J, Zhang W, Duan S, Deng J, Zhang Z, Liu S. Stabilization of EREG via STT3B-mediated N-glycosylation is critical for PDL1 upregulation and immune evasion in head and neck squamous cell carcinoma. Int J Oral Sci 2024; 16:47. [PMID: 38945975 PMCID: PMC11214941 DOI: 10.1038/s41368-024-00311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/16/2024] [Accepted: 04/30/2024] [Indexed: 07/02/2024] Open
Abstract
Dysregulated Epiregulin (EREG) can activate epidermal growth factor receptor (EGFR) and promote tumor progression in head and neck squamous cell carcinoma (HNSCC). However, the mechanisms underlying EREG dysregulation remain largely unknown. Here, we showed that dysregulated EREG was highly associated with enhanced PDL1 in HNSCC tissues. Treatment of HNSCC cells with EREG resulted in upregulated PDL1 via the c-myc pathway. Of note, we found that N-glycosylation of EREG was essential for its stability, membrane location, biological function, and upregulation of its downstream target PDL1 in HNSCC. EREG was glycosylated at N47 via STT3B glycosyltransferases, whereas mutations at N47 site abrogated N-glycosylation and destabilized EREG. Consistently, knockdown of STT3B suppressed glycosylated EREG and inhibited PDL1 in HNSCC cells. Moreover, treatment of HNSCC cells with NGI-1, an inhibitor of STT3B, blocked STT3B-mediated glycosylation of EREG, leading to its degradation and suppression of PDL1. Finally, combination of NGI-1 treatment with anti-PDLl therapy synergistically enhanced the efficacy of immunotherapy of HNSCC in vivo. Taken together, STT3B-mediated N-glycosylation is essential for stabilization of EREG, which mediates PDL1 upregulation and immune evasion in HNSCC.
Collapse
Affiliation(s)
- Shengming Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Haifeng Wang
- Department of Stomatology, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, China
| | - Yu Zhu
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Han
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Liu Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiangkai Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jingzhou Hu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wuchang Zhang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengzhong Duan
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Deng
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China.
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Shuli Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
16
|
Grant CE, Flis AL, Toulabi L, Zingone A, Rossi E, Aploks K, Sheppard H, Ryan BM. DRD1 suppresses cell proliferation and reduces EGFR activation and PD-L1 expression in NSCLC. Mol Oncol 2024; 18:1631-1648. [PMID: 38572507 PMCID: PMC11161724 DOI: 10.1002/1878-0261.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2023] [Accepted: 02/06/2024] [Indexed: 04/05/2024] Open
Abstract
Dopamine (DA) acts in various key neurological and physiological processes as both a neurotransmitter and circulating hormone. Over the past several decades, the DA signaling network has been shown to regulate the progression of several types of solid tumors, and considerable evidence has shown it is a druggable pathway in the cancer cell context. However, the specific activity and effect of these pathway components appears to be tissue-type and cell-context-dependent. In the present study, expression and methylation of dopamine receptor D1 (DRD1) were measured using RNA sequencing (RNAseq) and reverse transcription polymerase chain reaction (RT-PCR) in non-small cell lung cancer (NSCLC) samples, and validated using publicly available datasets, including The Cancer Genome Atlas (TCGA). In vitro and in vivo functional experiments were performed for cell proliferation and tumor growth, respectively. Mechanistic analyses of the transcriptome and kinome in DRD1-modulated cells informed further experiments, which characterized the effects on the epidermal growth factor receptor (EGFR) pathway and programmed cell death 1 ligand 1 (PD-L1) proteins. Through these experiments, we identified the DRD1 gene as a negative regulator of disease progression in NSCLC. We show that DRD1, as well as other DA pathway components, are expressed in normal human lung tissue, and that loss of DRD1 expression through promoter hypermethylation is a common feature in NSCLC patients and is associated with worse survival. At the cellular level, DRD1 affects proliferation by inhibiting the activation of EGFR and mitogen-activated protein kinase 1/2 (ERK1/2). Interestingly, we also found that DRD1 regulates the expression of PD-L1 in lung cancer cells. Taken together, these results suggest that DRD1 methylation may constitute a biomarker of poor prognosis in NSCLC patients while other components of this pathway could be targeted to improve response to EGFR- and PD-L1-targeted therapies.
Collapse
Affiliation(s)
- Christopher E. Grant
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Amy L. Flis
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Leila Toulabi
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Adriana Zingone
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Emily Rossi
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Krist Aploks
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Heather Sheppard
- Veterinary Pathology CoreSt. Jude Children's Research HospitalMemphisTNUSA
| | - Bríd M. Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| |
Collapse
|
17
|
Alosaimi ME, Alotaibi BS, Abduljabbar MH, Alnemari RM, Almalki AH, Serag A. Unveiling the altered metabolic pathways induced by nivolumab in non-small cell lung cancer via GC-MS metabolomics approach coupled with multivariate analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1240:124144. [PMID: 38703714 DOI: 10.1016/j.jchromb.2024.124144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
This research investigates the effects of the immunotherapeutic agent nivolumab on the metabolism of lung cancer cells (NCI-H1975) using GC-MS metabolomic profiling. Multivariate analysis such as unsupervised PCA and supervised OPLS-DA along with univariate analysis and pathway analysis were employed to explore the metabolomic data and identify altered metabolic pathways induced by nivolumab treatment. The study revealed distinct metabolic alterations in cancer cells, linked to proliferative and survival advantages, such as enhanced glycolysis, increased glutaminolysis, and modified amino acid metabolism. Key findings indicate elevated levels of glycolysis-related metabolites (glycine, alanine, pyruvate, and lactate) and TCA cycle intermediates (succinate, fumarate, malate) in cancer cells, with a significant decrease following nivolumab treatment. Additionally, lower levels of aspartic acid and citrate in cancer cells imply altered nucleotide synthesis and fatty acid production essential for tumor growth. Treatment with nivolumab also reduced oleic acid levels, indicative of its effect on disrupted lipid metabolism. Our research shows nivolumab's potential to modify metabolic pathways involved in lung cancer progression, suggesting its dual role in cancer therapy: as an immune response modulator and a metabolic pathway disruptor.
Collapse
Affiliation(s)
- Manal E Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Maram H Abduljabbar
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Reem M Alnemari
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11751, Cairo, Egypt.
| |
Collapse
|
18
|
Zhang H, Zhang Z, Yan N, Li X. Association of PD-L1 expression and clinical outcomes in ROS1 - rearranged advanced non-small cell lung cancer treated with crizotinib. Front Oncol 2024; 14:1405683. [PMID: 38835380 PMCID: PMC11148223 DOI: 10.3389/fonc.2024.1405683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Background Programmed cell death ligand 1 (PD-L1) is more readily expressed in ROS proto-oncogene 1 (ROS1) rearranged non-small cell lung cancer (NSCLC) compared to NSCLC cases lacking driver gene mutations. Prior research has established a link between PD-L1 expression and reduced effectiveness of EGFR or ALK inhibitors in EGFR or ALK-positive NSCLC. Nonetheless, the relationship between initial PD-L1 levels and the clinical impact of first-line crizotinib therapy in ROS1-rearranged NSCLC is still uncertain. Methods From January 2016 to December 2021, a total of 246 patients with ROS1 positive tumors were collected. Out of these, 82 patients with advanced ROS1-rearranged NSCLC, who were treated with crizotinib as their initial therapy, were selected for the study. The study aimed primarily to evaluate the objective response rate (ORR) and progression-free survival (PFS), and secondarily to assess disease control rate (DCR) and overall survival (OS). Results Of the 82 advanced ROS1-rearranged NSCLC patients, 38 exhibited PD-L1 positivity, subdivided into 11 with high and 27 with low expression levels, while the remaining 44 showed no PD-L1 expression. The ORR for all included patients was 80.5%. No statistically significant variance in ORR was observed among ROS1-rearranged NSCLC patients across differing PD-L1 expression statuses. However, there was a statistically significant difference in DCR between PD-L1 negative group (100%) and high expression group (90.9%) (p=0.04). The median PFS spanned 26.4 months for the PD-L1 negative group, 16.6 for the low expression group, and 13.7 for the high expression group (p=0.001). Additionally, a notable statistical disparity was also observed in median PFS between the PD-L1 negative and positive groups (p=0.02). For the entire study population, the median OS was 53.0 months (95% CI 43.8 - 62.2). In the PD-L1-negative group, the median OS reached 57.2 months, compared to 53.0 months in the PD-L1-positive group, a difference lacking statistical significance (p=0.43). Conclusions Our results suggest that for ROS1-positive NSCLC patients receiving crizotinib as first-line therapy, PD-L1 expression may serve as a negative prognostic marker for PFS rather than OS.
Collapse
Affiliation(s)
- Huixian Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ziheng Zhang
- Department of Emergency Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningning Yan
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xingya Li
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
19
|
Shi S, Wang Y, Wu J, Zha B, Li P, Liu Y, Yang Y, Kong J, Gao S, Cui H, Huangfu L, Sun X, Li Z, Liang T, Zheng Y, Yang D. Predictive value of PD-L1 and TMB for short-term efficacy prognosis in non-small cell lung cancer and construction of prediction models. Front Oncol 2024; 14:1342262. [PMID: 38756661 PMCID: PMC11096522 DOI: 10.3389/fonc.2024.1342262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Objective To investigate the correlation between programmed death ligand 1(PD-L1), tumor mutation burden (TMB) and the short-term efficacy and clinical characteristics of anti-PD-1 immune checkpoint inhibitor combination chemotherapy in NSCLC patients. The efficacy of the prediction model was evaluated. Methods A total of 220 NSCLC patients receiving first-line treatment with anti-PD-1 immune checkpoint inhibitor combined with chemotherapy were retrospectively collected. The primary endpoint was short-term efficacy ORR. The correlation between short-term efficacy, PD-L1, TMB, and clinical characteristics using χ2 test or t-test was evaluated. Screen the independent prognostic factors using univariate and multivariate logistic regression analyses, and construct a nomogram prediction model using the "rms" package in R software. Using receiver operating characteristic (ROC) curve analysis to evaluate the independent Prognostic factors and the prediction model. Using decision curve analysis (DCA) to verify the superiority of the prediction model. Results The mean values of PD-L1, TMB, neutrophils, lymphocytes, neutrophil-to-lymphocyte ratio, and albumin were the highest in the ORR group, PD-L1 expression and TMB correlated with epidermal growth factor receptor expression. Multivariate analyses showed that PD-L1, TMB, and neutrophil were independent prognostic factors for ORR. The area under the ROC curve (AUC) values of the ROC constructed based on these three indicators were 0.7104, 0.7139, and 0.7131, respectively. The AUC value under the ROC of the nomogram model was 0.813. The DCA of the model showed that all three indicators used together to build the prediction model of the net return were higher than those of the single indicator prediction model. Conclusion PD-L1, TMB, and neutrophils are independent prognostic factors for short-term efficacy. The nomogram prediction model constructed using these three indicators can further improve predictive efficacy of ICIs in patients with NSCLC.
Collapse
Affiliation(s)
- Shuling Shi
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Wu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Boya Zha
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peihong Li
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yukun Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuchuan Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinglin Kong
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shibo Gao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Cui
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Linkuan Huangfu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaocong Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhikai Li
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tiansong Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingjuan Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Radiotherapy and Critical Care Oncology, Zhengzhou University, Zhengzhou, Henan, China
| | - Daoke Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Radiotherapy and Critical Care Oncology, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Shor D, Louie AV, Zeng KL, Menjak IB, Atenafu EG, Chia-Lin Tseng, Detsky J, Larouche J, Zhang B, Soliman H, Myrehaug S, Maralani P, Hwang DM, Sahgal A, Chen H. Utility of molecular markers in predicting local control specific to lung cancer spine metastases treated with stereotactic body radiotherapy. J Neurooncol 2024; 167:275-283. [PMID: 38526757 DOI: 10.1007/s11060-024-04603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/07/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND AND PURPOSE We report outcomes following spine stereotactic body radiotherapy (SBRT) in metastatic non-small cell lung cancer (NSCLC) and the significance of programmed death-ligand 1 (PD-L1) status, epidermal growth factor receptor (EGFR) mutation and timing of immune check point inhibitors (ICI) on local failure (LF). MATERIALS AND METHODS 165 patients and 389 spinal segments were retrospectively reviewed from 2009 to 2021. Baseline patient characteristics, treatment and outcomes were abstracted. Primary endpoint was LF and secondary, overall survival (OS) and vertebral compression fracture (VCF). Multivariable analysis (MVA) evaluated factors predictive of LF and VCF. RESULTS The median follow-up and OS were: 13.0 months (range, 0.5-95.3 months) and 18.4 months (95% CI 11.4-24.6). 52.1% were male and 76.4% had adenocarcinoma. Of the 389 segments, 30.3% harboured an EGFR mutation and 17.0% were PD-L1 ≥ 50%. The 24 months LF rate in PD-L1 ≥ 50% vs PD-L1 < 50% was 10.7% vs. 38.0%, and in EGFR-positive vs. negative was 18.1% vs. 30.0%. On MVA, PD-L1 status of ≥ 50% (HR 0.32, 95% CI 0.15-0.69, p = 0.004) significantly predicted for lower LF compared to PD-L1 < 50%. Lower LF trend was seen with ICI administration peri and post SBRT (HR 0.41, 95% CI 0.16-1.05, p = 0.062). On MVA, polymetastatic disease (HR 3.28, 95% CI 1.84-5.85, p < 0.0001) and ECOG ≥ 2 (HR 1.87, 95% CI 1.16-3.02, p = 0.011) significantly predicted for worse OS and absence of baseline VCF predicted for lower VCF rate (HR 0.20, 95% CI 0.10-0.39, p < 0.0001). CONCLUSION We report a significant association of PD-L1 ≥ 50% status on improved LC rates from spine SBRT in NSCLC patients.
Collapse
Affiliation(s)
- Dana Shor
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Alexander V Louie
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Kang Liang Zeng
- Department of Radiation Oncology, Simcoe Muskoka Regional Cancer Centre, Barrie, ON, Canada
| | - Ines B Menjak
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Jeremie Larouche
- Division of Orthopedic Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Beibei Zhang
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Pejman Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - David M Hwang
- Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Hanbo Chen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
21
|
Ruiz G, Enrico D, Mahmoud YD, Ruiz A, Cantarella MF, Leguina L, Barberis M, Beña A, Brest E, Starapoli S, Mendoza Bertelli A, Tsou F, Pupareli C, Coppola MP, Scocimarro A, Sena S, Levit P, Perfetti A, Aman E, Girotti MR, Arrieta O, Martín C, Salanova R. Association of PD-L1 expression with driver gene mutations and clinicopathological characteristics in non-small cell lung cancer: A real-world study of 10 441 patients. Thorac Cancer 2024; 15:895-905. [PMID: 38456253 PMCID: PMC11016406 DOI: 10.1111/1759-7714.15244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Programmed death ligand-1 (PD-L1) expression is a well-known predictive biomarker of response to immune checkpoint blockade in non-small cell lung cancer (NSCLC). However, there is limited evidence of the relationship between PD-L1 expression, clinicopathological features, and their association with major driver mutations in NSCLC patients in Latin America. METHODS This retrospective study included patients from Argentina with advanced NSCLC, and centralized evaluation of PD-L1 expression concurrently with genomic alterations in the driver genes EGFR, ALK, ROS1, BRAF, and/or KRAS G12C in FFPE tissue samples. RESULTS A total of 10 441 patients with advanced NSCLC were analyzed. Adenocarcinoma was the most frequent histological subtype (71.1%). PD-L1 expression was categorized as PD-L1 negative (45.1%), PD-L1 positive low-expression 1%-49% (32.3%), and PD-L1 positive high-expression ≥50% (22.6%). Notably, current smokers and males were more likely to have tumors with PD-L1 tumor proportion score (TPS) ≥50% and ≥ 80% expression, respectively (p < 0.001 and p = 0.013). Tumors with non-adenocarcinoma histology had a significantly higher median PD-L1 expression (p < 0.001). Additionally, PD-L1 in distant nodes was more likely ≥50% (OR 1.60 [95% CI: 1.14-2.25, p < 0.01]). In the multivariate analysis, EGFR-positive tumors were more commonly associated with PD-L1 low expression (OR 0.62 [95% CI: 0.51-0.75], p < 0.01), while ALK-positive tumors had a significant risk of being PD-L1 positive (OR 1.81 [95% CI: 1.30-2.52], p < 0.01). CONCLUSIONS PD-L1 expression was associated with well-defined clinicopathological and genomic features. These findings provide a comprehensive view of the expression of PD-L1 in patients with advanced NSCLC in a large Latin American cohort.
Collapse
Affiliation(s)
- Gonzalo Ruiz
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | - Diego Enrico
- Thoracic Oncology Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
- Clinical Research Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
| | - Yamil D. Mahmoud
- Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC)Buenos AiresArgentina
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Alan Ruiz
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | | | - Laura Leguina
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | - Mariana Barberis
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | - Asunción Beña
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | - Esteban Brest
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | - Solange Starapoli
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | | | - Florencia Tsou
- Thoracic Oncology Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
- Clinical Research Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
| | - Carmen Pupareli
- Thoracic Oncology Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
- Clinical Research Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
| | - María Pía Coppola
- Medical Oncology UnitHospital Zonal Especializado en Agudos y Crónicos Dr. Antonio CetrangoloBuenos AiresArgentina
| | - Alejandra Scocimarro
- Medical Oncology UnitHospital Zonal Especializado en Agudos y Crónicos Dr. Antonio CetrangoloBuenos AiresArgentina
| | - Susana Sena
- Medical Oncology DepartmentHospital AlemánBuenos AiresArgentina
| | - Patricio Levit
- Medical Oncology UnitUnión Personal‐Accord SaludBuenos AiresArgentina
| | - Aldo Perfetti
- Medical Oncology UnitUnión Personal‐Accord SaludBuenos AiresArgentina
- Medical Oncology DepartmentCentro de Educación Médica e Investigaciones Clínicas (CEMIC)Buenos AiresArgentina
| | - Enrique Aman
- Medical Oncology Unit, Swiss Medical GroupBuenos AiresArgentina
| | - María Romina Girotti
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
- Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC)Buenos AiresArgentina
| | - Oscar Arrieta
- Head of Thoracic Oncology UnitUnidad Funcional de Oncología Torácica, Instituto Nacional de Cancerología (INCan)Mexico CityMexico
| | - Claudio Martín
- Thoracic Oncology Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
- Clinical Research Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
| | - Rubén Salanova
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| |
Collapse
|
22
|
Kanemura H, Yokoyama T, Nakajima R, Nakamura A, Kuroda H, Kitamura Y, Shoda H, Mamesaya N, Miyata Y, Okamoto T, Okishio K, Oki M, Sakairi Y, Chen-Yoshikawa TF, Aoki T, Ohira T, Matsumoto I, Ueno K, Miyazaki T, Matsuguma H, Yokouchi H, Otani T, Ito A, Sakai K, Chiba Y, Nishio K, Yamamoto N, Okamoto I, Nakagawa K, Takeda M. The Tumor Immune Microenvironment Is Associated With Recurrence in Early-Stage Lung Adenocarcinoma. JTO Clin Res Rep 2024; 5:100658. [PMID: 38651033 PMCID: PMC11033192 DOI: 10.1016/j.jtocrr.2024.100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/24/2024] [Accepted: 03/03/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction Immune checkpoint inhibitors have recently been approved for the treatment of early-stage NSCLC in the perioperative setting on the basis of phase 3 trials. However, the characteristics of such patients who are susceptible to recurrence after adjuvant chemotherapy or who are likely to benefit from postoperative immunotherapy have remained unclear. Methods This biomarker study (WJOG12219LTR) was designed to evaluate cancer stem cell markers (CD44 and CD133), programmed death-ligand 1 (PD-L1) expression on tumor cells, CD8 expression on tumor-infiltrating lymphocytes, and tumor mutation burden in completely resected stage II to IIIA NSCLC with the use of archived DNA and tissue samples from the prospective WJOG4107 trial. Tumors were classified as inflamed or noninflamed on the basis of the PD-L1 tumor proportion score and CD8+ tumor-infiltrating lymphocyte density. The association between each potential biomarker and relapse-free survival (RFS) during adjuvant chemotherapy was assessed by Kaplan-Meier analysis. Results A total of 117 patients were included in this study. The median RFS was not reached (95% confidence intervals [CI]: 22.4 mo-not reached; n = 39) and 23.7 months (95% CI: 14.5-43.6; n = 41) in patients with inflamed or noninflamed adenocarcinoma, respectively (log-rank p = 0.02, hazard ratio of 0.52 [95% CI: 0.29-0.93]). Analysis of the combination of tumor inflammation category and TP53 mutation status revealed that inflamed tumors without TP53 mutations were associated with the longest RFS. Conclusions PD-L1 expression on tumor cells, CD8+ T cell infiltration, and TP53 mutation status may help identify patients with early-stage NSCLC susceptible to recurrence after adjuvant chemotherapy.
Collapse
Affiliation(s)
- Hiroaki Kanemura
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Toshihide Yokoyama
- Department of Respiratory Medicine, Kurashiki Central Hospital, Kurashiki, Japan
| | - Ryu Nakajima
- Department of General Thoracic Surgery, Osaka City General Hospital, Osaka, Japan
| | - Atsushi Nakamura
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Japan
| | - Hiroaki Kuroda
- Department of Thoracic Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | | | - Hiroyasu Shoda
- Department of Respiratory Medicine, Hiroshima City Hiroshima Citizen Hospital, Hiroshima, Japan
| | - Nobuaki Mamesaya
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yoshihiro Miyata
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Tatsuro Okamoto
- Department of Thoracic Oncology, NHO Kyushu Cancer Center, Fukuoka, Japan
| | - Kyoichi Okishio
- Department of Clinical Research Center, NHO Kinki Chuo Chest Medical Center, Osaka, Japan
| | - Masahide Oki
- Department of Respiratory Medicine, NHO Nagoya Medical Center, Nagoya, Japan
| | - Yuichi Sakairi
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Tadashi Aoki
- Department of Chest Surgery, Niigata Cancer Center Hospital, Niigata, Japan
| | - Tatsuo Ohira
- Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Isao Matsumoto
- Department of Thoracic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kiyonobu Ueno
- Department of Respiratory Medicine, Osaka General Medical Center, Osaka, Japan
| | - Takuro Miyazaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Haruhisa Matsuguma
- Department of Thoracic Surgery, Tochigi Cancer Center, Utsunomiya, Japan
| | | | - Tomoyuki Otani
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | | | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masayuki Takeda
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Cancer Genomics and Medical Oncology, Nara Medical University, Nara, Japan
| |
Collapse
|
23
|
Passaro A, Al Bakir M, Hamilton EG, Diehn M, André F, Roy-Chowdhuri S, Mountzios G, Wistuba II, Swanton C, Peters S. Cancer biomarkers: Emerging trends and clinical implications for personalized treatment. Cell 2024; 187:1617-1635. [PMID: 38552610 PMCID: PMC7616034 DOI: 10.1016/j.cell.2024.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024]
Abstract
The integration of cancer biomarkers into oncology has revolutionized cancer treatment, yielding remarkable advancements in cancer therapeutics and the prognosis of cancer patients. The development of personalized medicine represents a turning point and a new paradigm in cancer management, as biomarkers enable oncologists to tailor treatments based on the unique molecular profile of each patient's tumor. In this review, we discuss the scientific milestones of cancer biomarkers and explore future possibilities to improve the management of patients with solid tumors. This progress is primarily attributed to the biological characterization of cancers, advancements in testing methodologies, elucidation of the immune microenvironment, and the ability to profile circulating tumor fractions. Integrating these insights promises to continually advance the precision oncology field, fostering better patient outcomes.
Collapse
Affiliation(s)
- Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Emily G Hamilton
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Fabrice André
- Gustave-Roussy Cancer Center, Paris Saclay University, Villejuif, France
| | - Sinchita Roy-Chowdhuri
- Department of Anatomic Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giannis Mountzios
- Fourth Department of Medical Oncology and Clinical Trials Unit, Henry Dunant Hospital Center, Athens, Greece
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
24
|
Polcaro G, Liguori L, Manzo V, Chianese A, Donadio G, Caputo A, Scognamiglio G, Dell'Annunziata F, Langella M, Corbi G, Ottaiano A, Cascella M, Perri F, De Marco M, Col JD, Nassa G, Giurato G, Zeppa P, Filippelli A, Franci G, Piaz FD, Conti V, Pepe S, Sabbatino F. rs822336 binding to C/EBPβ and NFIC modulates induction of PD-L1 expression and predicts anti-PD-1/PD-L1 therapy in advanced NSCLC. Mol Cancer 2024; 23:63. [PMID: 38528526 PMCID: PMC10962156 DOI: 10.1186/s12943-024-01976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Efficient predictive biomarkers are needed for immune checkpoint inhibitor (ICI)-based immunotherapy in non-small cell lung cancer (NSCLC). Testing the predictive value of single nucleotide polymorphisms (SNPs) in programmed cell death 1 (PD-1) or its ligand 1 (PD-L1) has shown contrasting results. Here, we aim to validate the predictive value of PD-L1 SNPs in advanced NSCLC patients treated with ICIs as well as to define the molecular mechanisms underlying the role of the identified SNP candidate. rs822336 efficiently predicted response to anti-PD-1/PD-L1 immunotherapy in advanced non-oncogene addicted NSCLC patients as compared to rs2282055 and rs4143815. rs822336 mapped to the promoter/enhancer region of PD-L1, differentially affecting the induction of PD-L1 expression in human NSCLC cell lines as well as their susceptibility to HLA class I antigen matched PBMCs incubated with anti-PD-1 monoclonal antibody nivolumab. The induction of PD-L1 expression by rs822336 was mediated by a competitive allele-specificity binding of two identified transcription factors: C/EBPβ and NFIC. As a result, silencing of C/EBPβ and NFIC differentially regulated the induction of PD-L1 expression in human NSCLC cell lines carrying different rs822336 genotypes. Analysis by binding microarray further validated the competitive allele-specificity binding of C/EBPβ and NFIC to PD-L1 promoter/enhancer region based on rs822336 genotype in human NSCLC cell lines. These findings have high clinical relevance since identify rs822336 and induction of PD-L1 expression as novel biomarkers for predicting anti-PD-1/PD-L1-based immunotherapy in advanced NSCLC patients.
Collapse
Affiliation(s)
- Giovanna Polcaro
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Italy
| | - Luigi Liguori
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Italy
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Naples "Federico II", Naples, 80131, Italy
| | - Valentina Manzo
- Clinical Pharmacology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Italy
- University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Giuliana Donadio
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Italy
| | - Alessandro Caputo
- University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
- Pathology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Italy
| | - Giosuè Scognamiglio
- Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, 80131, Italy
| | - Federica Dell'Annunziata
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Maddalena Langella
- Hematology and Transplant Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
| | - Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, 80131, Italy
| | - Alessandro Ottaiano
- Division of Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, 80131, Italy
| | - Marco Cascella
- Unit of Anesthesiology, Intensive Care Medicine, and Pain Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Italy
| | - Francesco Perri
- Medical and Experimental Head and Neck Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, 80131, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Italy
| | - Pio Zeppa
- University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
- Pathology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Italy
| | - Amelia Filippelli
- Clinical Pharmacology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Italy
- University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
| | - Gianluigi Franci
- University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
- Clinical Microbiology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Italy
| | - Fabrizio Dal Piaz
- University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Italy
| | - Valeria Conti
- Clinical Pharmacology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Italy.
- University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy.
| | - Stefano Pepe
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Italy.
- University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy.
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Italy.
- University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy.
| |
Collapse
|
25
|
Zhang F, Jiang R, Sun S, Wu C, Yu Q, Awadasseid A, Wang J, Zhang W. Recent advances and mechanisms of action of PD-L1 degraders as potential therapeutic agents. Eur J Med Chem 2024; 268:116267. [PMID: 38422701 DOI: 10.1016/j.ejmech.2024.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
PD-L1 is an important immune checkpoint protein that can bind to T cells' PD-1 receptor, thereby promoting immune escape from tumors. In recent years, many researchers have developed strategies to degrade PD-L1 to improve the effect of immunotherapy. The study of degrading PD-L1 provides new opportunities for immunotherapy. Here, we mainly summarize and review the current active molecules and mechanisms that mediate the degradation of immature and mature PD-L1 during the post-translational modification stages, involving PD-L1 phosphorylation, glycosylation, palmitoylation, ubiquitination, and the autophagy-lysosomal process. This review expects that by degrading PD-L1 protein, we will not only gain a better understanding of oncogenic mechanisms involving tumor PD-L1 protein but also provide a new way to improve immunotherapy.
Collapse
Affiliation(s)
- Feng Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ruiya Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shishi Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Caiyun Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qimeng Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Annoor Awadasseid
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China; Moganshan Institute, Zhejiang University of Technology, Deqing, China
| | - Jianwei Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
26
|
Ebrahimi N, Abdulwahid AHRR, Mansouri A, Karimi N, Bostani RJ, Beiranvand S, Adelian S, Khorram R, Vafadar R, Hamblin MR, Aref AR. Targeting the NF-κB pathway as a potential regulator of immune checkpoints in cancer immunotherapy. Cell Mol Life Sci 2024; 81:106. [PMID: 38418707 PMCID: PMC10902086 DOI: 10.1007/s00018-023-05098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 03/02/2024]
Abstract
Advances in cancer immunotherapy over the last decade have led to the development of several agents that affect immune checkpoints. Inhibitory receptors expressed on T cells that negatively regulate the immune response include cytotoxic T‑lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD1), which have been studied more than similar receptors. Inhibition of these proteins and other immune checkpoints can stimulate the immune system to attack cancer cells, and prevent the tumor from escaping the immune response. However, the administration of anti-PD1 and anti-CTLA4 antibodies has been associated with adverse inflammatory responses similar to autoimmune diseases. The current review discussed the role of the NF-κB pathway as a tumor promoter, and how it can govern inflammatory responses and affect various immune checkpoints. More precise knowledge about the communication between immune checkpoints and NF-κB pathways could increase the effectiveness of immunotherapy and reduce the adverse effects of checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasrin Karimi
- Department of Biology, Faculty of Basic Science, Islamic Azad University Damghan Branch, Damghan, Iran
| | | | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Vafadar
- Department of Orthopeadic Surgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
27
|
Gherman A, Bolundut D, Ecea R, Balacescu L, Curcean S, Dina C, Balacescu O, Cainap C. Molecular Subtypes, microRNAs and Immunotherapy Response in Metastatic Colorectal Cancer. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:397. [PMID: 38541123 PMCID: PMC10972200 DOI: 10.3390/medicina60030397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 11/12/2024]
Abstract
Currently, only a limited set of molecular traits are utilized to direct treatment for metastatic CRC (mCRC). The molecular classification of CRC depicts tumor heterogeneity based on gene expression patterns and aids in comprehending the biological characteristics of tumor formation, growth and prognosis. Additionally, it assists physicians in tailoring the therapeutic approach. Microsatellite instability (MSI-H)/deficient mismatch repair proteins (MMRd) status has become a ubiquitous biomarker in solid tumors, caused by mutations or methylation of genes and, in turn, the accumulation of mutations and antigens that subsequently induce an immune response. Immune checkpoint inhibitors (ICI) have recently received approval for the treatment of mCRC with MSI-H/MMRd status. However, certain individuals experience either initial or acquired resistance. The tumor-programmed cell death ligand 1 (PD-L1) has been linked to the ability of CRC to evade the immune system and promote its growth. Through comprehensive research conducted via the PUBMED database, the objectives of this paper were to review the molecular characteristics linked to tumor response in metastatic CRC in light of improved patients' outcomes following ICI therapies as seen in clinical trials and to identify particular microRNAs that can modulate the expression of specific oncoproteins, such as PD-L1, and disrupt the mechanisms that allow the immune system to be evaded.
Collapse
Affiliation(s)
- Alexandra Gherman
- 10th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.G.); (C.C.)
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (D.B.); (R.E.)
| | - Dinu Bolundut
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (D.B.); (R.E.)
| | - Radu Ecea
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (D.B.); (R.E.)
| | - Loredana Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
| | - Sebastian Curcean
- 10th Department of Radiation Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Department of Radiation Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Constantin Dina
- Department of Anatomy, Faculty of Medicine, Ovidius University, 124 Mamaia Boulevard, 900527 Constanta, Romania
| | - Ovidiu Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
| | - Calin Cainap
- 10th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.G.); (C.C.)
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (D.B.); (R.E.)
| |
Collapse
|
28
|
Zhou Y, Wang F, Li G, Xu J, Zhang J, Gullen E, Yang J, Wang J. From immune checkpoints to therapies: understanding immune checkpoint regulation and the influence of natural products and traditional medicine on immune checkpoint and immunotherapy in lung cancer. Front Immunol 2024; 15:1340307. [PMID: 38426097 PMCID: PMC10902058 DOI: 10.3389/fimmu.2024.1340307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is a disease of global concern, and immunotherapy has brought lung cancer therapy to a new era. Besides promising effects in the clinical use of immune checkpoint inhibitors, immune-related adverse events (irAEs) and low response rates are problems unsolved. Natural products and traditional medicine with an immune-modulating nature have the property to influence immune checkpoint expression and can improve immunotherapy's effect with relatively low toxicity. This review summarizes currently approved immunotherapy and the current mechanisms known to regulate immune checkpoint expression in lung cancer. It lists natural products and traditional medicine capable of influencing immune checkpoints or synergizing with immunotherapy in lung cancer, exploring both their effects and underlying mechanisms. Future research on immune checkpoint modulation and immunotherapy combination applying natural products and traditional medicine will be based on a deeper understanding of their mechanisms regulating immune checkpoints. Continued exploration of natural products and traditional medicine holds the potential to enhance the efficacy and reduce the adverse reactions of immunotherapy.
Collapse
Affiliation(s)
- Yibin Zhou
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fenglan Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guangda Li
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Zhang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Elizabeth Gullen
- Department of Pharmacology, Yale Medical School, New Haven, CT, United States
| | - Jie Yang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Thamrongjirapat T, Muntham D, Incharoen P, Trachu N, Sae-Lim P, Sarachai N, Khiewngam K, Monnamo N, Kantathut N, Ngodngamthaweesuk M, Ativitavas T, Chansriwong P, Nitiwarangkul C, Ruangkanchanasetr R, Kositwattanarerk A, Sirachainan E, Dejthevaporn T, Reungwetwattana T. Molecular alterations and clinical prognostic factors in resectable non-small cell lung cancer. BMC Cancer 2024; 24:200. [PMID: 38347487 PMCID: PMC10863204 DOI: 10.1186/s12885-024-11934-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND EGFR inhibitor and immunotherapy have been approved for adjuvant treatment in resectable non-small cell lung cancer (NSCLC). Limited reports of molecular and clinical characteristics as prognostic factors in NSCLC have been published. METHODS Medical records of patients with resectable NSCLC stage I-III diagnosed during 2015-2020 were reviewed. Real time-PCR (RT-PCR) was performed for EGFR mutations (EGFRm). Immunohistochemistry staining was conducted for ALK and PD-L1 expression. Categorical variables were compared using chi-square test and Fisher's exact test. Survival analysis was done by cox-regression method. RESULTS Total 441 patients were included. The prevalence of EGFRm, ALK fusion, and PD-L1 expression were 57.8%, 1.9%, and 20.5% (SP263), respectively. The most common EGFRm were Del19 (43%) and L858R (41%). There was no significant difference of recurrence free survival (RFS) by EGFRm status whereas patients with PD-L1 expression (PD-L1 positive patients) had lower RFS compared to without PD-L1 expression (PD-L1 negative patients) (HR = 1.75, P = 0.036). Patients with both EGFRm and PD-L1 expression had worse RFS compared with EGFRm and PD-L1 negative patients (HR = 3.38, P = 0.001). Multivariable analysis showed higher CEA at cut-off 3.8 ng/ml, pT4, pN2, pStage II, and margin were significant poor prognostic factors for RFS in the overall population, which was similar to EGFRm population (exception of pT and pStage). Only pStage was a significant poor prognostic factor for PD-L1 positive patients. The predictive score for predicting of recurrence were 6 for all population (63% sensitivity and 86% specificity) and 5 for EGFRm population (62% sensitivity and 93% specificity). CONCLUSION The prevalence and types of EGFRm were similar between early stage and advanced stage NSCLC. While lower prevalence of PD-L1 expression was found in early stage disease. Patients with both EGFRm and PD-L1 expression had poorer outcome. Thus PD-L1 expression would be one of the prognostic factor in EGFRm patients. Validation of the predictive score should be performed in a larger cohort.
Collapse
Affiliation(s)
- T Thamrongjirapat
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Ramathibodi Lung Cancer Consortium (RLC), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - D Muntham
- Department of Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Bangkok, Thailand
| | - P Incharoen
- Ramathibodi Lung Cancer Consortium (RLC), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - N Trachu
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - P Sae-Lim
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - N Sarachai
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - K Khiewngam
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - N Monnamo
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - N Kantathut
- Division of Thoracic Surgery, Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - M Ngodngamthaweesuk
- Ramathibodi Lung Cancer Consortium (RLC), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Division of Thoracic Surgery, Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - T Ativitavas
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Ramathibodi Lung Cancer Consortium (RLC), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - P Chansriwong
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Ramathibodi Lung Cancer Consortium (RLC), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - C Nitiwarangkul
- Ramathibodi Lung Cancer Consortium (RLC), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Division of Diagnostic Radiology, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - R Ruangkanchanasetr
- Ramathibodi Lung Cancer Consortium (RLC), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Radiation and Oncology Unit, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - A Kositwattanarerk
- Ramathibodi Lung Cancer Consortium (RLC), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Division of Nuclear Medicine, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - E Sirachainan
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Ramathibodi Lung Cancer Consortium (RLC), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - T Dejthevaporn
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Ramathibodi Lung Cancer Consortium (RLC), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - T Reungwetwattana
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
- Ramathibodi Lung Cancer Consortium (RLC), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
30
|
Man RCH, Qiu Y, Leung SWS, Fruhwirth GO, Lam JKW. Co-delivery of PD-L1- and EGFR-targeting siRNAs by synthetic PEG 12-KL4 peptide to the lungs as potential strategy against non-small cell lung cancer. Eur J Pharm Biopharm 2024; 195:114177. [PMID: 38185193 PMCID: PMC11932971 DOI: 10.1016/j.ejpb.2024.114177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
BACKGROUND Small interfering RNA (siRNA) holds great promise for treating various lung diseases, but the lack of safe and efficient pulmonary siRNA delivery systems has hindered its advance into the clinics. The epidermal growth factor receptor (EGFR) which promotes cell proliferation, and the programmed cell death ligand 1 (PD-L1) which plays a crucial role in suppressing cytotoxic T cells activity, are two important targets for treating non-small cell lung cancer (NSCLC). Here, we explored the potential of PEG12-KL4, a synthetic peptide, to deliver siRNA to various NSCLC cells and to lung tissues in mice. METHODS PEG12-KL4 was used to transfect siRNAs targeted at both EGFR and PD-L1 into NSCLC cells. Immunoblotting was used to evaluate the siRNA silencing effects in HCC827 and NCI-H1975 NSCLC cells. CD8+ T cell-mediated NSCLC cell killing was employed to demonstrate the functional effects of PD-L1 siRNA knock-down. Fluorescent siRNAs were used to visualise siRNA uptake in cells as well as to enable biodistribution studies in BALB/c mice. RESULTS Our results showed that PEG12-KL4 was efficient in mediating siRNA knock-down of EGFR and PD-L1 in various NSCLC cells. Importantly, the PEG12-KL4 peptide enabled significantly better siRNA delivery than the commercial Lipofectamine 2000 reagent. We hypothesised that PEG12-KL4 peptide enabled siRNA to either escape from or bypass endosomal degradation as indicated by confocal fluorescence imaging. Notably, combined knock-down of EGFR and PD-L1 in NCI-H1975 cells resulted in better effector T cell-mediated cancer cell killing than knock-down of PD-L1 alone. Moreover, biodistribution of PEG12-KL4/siRNA complexes following intravenous administration revealed poor lung delivery with the fluorescent siRNA accumulating in the liver. In contrast, intratracheal delivery of PEG12-KL4/siRNA complexes resulted in the fluorescent siRNA to be detected in the lung with retarded renal excretion. CONCLUSION In conclusion, we demonstrated that the co-delivery of siRNAs targeting EGFR and PD-L1 using PEG12-KL4 is feasible and represents a promising future strategy to treat NSCLC, whereby pulmonary siRNA delivery is favourable to intravenous administration.
Collapse
Affiliation(s)
- Rico C H Man
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR; Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
| | - Yingshan Qiu
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR
| | - Gilbert O Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
31
|
Kilaru S, Panda SS, Moharana L, Mohapatra D, Mohapatra SSG, Panda A, Kolluri S, Devaraj S, Biswas G. PD-L1 expression and its significance in advanced NSCLC: real-world experience from a tertiary care center. J Egypt Natl Canc Inst 2024; 36:3. [PMID: 38285225 DOI: 10.1186/s43046-024-00207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Targeted therapies against programmed death ligand-1 (PD-L1) in non-small cell lung cancer (NSCLC) have revolutionized the management in recent years. There is paucity of data on the significance of PD-L1 expression in NSCLC from India. We aimed to study the prevalence of PD-L1 expression and its relation with different clinico-pathological parameters in advanced NSCLC from a tertiary care center in Eastern India. METHODS All consecutive patients with advanced NSCLC diagnosed from January 2020 to December 2021 were prospectively evaluated for PD-L1 expression in formalin fixed-paraffin embedded tumor tissue specimens using immunohistochemistry analysis. A PD-L1 expression of < 1%, 1-49%, and ≥ 50% were considered negative, low, and high expression positive respectively, and association with various parameters was performed. RESULTS Out of the 94 patients (mean age 59.6 ± 14 years and 63.8% males), PD-L1 positivity was seen in 42 (44.7%) patients, with low positivity (1-49%) in 29 patients and high positivity (≥ 50%) in 13 patients. Epidermal Growth Factor Receptor (EGFR) mutations were seen in 28 patients (29.8%). There were no significant differences in PD-L1 positivity with respect to gender, age, and molecular mutation status. PD-L1 positivity was significantly associated with tobacco use (p = 0.04), advanced tumor stage (p < 0.001), and higher nodal stage (p < 0.001). Median overall survival in the cohort was 17 months and it was not significantly different between the PD-L1 positive and negative groups. CONCLUSIONS Forty-five percent of advanced NSCLC patients in our cohort showed positive PD-L1 expression and it is associated with tobacco use and aggressive tumor characteristics.
Collapse
Affiliation(s)
- Sindhu Kilaru
- Department of Medical Oncology, IMS and SUM Hospital, Siksha 'O' Anusandhan University, Bhubaneshwar, Odisha, India.
| | - Soumya Surath Panda
- Department of Medical Oncology, IMS and SUM Hospital, Siksha 'O' Anusandhan University, Bhubaneshwar, Odisha, India
| | - Lalatendu Moharana
- Department of Medical Oncology, IMS and SUM Hospital, Siksha 'O' Anusandhan University, Bhubaneshwar, Odisha, India
| | - Debahuti Mohapatra
- Department of Pathology, IMS & SUM Hospital, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Satya Sundar G Mohapatra
- Department of Radiology, IMS & SUM Hospital, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Adyakinkar Panda
- Department of Radiology, IMS & SUM Hospital, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Spoorthy Kolluri
- Department of Medical Oncology, IMS and SUM Hospital, Siksha 'O' Anusandhan University, Bhubaneshwar, Odisha, India
| | - Suma Devaraj
- Department of Medical Oncology, IMS and SUM Hospital, Siksha 'O' Anusandhan University, Bhubaneshwar, Odisha, India
| | - Ghanashyam Biswas
- Department of Medical Oncology, IMS and SUM Hospital, Siksha 'O' Anusandhan University, Bhubaneshwar, Odisha, India
- Department of Medical Oncology, Sparsh Hospital, Bhubaneswar, Odisha, India
| |
Collapse
|
32
|
Luu JK, Johnson FD, Jajarmi J, Sihota T, Shi R, Lu D, Farnsworth D, Spencer SE, Negri GL, Morin GB, Lockwood WW. Characterizing the secretome of EGFR mutant lung adenocarcinoma. Front Oncol 2024; 13:1286821. [PMID: 38260835 PMCID: PMC10801028 DOI: 10.3389/fonc.2023.1286821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background Lung cancer is the leading cause of cancer related death worldwide, mainly due to the late stage of disease at the time of diagnosis. Non-invasive biomarkers are needed to supplement existing screening methods to enable earlier detection and increased patient survival. This is critical to EGFR-driven lung adenocarcinoma as it commonly occurs in individuals who have never smoked and do not qualify for current screening protocols. Methods In this study, we performed mass spectrometry analysis of the secretome of cultured lung cells representing different stages of mutant EGFR driven transformation, from normal to fully malignant. Identified secreted proteins specific to the malignant state were validated using orthogonal methods and their clinical activity assessed in lung adenocarcinoma patient cohorts. Results We quantified 1020 secreted proteins, which were compared for differential expression between stages of transformation. We validated differentially expressed proteins at the transcriptional level in clinical tumor specimens, association with patient survival, and absolute concentration to yield three biomarker candidates: MDK, GDF15, and SPINT2. These candidates were validated using ELISA and increased levels were associated with poor patient survival specifically in EGFR mutant lung adenocarcinoma patients. Conclusions Our study provides insight into changes in secreted proteins during EGFR driven lung adenocarcinoma transformation that may play a role in the processes that promote tumor progression. The specific candidates identified can harnessed for biomarker use to identify high risk individuals for early detection screening programs and disease management for this molecular subgroup of lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Jennifer K. Luu
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Fraser D. Johnson
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Jana Jajarmi
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Tianna Sihota
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Daniel Lu
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Dylan Farnsworth
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Sandra E. Spencer
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Gian Luca Negri
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Gregg B. Morin
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - William W. Lockwood
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
33
|
Sharma S, Rana R, Prakash P, Ganguly NK. Drug target therapy and emerging clinical relevance of exosomes in meningeal tumors. Mol Cell Biochem 2024; 479:127-170. [PMID: 37016182 PMCID: PMC10072821 DOI: 10.1007/s11010-023-04715-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/17/2023] [Indexed: 04/06/2023]
Abstract
Meningioma is the most common central nervous system (CNS) tumor. In recent decades, several efforts have been made to eradicate this disease. Surgery and radiotherapy remain the standard treatment options for these tumors. Drug therapy comes to play its role when both surgery and radiotherapy fail to treat the tumor. This mostly happens when the tumors are close to vital brain structures and are nonbenign. Although a wide variety of chemotherapeutic drugs and molecular targeted drugs such as tyrosine kinase inhibitors, alkylating agents, endocrine drugs, interferon, and targeted molecular pathway inhibitors have been studied, the roles of numerous drugs remain unexplored. Recent interest is growing toward studying and engineering exosomes for the treatment of different types of cancer including meningioma. The latest studies have shown the involvement of exosomes in the theragnostic of various cancers such as the lung and pancreas in the form of biomarkers, drug delivery vehicles, and vaccines. Proper attention to this new emerging technology can be a boon in finding the consistent treatment of meningioma.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062 India
| | | |
Collapse
|
34
|
Larsen TV, Maansson CT, Daugaard TF, Andresen BS, Sorensen BS, Nielsen AL. Trans-Regulation of Alternative PD-L1 mRNA Processing by CDK12 in Non-Small-Cell Lung Cancer Cells. Cells 2023; 12:2844. [PMID: 38132164 PMCID: PMC10741404 DOI: 10.3390/cells12242844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Immunotherapy using checkpoint inhibitors targeting the interaction between PD-1 on T cells and PD-L1 on cancer cells has shown significant results in non-small-cell lung cancer (NSCLC). Not all patients respond to the therapy, and PD-L1 expression heterogeneity is proposed to be one determinant for this. The alternative processing of PD-L1 RNA, which depends on an alternative poly-A site in intron 4, generates a shorter mRNA variant (PD-L1v4) encoding soluble PD-L1 (sPD-L1), relative to the canonical PD-L1v1 mRNA encoding membrane-associated PD-L1 (mPD-L1). This study aimed to identify factors influencing the ratio between these two PD-L1 mRNAs in NSCLC cells. First, we verified the existence of the alternative PD-L1 RNA processing in NSCLC cells, and from in silico analyses, we identified a candidate list of regulatory factors. Examining selected candidates showed that CRISPR/Cas9-generated loss-of-function mutations in CDK12 increased the PD-L1v4/PD-L1v1 mRNA ratio and, accordingly, the sPD-L1/mPD-L1 balance. The CDK12/13 inhibitor THZ531 could also increase the PD-L1v4/PD-L1v1 mRNA ratio and impact the PD-L1 transcriptional response to IFN-γ stimulation. The fact that CDK12 regulates PD-L1 transcript variant formation in NSCLC cells is consistent with CDK12's role in promoting transcriptional elongation over intron-located poly-A sites. This study lays the groundwork for clinical investigations to delineate the implications of the CDK12-mediated balancing of sPD-L1 relative to mPD-L1 for immunotherapeutic responses in NSCLC.
Collapse
Affiliation(s)
- Trine V. Larsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
| | - Christoffer T. Maansson
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Tina F. Daugaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
| | - Brage S. Andresen
- Department of Biology and Molecular Biology, Southern University of Denmark, 5230 Odense, Denmark;
| | - Boe S. Sorensen
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Anders L. Nielsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
| |
Collapse
|
35
|
Samejima H, Kojima K, Fujiwara A, Tokunaga T, Okishio K, Yoon H. The combination of PD-L1 expression and the neutrophil-to-lymphocyte ratio as a prognostic factor of postoperative recurrence in non-small-cell lung cancer: a retrospective cohort study. BMC Cancer 2023; 23:1107. [PMID: 37964220 PMCID: PMC10644552 DOI: 10.1186/s12885-023-11604-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND While PD-L1 expression and neutrophil-to-lymphocyte ratio (NLR) are prognostic biomarkers for lung cancer, few studies have considered their interaction. We hypothesized that the product of PD-L1 expression (tumor proportion score) and the NLR (PD-L1 × NLR) might be a postoperative prognostic marker reflecting the immune microenvironment of lung cancer. METHODS We analyzed the association between PD-L1 × NLR and postoperative recurrence-free survival in 647 patients with NSCLC using multivariable Cox proportional hazards models. RESULTS In the analysis of PD-L1 × NLR as a categorical variable, the group with PD-L1 × NLR ≥ 25.8 had a significantly higher hazard ratio (HR) than the group with < 25.8 (adjusted HR 1.78, 95% confidence interval [CI] 1.23-2.60). The adjusted HR for PD-L1 × NLR, considered a continuous variable, was 1.004 (95% CI, 1.002-1.006). The risk of postoperative recurrence increased by 1.004-fold for each unit increase in PD-L1 × NLR, and a more than 2-fold increase in risk was observed for values ≥ 170. CONCLUSIONS PD-L1 × NLR may be used in real-world clinical practice as a novel factor for predicting the risk of postoperative recurrence after lung cancer surgery.
Collapse
Affiliation(s)
- Hironobu Samejima
- Department of General Thoracic Surgery, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai-Shi, Osaka, 591-8555, Japan
| | - Kensuke Kojima
- Department of General Thoracic Surgery, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai-Shi, Osaka, 591-8555, Japan.
| | - Ayako Fujiwara
- Department of General Thoracic Surgery, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai-Shi, Osaka, 591-8555, Japan
| | - Toshiteru Tokunaga
- Department of General Thoracic Surgery, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai-Shi, Osaka, 591-8555, Japan
| | - Kyoichi Okishio
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
- Department of Thoracic Oncology, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Hyungeun Yoon
- Department of General Thoracic Surgery, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai-Shi, Osaka, 591-8555, Japan
| |
Collapse
|
36
|
Lasvergnas J, Fallet V, Duchemann B, Jouveshomme S, Cadranel J, Chouaïd C. PDL1-status predicts primary resistance of metastatic, EGFR-mutated non small cell lung cancers to EGFR tyrosine-kinase inhibitors. Respir Med Res 2023; 84:101018. [PMID: 37302160 DOI: 10.1016/j.resmer.2023.101018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/03/2023] [Accepted: 04/16/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND EGFR tyrosine-kinase inhibitors (TKIs) are the reference treatment for metastatic, EGFR-mutated, non-small-cell lung cancers (EGFRm NSCLCs). However, 16-20% of those tumors progress early (3-6 months) and factors predicting that resistance are unknown. This study was undertaken to examine PDL1 status as such a factor. METHODS This retrospective analysis included metastatic, EGFRm-NSCLC patients who received first-line 1st-, 2nd- or 3rd-generation EGFR TKIs with PDL1 expression determined in pretreatment biopsies. Kaplan-Meier estimations of probabilities of progression-free survival (PFS) and overall survival (OS) were compared with log-rank test, and logistic-regression analyses. RESULTS PDL1 status of the 145 included patients was ≥1% (47%), 1-49% (33%) or ≥50% (14%). For PDL1-positive vs PDL1-negative patients, respectively, median PFS lasted 8 (95% CI: 6-12) vs 12 (95% CI: 11-17) months (p = 0.008), with 18% vs. 8% (NS) of NSCLCs progressing at 3 months, and 47% vs. 18% (HR 0.25 [95% CI 0.10-0.566], p<0.001) at 6 months. Multivariate analysis retained 1st- or 2nd-generation EGFR TKI, brain metastases and albuminemia <35 g/L at diagnosis as significantly associated with shorter PFS, but not PDL1 status, which was independently associated with progression at 6 months (HR 3.76 [1.23-12.63], p = 0.02). PDL1-negative and PDL1-positive patients' OS lasted 27 (95% CI 24-39) and 22 (95% CI 19-41) months, respectively (NS). Multivariate analysis retained only brain metastases or albuminemia <35 g/L at diagnosis as being independently associated with OS. CONCLUSION PDL1 expression ≥1% seems to be associated with early progression during the first 6 months of first-line EGFR-TKI treatment of metastatic EGFRm NSCLCs, without impacting OS.
Collapse
Affiliation(s)
- Julie Lasvergnas
- Service de Pneumologie, Groupe Hospitalier Paris Saint-Joseph, 195 rue Raymond Losserand, 75014 Paris, France.
| | - Vincent Fallet
- Service de Pneumologie et Oncologie Thoracique, DMU APPROCHES, Hôpital Tenon, APHP, Sorbonne Université, 4 rue de la Chine, 75020 Paris, France
| | - Boris Duchemann
- Service d'Oncologie Médicale et Thoracique, Université Paris Sorbonne Nord, APHP, Hôpital Avicenne, 125 rue de Stalingrad, 93000 Bobigny, France
| | - Stephane Jouveshomme
- Service de Pneumologie, Groupe Hospitalier Paris Saint-Joseph, 195 rue Raymond Losserand, 75014 Paris, France
| | - Jacques Cadranel
- Service de Pneumologie et Oncologie Thoracique, DMU APPROCHES, Hôpital Tenon, APHP, Sorbonne Université, 4 rue de la Chine, 75020 Paris, France
| | - Christos Chouaïd
- Service de Pneumologie, CHI Créteil, 40 av. de Verdun, 94000 Créteil, France; Inserm U955, UPEC, IMRB, Créteil, France
| |
Collapse
|
37
|
Yan D. Hope and Challenges: Immunotherapy in EGFR-Mutant NSCLC Patients. Biomedicines 2023; 11:2916. [PMID: 38001917 PMCID: PMC10669068 DOI: 10.3390/biomedicines11112916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
EGFR tyrosine kinase inhibitors (TKIs) are the preferred initial treatment for non-small cell lung cancer (NSCLC) patients harboring sensitive EGFR mutations. Sadly, remission is transient, and no approved effective treatment options are available for EGFR-TKI-advanced EGFR-mutant NSCLCs. Although immunotherapy with immune checkpoint inhibitors (ICIs) induces sustained cancer remission in a subset of NSCLCs, ICI therapy exhibits limited activity in most EGFR-mutant NSCLCs. Mechanistically, the strong oncogenic EGFR signaling in EGFR-mutant NSCLCs contributes to a non-inflamed tumor immune microenvironment (TIME), characterized by a limited number of CD8+ T cell infiltration, a high number of regulatory CD4+ T cells, and an increased number of inactivated infiltrated T cells. Additionally, EGFR-mutant NSCLC patients are generally non-smokers with low levels of PD-L1 expression and tumor mutation burden. Promisingly, a small population of EGFR-mutant NSCLCs still durably respond to ICI therapy. The hope of ICI therapy from pre-clinical studies and clinical trials is reviewed in EGFR-mutant NSCLCs. The challenges of application ICI therapy in EGFR-mutant NSCLCs are also reviewed.
Collapse
Affiliation(s)
- Dan Yan
- Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA;
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
38
|
Cao W, Tang Q, Zeng J, Jin X, Zu L, Xu S. A Review of Biomarkers and Their Clinical Impact in Resected Early-Stage Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:4561. [PMID: 37760531 PMCID: PMC10526902 DOI: 10.3390/cancers15184561] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The postoperative survival of early-stage non-small-cell lung cancer (NSCLC) patients remains unsatisfactory. In this review, we examined the relevant literature to ascertain the prognostic effect of related indicators on early-stage NSCLC. The prognostic effects of the epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), mesenchymal-epithelial transition (MET), C-ros oncogene 1 (ROS1), or tumour protein p53 (TP53) alterations in resected NSCLC remains debatable. Kirsten rat sarcoma viral oncogene homologue (KRAS) alterations indicate unfavourable outcomes in early-stage NSCLC. Meanwhile, adjuvant or neoadjuvant EGFR-targeted agents can substantially improve prognosis in early-stage NSCLC with EGFR alterations. Based on the summary of current studies, resected NSCLC patients with overexpression of programmed death-ligand 1 (PD-L1) had worsening survival. Conversely, PD-L1 or PD-1 inhibitors can substantially improve patient survival. Considering blood biomarkers, perioperative peripheral venous circulating tumour cells (CTCs) and pulmonary venous CTCs predicted unfavourable prognoses and led to distant metastases. Similarly, patients with detectable perioperative circulating tumour DNA (ctDNA) also had reduced survival. Moreover, patients with perioperatively elevated carcinoembryonic antigen (CEA) in the circulation predicted significantly worse survival outcomes. In the future, we will incorporate mutated genes, immune checkpoints, and blood-based biomarkers by applying artificial intelligence (AI) to construct prognostic models that predict patient survival accurately and guide individualised treatment.
Collapse
Affiliation(s)
- Weibo Cao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (W.C.); (Q.T.); (J.Z.); (X.J.); (L.Z.)
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Quanying Tang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (W.C.); (Q.T.); (J.Z.); (X.J.); (L.Z.)
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jingtong Zeng
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (W.C.); (Q.T.); (J.Z.); (X.J.); (L.Z.)
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Jin
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (W.C.); (Q.T.); (J.Z.); (X.J.); (L.Z.)
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lingling Zu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (W.C.); (Q.T.); (J.Z.); (X.J.); (L.Z.)
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Song Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (W.C.); (Q.T.); (J.Z.); (X.J.); (L.Z.)
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
39
|
Cekani E, Martorell C, Martucci F, Patella M, Cafarotti S, Valenti A, Freguia S, Molinari F, Froesch P, Frattini M, Stathis A, Wannesson L. Prognostic implication of PD-L1 in early-stage non-small cell lung cancer: a retrospective single-centre study. Swiss Med Wkly 2023; 153:40110. [PMID: 37769653 DOI: 10.57187/smw.2023.40110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND The prognostic role of programmed death-ligand 1 (PD-L1) expression in patients with localised and locally advanced non-small cell lung cancer has not been fully elucidated. This information could help to better interpret recent and upcoming results of phase III adjuvant or neoadjuvant anti-PD-1/PD-L1 immunotherapy studies. METHODS In a cohort of 146 patients with early or locally advanced non-small cell lung cancer treated with curative intent (by surgery or radiotherapy), we investigated the prognostic value of PD-L1 expression and its correlation with other biological and clinical features. PD-L1 expression was stratified by quartiles. Primary endpoints were overall and disease-free survival. We also analysed the prognostic impact of the presence of actionable mutations, implemented treatment modality and completion of the treatment plan. Neither type of patient received neoadjuvant or adjuvant immunotherapy or target therapy. RESULTS Of the 146 selected patients, 32 (21.9%) presented disease progression and 15 died (10.3%) at a median follow-up of 20 months. In a univariable analysis, PD-L1 expression ≥25% was associated with significantly lower disease-free survival (hazard ratio [HR]) 1.9, 95% confidence interval [CI] 1.0-3.9, p = 0.049). PD-L1 expression ≥50% did not lead to disease-free survival or overall survival benefits (HR 1.2 and 1.1, respectively; 95% CI 0.6-2.6 and 0.3-3.4, respectively; pnot significant). In a multivariate analysis, a stage >I (HR 2.7, 95% CI 1.2-6, p = 0.012) and having an inoperable tumour (HR 3.2, 95% CI 1.4-7.4, p = 0.005) were associated with lower disease-free survival. CONCLUSION The population of patients with early-stage non-small cell lung cancer and PD-L1 expression ≥25% who were treated with curative intent during the pre-immunotherapy era exhibited a worse prognosis. This finding provides justification for the utilisation of adjuvant immunotherapy in this subgroup of patients, based on the current evidence derived from disease-free survival outcomes. However, for patients with PD-L1 expression <25%, opting to wait for the availability of the overall survival results may be a prudent choice.
Collapse
Affiliation(s)
- Elona Cekani
- Istituto Oncologico della Svizzera Italiana (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Carolina Martorell
- Istituto Oncologico della Svizzera Italiana (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Francesco Martucci
- Istituto Oncologico della Svizzera Italiana (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Miriam Patella
- Thoracic Surgery Department, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Stefano Cafarotti
- Thoracic Surgery Department, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Antonio Valenti
- Pneumology Department, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | | | | | - Patrizia Froesch
- Istituto Oncologico della Svizzera Italiana (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | | | - Anastasios Stathis
- Istituto Oncologico della Svizzera Italiana (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Luciano Wannesson
- Istituto Oncologico della Svizzera Italiana (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| |
Collapse
|
40
|
Chen SY, Cao JL, Li KP, Wan S, Yang L. BIN1 in cancer: biomarker and therapeutic target. J Cancer Res Clin Oncol 2023; 149:7933-7944. [PMID: 36890396 DOI: 10.1007/s00432-023-04673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND The bridging integrator 1 (BIN1) protein was originally identified as a pro-apoptotic tumor suppressor that binds to and inhibits oncogenic MYC transcription factors. BIN1 has complex physiological functions participating in endocytosis, membrane cycling, cytoskeletal regulation, DNA repair deficiency, cell-cycle arrest, and apoptosis. The expression of BIN1 is closely related to the development of various diseases such as cancer, Alzheimer's disease, myopathy, heart failure, and inflammation. PURPOSE Because BIN1 is commonly expressed in terminally differentiated normal tissues and is usually undetectable in refractory or metastatic cancer tissues, this differential expression has led us to focus on human cancers associated with BIN1. In this review, we discuss the potential pathological mechanisms of BIN1 during cancer development and its feasibility as a prognostic marker and therapeutic target for related diseases based on recent findings on its molecular, cellular, and physiological roles. CONCLUSION BIN1 is a tumor suppressor that regulates cancer development through a series of signals in tumor progression and microenvironment. It also makes BIN1 a feasible early diagnostic or prognostic marker for cancer.
Collapse
Affiliation(s)
- Si-Yu Chen
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Jin-Long Cao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Kun-Peng Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Shun Wan
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
41
|
Li R, Sant S, Brown E, Caramia F, Nikolic B, Clarke K, Byrne A, Lara Gonzalez LE, Savas P, Luen SJ, Teo ZL, Virassamy B, Neeson PJ, Darcy PK, Loi S. Tucatinib promotes immune activation and synergizes with programmed cell death-1 and programmed cell death-ligand 1 inhibition in HER2-positive breast cancer. J Natl Cancer Inst 2023; 115:805-814. [PMID: 37166471 PMCID: PMC10323890 DOI: 10.1093/jnci/djad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/02/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) inhibitors have poor efficacy in patients with trastuzumab-resistant advanced HER2-positive breast cancer. Tucatinib is a potent, selective anti-HER2 tyrosine kinase inhibitor with proven clinical benefit in the advanced setting in patients with trastuzumab resistance. We investigated if tucatinib can alter the tumor microenvironment and if this could be harnessed for therapeutic efficacy. METHODS We investigated the antitumor efficacy and contribution of the immune response of tucatinib using 2 immunocompetent, HER2-positive murine breast cancer models (trastuzumab-sensitive H2N113; trastuzumab-resistant Fo5) and the efficacy of tucatinib with trastuzumab and PD-1 or PD-L1 checkpoint inhibitors. RESULTS In both models, tucatinib statistically significantly inhibited tumor growth and demonstrated dose-dependent efficacy. Ex vivo analysis by flow cytometry of tumor-infiltrating lymphocytes in mice treated with tucatinib showed increased frequency, higher proliferation, and enhanced effector function of CD8+ effector memory T cells. Tucatinib treatment also increased frequency of CD8+PD-1+ and CD8+TIM3+ T cells, CD49+ natural killer cells, monocytes, and major histocompatibility complex II expression on dendritic cells and macrophages and a decrease in myeloid-derived suppressor cells. Gene expression analysis revealed statistically significant enrichment in pathways associated with immune activation, type I and II interferon response, adaptive immune response, and antigen receptor signaling. In vivo, tucatinib and α-PD-L1 or α-PD-1 demonstrated statistically significantly increased efficacy and improved survival of mice compared with tucatinib alone. CONCLUSION Tucatinib modulates the immune microenvironment favorably, and combination treatment with α-PD-L1 or α-PD-1 demonstrated increased efficacy in preclinical HER2-positive tumor models. These findings provide a rationale for investigation of tucatinib and immune checkpoint inhibition in the clinic.
Collapse
Affiliation(s)
- Ran Li
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Surgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Australia
| | - Sneha Sant
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Emmaline Brown
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Franco Caramia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Bronte Nikolic
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Kylie Clarke
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ann Byrne
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Luis E Lara Gonzalez
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Peter Savas
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen J Luen
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Zhi Ling Teo
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Balaji Virassamy
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Paul J Neeson
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip K Darcy
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
42
|
Chen H, Ge M, Zhang F, Xing Y, Yu S, Chen C, Zhang H, Wang X, Gao X, Chen F, Chen P, Zhang D, Zhan Q, Zhu Y. Correlation between immunotherapy biomarker PD-L1 expression and genetic alteration in patients with non-small cell lung cancer. Genomics 2023; 115:110648. [PMID: 37217086 DOI: 10.1016/j.ygeno.2023.110648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Programmed death-ligand 1 (PD-L1) has been widely used in immunotherapy evaluation of patients with non-small cell lung cancer (NSCLC). However, the effect is not particularly ideal, and the association between PD-L1 and genetic alterations requires more exploration. Here, we performed targeted next-generation sequencing and PD-L1 immunohistochemistry (IHC) testing for PD-L1 expression on both tumor cells (TCs) and tumor-infiltrating immune cells (ICs) in 1549 patients. Our studies showed that surgical method of resection was positively correlated with IC+, and a low tumor mutation burden (TMB) was negatively correlated with TC+. Furthermore, we found that EGFR was mutually exclusive with both ALK and STK11. In addition, the features between PD-L1 expression status and genomic alterations were characterized. These results suggest that clinical characteristics and molecular phenotypes are associated with PD-L1 expression signatures, which may provide novel insights for improving the efficiency of immune checkpoint inhibitors (ICIs) in immunotherapy.
Collapse
Affiliation(s)
- Hefeng Chen
- Department of Pulmonary and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Mengxi Ge
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | - Xing Gao
- 3D Medicines Inc., Shanghai, China
| | | | | | | | - Qiong Zhan
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Youcai Zhu
- Department of Thoracic Disease Center, Zhejiang Rongjun Hospital, Jiaxing, China.
| |
Collapse
|
43
|
Zhou Y, Li H. Neurological adverse events associated with PD-1/PD-L1 immune checkpoint inhibitors. Front Neurosci 2023; 17:1227049. [PMID: 37456998 PMCID: PMC10339650 DOI: 10.3389/fnins.2023.1227049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Immunotherapy is a promising method for cancer treatment. Among them, immune checkpoint inhibitors targeting PD-1/PD-L1 are increasingly used for certain cancers. However, with the widespread use of such drugs, reports of immune-related adverse events (irAEs) are also increasing. Neurological adverse events (nAEs) are one of the irAEs that affect the peripheral and central nervous systems. They are characterized by low incidence, hard to diagnose, and life-threatening risks, which have a significant impact on the prognosis of patients. Biomarker-based early diagnosis and subsequent treatment strategies are worthy of attention, and comprehensive management of irAEs is important for optimizing patients' quality of life and long-term outcomes. In this review, we summarized the mechanisms, common symptoms, early biomarkers, treatments, and future research directions of nAEs, in order to provide a comprehensive overview of immune checkpoint inhibitor-related nAEs targeting PD-1/PD-L1.
Collapse
|
44
|
Bashraheel SS, Goda SK. Novel SPEA Superantigen Peptide Agonists and Peptide Agonist-TGFαL3 Conjugate. In Vitro Study of Their Growth-Inhibitory Effects for Targeted Cancer Immunotherapy. Int J Mol Sci 2023; 24:10507. [PMID: 37445686 DOI: 10.3390/ijms241310507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Bacterial superantigens (SAgs) are effective T-cell stimulatory molecules that lead to massive cytokine production. Superantigens crosslink between MHC class II molecules on the Antigen Presenting Cells (APC) and TCR on T-cells. This enables them to activate up to 20% of resting T cells, whilst conventional antigen presentation results in the activation of 0.001-0.0001% of the T cell population. These biological properties of superantigens make them attractive for use in immunotherapy. Previous studies have established the effectiveness of superantigens as therapeutic agents. This, however, was achieved with severe side effects due to the high lethality of the native toxins. Our study aims to produce superantigen-based peptides with minimum or no lethality for safer cancer treatment. In previous work, we designed and synthesized twenty overlapping SPEA-based peptides and successfully mapped regions in SPEA superantigen, causing a vasodilatory response. We screened 20 overlapping SPEA-based peptides designed and synthesized to cover the whole SPEA molecule for T-cell activation and tumor-killing ability. In addition, we designed and synthesized tumor-targeted superantigen-based peptides by fusion of TGFαL3 either from the N' or C' terminal of selected SPEA-based peptides with an eight-amino acid flexible linker in between. Our study identified parts of SPEA capable of stimulating human T-cells and producing different cytokines. We also demonstrated that the SPEA-based peptide conjugate binds specifically to cancer cells and can kill this cancer. Peptides induce T-cell activation, and tumor killing might pave the way for safer tumor-targeted superantigens (TTS). We proposed the combination of our new superantigen-based peptide conjugates with other immunotherapy techniques for effective and safer cancer treatment.
Collapse
Affiliation(s)
| | - Sayed K Goda
- College of Science and Technology, University of Derby, Derby DE22 1GB, UK
| |
Collapse
|
45
|
Shin K, Kim J, Park SJ, Lee MA, Park JM, Choi MG, Kang D, Song KY, Lee HH, Seo HS, Lee SH, Kim B, Kim O, Park J, Kang N, Kim IH. Prognostic value of soluble PD-L1 and exosomal PD-L1 in advanced gastric cancer patients receiving systemic chemotherapy. Sci Rep 2023; 13:6952. [PMID: 37117200 PMCID: PMC10147600 DOI: 10.1038/s41598-023-33128-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/07/2023] [Indexed: 04/30/2023] Open
Abstract
The prognostic role of soluble PD-L1 (sPD-L1) and exosomal PD-L1 (exoPD-L1) in patients with gastric cancer (GC) receiving systemic chemotherapy remains unelucidated. Thus, we examined their prognostic significance in patients with advanced GC. Blood samples were obtained from 99 patients with advanced GC receiving first-line chemotherapy. Serum-derived exosomes were isolated by centrifugation and polymer precipitation. The correlation between serum-derived exoPD-L1, plasma sPD-L1, immune-related markers, and circulating immune cells was evaluated. Patients were divided into two groups according to pretreatment sPD-L1 and exoPD-L1 levels: low sPD-L1 and high sPD-L1 groups, low exoPD-L1 and high exoPD-L1 groups. Patients with low sPD-L1 level before treatment (< 9.32 pg/mL) showed significantly better overall survival (OS) and progression-free survival (PFS) than those with high sPD-L1 level (≥ 9.32 pg/mL). The low exoPD-L1 group (< 10.21 pg/mL) showed a tendency of longer PFS than the high exoPD-L1 group (≥ 10.21 pg/mL). Pretreatment sPD-L1 was an independent prognostic factor for OS in multivariate analysis. exoPD-L1 was associated with systemic inflammation markers, immunomodulatory cytokines, and T cells, while sPD-L1 was associated with tumor markers. Pretreatment plasma-derived sPD-L1 level could be used as a prognostic marker for patients receiving cytotoxic chemotherapy. Serum-derived exoPD-L1 may reflect the immunosuppressive state of patients with advanced GC.
Collapse
Affiliation(s)
- Kabsoo Shin
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Joori Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Se Jun Park
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Myung Ah Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae Myung Park
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Myung-Gyu Choi
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Donghoon Kang
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyo Young Song
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Han Hong Lee
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ho Seok Seo
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung Hak Lee
- Department of Clinical Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Bohyun Kim
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Okran Kim
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Juyeon Park
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Nahyeon Kang
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
46
|
Rudin CM, Cervantes A, Dowlati A, Besse B, Ma B, Costa DB, Schmid P, Heist R, Villaflor VM, Spahn J, Li S, Cha E, Riely GJ, Gettinger S. Safety and clinical activity of atezolizumab plus erlotinib in patients with non-small-cell lung cancer. ESMO Open 2023; 8:101160. [PMID: 36871392 PMCID: PMC10163154 DOI: 10.1016/j.esmoop.2023.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Acquired resistance limits long-term epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) efficacy in patients with EGFR mutation-positive non-small-cell lung cancer (NSCLC) in whom anti-programmed death-ligand 1 (PD-L1) efficacy is also limited. We hypothesized that combining atezolizumab with erlotinib could enhance antitumor immunity and extend efficacy in these patients. PATIENTS AND METHODS This open-label phase Ib trial was conducted in adults aged ≥18 years who had advanced, unresectable NSCLC. Stage 1 (safety evaluation) enrolled EGFR TKI-naive patients regardless of EGFR status. Stage 2 (expansion) enrolled patients with EGFR-mutant NSCLC treated with ≤1 prior non-EGFR TKI therapy. Patients received 150 mg erlotinib orally once daily. After a 7-day erlotinib run-in, atezolizumab 1200 mg was administered intravenously every 3 weeks. The primary endpoint was the safety and tolerability of the combination in all patients; secondary endpoints included antitumor activity per RECIST 1.1 in stage 2 patients. RESULTS At the data cut-off on 7 May 2020, 28 patients (8 in stage 1, 20 in stage 2) were assessable for safety. No dose-limiting toxicities or grade 4 or 5 treatment-related adverse events occurred. Grade 3 treatment-related adverse events occurred in 46% of patients; the most common were increased alanine aminotransferase, diarrhea, pyrexia, and rash (each in 7% of patients). Serious adverse events occurred in 50% of patients. Pneumonitis (grade 1) was reported in a single patient (4%). The objective response rate was 75% [95% confidence interval (CI) 50.9% to 91.3%]), median response duration was 18.9 months (95% CI 9.5-40.5 months), median progression-free survival was 15.4 months (95% CI 8.4-39.0 months), and median overall survival was not estimable (NE) (95% CI 34.6-NE). CONCLUSIONS Atezolizumab combined with erlotinib demonstrated a tolerable safety profile and encouraging, durable clinical activity in patients with advanced EGFR mutation-positive NSCLC.
Collapse
Affiliation(s)
- C M Rudin
- Memorial Sloan Kettering Cancer Center, New York, USA.
| | | | - A Dowlati
- University Hospitals Case Medical Center, Cleveland, USA
| | - B Besse
- Gustave Roussy, Villejuif; University of Paris-Sud, Orsay, France
| | - B Ma
- Phase I Clinical Trial Center, Chinese University of Hong Kong, Hong Kong, China
| | - D B Costa
- Beth Israel Deaconess Medical Center, Boston, USA
| | - P Schmid
- Barts Cancer Institute, London, UK
| | - R Heist
- Massachusetts General Hospital, Boston
| | | | - J Spahn
- Genentech, Inc, South San Francisco
| | - S Li
- Genentech, Inc, South San Francisco
| | - E Cha
- Genentech, Inc, South San Francisco
| | - G J Riely
- Memorial Sloan Kettering Cancer Center, New York, USA
| | | |
Collapse
|
47
|
Larsen TV, Dybdal N, Daugaard TF, Lade-Keller J, Lin L, Sorensen BS, Nielsen AL. Examination of the Functional Relationship between PD-L1 DNA Methylation and mRNA Expression in Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:cancers15061909. [PMID: 36980795 PMCID: PMC10047551 DOI: 10.3390/cancers15061909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Immunotherapy targeting the interaction between programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) is a treatment option for patients with non-small-cell lung cancer (NSCLC). The expression of PD-L1 by the NSCLC cells determines treatment effectiveness, but the relationship between PD-L1 DNA methylation and expression has not been clearly described. We investigated PD-L1 DNA methylation, mRNA expression, and protein expression in NSCLC cell lines and tumor biopsies. We used clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) to modify PD-L1 genetic contexts and endonuclease deficient Cas9 (dCas9) fusions with ten-eleven translocation methylcytosine dioxygenase 1 (TET1) and DNA (cytosine-5)-methyltransferase 3A (DNMT3A) to manipulate PD-L1 DNA methylation. In NSCLC cell lines, we identified specific PD-L1 CpG sites with methylation levels inversely correlated with PD-L1 mRNA expression. However, inducing PD-L1 mRNA expression with interferon-γ did not decrease the methylation level for these CpG sites, and using CRISPR-Cas9, we found that the CpG sites did not directly confer a negative regulation. dCas9-TET1 and dCas9-DNMT3A could induce PD-L1 hypo- and hyper-methylation, respectively, with the latter conferring a decrease in expression showing the functional impact of methylation. In NSCLC biopsies, the inverse correlation between the methylation and expression of PD-L1 was weak. We conclude that there is a regulatory link between PD-L1 DNA methylation and expression. However, since these measures are weakly associated, this study highlights the need for further research before PD-L1 DNA methylation can be implemented as a biomarker and drug target for measures to improve the effectiveness of PD-1/PD-L1 immunotherapy in NSCLC.
Collapse
Affiliation(s)
- Trine V Larsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Nina Dybdal
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Tina F Daugaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Lin Lin
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Boe S Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Anders L Nielsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
48
|
Vokes NI, Pan K, Le X. Efficacy of immunotherapy in oncogene-driven non-small-cell lung cancer. Ther Adv Med Oncol 2023; 15:17588359231161409. [PMID: 36950275 PMCID: PMC10026098 DOI: 10.1177/17588359231161409] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/13/2023] [Indexed: 03/20/2023] Open
Abstract
For advanced metastatic non-small-lung cancer, the landscape of actionable driver alterations is rapidly growing, with nine targetable oncogenes and seven approvals within the last 5 years. This accelerated drug development has expanded the reach of targeted therapies, and it may soon be that a majority of patients with lung adenocarcinoma will be eligible for a targeted therapy during their treatment course. With these emerging therapeutic options, it is important to understand the existing data on immune checkpoint inhibitors (ICIs), along with their efficacy and safety for each oncogene-driven lung cancer, to best guide the selection and sequencing of various therapeutic options. This article reviews the clinical data on ICIs for each of the driver oncogene defined lung cancer subtypes, including efficacy, both for ICI as monotherapy or in combination with chemotherapy or radiation; toxicities from ICI/targeted therapy in combination or in sequence; and potential strategies to enhance ICI efficacy in oncogene-driven non-small-cell lung cancers.
Collapse
Affiliation(s)
- Natalie I. Vokes
- Department of Thoracic Head and Neck Medical
Oncology, MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, MD Anderson
Cancer Center, Houston, TX, USA
| | - Kelsey Pan
- Department of Cancer Medicine, MD Anderson
Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic Head and Neck Medical
Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030,
USA
| |
Collapse
|
49
|
Wu J, Ohura T, Ogura R, Wang J, Choi JH, Kobori H, D’Alessandro-Gabazza CN, Toda M, Yasuma T, Gabazza EC, Takikawa Y, Hirai H, Kawagishi H. Bioactive Compounds from the Mushroom-Forming Fungus Chlorophyllum molybdites. Antibiotics (Basel) 2023; 12:596. [PMID: 36978462 PMCID: PMC10044768 DOI: 10.3390/antibiotics12030596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
A novel compound (1) along with two known compounds (2 and 3) were isolated from the culture broth of Chlorophyllum molybdites, and three known compounds (4-6) were isolated from its fruiting bodies. The planar structure of 1 was determined by the interpretation of spectroscopic data. By comparing the specific rotation of the compound with that of the analog compound, the absolute configuration of 1 was determined to be R. This is the first time that compounds 2-4 were isolated from a mushroom-forming fungus. Compound 2 showed significant inhibition activity against Axl and immune checkpoints (PD-L1, PD-L2). In the bioassay to examine growth inhibitory activity against the phytopathogenic bacteria Peptobacterium carotovorum, Clavibacter michiganensis and Burkholderia glumae, compounds 2 and 3 inhibited the growth of P. carotovorum and C. michiganensis. In the bioassay to examine plant growth regulatory activity, compounds 1-4 showed a significant regulatory activity on lettuce growth.
Collapse
Affiliation(s)
- Jing Wu
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Takeru Ohura
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Ryuhei Ogura
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Junhong Wang
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jae-Hoon Choi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hajime Kobori
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Iwade Research Institute of Mycology Co., Ltd., Suehirocho 1-9, Tsu 514-0012, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 524-8507, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 524-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 524-8507, Japan
| | - Yuichi Takikawa
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
| | - Hirofumi Hirai
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
50
|
Comprehensive characterization of B7 family members in NSCLC and identification of its regulatory network. Sci Rep 2023; 13:4311. [PMID: 36922519 PMCID: PMC10017798 DOI: 10.1038/s41598-022-26776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/20/2022] [Indexed: 03/17/2023] Open
Abstract
B7 family members act as co-stimulatory or co-inhibitory molecules in the adaptive immune system. Thisstudy aimed to investigate the dysregulation, prognostic value and regulatory network of B7 family members in non-small cell lung cancer (NSCLC). Data for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients were extracted from public databases. Patient prognosis was determined by Kaplan-Meier analysis. The downstream signaling pathways of B7 family were identified via GO and KEGG analysis. The key B7 related genes were selected by network, correlation and functional annotation analysis. Most B7 family members were dysregulated in LUAD and LUSC. The expression of B7-1/2/H3 and B7-H5 were significantly associated with overall survival in LUAD and LUSC, respectively. The major pathway affected by B7 family was the EGFR tyrosine kinase inhibitor resistance and ErbB signaling pathway. MAPK1, MAPK3 and MAP2K1 were pivotal B7 related genes in both LUAD and LUSC. This study reveals an overall dysregulation of B7 family members in NSCLC and highlights the potential of combination use of tyrosine kinase inhibitors or MEK/ERK inhibitors with B7 member blockade for NSCLC treatment.
Collapse
|