1
|
Zou Z, Chen Y, Sun R, Shi B, Jiang L, Huang F. Ti 3C 2/Fe 3O 4 - based surface plasmon resonance imaging biosensor for efficient separation and sensitive detection of CA125 in serum. Mikrochim Acta 2025; 192:168. [PMID: 39960621 DOI: 10.1007/s00604-024-06906-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/17/2024] [Indexed: 02/20/2025]
Abstract
A surface plasmon resonance imaging (SPRi) biosensor is presented which facilitates rapid and sensitive detection of the ovarian cancer biomarker carbohydrate antigens 125 (CA125). The CA125 protein was specifically captured and directly recognized by polyadenylic (polyA)-modified DNA aptamer on the surface of a Au chip. The biosensor demonstrated a linear range of direct detection of CA125 based on SPRi from 20 nM to 0.5 nM, with a detection limit of 0.47 nM. Furthermore, Fe3O4 nanoparticles were synthesized in situ on the carboxyl-functionalized two-dimensional (2D) material Ti3C2 to obtain MXC/Fe3O4 nanocomposites. The large surface area of Ti3C2 provides ample binding sites for the in situ generation of Fe3O4 and this facilitates subsequent immobilization of DNA aptamers. The amino-modified DNA aptamer interacted with carboxylate sites activated on the surface of Ti3C2, and the aptamer was immobilized on the MXC/Fe3O4 nanocomposite surface. Due to the magnetic properties of Fe3O4 nanoparticles within the composite material, CA125 protein in serum can be effectively captured and separated under an external magnetic field. The captured protein forms a sandwich amplification structure with the DNA adapter on the surface of the Au chip, thereby enhancing the detection signal of CA125. The biosensor demonstrates a linear detection range from 0.5 pM to 1000 pM, with a detection limit as low as 81 fM. The unique separation capability of the composite nanomaterials enables the biosensor to detect CA125 protein as low as 1 pM in complex liquid matrices such as serum, achieving exceptional selectivity, accuracy, and sensitivity in detecting the ovarian cancer marker. This capability significantly supports the early diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Ziwei Zou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, PR, China
| | - Yi Chen
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, PR, China.
| | - Rengang Sun
- Department of TCM Gynecology, Hangzhou Women's Hospital, Hangzhou, 310008, PR, China
| | - Boya Shi
- Department of TCM Gynecology, Hangzhou Women's Hospital, Hangzhou, 310008, PR, China
| | - Li Jiang
- Department of TCM Gynecology, Hangzhou Women's Hospital, Hangzhou, 310008, PR, China
| | - Feixiang Huang
- Department of TCM Gynecology, Hangzhou Women's Hospital, Hangzhou, 310008, PR, China.
| |
Collapse
|
2
|
Li W, Fang C, Gao Y, Gao Y, Yan F, Chen B, Xu M. Correlation between plasma PSGL-1 and FIGO stage, tumor metastasis, and survival in epithelial ovarian cancer. Biotechnol Appl Biochem 2024; 71:733-740. [PMID: 38494670 DOI: 10.1002/bab.2572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/10/2024] [Indexed: 03/19/2024]
Abstract
Plasma circulating P-selectin glycoprotein ligand-1 (PSGL-1) levels and its clinical correlation in patients with epithelial ovarian cancer (EOC) are unknown. The study determined plasma PSGL-1 levels in EOC patients and investigated its relationship with clinicopathological factors and prognosis. Plasma PSGL-1 levels were measured using ELISA in 69 patients with EOC, 34 patients with benign ovarian cystadenoma, and 36 healthy controls. Subsequently, the relationship between PSGL-1 levels and clinicopathological characteristics of patients, as well as the prognosis of EOC patients, was examined. Additionally, the specificity and sensitivity of plasma PSGL-1 were assessed through ROC curve analysis. Plasma PSGL-1 was upregulated in EOC patients compared with healthy subjects and/or patients with benign ovarian cystadenoma (p < 0.01). Elevated levels of PSGL-1 in the plasma were positively associated with advanced FIGO stage (p < 0.001), tumor size (p = 0.001), tumor metastasis (p = 0.036), and tumor recurrence (p = 0.013), while was negatively correlated with residual tumor size (p < 0.001). Kaplan-Meier survival analysis showed that high plasma PSGL-1 levels were associated with progression-free survival (p = 0.0345). In univariate and multivariate Cox regression analyses, PSGL-1 (HR = 1.456, p = 0.009) was an independent prognostic marker. Plasma PSGL-1 levels distinguished EOC patients and healthy individuals (AUC = 0.905), patients at late and early FIGO stages (AUC = 0.886), and metastatic and non-metastatic EOC (AUC = 0.722). The expression of plasma PSGL-1 is significantly increased in patients with EOC, serving as a reliable biomarker to differentiate between healthy individuals and those with EOC. Furthermore, PSGL-1 in patients is correlated with prognostic indicators, such as advanced FIGO stage, tumor lymph node metastasis, and progression-free survival.
Collapse
Affiliation(s)
- WenHui Li
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Cheng Fang
- Department of Hepatic Surgery IV, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ya Gao
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Yan Gao
- Department of Gynaecology and Obsterics, Xijing Hospital, Air Force Medical University, Xi'an City, Shaanxi Province, China
| | - FengShang Yan
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - BiLiang Chen
- Department of Gynaecology and Obsterics, Xijing Hospital, Air Force Medical University, Xi'an City, Shaanxi Province, China
| | - MingJuan Xu
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Second Military Medical University, Shanghai, China
| |
Collapse
|
3
|
Wang L, Zhu H, Shi Z, Chen B, Huang H, Lin G, Li J, Yu H, Xu S, Chen G, Ou R, Dai C. MK8722 initiates early-stage autophagy while inhibiting late-stage autophagy via FASN-dependent reprogramming of lipid metabolism. Theranostics 2024; 14:75-95. [PMID: 38164137 PMCID: PMC10750195 DOI: 10.7150/thno.83051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/01/2023] [Indexed: 01/03/2024] Open
Abstract
Background and objective: Epithelial ovarian cancer (EOC) is associated with latent onset and poor prognosis, with drug resistance being a main concern in improving the prognosis of these patients. The resistance of cancer cells to most chemotherapeutic agents can be related to autophagy mechanisms. This study aimed to assess the therapeutic effect of MK8722, a small-molecule compound that activates AMP-activated protein kinase (AMPK), on EOC cells and to propose a novel strategy for the treatment of EOC. Purpose: To explore the therapeutic effects of MK8722 on EOC cells, and to elucidate the underlying mechanism. Methods and results: It was found that MK8722 effectively inhibited the malignant biological behaviors of EOC cells. In vitro experiments showed that MK8722 targeted and decreased the lipid metabolic pathway-related fatty acid synthase (FASN) expression levels, causing the accumulation of lipid droplets. In addition, transmission electron microscopy revealed the presence of autophagosome-affected mitochondria. Western blotting confirmed that MK8722 plays a role in activating autophagy upstream (PI3K/AKT/mTOR) and inhibiting autophagy downstream via FASN-dependent reprogramming of lipid metabolism. Plasmid transient transfection demonstrated that MK8722 suppressed late-stage autophagy by blocking autophagosome-lysosome fusion. Immunofluorescence and gene silencing revealed that this effect was achieved by inhibiting the interaction of FASN with the SNARE complexes STX17-SNP29-VAMP8. Furthermore, the antitumor effect of MK8722 was verified using a subcutaneous xenograft mouse model. Conclusion: The findings suggest that using MK8722 may be a new strategy for treating EOC, as it has the potential to be a new autophagy/mitophagy inhibitor. Its target of action, FASN, is a molecular crosstalk between lipid metabolism and autophagy, and exploration of the underlying mechanism of FASN may provide a new research direction.
Collapse
Affiliation(s)
- Luhui Wang
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325015, China
| | - Haiyan Zhu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Zhehao Shi
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ganglian Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Jiacheng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Haitao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Shihao Xu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Rongying Ou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325015, China
| | - Chunxiu Dai
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| |
Collapse
|
4
|
Wang C, Yu C, Chang H, Song J, Zhang S, Zhao J, Wang J, Wang T, Qi Q, Shan C. Glucose-6-phosphate dehydrogenase: a therapeutic target for ovarian cancer. Expert Opin Ther Targets 2023; 27:733-743. [PMID: 37571851 DOI: 10.1080/14728222.2023.2247558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Ovarian cancer (OC) is a gynecological tumor disease, which is usually diagnosed at an advanced stage and has a poor prognosis. It has been established that the glucose metabolism rate of cancer cells is significantly higher than that of normal cells, and the pentose phosphate pathway (PPP) is an important branch pathway for glucose metabolism. Glucose-6-phosphate dehydrogenase (G6PD) is the key rate-limiting enzyme in the PPP, which plays an important role in the initiation and development of cancer (such as OC), and has been considered as a promisinganti-cancer target. AREAS COVERED In this review, based on the structure and biological function of G6PD, recent research on the roles of G6PD in the progression, metastasis, and chemoresistance of OC are summarized and accompanied by proposed molecular mechanisms, which may provide a systematic understanding of targeting G6PD for the treatment of patients with OC. EXPERT OPINION Accumulating evidence demonstrates that G6PD is a promising target of cancer. The development of G6PD inhibitors for cancer treatment merits broad application prospects.
Collapse
Affiliation(s)
- Chenxi Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Chenxi Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Hongkai Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Jiaqi Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianguo Zhao
- Tianjin Key Laboratory of human development and reproductive regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Jiyan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Tao Wang
- Tianjin Key Laboratory of human development and reproductive regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Qi Qi
- MOE Key Laboratory of Tumor Molecular Biology, Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Jafarian A, Jafaripour M, Gharib M, Salehi M, Mohamadian Roshan N, Etemad S, Mirshekar K, Sheikhi M, Heidari M, Ahmadian B, Khoshnegah Z, Ayatollahi H, Siyadat P. Molecular Status of BRAF Mutation in Epithelial Ovarian Cancer: An Analysis of 57 Cases in the Northeast of Iran. IRANIAN JOURNAL OF PATHOLOGY 2023; 18:134-139. [PMID: 37600581 PMCID: PMC10439751 DOI: 10.30699/ijp.2023.554750.2907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 05/03/2023] [Indexed: 08/22/2023]
Abstract
Background & Objective Epithelial ovarian cancer (EOC) is the most prevalent type of ovarian cancer. Previous studies have elucidated different pathways for the progression of this malignancy. The mutation in the B-Raf proto-oncogene, serine/threonine kinase (BRAF) gene, a member of the MAPK/ERK signaling pathway, plays a role in the development of EOC. The current study aimed to determine the frequency of the BRAF V600E mutation in ovarian serous and mucinous tumors, including borderline and carcinoma subtypes. Methods A total of 57 formalin-fixed paraffin-embedded samples, including serous borderline tumors (SBTs), low-grade serous carcinomas (LGSCs), high-grade serous carcinomas (HGSCs), mucinous borderline tumors (MBTs), and mucinous carcinomas, and 57 normal ovarian tissues were collected. The BRAF V600E mutation was analyzed using polymerase chain reaction (PCR) and sequencing. Results While 40% of the SBT harbor BRAF mutation, we found no BRAF mutation in the invasive serous carcinoma (P=0.017). Also, there was only 1 BRAF mutation in MBT and no mutation in mucinous carcinomas. In addition, we found no mutation in the control group. Conclusion The BRAF mutation is most frequent in borderline tumors but not in invasive serous carcinomas. It seems that 2 different pathways exist for the development of ovarian epithelial neoplasms: one for borderline tumors and the other for high-grade invasive carcinomas. Our study supports this hypothesis. The BRAF mutation is rare in mucinous neoplasms.
Collapse
Affiliation(s)
- Amirhossein Jafarian
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Jafaripour
- Department of Surgical and Clinical Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Gharib
- Department of Surgical and Clinical Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Salehi
- Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sare Etemad
- Department of Surgical and Clinical Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khatoone Mirshekar
- Department of Surgical and Clinical Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sheikhi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Heidari
- Department of Medical Genetics, School of Medicine, Yazd University of Medical Sciences, Yazd, Iran
| | - Behnaz Ahmadian
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshnegah
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Ayatollahi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
6
|
McHenry A, Rottmann DA, Buza N, Hui P. KRAS mutation in primary ovarian serous borderline tumors correlates with tumor recurrence. Virchows Arch 2023:10.1007/s00428-023-03564-z. [PMID: 37219599 DOI: 10.1007/s00428-023-03564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Oncogenic activation of the mitogen-activated protein kinase (MAPK) pathway due to KRAS or BRAF gain-of-function mutation is frequently found in ovarian serous borderline tumor (SBT) and their extraovarian implants. We investigated mutational status of KRAS and BRAF of the primary ovarian SBTs that had a high stage presentation in correlation with clinical outcome. Among 39 consecutive primary SBTs with either invasive implants (20 cases) or non-invasive implants (19 cases), KRAS and BRAF mutational analysis was informative in 34 cases. Sixteen cases (47%) harbored a KRAS mutation, while 5 cases (15%) had a BRAF V600E mutation. High-stage disease (IIIC) was seen in 31% (5/16) of patients with a KRAS mutation and 39% (7/18) of patients without a KRAS mutation (p = 0.64). KRAS mutations were present in 9/16 (56%) tumors with invasive implants/LGSC versus 7/18 (39%) tumors with non-invasive implants (p = 0.31). BRAF mutation was seen in 5 cases with non-invasive implants. Tumor recurrence was seen in 31% (5/16) of patients with a KRAS mutation, compared to 6% (1/18) of patients without a KRAS mutation (p = 0.04). A KRAS mutation predicted an adverse disease-free survival (31% survival at 160 months) compared to those with wild-type KRAS (94% at 160 months; log-rank test, p = 0.037; HR 4.47). In conclusion, KRAS mutation in primary ovarian SBTs is significantly associated with a worse disease-free survival, independent of the high tumor stage or histological subtypes of extraovarian implant. KRAS mutation testing of primary ovarian SBT may servce as a useful biomarker for tumor recurrence.
Collapse
Affiliation(s)
- Austin McHenry
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Natalia Buza
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Pei Hui
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Tang Y, Liu Y, Xia Y, Zhao F, Zeng B. Simultaneous Detection of Ovarian Cancer-Concerned HE4 and CA125 Markers Based on Cu Single-Atom-Triggered CdS QDs and Eu MOF@Isoluminol ECL. Anal Chem 2023; 95:4795-4802. [PMID: 36867090 DOI: 10.1021/acs.analchem.3c00273] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Simultaneous detection of different disease markers is significant for clinical diagnosis. In this work, a dual-signal electrochemiluminescence (ECL) immunosensor was constructed for the simultaneous detection of carbohydrate antigen 125 (CA125) and human epithelial protein 4 (HE4) markers of ovarian cancer. The results showed that the Eu metal-organic framework-loaded isoluminol-Au nanoparticles (Eu MOF@Isolu-Au NPs) could generate a strong anodic ECL signal through synergistic interaction; as cathodic luminophore, the composite of carboxyl-functionalized CdS quantum dots and N-doped porous carbon-anchored Cu single-atom catalyst could catalyze H2O2 co-reactant to produce a large amount of •OH and O2•-, making the anodic and cathodic ECL signals significantly increase and become stable. Based on the enhancement strategy, a sandwich immunosensor was constructed for the simultaneous detection of ovarian cancer-associated CA125 and HE4 markers by combining antigen-antibody specific recognition and magnetic separation technique. The resulting ECL immunosensor displayed high sensitivity, a wide linear response range of 0.005∼500 ng mL-1, and low detection limits of 0.37 and 1.58 pg mL-1 for CA125 and HE4, respectively. Furthermore, it had excellent selectivity, stability, and practicability in the detection of real serum samples. This work establishes a framework for in-depth design and application of single-atom catalysis in ECL sensing.
Collapse
Affiliation(s)
- Yun Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province 430072, PR China
| | - Yiwei Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province 430072, PR China
| | - Yide Xia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province 430072, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province 430072, PR China
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province 430072, PR China
| |
Collapse
|
8
|
Bhattacharyya N, Khan MM, Bagabir SA, Almalki AH, Shahwan MA, Haque S, Verma AK, Mangangcha IR. Maximal clique centrality and bottleneck genes as novel biomarkers in ovarian cancer. Biotechnol Genet Eng Rev 2023. [DOI: 10.1080/02648725.2023.2174688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
| | - Mohd Mabood Khan
- Division of Molecular Genetics & Biochemistry, National Institute of Cancer Prevention & Research (ICMR-NICPR), Noida, India
| | - Sali Abubaker Bagabir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Atiah H. Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
- Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Taif, Al-Hawiah, Saudi Arabia
| | - Moyad Al Shahwan
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Ajay Kumar Verma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
9
|
Zhang CL, Jiang XC, Li Y, Pan X, Gao MQ, Chen Y, Pang B. Independent predictive value of blood inflammatory composite markers in ovarian cancer: recent clinical evidence and perspective focusing on NLR and PLR. J Ovarian Res 2023; 16:36. [PMID: 36759864 PMCID: PMC9912515 DOI: 10.1186/s13048-023-01116-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest malignant tumors affecting women worldwide. The predictive value of some blood inflammatory composite markers in OC has been extensively reported. They can be used for early detection and differential diagnosis of OC and can be used for predicting survival, treatment response, and recurrence in the affected patients. Here, we reviewed the predictive values of composite inflammatory markers based on complete blood count, namely neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio, and systemic inflammation index and markers based on blood protein, namely C-reactive protein-to-albumin ratio and prognostic nutritional index in OC, with a focus on NLR and PLR. We referred to the clinical studies on these six markers, reviewed the patient population, and summarized the marker cut-off values, significance, and limitations of these studies. All these studies were retrospective and most of them were single-center clinical studies with small sample sizes. We found that the cut-off values of these markers have not been unified, and methods used to determine these values varied among studies. The predictive value of these markers on survival was mainly reflected in the postoperative patients of multiple subtypes of ovarian cancer including epithelial OC, high-grade serous ovarian carcinoma, and ovarian clear cell carcinoma. We focused on NLR and PLR and calculated their pooled hazard ratios. NLR and PLR were reliable in predicting overall and progression-free survivals in patients with OC. Therefore, it is necessary to adjust important confounding factors and conduct a long-term follow-up prospective cohort study to further clarify the cut-off values of NLR and PLR and their clinical applications.
Collapse
Affiliation(s)
- Chuan-long Zhang
- grid.464297.aGuang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Xiao-chen Jiang
- grid.464297.aGuang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Yi Li
- grid.464297.aGuang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Xue Pan
- grid.464297.aGuang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Meng-qi Gao
- grid.416935.cWangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102 China
| | - Yan Chen
- International Medical Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Bo Pang
- International Medical Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
10
|
Nunes M, Duarte D, Vale N, Ricardo S. The Antineoplastic Effect of Carboplatin Is Potentiated by Combination with Pitavastatin or Metformin in a Chemoresistant High-Grade Serous Carcinoma Cell Line. Int J Mol Sci 2022; 24:ijms24010097. [PMID: 36613537 PMCID: PMC9820586 DOI: 10.3390/ijms24010097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The combination of Carboplatin with Paclitaxel is the mainstay treatment for high-grade serous carcinoma; however, many patients with advanced disease undergo relapse due to chemoresistance. Drug repurposing coupled with a combination of two or more compounds with independent mechanisms of action has the potential to increase the success rate of the antineoplastic treatment. The purpose of this study was to explore whether the combination of Carboplatin with repurposed drugs led to a therapeutic benefit. Hence, we assessed the cytotoxic effects of Carboplatin alone and in combination with several repurposed drugs (Pitavastatin, Metformin, Ivermectin, Itraconazole and Alendronate) in two tumoral models, i.e., Carboplatin (OVCAR8) and Carboplatin-Paclitaxel (OVCAR8 PTX R P) chemoresistant cell lines and in a non-tumoral (HOSE6.3) cell line. Cellular viability was measured using the Presto Blue assay, and the synergistic interactions were evaluated using the Chou-Talalay, Bliss Independence and Highest Single Agent reference models. Combining Carboplatin with Pitavastatin or Metformin displayed the highest cytotoxic effect and the strongest synergism among all combinations for OVCAR8 PTX R P cells, resulting in a chemotherapeutic effect superior to Carboplatin as a single agent. Concerning HOSE6.3 cells, combining Carboplatin with almost all the repurposed drugs demonstrated a safe pharmacological profile. Overall, we propose that Pitavastatin or Metformin could act synergistically in combination with Carboplatin for the management of high-grade serous carcinoma patients with a Carboplatin plus Paclitaxel resistance profile.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal
- Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal
- Toxicology Research Unit (TOXRUN), University Institute of Health Sciences, Polytechnic and University Cooperative (CESPU), 4585-116 Gandra, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- Correspondence:
| |
Collapse
|
11
|
Huang Q, Wei X, Li W, Ma Y, Chen G, Zhao L, Jiang Y, Xie S, Chen Q, Chen T. Endogenous Propionibacterium acnes Promotes Ovarian Cancer Progression via Regulating Hedgehog Signalling Pathway. Cancers (Basel) 2022; 14:5178. [PMID: 36358596 PMCID: PMC9658903 DOI: 10.3390/cancers14215178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND The oncogenesis and progression of epithelial ovarian cancer (EOC) is a complicated process involving several key molecules and factors, yet whether microbiota are present in EOC, and their role in the development of EOC, remains greatly unknown. METHODS In this study, 20 patients were enrolled to compare the similarities and differences of intratumour microbiota among patients with epithelial benign ovarian tumours (EBOTs) and patients with EOC based on the high-throughput sequencing method. Subsequently, we further isolated the specific EOC-related bacteria and defined Propionibacterium acnes as a key strain in facilitating EOC progression. More importantly, we constructed a mouse EOC model to evaluate the effect of the P. acnes strain on EOC using immunohistochemistry, Western blotting, and RT-qPCR. RESULTS The high-throughput sequencing showed that the intratumour microbiota in EOC tissues had a higher microbial diversity and richness compared to EBOT tissues. The abundance of previously considered pathogens, Actinomycetales, Acinetobacter, Streptococcus, Ochrobacterium, and Pseudomonadaceae Pseudomonas, was increased in the EOC tissues. Meanwhile, we discovered the facilitating role of the P. acnes strain in the progression of EOC, which may be partially associated with the increased inflammatory response to activate the hedgehog (Hh) signalling pathway. This microbial-induced EOC progression mechanism is further confirmed using the inhibitor GANT61. CONCLUSIONS This study profiled the intratumour microbiota of EBOT and EOC tissues and demonstrated that the diversity and composition of the intratumour microbiota were significantly different. Furthermore, through in vivo and in vitro experiments, we confirmed the molecular mechanism of intratumour microbiota promotion of EOC progression in mice, which induces inflammation to activate the Hh signalling pathway. This could provide us clues for improving EOC treatment.
Collapse
Affiliation(s)
- Qifa Huang
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xin Wei
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wenyu Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Yanbing Ma
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Guanxiang Chen
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Lu Zhao
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ying Jiang
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Siqi Xie
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qi Chen
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Tingtao Chen
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| |
Collapse
|
12
|
Saburi A, Kahrizi MS, Naghsh N, Etemadi H, İlhan A, Adili A, Ghoreishizadeh S, Tamjidifar R, Akbari M, Ercan G. A comprehensive survey into the role of microRNAs in ovarian cancer chemoresistance; an updated overview. J Ovarian Res 2022; 15:81. [PMID: 35799305 PMCID: PMC9264529 DOI: 10.1186/s13048-022-01012-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Ovarian cancer (OC), a frequent malignant tumor that affects women, is one of the leading causes of cancer-related death in this group of individuals. For the treatment of ovarian cancer, systemic chemotherapy with platinum-based drugs or taxanes is the first-line option. However, drug resistance developed over time during chemotherapy medications worsens the situation. Since uncertainty exists for the mechanism of chemotherapy resistance in ovarian cancer, there is a need to investigate and overcome this problem. miRNAs are engaged in various signaling pathways that contribute to the chemotherapeutic resistance of ovarian cancer. In the current study, we have tried to shed light on the mechanisms by which microRNAs contribute to the drug resistance of ovarian cancer and the use of some microRNAs to combat this chemoresistance, leading to the worse outcome of ovarian cancer patients treated with systemic chemotherapeutics.
Collapse
Affiliation(s)
- Ahmad Saburi
- Department of Biology, Faculty of Basic Sciences, Gonbad Kavous University, Gonbad Kavous, Iran
| | | | - Navid Naghsh
- Department of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hasti Etemadi
- Department of Biotechnology, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth University, Pune, India
| | - Ahmet İlhan
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, Florida USA
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Rozita Tamjidifar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Izmir, 35100 Turkey
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gülinnaz Ercan
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Izmir, 35100 Turkey
- Department of Stem Cell, Institute of Health Sciences, Ege University, Izmir, 35100 Turkey
| |
Collapse
|
13
|
Alwosaibai K, Al‑Hujaily E, Alamri S, Ghandorah S, Garson K, Vanderhyden B. PAX2 induces vascular‑like structures in normal ovarian cells and ovarian cancer. Exp Ther Med 2022; 23:412. [PMID: 35601066 PMCID: PMC9117948 DOI: 10.3892/etm.2022.11339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
In adult tissue, the paired box 2 (PAX2) protein is expressed in healthy oviductal, but not normal ovarian surface epithelial cells. PAX2 is expressed in a subset of cases of serous ovarian carcinoma; however, the role of PAX2 in the initiation and progression of ovarian cancer remains unknown. The aim of the present study was to determine the biological effects of PAX2 expression in normal and cancerous epithelial cells. By culturing the normal and cancerous ovarian cells that express PAX2 in 3D culture and staining the cells with vasculogenic mimicry markers such as CD31 and PAS, it was shown that PAX2 overexpression in both normal and cancerous ovarian epithelial cells induced formation of vascular-like structures both in vitro and in vivo. These results indicated a potential role of PAX2 in ovarian cancer progression by increasing the presence of vascular-like structures to promote the supply of nutrients to tumor cells and facilitate cancer cell proliferation and invasion.
Collapse
Affiliation(s)
- Kholoud Alwosaibai
- Biomedical Research Department, Research Center, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Ensaf Al‑Hujaily
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Salmah Alamri
- Biomedical Research Department, Research Center, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Salim Ghandorah
- Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Kenneth Garson
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Barbara Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
14
|
Cai L, Hu X, Ye L, Bai P, Jie Y, Shu K. Long non-coding RNA ADAMTS9-AS1 attenuates ferroptosis by Targeting microRNA-587/solute carrier family 7 member 11 axis in epithelial ovarian cancer. Bioengineered 2022; 13:8226-8239. [PMID: 35311457 PMCID: PMC9161843 DOI: 10.1080/21655979.2022.2049470] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) accounts for approximately 90% of all ovarian cancer cases and is the most common cause of gynecological cancer death. Understanding the molecular mechanisms of EOC will help develop better diagnostics and more effective treatments. This study aimed to investigate whether long non-coding RNA ADAMTS9-AS1 (ADAMTS9-AS1) could regulate solute carrier family 7 member 11 (SLC7A11) expression and inhibit ferroptosis by sponging micoRNA-587 in EOC progression. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting results showed that ADAMTS9-AS1 expression was elevated in EOC cells; microRNA-587 expression was up-regulated and SLC7A11 expression was down-regulated after knocking down ADAMTS9-AS1 by transfection with siRNAs; however, microRNA-587 inhibitor reversed SLC7A11 expression in ADAMTS9-AS1 knocking down cells. Ferroptosis related marker detection and cell function assay confirmed that knocking down ADAMTS9-AS1 inhibited EOC cells proliferation and migration by promoting ferroptosis. Overexpression of micoRNA-587 also promoted ferroptosis while inhibited cells proliferation and migration in EOC cells. Additionally, micoRNA-587 inhibitor reversed the effect of ADAMTS9-AS1 silence on the ferroptosis and cell function. Moreover, dual-luciferase reporter gene assay and RNA immunoprecipitation assay confirmed that miR-587 was as a sponge for ADAMTS9-AS1 and SLC7A11. In conclusion, our study found that ADAMTS9-AS1 attenuated ferroptosis by targeting miR-587/SLC7A11 axis in EOC. Our study provides a new therapeutic target for EOC.
Collapse
Affiliation(s)
- Li Cai
- Department of gynecologic oncology, Maternal and Child Health Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Xiaoqing Hu
- Department of gynecologic oncology, Maternal and Child Health Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Lu Ye
- Department of Pathology, Maternal and Child Health Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Pingjuan Bai
- Department of Pathology, Maternal and Child Health Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Youkun Jie
- Department of Pathology, Maternal and Child Health Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Kuanyong Shu
- Department of gynecologic oncology, Maternal and Child Health Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| |
Collapse
|
15
|
Zidi S, Stayoussef M, Sontini FK, Mezlini A, Yacoubi-Loueslati B, Almawi WY. Decreased risk of ovarian cancer associated with rs9898876 sex hormone-binding globulin gene variant. Mol Biol Rep 2022; 49:4537-4544. [PMID: 35277784 DOI: 10.1007/s11033-022-07297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Ovarian cancer (OC) is one of the most common gynecologic cancers,with significant morbidity and mortality. The risk of OC is influenced by hormone status, of which sex hormone-binding globulin (SHBG), which influences the serum availability of steroid sex hormones, is implicated in the pathogenesis and evolution of OC. The aim of this study is to evaluate the involvement of common SHBG gene variants in OC susceptibility and evolution. MATERIALS A case control study including 71 OC patients and 74 cancer-free controls, who were genotyped for rs9898876, rs13894, rs1799941 and rs6257 SHBG SNP. Genotyping was done by the allelic discrimination method, using VIC- and FAM-labeled primers. RESULTS The minor allele frequencies of rs9898876, rs13894, rs1799941 and rs6257 SHBG SNP was comparable between OC cases and control women, implying no significant associations of the tested variants and overall OC risk. Taking homozygous wild-type genotype as reference (OR = 1.00), heterozygous rs9898876 (G/T), and minor allele-carrying genotypes [G/T + T/T] were associated with reduced risk of OC. While rs9898876 heterozygosity (G/T) was predictive of OC occurrence, no significant association of the remaining three tested SNPs was noted with altered risk of OC. Irrespective of FIGO staging, the four tested SHBG SNPs were not associated with the clinical progression of OC. CONCLUSIONS In conclusion, SHBG rs9898876 is associated with a decreased risk of OC, and thus constitutes a potential diagnostic biomarker of OC.
Collapse
Affiliation(s)
- Sabrina Zidi
- Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 1060, Tunis, Tunisia
| | - Mouna Stayoussef
- Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 1060, Tunis, Tunisia
| | | | - Amel Mezlini
- Salah Azaiez Institute of Oncology, Tunis, Tunisia
| | - Besma Yacoubi-Loueslati
- Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 1060, Tunis, Tunisia
| | - Wassim Y Almawi
- Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 1060, Tunis, Tunisia. .,Department of Biomedical Sciences, Nazarbayev University School of Medicine, Z05K4F4, Nur-Sultan, Kazakhstan.
| |
Collapse
|
16
|
Dai Q, Ye Y. Development and Validation of a Novel Histone Acetylation-Related Gene Signature for Predicting the Prognosis of Ovarian Cancer. Front Cell Dev Biol 2022; 10:793425. [PMID: 35252174 PMCID: PMC8894724 DOI: 10.3389/fcell.2022.793425] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Abstract
Histone acetylation is one of the most common epigenetic modifications, which plays an important role in tumorigenesis. However, the prognostic role of histone acetylation-regulators in ovarian cancer (OC) remains little known. We compared the expression levels of 40 histone acetylation-related genes between 379 OC samples and 88 normal ovarian tissues and identified 37 differently expressed genes (DEGs). We further explored the prognostic roles of these DEGs, and 8 genes were found to be correlated with overall survival (p < 0.1). In the training stage, an 8 gene‐based signature was conducted by the least absolute shrinkage and selector operator (LASSO) Cox regression. Patients in the training cohort were divided into two risk subgroups according to the risk score calculated by the 8-gene signature, and a notable difference of OS was found between the two subgroups (p < 0.001). The 8-gene risk model was then verified to have a well predictive role on OS in the external validation cohort. Combined with the clinical characteristics, the risk score was proved to be an independent risk factor for OS. In conclusion, the histone acetylation-based gene signature has a well predictive effect on the prognosis of OC and can potentially be applied for clinical treatments.
Collapse
Affiliation(s)
- Qinjin Dai
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ying Ye
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Ying Ye,
| |
Collapse
|
17
|
Siavoshi A, Taghizadeh M, Dookhe E, Piran M. Gene expression profiles and pathway enrichment analysis to identification of differentially expressed gene and signaling pathways in epithelial ovarian cancer based on high-throughput RNA-seq data. Genomics 2021; 114:161-170. [PMID: 34839022 DOI: 10.1016/j.ygeno.2021.11.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
Epithelial ovarian cancer (EOC) can be considered as a stressful and challenging disease among all women in the world, which has been associated with a poor prognosis and its molecular pathogenesis has remained unclear. In recent years, RNA Sequencing (RNA-seq) has become a functional and amazing technology for profiling gene expression. In the present study, RNA-seq raw data from Sequence Read Archive (SRA) of six tumor and normal ovarian sample was extracted, and then analysis and statistical interpretation was done with Linux and R Packages from the open-source Bioconductor. Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were applied for the identification of key genes and pathways involved in EOC. We identified 1091 Differential Expression Genes (DEGs) which have been reported in various studies of ovarian cancer as well as other types of cancer. Among them, 333 genes were up-regulated and 273 genes were down-regulated. In addition, Differentially Expressed Genes (DEGs) including RPL41, ALDH3A2, ERBB2, MIEN1, RBM25, ATF4, UPF2, DDIT3, HOXB8 and IL17D as well as Ribosome and Glycolysis/Gluconeogenesis pathway have had the potentiality to be used as targets for EOC diagnosis and treatment. In this study, unlike that of any other studies on various cancers, ALDH3A2 was most down-regulated gene in most KEGG pathways, and ATF4 was most up-regulated gene in leucine zipper domain binding term. In the other hand, RPL41 as a regulatory of cellular ATF4 level was up-regulated in many term and pathways and augmentation of ATF4 could justify the increase of RPL41 in the EOC. Pivotal pathways and significant genes, which were identified in the present study, can be used for adaptation of different EOC study. However, further molecular biological experiments and computational processes are required to confirm the function of the identified genes associated with EOC.
Collapse
Affiliation(s)
- A Siavoshi
- Department of Animal Sciences, Ramin University of Agriculture and Natural Resources, Ahvaz, Iran.
| | - M Taghizadeh
- Department of Medical Genetic, Tarbiat Modares University, Tehran, Iran
| | - E Dookhe
- Department of Biology, Research and Science Branch, Islamic Azad University, Tehran, Iran
| | - M Piran
- Department of Medical Biotechnology, Drug Design and Bioinformatics Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
18
|
Ye M, Lin Y, Pan S, Wang ZW, Zhu X. Applications of Multi-omics Approaches for Exploring the Molecular Mechanism of Ovarian Carcinogenesis. Front Oncol 2021; 11:745808. [PMID: 34631583 PMCID: PMC8497990 DOI: 10.3389/fonc.2021.745808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer ranks as the fifth most common cause of cancer-related death in females. The molecular mechanisms of ovarian carcinogenesis need to be explored in order to identify effective clinical therapies for ovarian cancer. Recently, multi-omics approaches have been applied to determine the mechanisms of ovarian oncogenesis at genomics (DNA), transcriptomics (RNA), proteomics (proteins), and metabolomics (metabolites) levels. Multi-omics approaches can identify some diagnostic and prognostic biomarkers and therapeutic targets for ovarian cancer, and these molecular signatures are beneficial for clarifying the development and progression of ovarian cancer. Moreover, the discovery of molecular signatures and targeted therapy strategies could noticeably improve the prognosis of ovarian cancer patients.
Collapse
Affiliation(s)
| | | | | | - Zhi-wei Wang
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Diao B, Yang P. Comprehensive Analysis of the Expression and Prognosis for Laminin Genes in Ovarian Cancer. Pathol Oncol Res 2021; 27:1609855. [PMID: 34512203 PMCID: PMC8423899 DOI: 10.3389/pore.2021.1609855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
Survival is low in ovarian cancer (OC). Most OC patients demonstrate advanced metastases, and recurrence is common. Dysregulation of laminin interactions is associated with cancer development. However, it is unknown whether laminin subunits can be considered as biomarkers for OC diagnosis, prognosis, and treatment. We used cBioPortal, GEO, ONCOMINE, GEPIA, Human Protein Atlas, Kaplan-Meier Plotter, TIMER, and Metascape to determine the associations among laminin expression, prognosis, and immune cell infiltration in OC. LAMA5, LAMB3, and LAMC2 mRNAs and LAMA3, LAMB1/B2/B3, and LAMC1/C2 proteins were overexpressed in OC tissues compared with normal ovaries. LAMA4, LAMB1, and LAMC1 mRNA upregulation was positively correlated with worse overall survival (OS) and progression-free survival (PFS) in OC. Elevated LAMA2 and LAMC2 mRNA expression levels were related to better PFS or OS, respectively. The results speculated that LAMA5 could potentially be a good prognostic factor in OC. Its expression proves valuable for predicting OS in patients diagnosed with stage Ⅳ and grade 3 OC and PFS in patients diagnosed with all OC stages or grades. LAMB3 and LAMC2 expression was correlated with platinum resistance development. ROC analysis of laminins in OC sets revealed that LAMA2/A4/A5, LAMB1/B2/B3, and LAMC2 could be used to differentiate between malignant tumors and non-neoplastic tissues. LAMA1/A5 and LAMC1 were significantly and negatively correlated with various tumor immune infiltrates (TILs), especially with dendritic cells, CD8+ T cells or neutrophil. LAMA4 and LAMB1 might be associated with tumor purity in OC. Overall, LAMA5 and LAMC1 could help predict OC survival and diagnosis and might be deemed important OC oncogenes.
Collapse
Affiliation(s)
- Bowen Diao
- Department of Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ping Yang
- Department of Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
20
|
Lang X, Chen Z, Yang X, Yan Q, Xu M, Liu W, He Q, Zhang Y, Cheng W, Zhao W. Scutellarein induces apoptosis and inhibits proliferation, migration, and invasion in ovarian cancer via inhibition of EZH2/FOXO1 signaling. J Biochem Mol Toxicol 2021; 35:e22870. [PMID: 34350670 DOI: 10.1002/jbt.22870] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/31/2021] [Accepted: 07/23/2021] [Indexed: 01/11/2023]
Abstract
Scutellarein, a flavone found in the perennial herb Scutellaria baicalensis, has antitumorigenic activity in multiple human cancers. However, whether scutellarein can attenuate ovarian cancer (OC) is unclear. This study investigated the effects of scutellarein in OC. In vitro cell viability was assessed using MTT assay whereas proliferation was assessed using 5-ethynyl-2'-deoxyuridine and colony formation assays. Cell apoptosis was detected by an Annexin V-fluorescein isothiocyanate/propidium iodide assay. Wound-healing and Transwell assays were used to determine cell migration and invasion. The differential expression of enhancer of zeste homolog 2 (EZH2) and forkhead box protein O1 (FOXO1) was measured by Quantitative real-time PCR and western blot analysis. We found that scutellarein inhibited viability, migration, invasion of A2780 and SKOV-3 cells, and reduced the expression of EZH2 in OC cells. In addition, FOXO1 was downregulated in OC tissues and cells and negatively regulated by EZH2. Also, scutellarein inhibited tumor growth and metastasis in vivo. In conclusion, scutellarein alleviates OC by the regulation of EZH2/FOXO1 signaling.
Collapse
Affiliation(s)
- Xiao Lang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Zheng Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Xingyu Yang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Qi Yan
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Manfei Xu
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Wei Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Qin He
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Cheng
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Wenxia Zhao
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Shaik B, Zafar T, Balasubramanian K, Gupta SP. An Overview of Ovarian Cancer: Molecular Processes Involved and Development of Target-based Chemotherapeutics. Curr Top Med Chem 2021; 21:329-346. [PMID: 33183204 DOI: 10.2174/1568026620999201111155426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/26/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
Ovarian cancer is one of the leading gynecologic diseases with a high mortality rate worldwide. Current statistical studies on cancer reveal that over the past two decades, the fifth most common cause of death related to cancer in females of the western world is ovarian cancer. In spite of significant strides made in genomics, proteomics and radiomics, there has been little progress in transitioning these research advances into effective clinical administration of ovarian cancer. Consequently, researchers have diverted their attention to finding various molecular processes involved in the development of this cancer and how these processes can be exploited to develop potential chemotherapeutics to treat this cancer. The present review gives an overview of these studies which may update the researchers on where we stand and where to go further. The unfortunate situation with ovarian cancer that still exists is that most patients with it do not show any symptoms until the disease has moved to an advanced stage. Undoubtedly, several targets-based drugs have been developed to treat it, but drug-resistance and the recurrence of this disease are still a problem. For the development of potential chemotherapeutics for ovarian cancer, however, some theoretical approaches have also been applied. A description of such methods and their success in this direction is also covered in this review.
Collapse
Affiliation(s)
- Basheerulla Shaik
- Department of Applied Sciences, National Institute of Technical Teachers' Training & Research, Shamla Hills, Shanti Marg, Bhopal-462002, Madhya Pradesh, India
| | - Tabassum Zafar
- Department of Biosciences, Barkatullah University, Bhopal-462026, Madhya Pradesh, India
| | | | - Satya P Gupta
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250002, India
| |
Collapse
|
22
|
Li H, Wu N, Liu ZY, Chen YC, Cheng Q, Wang J. Development of a novel transcription factors-related prognostic signature for serous ovarian cancer. Sci Rep 2021; 11:7207. [PMID: 33785763 PMCID: PMC8010122 DOI: 10.1038/s41598-021-86294-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Growing evidence suggest that transcription factors (TFs) play vital roles in serous ovarian cancer (SOC). In the present study, TFs mRNA expression profiles of 564 SOC subjects in the TCGA database, and 70 SOC subjects in the GEO database were screened. A 17-TFs related prognostic signature was constructed using lasso cox regression and validated in the TCGA and GEO cohorts. Consensus clustering analysis was applied to establish a cluster model. The 17-TFs related prognostic signature, risk score and cluster models were effective at accurately distinguishing the overall survival of SOC. Analysis of genomic alterations were used to elaborate on the association between the 17-TFs related prognostic signature and genomic aberrations. The GSEA assay results suggested that there was a significant difference in the inflammatory and immune response pathways between the high-risk and low-risk score groups. The potential immune infiltration, immunotherapy, and chemotherapy responses were analyzed due to the significant difference in the regulation of lymphocyte migration and T cell-mediated cytotoxicity between the two groups. The results indicated that patients with low-risk score were more likely to respond anti-PD-1, etoposide, paclitaxel, and veliparib but not to gemcitabine, doxorubicin, docetaxel, and cisplatin. Also, the prognostic nomogram model revealed that the risk score was a good prognostic indicator for SOC patients. In conclusion, we explored the prognostic values of TFs in SOC and developed a 17-TFs related prognostic signature to predict the survival of SOC patients.
Collapse
Affiliation(s)
- He Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Changsha, 410008, Hunan, People's Republic of China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Changsha, 410008, Hunan, People's Republic of China
| | - Zhao-Yi Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Changsha, 410008, Hunan, People's Republic of China
| | - Yong-Chang Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Changsha, 410008, Hunan, People's Republic of China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Jing Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
23
|
Lin X, Chen Y, Ye X, Xia X. Circular RNA ABCB10 promotes cell proliferation and invasion, but inhibits apoptosis via regulating the microRNA‑1271‑mediated Capn4/Wnt/β‑catenin signaling pathway in epithelial ovarian cancer. Mol Med Rep 2021; 23:387. [PMID: 33760208 PMCID: PMC7986019 DOI: 10.3892/mmr.2021.12026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/20/2020] [Indexed: 01/20/2023] Open
Abstract
Circular RNA ABCB10 (circ-ABCB10) modulates cellular functions and microRNA (miR)-1271 in epithelial ovarian cancer (EOC). The present study aimed to investigate the interaction between circ-ABCB10 and miR-1271 in regulating EOC cellular function and the calpain small subunit 1 (Capn4)/Wnt/β-catenin signaling pathway. circ-ABCB10 and miR-1271 expression levels were detected in EOC cells (OVCAR3, UWB1.289, SKOV3 and CAOV3) and normal ovarian epithelial cells (IOSE80) via reverse-transcription quantitative PCR. SKOV3 cells were transfected with control short hairpin (sh)RNA plasmids, control inhibitor, circ-ABCB10 shRNA plasmids and miR-1271 inhibitor. UWB1.289 cells were transfected with control overexpression plasmids, control mimic, circ-ABCB10 overexpression plasmids and miR-1271 mimic. Subsequently, cell proliferation, apoptosis, invasion and the Capn4/Wnt/β-catenin signaling pathway were assessed. In addition, a luciferase activity assay was performed. circ-ABCB10 expression was significantly increased in OVCAR3, SKOV3 and CAOV3 cells compared with IOSE80 cells, but was not significantly altered in UWB1.289 cells. miR-1271 expression was significantly decreased in OVCAR3, UWB1.289, SKOV3 and CAOV3 cells compared with IOSE80 cells. In both SKOV3 and UWB1.289 cells, circ-ABCB10 negatively regulated miR-1271, whereas miR-1271 did not affect circ-ABCB10. Furthermore, circ-ABCB10 enhanced cell proliferation, invasion and the Capn4/Wnt/β-catenin signaling pathway, but inhibited cell apoptosis, whereas miR-1271 suppressed cell proliferation, invasion and the Capn4/Wnt/β-catenin signaling pathway, but facilitated cell apoptosis. Moreover, miR-1271 attenuated the proproliferative, proinvasive and antiapoptotic effects of circ-ABCB10, and reversed the positive regulation of circ-ABCB10 on the Capn4/Wnt/β-catenin signaling pathway. Besides, the luciferase activity assay indicated that circ-ABCB10 directly bound to miR-1271. In conclusion, the present study indicated that circ-ABCB10 promoted cell proliferation and invasion, and suppressed apoptosis by regulating the miR-1271-mediated Capn4/Wnt/β-catenin signaling pathway in EOC.
Collapse
Affiliation(s)
- Xuefang Lin
- Department of Gynaecology and Obstetrics, People's Hospital of Lishui City, The Sixth Affiliated Hospital of Wenzhou Medical University, The Affiliated Hospital of Lishui College, Lishui, Zhejiang 323000, P.R. China
| | - Yan Chen
- Department of Gynaecology and Obstetrics, People's Hospital of Lishui City, The Sixth Affiliated Hospital of Wenzhou Medical University, The Affiliated Hospital of Lishui College, Lishui, Zhejiang 323000, P.R. China
| | - Xiabin Ye
- Department of Gynaecology and Obstetrics, People's Hospital of Lishui City, The Sixth Affiliated Hospital of Wenzhou Medical University, The Affiliated Hospital of Lishui College, Lishui, Zhejiang 323000, P.R. China
| | - Xuemei Xia
- Department of Gynaecology and Obstetrics, People's Hospital of Lishui City, The Sixth Affiliated Hospital of Wenzhou Medical University, The Affiliated Hospital of Lishui College, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
24
|
Yuan X, Huang Y, Guo M, Hu X, Li P. Long non-coding RNA FAM83H-AS1 acts as a potential oncogenic driver in human ovarian cancer. J Ovarian Res 2021; 14:6. [PMID: 33413565 PMCID: PMC7792319 DOI: 10.1186/s13048-020-00756-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Ovarian cancer (OC) is one of the most aggressive women cancers with increasing incidence and mortality rates worldwide. Long non-coding RNAs (lncRNAs) could as major players in OC process. Although FAM83H antisense RNA1 (FAM83H-AS1) is demonstrated play an important roles in a many cancers, the detailed function and mechanism has not been reported in OC. RESULTS We integrated multiple kinds of bioinformatics approaches and experiments validated method to evaluate functions of FAM83H-AS1 in OC. Some differential expressed lncRNAs were identified between OC and normal control tissues. FAM83H-AS1 was one of most differentially expressed lncRNAs and up-regulated in multiple cancer types. Specially, expression of FAM83H-AS1 was higher in OC and showed difference in diverse stages. High FAM83H-AS1 expression is associated with worse pan-cancer and OC outcomes. FAM83H-AS1-centric network including lncRNA-miRNA, lncRNA-protein and lncRNA-mRNA ceRNA network were constructed to infer the function and mechanism of FAM83H-AS1. There were two methylation sites including cg01399317 and cg20519035 located at FAM83H-AS1. The methylation level of cg01399317 was correlated with gene expression of FAM83H-AS1. The expression level of FAM83H-AS1 was correlated with infiltration level of immune cell including macrophage, neutrphil and dendritic cell in OC patients. Lastly, qRT-PCR showed that the expression of FAM83H-AS1 was higher in OC tissues than normal control tissues. CONCLUSION Collectively, these results indicated that FAM83H-AS1 may act as an oncogenic driver and it may be a potential therapy target in OC.
Collapse
Affiliation(s)
- Xiaolei Yuan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081 Hei Longjiang Province China
| | - Ying Huang
- Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081 Hei Longjiang Province China
| | - Man Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081 Hei Longjiang Province China
| | - Xiaowei Hu
- Medical ward 7, Cancer Hospital Affiliated to Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081 Hei Longjiang Province China
| | - Peiling Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081 Hei Longjiang Province China
| |
Collapse
|
25
|
Zhao S, Zhang X, Shi Y, Cheng L, Song T, Wu B, Li J, Yang H. MIEF2 over-expression promotes tumor growth and metastasis through reprogramming of glucose metabolism in ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:286. [PMID: 33317572 PMCID: PMC7737286 DOI: 10.1186/s13046-020-01802-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/04/2020] [Indexed: 01/20/2023]
Abstract
Background Increasing evidence has revealed the close link between mitochondrial dynamic dysfunction and cancer. MIEF2 (mitochondrial elongation factor 2) is mitochondrial outer membrane protein that functions in the regulation of mitochondrial fission. However, the expression, clinical significance and biological functions of MIEF2 are still largely unclear in human cancers, especially in ovarian cancer (OC). Methods The expression and clinical significance of MIEF2 were determined by qRT-PCR, western blot and immunohistochemistry analyses in tissues and cell lines of OC. The biological functions of MIEF2 in OC were determined by in vitro and in vivo cell growth and metastasis assays. Furthermore, the effect of MIEF2 on metabolic reprogramming of OC was determined by metabolomics and glucose metabolism analyses. Results MIEF2 expression was significantly increased in OC mainly due to the down-regulation of miR-424-5p, which predicts poor survival for patients with OC. Knockdown of MIEF2 significantly suppressed OC cell growth and metastasis both in vitro and in vivo by inhibiting G1-S cell transition, epithelial-to-mesenchymal transition (EMT) and inducing cell apoptosis, while forced expression of MIEF2 had the opposite effects. Mechanistically, mitochondrial fragmentation-suppressed cristae formation and thus glucose metabolism switch from oxidative phosphorylation to glycolysis was found to be involved in the promotion of growth and metastasis by MIEF2 in OC cells. Conclusions MIEF2 plays a critical role in the progression of OC and may serve as a valuable prognostic biomarker and therapeutic target in the treatment of this malignancy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01802-9.
Collapse
Affiliation(s)
- Shuhua Zhao
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Xiaohong Zhang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Yuan Shi
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Lu Cheng
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Tingting Song
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Bing Wu
- Department of Geriatrics, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Jia Li
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 15 Changle Western Road, Xi'an, 710032, Shaanxi, China.
| | - Hong Yang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 15 Changle Western Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
26
|
Hartnett EG, Knight J, Radolec M, Buckanovich RJ, Edwards RP, Vlad AM. Immunotherapy Advances for Epithelial Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12123733. [PMID: 33322601 PMCID: PMC7764119 DOI: 10.3390/cancers12123733] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The overall five-year survival rate in epithelial ovarian cancer is 44% and has only marginally improved in the past two decades. Despite an initial response to standard treatment consisting of chemotherapy and surgical removal of tumor, the lesions invariably recur, and patients ultimately die of chemotherapy resistant disease. New treatment modalities are needed in order to improve the prognosis of women diagnosed with ovarian cancer. One such modality is immunotherapy, which aims to boost the capacity of the patient’s immune system to recognize and attack the tumor cells. We performed a retrospective study to identify some of the most promising immune therapies for epithelial ovarian cancer. Special emphasis was given to immuno-oncology clinical trials. Abstract New treatment modalities are needed in order to improve the prognosis of women diagnosed with epithelial ovarian cancer (EOC), the most aggressive gynecologic cancer type. Most ovarian tumors are infiltrated by immune effector cells, providing the rationale for targeted approaches that boost the existing or trigger new anti-tumor immune mechanisms. The field of immuno-oncology has experienced remarkable progress in recent years, although the results seen with single agent immunotherapies in several categories of solid tumors have yet to extend to ovarian cancer. The challenge remains to determine what treatment combinations are most suitable for this disease and which patients are likely to benefit and to identify how immunotherapy should be incorporated into EOC standard of care. We review here some of the most promising immune therapies for EOC and focus on those currently tested in clinical trials.
Collapse
Affiliation(s)
- Erin G. Hartnett
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Julia Knight
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Mackenzy Radolec
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Ronald J. Buckanovich
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Robert P. Edwards
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Anda M. Vlad
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
- Correspondence:
| |
Collapse
|
27
|
Lukanović D, Herzog M, Kobal B, Černe K. The contribution of copper efflux transporters ATP7A and ATP7B to chemoresistance and personalized medicine in ovarian cancer. Biomed Pharmacother 2020; 129:110401. [DOI: 10.1016/j.biopha.2020.110401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/23/2020] [Accepted: 06/13/2020] [Indexed: 02/08/2023] Open
|
28
|
Horowitz M, Esakov E, Rose P, Reizes O. Signaling within the epithelial ovarian cancer tumor microenvironment: the challenge of tumor heterogeneity. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:905. [PMID: 32793749 DOI: 10.21037/atm-2019-cm-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer death in women. Standard of care treatment has remained platinum-containing cytotoxic chemotherapy for over three decades. Among the central challenges in treating ovarian CA are disease recurrence and the development of chemoresistance. Survival is uniformly poor for patients with chemoresistant recurrent disease and effective therapeutic options are limited. As such, delineating the mechanisms of chemoresistance and developing targeted therapies to prevent chemoresistance from occurring are of vital importance to improving survival for patients with EOC. Attempts to characterize mechanisms of chemoresistance have implicated numerous cellular pathways, but a rift remains between pre-clinical findings and translation to improving patient survival. More recently, the interplay among different cell types within the tumor microenvironment has become central to understanding how chemoresistance may develop and may be sustained. An improved understanding of how tumor cell-intrinsic and -extrinsic pathways converge during the development of chemoresistance may improve the likelihood of successful clinical translation. This review focuses on the roles of the EOC tumor microenvironment and tumor cell heterogeneity in the development of chemoresistance. We review recent studies into mechanisms of chemoresistance as they relate to tumor microenvironment and development of novel therapeutic approaches that exploit these mechanisms to prevent or reverse chemoresistance. This review attempts to cast these latest discoveries in a clinical context by summarizing trends in ongoing clinical trials for patients with EOC.
Collapse
Affiliation(s)
- Max Horowitz
- Division of Gynecologic Oncology, Women's Health Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Obstetrics & Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Emily Esakov
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Peter Rose
- Division of Gynecologic Oncology, Women's Health Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Obstetrics & Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ofer Reizes
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
29
|
Wu Y, Xia L, Guo Q, Zhu J, Deng Y, Wu X. Identification of Chemoresistance-Associated Key Genes and Pathways in High-Grade Serous Ovarian Cancer by Bioinformatics Analyses. Cancer Manag Res 2020; 12:5213-5223. [PMID: 32636682 PMCID: PMC7335306 DOI: 10.2147/cmar.s251622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/12/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose High-grade serous ovarian cancer (HGSOC) is the leading cause of death among gynecological malignancies. This is mainly attributed to its high rates of chemoresistance. To date, few studies have investigated the molecular mechanisms underlying this resistance to treatment in ovarian cancer patients. In this study, we aimed to explore these molecular mechanisms using bioinformatics analysis. Methods We analyzed microarray data set GSE51373, which included 16 platinum-sensitive HGSOC samples and 12 platinum-resistant control samples. Differentially expressed genes (DEGs) were identified using RStudio. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using DAVID, and a DEG-associated protein–protein interaction (PPI) network was constructed using STRING. Hub genes in the PPI network were identified, and the prognostic value of the top ten hub genes was evaluated. MGP, one of the hub genes, was verified by immunohistochemistry. Results All samples were confirmed to be of high quality. A total of 109 DEGs were identified, and the top ten enriched GO terms and four KEGG pathways were obtained. Specifically, the PI3K-AKT signaling pathway and the Rap1 signaling pathway were identified as having significant roles in chemoresistance in HGSOC. Furthermore, based on the PPI network, KIT, FOXM1, FGF2, HIST1H4D, ZFPM2, IFIT2, CCNO, MGP, RHOBTB3, and CDC7 were identified as hub genes. Five of these hub genes could predict the prognosis of HGSOC patients. Positive immunostaining signals for MGP were observed in the chemoresistant samples. Conclusion Taken together, the findings of this study may provide novel insights into HGSOC chemoresistance and identify important therapeutic targets.
Collapse
Affiliation(s)
- Yong Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Lingfang Xia
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Qinhao Guo
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jun Zhu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yu Deng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
30
|
Zhao N, Guo Y, He Y, Chen Y, Xing J. Eukaryotic initiation factor 3B is overexpressed and correlates with larger tumor size, advanced FIGO stage, and shorter overall survival in epithelial ovarian cancer patients. J Clin Lab Anal 2020; 34:e23354. [PMID: 32419232 PMCID: PMC7439432 DOI: 10.1002/jcla.23354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/02/2020] [Accepted: 04/12/2020] [Indexed: 01/06/2023] Open
Abstract
Background This study aimed to detect the eukaryotic initiation factor 3B (EIF3B) expression and explore its correlation with clinical features and prognosis in epithelial ovarian cancer (EOC) patients. Methods A total of 230 primary EOC patients underwent surgery treatment were retrospectively reviewed. Immunohistochemical (IHC) assay was used to determine EIF3B expression in tumor and adjacent tissue specimens of all patients. According to the total IHC score, the expression of EIF3B was classified as low expression and high expression, and the latter was further divided into 3 grades: high+, high++, and high+++ expressions. Overall survival (OS) was calculated. Results Eukaryotic initiation factor 3B expression was increased in tumor tissue compared with adjacent tissue. Tumor EIF3B high expression correlated with larger tumor size (>10 cm), lymphatic metastasis, and advanced International Federation of Gynecology and Obstetrics stage (FIGO) (III/IV). Besides, OS was decreased in patients with tumor EIF3B high expression compared with patients with tumor EIF3B low expression, and further analysis showed that the OS was shortest in patients with tumor EIF3B high+++ expression, followed by patients with tumor EIF3B high++ expression and patients with tumor EIF3B high + expression, and the longest in patients with tumor EIF3B low expression. Additionally, higher tumor EIF3B expression, peritoneal cytology (positive), ascites volume (>100 mL), differentiation (poor vs. well/moderate), tumor size (>10 cm), FIGO stage (III/IV vs. I/II), and cancer antigen 125 (>1000 U/mL) independently predicted shorter OS. Conclusion Eukaryotic initiation factor 3B exhibits a clinical value for monitoring disease progression and predicting prognosis in EOC patients.
Collapse
Affiliation(s)
- Nannan Zhao
- Department of Gynecology and Obstetrics, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yanjuan Guo
- Department of Gynecology and Obstetrics, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yanfang He
- Department of Gynecology and Obstetrics, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yan Chen
- Department of Gynecology and Obstetrics, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Jun Xing
- Department of Gynecology and Obstetrics, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| |
Collapse
|
31
|
Erol A, Niemira M, Krętowski AJ. Novel Approaches in Ovarian Cancer Research against Heterogeneity, Late Diagnosis, Drug Resistance, and Transcoelomic Metastases. Int J Mol Sci 2019; 20:E2649. [PMID: 31146417 PMCID: PMC6600293 DOI: 10.3390/ijms20112649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022] Open
Abstract
The development of modern technologies has revolutionised science and has had a huge impact on biomedical studies. This review focuses on possible tools that scientists can use to face the challenges of fighting ovarian cancer. Ovarian cancer is the deadliest gynaecologic malignancy and, even after years of study, the mortality has not decreased significantly. In the era of sequencing and personalised and precision medicine, we are now closer than ever to helping patients and physicians in regard to treatment and diagnosis of this disease. This work summarises the newest findings in the development of ovarian cancer research.
Collapse
Affiliation(s)
- Anna Erol
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland.
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland.
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland.
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland.
| |
Collapse
|
32
|
Jones BA, Varambally S, Arend RC. Histone Methyltransferase EZH2: A Therapeutic Target for Ovarian Cancer. Mol Cancer Ther 2019; 17:591-602. [PMID: 29726819 DOI: 10.1158/1535-7163.mct-17-0437] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/28/2017] [Accepted: 01/02/2018] [Indexed: 12/18/2022]
Abstract
Ovarian cancer is the fifth leading cause of cancer-related deaths in females in the United States. There were an estimated 22,440 new cases and 14,080 deaths due to ovarian cancer in 2017. Most patients present with advanced-stage disease, revealing the urgent need for new therapeutic strategies targeting pathways of tumorigenesis and chemotherapy resistance. While multiple genomic changes contribute to the progression of this aggressive disease, it has become increasingly evident that epigenetic events play a pivotal role in ovarian cancer development. One of the well-studied epigenetic modifiers, the histone methyltransferase EZH2, is a member of polycomb repressive complex 2 (PRC2) and is commonly involved in transcriptional repression. EZH2 is the enzymatic catalytic subunit of the PRC2 complex that can alter gene expression by trimethylating lysine 27 on histone 3 (H3K27). In ovarian cancer, EZH2 is commonly overexpressed and therefore potentially serves as an effective therapeutic target. Multiple small-molecule inhibitors are being developed to target EZH2, which are now in clinical trials. Thus, in this review, we highlight the progress made in EZH2-related research in ovarian cancer and discuss the potential utility of targeting EZH2 with available small-molecule inhibitors for ovarian cancer. Mol Cancer Ther; 17(3); 591-602. ©2018 AACR.
Collapse
Affiliation(s)
- Bayley A Jones
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | | | - Rebecca C Arend
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
33
|
MicroRNA let-7g acts as tumor suppressor and predictive biomarker for chemoresistance in human epithelial ovarian cancer. Sci Rep 2019; 9:5668. [PMID: 30952937 PMCID: PMC6450929 DOI: 10.1038/s41598-019-42221-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Remarkable deregulation of microRNAs has been demonstrated in epithelial ovarian cancer (EOC). In particular, some of the let-7 miRNA family members have been proposed as tumor suppressors. Here, we explored the functional roles of let-7g in EOC. The ectopic overexpression of let-7g in OVCAR3 and HEY-A8 EOC cells induced i) a down-regulation of c-Myc and cyclin-D2 thus promoting cell cycle arrest, ii) a reduction of Vimentin, Snail and Slug thus counteracting the progression of epithelial to mesenchymal transition, iii) a chemosensitization to cis-platinum treatment. Next, analysis of human EOC tissues revealed that let-7g expression was significantly reduced in tumor tissue specimens of patients with EOC compared to their non-tumor counterparts (p = 0.0002). Notably, low let-7g tissue levels were significantly associated with acquired chemoresistance of patients with late-stage of EOC (n = 17, p = 0.03194). This finding was further validated in the serum samples collected from the same cohort of patients (n = 17, p = 0.003). To conclude, we demonstrate that let-7g acts as tumor suppressor and might be used to disable EOC tumor progression and chemoresistance to cis-platinum-based chemotherapy. Furthermore, we propose that decreased expression of let-7g could serve as a tissue and serum biomarker able to predict the chemo-resistant features of EOC patients.
Collapse
|
34
|
Han Y, Chen MK, Wang HL, Hsu JL, Li CW, Chu YY, Liu CX, Nie L, Chan LC, Yam C, Wang SC, He GJ, Hortobagyi GN, Tan XD, Hung MC. Synergism of PARP inhibitor fluzoparib (HS10160) and MET inhibitor HS10241 in breast and ovarian cancer cells. Am J Cancer Res 2019; 9:608-618. [PMID: 30949414 PMCID: PMC6448061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) are promising targeted therapeutics for breast and ovarian cancers bearing a germline BRCA1/2 mutation (BRCA m), and several have already received regulatory approval in the United States. In patients with a BRCA m cancer, PARPi can increase the burden of unrepaired DNA double-strand breaks by blocking PARP activity and trapping PARP1 onto damaged DNA. Resistance to PARP inhibitors can block the formation of DNA double-strand breaks through BRCA-related DNA repair pathway. MET is a hyper-activated receptor tyrosine kinase expressed in multiple cancer types and the activation contributes to resistance to DNA damage-inducing therapeutic drugs. Our previous study showed that MET inhibition by pan-kinase inhibitors has synergism with PARPi in suppressing growth of breast cancer in vitro and in xenograft tumor models. In this study, we validated the inhibitory effect of novel inhibitors, HS10241 (selective MET inhibitor) and HS10160 (PARPi), to their target respectively in triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSOC) cells. We further demonstrated that these two inhibitors function synergistically in eliminating TNBC and HGSOC cells; combining with HS10241 increased DNA double-strand breaks induced by HS10160 in cancer cells; and PARP1 tyrosine (Y)-907 phosphorylation (PARP1 p-Y907) can be an effective biomarker as an indicator of MET-mediated PARPi in HGSOC. Our results suggest that the combination of HS10241 and HS10160 may benefit patients bearing tumors overexpressing MET as well as those resistant to single-agent PARPi treatment.
Collapse
Affiliation(s)
- Ye Han
- Department of Second Breast Surgery, China Medical University Affiliated Shengjing HospitalShenyang, P. R. China
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Mei-Kuang Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Univeristy of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at HoustonHouston, TX 77030, USA
| | - Hung-Ling Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 40447, Taiwan
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Yu-Yi Chu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Chun-Xiao Liu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Lei Nie
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Li-Chuan Chan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Univeristy of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at HoustonHouston, TX 77030, USA
| | - Clinton Yam
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Univeristy of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at HoustonHouston, TX 77030, USA
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 40447, Taiwan
| | - Gui-Jin He
- Department of Second Breast Surgery, China Medical University Affiliated Shengjing HospitalShenyang, P. R. China
| | - Gabriel N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Xiao-Dong Tan
- Department of Thyroid and Pancreatic Surgery, China Medical University Affiliated Shengjing HospitalShenyang, P. R. China
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Univeristy of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at HoustonHouston, TX 77030, USA
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 40447, Taiwan
| |
Collapse
|
35
|
Zhou F, Yang X, Zhao H, Liu Y, Feng Y, An R, Lv X, Li J, Chen B. Down-regulation of OGT promotes cisplatin resistance by inducing autophagy in ovarian cancer. Am J Cancer Res 2018; 8:5200-5212. [PMID: 30555541 PMCID: PMC6276088 DOI: 10.7150/thno.27806] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/03/2018] [Indexed: 12/18/2022] Open
Abstract
Cisplatin resistance significantly affects the survival rate of patients with ovarian cancer. However, the main mechanism underlying cisplatin resistance in ovarian cancer remains unclear. Methods: Immunohistochemistry was used to determine the expression of OGT, OGA and O-GlcNAc in chemoresistant and chemosensitive ovarian cancer tissues. Functional analyses (in vitro and in vivo) were performed to confirm the role of OGT in cisplatin resistance. Autophagy-related proteins were tested by western blot. Transmission electron microscopy and mRFP-GFP-LC3 adenovirus reporter were used for autophagy flux analysis. Immunoprecipitation assay was utilized to detect protein-protein interactions. Results: We found that O-GlcNAc and O-GlcNAc transferase (OGT) levels were significantly lower in chemoresistant ovarian cancer tissues than in chemosensitive tissues, whereas O-GlcNAcase (OGA) levels did not differ. The down-regulation of OGT increased cisplatin resistance in ovarian cancer cells but had no effect on the efficacy of paclitaxel. The down-regulation of OGT improved tumor resistance to cisplatin in a mouse xenograft tumor model. OGT knockdown enhanced cisplatin-induced autophagy, which reduced apoptotic cell death induced by cisplatin, and promoted autolysosome formation. A reduction in O-GlcNAcylated SNAP-29 levels caused by the down-regulation of OGT promoted the formation of the SNARE complex and autophagic flux. Conclusion: Our findings suggest that down-regulation of OGT enhances cisplatin-induced autophagy via SNAP-29, resulting in cisplatin-resistant ovarian cancer. OGT may represent a novel target for overcoming cisplatin resistance in ovarian cancer.
Collapse
|
36
|
One-Carbon Metabolism: Biological Players in Epithelial Ovarian Cancer. Int J Mol Sci 2018; 19:ijms19072092. [PMID: 30029471 PMCID: PMC6073728 DOI: 10.3390/ijms19072092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
Metabolism is deeply involved in cell behavior and homeostasis maintenance, with metabolites acting as molecular intermediates to modulate cellular functions. In particular, one-carbon metabolism is a key biochemical pathway necessary to provide carbon units required for critical processes, including nucleotide biosynthesis, epigenetic methylation, and cell redox-status regulation. It is, therefore, not surprising that alterations in this pathway may acquire fundamental importance in cancer onset and progression. Two of the major actors in one-carbon metabolism, folate and choline, play a key role in the pathobiology of epithelial ovarian cancer (EOC), the deadliest gynecological malignancy. EOC is characterized by a cholinic phenotype sustained via increased activity of choline kinase alpha, and via membrane overexpression of the alpha isoform of the folate receptor (FRα), both of which are known to contribute to generating regulatory signals that support EOC cell aggressiveness and proliferation. Here, we describe in detail the main biological processes associated with one-carbon metabolism, and the current knowledge about its role in EOC. Moreover, since the cholinic phenotype and FRα overexpression are unique properties of tumor cells, but not of normal cells, they can be considered attractive targets for the development of therapeutic approaches.
Collapse
|
37
|
Bareke H, Akbuga J. Complement system's role in cancer and its therapeutic potential in ovarian cancer. Scand J Immunol 2018; 88:e12672. [PMID: 29734524 DOI: 10.1111/sji.12672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
Cancer immunotherapy is a strong candidate for the long-awaited new edition to standard cancer therapies. For an effective immunotherapy, it is imperative to delineate the players of antitumour immune response. As an important innate immune system effector mechanism, complement is highly likely to play a substantial role in cancer immunity. Studies suggest that there may be two different "states of complement" that show opposing effects on cancer cells; a complement profile that has antitumour effects with low expression of membrane-bound complement regulator proteins (mCRPs), lytic membrane attack complex (MAC) concentration and moderate C5a concentration, and a complement profile that has protumour effects with high expression of mCRPs, sublytic MAC and high concentrations of C5a. One of the cancers that urgently require innovative therapeutic approaches is ovarian cancer, and complement has a potential to be a good target for this purpose. A combinatorial approach where the complement cascade is fine-tuned by inhibiting some of its activities while promoting the others can prove to be a fruitful approach. Herein, we will briefly discuss the cancer-immune system interaction and then present a discussion of complement system's role in tumour immunity and its therapeutic potential for ovarian cancer immunotherapy.
Collapse
Affiliation(s)
- H Bareke
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey.,Faculty of Pharmacy, Girne American University, Kyrenia, North Cyprus, Turkey
| | - J Akbuga
- Faculty of Pharmacy, Girne American University, Kyrenia, North Cyprus, Turkey
| |
Collapse
|
38
|
Gonzalez VD, Samusik N, Chen TJ, Savig ES, Aghaeepour N, Quigley DA, Huang YW, Giangarrà V, Borowsky AD, Hubbard NE, Chen SY, Han G, Ashworth A, Kipps TJ, Berek JS, Nolan GP, Fantl WJ. Commonly Occurring Cell Subsets in High-Grade Serous Ovarian Tumors Identified by Single-Cell Mass Cytometry. Cell Rep 2018; 22:1875-1888. [PMID: 29444438 PMCID: PMC8556706 DOI: 10.1016/j.celrep.2018.01.053] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 12/18/2017] [Accepted: 01/17/2018] [Indexed: 01/16/2023] Open
Abstract
We have performed an in-depth single-cell phenotypic characterization of high-grade serous ovarian cancer (HGSOC) by multiparametric mass cytometry (CyTOF). Using a CyTOF antibody panel to interrogate features of HGSOC biology, combined with unsupervised computational analysis, we identified noteworthy cell types co-occurring across the tumors. In addition to a dominant cell subset, each tumor harbored rarer cell phenotypes. One such group co-expressed E-cadherin and vimentin (EV), suggesting their potential role in epithelial mesenchymal transition, which was substantiated by pairwise correlation analyses. Furthermore, tumors from patients with poorer outcome had an increased frequency of another rare cell type that co-expressed vimentin, HE4, and cMyc. These poorer-outcome tumors also populated more cell phenotypes, as quantified by Simpson's diversity index. Thus, despite the recognized genomic complexity of the disease, the specific cell phenotypes uncovered here offer a focus for therapeutic intervention and disease monitoring.
Collapse
Affiliation(s)
- Veronica D Gonzalez
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nikolay Samusik
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tiffany J Chen
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erica S Savig
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nima Aghaeepour
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 Third Street, San Francisco, CA 94158, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, 1450 Third Street, San Francisco, CA 94158, USA
| | - Ying-Wen Huang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Valeria Giangarrà
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander D Borowsky
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA; Department of Pathology and Laboratory Medicine, Comprehensive Cancer Center, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| | - Neil E Hubbard
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA; Department of Pathology and Laboratory Medicine, Comprehensive Cancer Center, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| | - Shih-Yu Chen
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guojun Han
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 Third Street, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, 1450 Third Street, San Francisco, CA 94158, USA
| | - Thomas J Kipps
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan S Berek
- Stanford Comprehensive Cancer Institute and Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garry P Nolan
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wendy J Fantl
- Stanford Comprehensive Cancer Institute and Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Zuo T, Wong S, Buza N, Hui P. KRAS mutation of extraovarian implants of serous borderline tumor: prognostic indicator for adverse clinical outcome. Mod Pathol 2018; 31:350-357. [PMID: 29027536 DOI: 10.1038/modpathol.2017.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 01/02/2023]
Abstract
In contrast to non-invasive extraovarian implants, invasive implants of ovarian serous borderline tumor/atypical proliferative serous tumor are associated with adverse outcome and have been reclassified as low-grade serous carcinoma. Mutations of KRAS and/or BRAF have been reported in up to 50% of serous borderline tumor/atypical proliferative serous tumor. We investigated KRAS and BRAF mutation frequencies in the two types of implants of serous borderline tumor/atypical proliferative serous tumor in correlation with clinical outcome. Forty-two implants of serous borderline tumor from 39 patients were included (invasive implants/low-grade serous carcinoma, n=20; non-invasive implants, n=22). KRAS mutation was found in 12 of 20 invasive implants (60%) and 3 of 22 non-invasive implants (14%). BRAF V600E mutation was found in 1 of 22 non-invasive implants (5%) and none in invasive implants (0%). Invasive implants were more frequently associated with higher stage disease. Nine of 14 patients (64%) with KRAS mutation were found to have stage IIIC disease, while 5 of 24 patients (20%) without the mutation had stage IIIC disease. Patients with invasive implants had higher recurrence rate compared to those with non-invasive implants (60 vs 14 %, P=0.0003, log-rank test) and worse disease-specific survival (P=0.0008, log-rank test). Regardless of the histological subtypes, patients with KRAS mutation positive implants had significantly higher recurrence rate than those without the mutation (71 vs 21%, P=0.0021, log-rank test) and an unfavorable disease-specific survival (P=0.0104, log-rank test). In conclusion, compared to those with non-invasive implants, patients with invasive implants present with higher stage of the disease, higher recurrence rate and worse survival. KRAS mutation, but not BRAF V600E mutation, is significantly associated with invasive implants of serous borderline tumor. Regardless of the histological subtypes of the implants, KRAS mutation is a significant prognostic indicator for high risk of tumor recurrence and worse disease-specific survival.
Collapse
Affiliation(s)
- Tao Zuo
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Serena Wong
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Natalia Buza
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Pei Hui
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
40
|
Comprehensive Analysis of Cancer-Proteogenome to Identify Biomarkers for the Early Diagnosis and Prognosis of Cancer. Proteomes 2017; 5:proteomes5040028. [PMID: 29068423 PMCID: PMC5748563 DOI: 10.3390/proteomes5040028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
During the past century, our understanding of cancer diagnosis and treatment has been based on a monogenic approach, and as a consequence our knowledge of the clinical genetic underpinnings of cancer is incomplete. Since the completion of the human genome in 2003, it has steered us into therapeutic target discovery, enabling us to mine the genome using cutting edge proteogenomics tools. A number of novel and promising cancer targets have emerged from the genome project for diagnostics, therapeutics, and prognostic markers, which are being used to monitor response to cancer treatment. The heterogeneous nature of cancer has hindered progress in understanding the underlying mechanisms that lead to abnormal cellular growth. Since, the start of The Cancer Genome Atlas (TCGA), and the International Genome consortium projects, there has been tremendous progress in genome sequencing and immense numbers of cancer genomes have been completed, and this approach has transformed our understanding of the diagnosis and treatment of different types of cancers. By employing Genomics and proteomics technologies, an immense amount of genomic data is being generated on clinical tumors, which has transformed the cancer landscape and has the potential to transform cancer diagnosis and prognosis. A complete molecular view of the cancer landscape is necessary for understanding the underlying mechanisms of cancer initiation to improve diagnosis and prognosis, which ultimately will lead to personalized treatment. Interestingly, cancer proteome analysis has also allowed us to identify biomarkers to monitor drug and radiation resistance in patients undergoing cancer treatment. Further, TCGA-funded studies have allowed for the genomic and transcriptomic characterization of targeted cancers, this analysis aiding the development of targeted therapies for highly lethal malignancy. High-throughput technologies, such as complete proteome, epigenome, protein-protein interaction, and pharmacogenomics data, are indispensable to glean into the cancer genome and proteome and these approaches have generated multidimensional universal studies of genes and proteins (OMICS) data which has the potential to facilitate precision medicine. However, due to slow progress in computational technologies, the translation of big omics data into their clinical aspects have been slow. In this review, attempts have been made to describe the role of high-throughput genomic and proteomic technologies in identifying a panel of biomarkers which could be used for the early diagnosis and prognosis of cancer.
Collapse
|
41
|
Emerging Therapeutics to Overcome Chemoresistance in Epithelial Ovarian Cancer: A Mini-Review. Int J Mol Sci 2017; 18:ijms18102171. [PMID: 29057791 PMCID: PMC5666852 DOI: 10.3390/ijms18102171] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer death among women and the most lethal gynecologic malignancy. One of the leading causes of death in high-grade serous ovarian cancer (HGSOC) is chemoresistant disease, which may present as intrinsic or acquired resistance to therapies. Here we discuss some of the known molecular mechanisms of chemoresistance that have been exhaustively investigated in chemoresistant ovarian cancer, including drug efflux pump multidrug resistance protein 1 (MDR1), the epithelial–mesenchymal transition, DNA damage and repair capacity. We also discuss novel therapeutics that may address some of the challenges in bringing approaches that target chemoresistant processes from bench to bedside. Some of these new therapies include novel drug delivery systems, targets that may halt adaptive changes in the tumor, exploitation of tumor mutations that leave cancer cells vulnerable to irreversible damage, and novel drugs that target ribosomal biogenesis, a process that may be uniquely different in cancer versus non-cancerous cells. Each of these approaches, or a combination of them, may provide a greater number of positive outcomes for a broader population of HGSOC patients.
Collapse
|
42
|
Yu L, Hua X, Yang Y, Li K, Zhang Q, Yu L. An updated meta-analysis of the prognostic value of decreased E-cadherin expression in ovarian cancer. Oncotarget 2017; 8:81176-81185. [PMID: 29113377 PMCID: PMC5655272 DOI: 10.18632/oncotarget.20885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/26/2017] [Indexed: 11/25/2022] Open
Abstract
Decreased epithelial cadherin (E-cadherin) expression is hypothesized to be related to poor prognosis of ovarian cancer, but the predictive value is still inconsistent. We conducted an updated meta-analysis with a total of 16 studies enrolling 1720 patients to estimate the prognostic value of decreased E-cadherin expression in ovarian cancer. Reduced expression of E-cadherin was significantly associated to poor overall survival (HR = 1.74, 95% CI: 1.40–2.17) and progression-free survival (HR = 1.45, 95% CI: 1.12–1.86) with a large heterogeneity for overall survival. In addition, we found that decreased expression of E-cadherin was significantly correlated with International Federation of Gynecology and Obstetrics grade (HR = 3.74, 95% CI: 2.24–6.23), E-cadherin membranous (HR = 1.47, 95% CI: 1.01–2.14), pathologic grade (HR = 1.41, 95% CI: 1.01–1.97), residual tumor size (HR = 2.72, 95% CI: 1.99–3.72), and surgery (HR = 3.21, 95% CI: 1.19–8.67). Our finding suggests that decreased E-cadherin expression may be a predictor of poor ovarian cancer prognosis.
Collapse
Affiliation(s)
- LiLi Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiaoli Hua
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Yu Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Ke Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Qilin Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Lixiu Yu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| |
Collapse
|
43
|
Huepenbecker SP, Divine L, Chu CS, Mutch DG. Two sisters with Mayer-Rokitansky-Küster-Hauser syndrome and serous adenocarcinoma of the ovary. Gynecol Oncol Rep 2017; 22:13-15. [PMID: 28932808 PMCID: PMC5596329 DOI: 10.1016/j.gore.2017.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/23/2017] [Accepted: 09/05/2017] [Indexed: 11/26/2022] Open
Abstract
Background Mayer-Rokitansky-Küster-Hauser syndrome is a rare entity with proposed genetic underpinnings. Ovarian carcinoma has well-described genetic associations and syndromes, although much of the etiology of the disease remains unknown. Cases Two sisters present in the 1970s with primary amenorrhea, 46, XX karyotypes, and absent uteri consistent with MRKH syndrome. In the 2010s, both sisters again present for care. Case 1 presents one sister with stage IIIC serous ovarian adenocarcinoma and negative BRCA panel. Case No 2 presents the other sister with stage IIIC serous ovarian adenocarcinoma and a negative panel for 32 genetic variants associated with ovarian carcinoma. Conclusion The familial association of two rare diseases and negative genetic workup could point to a new genetic understanding of reproductive structure development and ovarian carcinogenesis. Mayer-Rokitansky-Küster-Hauser syndrome can have familial associations. Ovarian carcinoma risk factors include genetic mutations. Rare syndromes with familial associations may have underlying genetic associations.
Collapse
Affiliation(s)
- Sarah P Huepenbecker
- Department of Obstetrics and Gynecology, Washington University School of Medicine, 660 S. Euclid Ave, Box 8064, St. Louis, MO 63110, United States
| | - Laura Divine
- Division of Gynecologic Oncology, Washington University School of Medicine, Center for Advanced Medicine Gynecologic Treatment Center, 4921 Parkview Place, Floor 13, Suite C, St Louis, MO 63110, United States
| | - Christina S Chu
- Division of Gynecologic Oncology, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, United States
| | - David G Mutch
- Division of Gynecologic Oncology, Washington University School of Medicine, Center for Advanced Medicine Gynecologic Treatment Center, 4921 Parkview Place, Floor 13, Suite C, St Louis, MO 63110, United States
| |
Collapse
|
44
|
Rao Q, Zhang Q, Zheng C, Dai W, Zhang B, Ionescu-Zanetti C, Lin Z, Zhang L. Detection of circulating tumour cells in patients with epithelial ovarian cancer by a microfluidic system. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9599-9606. [PMID: 31966837 PMCID: PMC6965958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/07/2017] [Indexed: 06/10/2023]
Abstract
Ovarian cancer is a gynaecological cancer with a high mortality rate. In recent years, circulating tumour cells (CTCs) have attracted attention from scientists because of their significant association with metastasis. However, due to the low CTC enrichment rate of the conventional CellSearch system and limited clinical sample sizes, only a small number of studies have focused on CTCs and epithelial ovarian cancer (EOC). Here, we apply a microfluidic system with immunomagnetic beads preconjugated with an anti-EpCAM antibody to enrich CTCs from whole blood and then analyse the enriched cells by immunofluorescence staining and automatic fluorescence microscope scanning. The average recovery rate of SK-OV-3 EOC cells was 70.2%±13.3%. When using blood samples from EOC patients and healthy volunteers, CTC counts of more than 8 cells were detected in 20 of 23 EOC patients (87.0%) but in none of the 16 healthy volunteers (0%). Total CTC counts were found to be significantly (P<0.05) elevated in the EOC group (median =55.0 [29.5, 123.0] CTCs/7.5 mL) compared with the healthy control group (median =0.5 [0,3.5] CTCs/7.5 mL). In conclusion, this is the first study to use the IsoFlux system on ovarian cancer samples. This system can efficiently capture EOC CTCs from a majority of patients and may provide a potential tool for further biological studies and for the development of in vitro EOC diagnostic products.
Collapse
Affiliation(s)
- Qunxian Rao
- Department of Gynaecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityNo. 107, Yan-Jiang Road West, Guangzhou 510120, China
| | - Qian Zhang
- Yaneng Bioscience (Shenzhen) Co., Ltd.Liuxian 1 Road, Baoan District, Shenzhen 518102, China
| | - Chunhong Zheng
- Yaneng Bioscience (Shenzhen) Co., Ltd.Liuxian 1 Road, Baoan District, Shenzhen 518102, China
| | - Wenjun Dai
- Yaneng Bioscience (Shenzhen) Co., Ltd.Liuxian 1 Road, Baoan District, Shenzhen 518102, China
| | - Bingzhong Zhang
- Department of Gynaecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityNo. 107, Yan-Jiang Road West, Guangzhou 510120, China
| | | | - Zhongqiu Lin
- Department of Gynaecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityNo. 107, Yan-Jiang Road West, Guangzhou 510120, China
| | - Lei Zhang
- Yaneng Bioscience (Shenzhen) Co., Ltd.Liuxian 1 Road, Baoan District, Shenzhen 518102, China
| |
Collapse
|
45
|
Chen Y, Wang X, Duan C, Chen J, Su M, Jin Y, Deng Y, Wang D, Chen C, Zhou L, Cheng J, Wang W, Xi Q. Loss of TAB3 expression by shRNA exhibits suppressive bioactivity and increased chemical sensitivity of ovarian cancer cell lines via the NF-κB pathway. Cell Prolif 2016; 49:657-668. [PMID: 27651027 DOI: 10.1111/cpr.12293] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/15/2016] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is a leading cause of death among gynaecologic malignancies. Despite many years of research, it still remains sparing in reliable diagnostic markers and methods for early detection and screening. Transforming growth factor β-activated protein kinase 1 (TAK1)-binding protein 3 (TAB3) was initially characterized as an adapter protein essential for TAK1 activation in response to IL-1β or TNFα, however, the physiological role of TAB3 in ovarian cancer tumorigenesis is still not fully understood. In this study, we evaluated the effects of TAB3 on ovarian cancer cell lines. Expressions of TAB3 and PCNA (proliferating cell nuclear antigen) were found to be gradually increased in EOC tissues and cell lines, by western blot analysis and qRT-PCR. Distribution of TAB3 was further analysed by immunohistochemistry. In vitro, knockdown of TAB3 expression in HO8910 or SKOV3 ovarian cancer cells significantly inhibited bioactivity of ovarian cancer cells, including proliferation and cell-cycle distribution, and promoted chemical sensitivity to cisplatin and paclitaxel treatment via inhibiting NF-κB pathways. In conclusion, our study strongly suggests a novel function of TAB3 as an oncogene that could be used as a biomarker for ovarian cancer. It provides a new insight into the potential mechanism for therapeutic targeting, in chemotherapy resistance, common in ovarian cancer.
Collapse
Affiliation(s)
- Yannan Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Xia Wang
- Center For Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Chengwei Duan
- Department of Science and Education, the Second People's Hospital of Nantong, Jiangsu, China
| | - Jie Chen
- Department of Oncology, Jiangyin People's Hospital, Jiangyin, Jiangsu, China
| | - Ming Su
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Yunfeng Jin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Yan Deng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Di Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Caiwen Chen
- Department of Obstetrics and Gynecology, Yixing People's Hospital, Wuxi, Jiangsu, China
| | - Linsen Zhou
- Department of Obstetrics and Gynecology, Affiliated Maternal and Child Care Service Centre, Nantong, Jiangsu, China
| | - Jialin Cheng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Qinghua Xi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|