1
|
Wang YE, Wang W, Zhang AL, Li Y, Sun S, Zhou W, Wu H. Intraspinal ASPSCR1::TFE3 rearranged tumor with nerve differentiation. Brain Tumor Pathol 2025:10.1007/s10014-025-00502-6. [PMID: 40419820 DOI: 10.1007/s10014-025-00502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 05/07/2025] [Indexed: 05/28/2025]
Abstract
The ASPSCR1::TFE3 rearrangement has been described in alveolar soft part sarcoma, MiT family translocation renal cell carcinomas as well as perivascular epithelioid cell tumors (PEComas). However, this rearrangement has not been reported in the primary spinal canal. Here, we report a case of an 18-year-old male who had pain in his left lower limb for 2 months. Neuroimaging revealed a lesion in the spinal canal from thoracic 12 to lumbar 1. Histopathological examination showed the tumor consisting of nested architectural pattern with abundant psammomatous calcification. Tumor cells exhibited strong and diffuse positivity for TFE3 and SOX10, patchy positivity for HMB-45 and S100, while other immunomarkers were negatively stained. RNA sequencing confirmed the ASPSCR1::TFE3 gene rearrangement. The Heidelberg DNA methylation classifier classified this case as "Cranial and Paraspinal Nerve Tumor". This case may represent a novel intraspinal neoplasm entity that expands the spectrum of ASPSCR1::TFE3-rearranged neoplasms by unique histopathological features and potential neural differentiation. We named this case as intraspinal ASPSCR1::TFE3 rearranged tumor with SOX10 expression.
Collapse
Affiliation(s)
- Yue-E Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wei Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - An-Li Zhang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yuan Li
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Sibai Sun
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wenchao Zhou
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Department of Pathology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Haibo Wu
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China.
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Department of Pathology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
2
|
Ha H, Lee HY, Kim JH, Kim DY, An HJ, Bae S, Park HS, Kang JH. Precision Oncology Clinical Trials: A Systematic Review of Phase II Clinical Trials with Biomarker-Driven, Adaptive Design. Cancer Res Treat 2024; 56:991-1013. [PMID: 38726510 PMCID: PMC11491240 DOI: 10.4143/crt.2024.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/29/2024] [Indexed: 08/30/2024] Open
Abstract
Novel clinical trial designs are conducted in the precision medicine era. This study aimed to evaluate biomarker-driven, adaptive phase II trials in precision oncology, focusing on infrastructure, efficacy, and safety. We systematically reviewed and analyzed the target studies. EMBASE and PubMed searches from 2015 to 2023 generated 29 eligible trials. Data extraction included infrastructure, biomarker screening methodologies, efficacy, and safety profiles. Government agencies, cancer hospitals, and academic societies with accumulated experiences led investigator-initiated precision oncology clinical trials (IIPOCTs), which later guided sponsor-initiated precision oncology clinical trials (SIPOCTs). Most SIPOCTs were international studies with basket design. IIPOCTs primarily used the central laboratory for biomarker screening, but SIPOCTs used both central and local laboratories. Most of the studies adapted next-generation sequencing and/or immunohistochemistry for biomarker screening. Fifteen studies included an independent central review committee for outcome investigation. Efficacy assessments predominantly featured objective response rate as the primary endpoint, with varying results. Nine eligible studies contributed to the United States Food and Drug Administration's marketing authorization. Safety monitoring was rigorous, but reporting formats lacked uniformity. Health-related quality of life and patient-reported outcomes were described in some protocols but rarely reported. Our results reveal that precision oncology trials with adaptive design rapidly and efficiently evaluate anticancer drugs' efficacy and safety, particularly in specified biomarker-driven cohorts. The evolution from IIPOCT to SIPOCT has facilitated fast regulatory approval, providing valuable insights into the precision oncology landscape.
Collapse
Affiliation(s)
- Hyerim Ha
- Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - Hee Yeon Lee
- Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Do Yeun Kim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Ho Jung An
- Division of Oncology, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - SeungJin Bae
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hye-sung Park
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Hyoung Kang
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
3
|
Sicinska E, Sudhakara Rao Kola V, Kerfoot JA, Taddei ML, Al-Ibraheemi A, Hsieh YH, Church AJ, Landesman-Bollag E, Landesman Y, Hemming ML. ASPSCR1::TFE3 Drives Alveolar Soft Part Sarcoma by Inducing Targetable Transcriptional Programs. Cancer Res 2024; 84:2247-2264. [PMID: 38657118 PMCID: PMC11250573 DOI: 10.1158/0008-5472.can-23-2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Alveolar soft part sarcoma (ASPS) is a rare mesenchymal malignancy driven by the ASPSCR1::TFE3 fusion. A better understanding of the mechanisms by which this oncogenic transcriptional regulator drives cancer growth is needed to help identify potential therapeutic targets. In this study, we characterized the transcriptional and chromatin landscapes of ASPS tumors and preclinical models, identifying the essential role of ASPSCR1::TFE3 in tumor cell viability by regulating core transcriptional programs involved in cell proliferation, angiogenesis, and mitochondrial biology. ASPSCR1::TFE3 directly interacted with key epigenetic regulators at enhancers and promoters to support ASPS-associated transcription. Among the effector programs driven by ASPSCR1::TFE3, cell proliferation was driven by high levels of cyclin D1 expression. Disruption of cyclin D1/CDK4 signaling led to a loss of ASPS proliferative capacity, and combined inhibition of CDK4/6 and angiogenesis halted tumor growth in xenografts. These results define the ASPS oncogenic program, reveal mechanisms by which ASPSCR1::TFE3 controls tumor biology, and identify a strategy for therapeutically targeting tumor cell-intrinsic vulnerabilities. Significance: The ASPSCR1::TFE3 fusion propels the growth of alveolar soft part sarcoma by activating transcriptional programs that regulate proliferation, angiogenesis, mitochondrial biogenesis, and differentiation and can be therapeutically targeted to improve treatment.
Collapse
MESH Headings
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics
- Sarcoma, Alveolar Soft Part/genetics
- Sarcoma, Alveolar Soft Part/pathology
- Sarcoma, Alveolar Soft Part/metabolism
- Humans
- Animals
- Mice
- Cell Proliferation/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Gene Expression Regulation, Neoplastic
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Cyclin-Dependent Kinase 4/genetics
- Cyclin-Dependent Kinase 4/metabolism
- Cyclin-Dependent Kinase 4/antagonists & inhibitors
- Female
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/metabolism
- Intracellular Signaling Peptides and Proteins
Collapse
Affiliation(s)
- Ewa Sicinska
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Vijaya Sudhakara Rao Kola
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Joseph A. Kerfoot
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Madeleine L. Taddei
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Alyaa Al-Ibraheemi
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi-Hsuan Hsieh
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Alanna J. Church
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Esther Landesman-Bollag
- Department of Medicine, Section of Hematology and Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Yosef Landesman
- Cure Alveolar Soft Part Sarcoma International, Brookline, Massachusetts, USA
| | - Matthew L. Hemming
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
4
|
Osaki J, Noguchi R, Yanagihara K, Ono T, Adachi Y, Iwata S, Toda Y, Sekita T, Kobayashi E, Kojima N, Yoshida A, Kawai A, Kondo T. Establishment and characterization of NCC-ASPS2-C1: a novel patient-derived cell line of alveolar soft part sarcoma. Hum Cell 2024; 37:865-873. [PMID: 38478355 DOI: 10.1007/s13577-024-01039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 04/15/2024]
Abstract
Alveolar soft part sarcoma (ASPS) is a rare mesenchymal tumor characterized by rearrangement of the ASPSCR1 and TFE3 genes and a histologically distinctive pseudoalveolar pattern. ASPS progresses slowly, but is prone to late metastasis. As ASPS is refractory to conventional chemotherapy, the only curative treatment is complete surgical resection. The prognosis of advanced and metastatic cases is poor, highlighting the need for preclinical research to develop appropriate treatment options. However, ASPS is extremely rare, accounting for < 1% of all soft tissue sarcomas, and only one patient-derived ASPS cell line is available from public cell banks worldwide for research. This study reports the establishment of a novel ASPS cell line derived from the primary tumor tissue of an ASPS patient, named NCC-ASPS2-C1. This cell line retains the ASPSCR1-TFE3 fusion gene, which is characteristic of ASPS. The characterization of this cell line revealed stable growth, spheroid formation, and invasive properties. By screening a drug library using NCC-ASPS2-C1, we identified several drugs that inhibited the proliferation of ASPS cells. In conclusion, the establishment of NCC-ASPS2-C1 provides a valuable resource for advancing ASPS research and developing novel treatments for this challenging disease.
Collapse
Affiliation(s)
- Julia Osaki
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Kazuyoshi Yanagihara
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yuki Adachi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shuhei Iwata
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yu Toda
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Tetsuya Sekita
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Naoki Kojima
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
5
|
Bergsma EJ, Elgawly M, Mancuso D, Orr R, Vuskovich T, Seligson ND. Atezolizumab as the First Systemic Therapy Approved for Alveolar Soft Part Sarcoma. Ann Pharmacother 2024; 58:407-415. [PMID: 37466080 DOI: 10.1177/10600280231187421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE The objective was to review the pharmacology, efficacy, and safety of atezolizumab (Tecentriq) for the treatment of adult and pediatric patients aged 2 years and older with unresectable or metastatic alveolar soft part sarcoma (ASPS). DATA SOURCES A literature search was conducted using PubMed and MEDLINE databases, published abstracts, and ongoing studies from ClinicalTrials.gov between January 1, 1981, and May 31, 2023. Keywords included atezolizumab, Tecentriq, MPDL3280, immunotherapy, PD-L1, PD-1, pediatrics, sarcoma, and ASPS. STUDY SELECTION AND DATA EXTRACTION All English-language studies involving atezolizumab for ASPS were included and discussed. DATA SYNTHESIS Atezolizumab is an anti-programmed death-ligand 1 (PD-L1) monoclonal antibody designed to block the interaction between PD-L1 and the programmed cell death protein 1 (PD-1) receptor. Atezolizumab was granted approval by the FDA specifically for ASPS based on a phase II clinical trial in adult and pediatric patients (n = 49), which reported an overall response rate of 24% and a durable response rate at 6 and 12 months of 67% and 42%, respectively. Common grade 3/4 adverse reactions include musculoskeletal pain (8%), followed by hypertension (6%), weight gain (6%), headache (4%), and dizziness (4%). RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE IN COMPARISON WITH EXISTING DRUGS Advanced ASPS is a high-risk disease with limited treatment options. Atezolizumab appears to be a viable treatment option in ASPS demonstrating clinical efficacy and a manageable toxicity profile. CONCLUSIONS With no other treatments that are FDA approved specifically for ASPS, and few demonstrating efficacy in the advanced setting, the approval of atezolizumab, including the first approval for pediatric patients, represents a landmark improvement to the therapeutic arsenal against this rare disease.
Collapse
Affiliation(s)
- Emilie J Bergsma
- Department of Pharmacy, University of Florida Health Shands Hospital, Gainesville, FL, USA
| | - Mariam Elgawly
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Jacksonville, FL, USA
| | - David Mancuso
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Jacksonville, FL, USA
| | - Roger Orr
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Jacksonville, FL, USA
| | - Theresa Vuskovich
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Jacksonville, FL, USA
| | - Nathan D Seligson
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Jacksonville, FL, USA
- Precision Medicine, Nemours Children's Health, Jacksonville, FL, USA
| |
Collapse
|
6
|
Fisher B, Meyer A, Brown A, Conway Keller M, McKeown T, Tiller J, Saylor KM, Duffy EA. Evidence-Based Recommendations for Education Provided to Patients and Families Regarding the Adverse Events of ALK and MEK Inhibitors: A Systematic Review From the Children's Oncology Group. JOURNAL OF PEDIATRIC HEMATOLOGY/ONCOLOGY NURSING 2024; 41:114-128. [PMID: 38549368 PMCID: PMC11145517 DOI: 10.1177/27527530231206101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Background: Pediatric oncology patients receive multiple modalities of therapy to treat their malignancies. These modalities have the potential for acute toxicity and late effects. In the last decade, a new modality known as targeted biological therapy, has become an integral part of treatment for pediatric cancers. As targeted therapy use has increased, adverse events specific to these targeted agents have emerged, requiring a new effort focused on providing education to patients and families regarding how best to report, monitor, and manage these adverse events. Method: A clinical question was developed to guide the systematic literature review. Anaplastic lymphoma kinase (ALK) and mitogen-activated protein kinase kinase (MEK) inhibitors were selected for review due to their frequency of use in pediatric oncology. The search was conducted to identify relevant articles published between January 1, 2000 and May 5, 2020. Articles were screened by two team members for inclusion/exclusion criteria using the web-based systematic review tool, Rayyan. Results: Twenty-seven articles met the eligibility criteria for inclusion and were evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation criteria. Adverse events for ALK and MEK inhibitors included manifestations of the gastrointestinal, hematologic, dermatologic, musculoskeletal, neurological, cardiovascular, and ocular systems. Recommendations for patient/family education were made for ALK and MEK inhibitors based on the reported adverse events. Conclusions: Adverse events of ALK and MEK inhibitors differ from the more common adverse events experienced with conventional treatment modalities used in pediatric oncology. It is important for nurses to include information regarding potential adverse events in patient/family education for children receiving these targeted agents.
Collapse
Affiliation(s)
- Beth Fisher
- Augusta University College of Nursing, Augusta University—Children's Hospital of Georgia, Augusta, GA, USA
- Augusta University College of Nursing, Augusta University—Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Ashley Meyer
- St. Louis Children's Hospital, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Jumaniyazova E, Lokhonina A, Dzhalilova D, Kosyreva A, Fatkhudinov T. Immune Cells in the Tumor Microenvironment of Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:5760. [PMID: 38136307 PMCID: PMC10741982 DOI: 10.3390/cancers15245760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Soft tissue sarcomas (STSs) are a rare heterogeneous group of malignant neoplasms characterized by their aggressive course and poor response to treatment. This determines the relevance of research aimed at studying the pathogenesis of STSs. By now, it is known that STSs is characterized by complex relationships between the tumor cells and immune cells of the microenvironment. Dynamic interactions between tumor cells and components of the microenvironment enhance adaptation to changing environmental conditions, which provides the high aggressive potential of STSs and resistance to antitumor therapy. Today, active research is being conducted to find effective antitumor drugs and to evaluate the possibility of using therapy with immune cells of STS. The difficulty in assessing the efficacy of new antitumor options is primarily due to the high heterogeneity of this group of malignant neoplasms. Studying the role of immune cells in the microenvironment in the progression STSs and resistance to antitumor therapies will provide the discovery of new biomarkers of the disease and the prediction of response to immunotherapy. In addition, it will help to initially divide patients into subgroups of good and poor response to immunotherapy, thus avoiding wasting precious time in selecting the appropriate antitumor agent.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Dzhuliia Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
8
|
Jędrys W, Leśniak A, Borkowska A, Rutkowski P, Sobczuk P. Brain metastases of sarcoma: a rare phenomenon in rare tumours. J Cancer Res Clin Oncol 2023; 149:18271-18281. [PMID: 37994983 PMCID: PMC10725339 DOI: 10.1007/s00432-023-05451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/29/2023] [Indexed: 11/24/2023]
Abstract
The usual site for distant metastases of sarcoma is lungs, while brain metastasis (BM) occurs much less frequently and usually late in the disease progression. Despite the advancement in cancer treatment, the outcome for patients with brain metastasis is poor, and their lifespan is short. The frequency of BM in sarcoma seems to be affected by the location and histology of the primary tumour. Sarcoma subtypes with a high propensity for brain metastasis are ASPS, leiomyosarcoma and osteosarcoma. There are no clear guidelines for the treatment of sarcoma brain metastasis. However, therapeutic options include surgery, radiotherapy and chemotherapy, and are often combined. Targeted therapies are a promising treatment option for sarcoma but require investigation in patients with BM. The following review presents the data on sarcoma brain metastasis incidence, treatment and prognosis.
Collapse
Affiliation(s)
- Wiktoria Jędrys
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Leśniak
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Aneta Borkowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Paweł Sobczuk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland.
| |
Collapse
|
9
|
Kokkali S, Georgaki E, Mandrakis G, Valverde C, Theocharis S. Genomic Profiling and Clinical Outcomes of Targeted Therapies in Adult Patients with Soft Tissue Sarcomas. Cells 2023; 12:2632. [PMID: 37998367 PMCID: PMC10670373 DOI: 10.3390/cells12222632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Genomic profiling has improved our understanding of the pathogenesis of different cancers and led to the development of several targeted therapies, especially in epithelial tumors. In this review, we focus on the clinical utility of next-generation sequencing (NGS) to inform therapeutics in soft tissue sarcoma (STS). The role of NGS is still controversial in patients with sarcoma, given the low mutational burden and the lack of recurrent targetable alterations in most of the sarcoma histotypes. The clinical impact of genomic profiling in STS has not been investigated prospectively. A limited number of retrospective, mainly single-institution, studies have addressed this issue using various NGS technologies and platforms and a variety of criteria to define a genomic alteration as actionable. Despite the detailed reports on the different gene mutations, fusions, or amplifications that were detected, data on the use and efficacy of targeted treatment are very scarce at present. With the exception of gastrointestinal stromal tumors (GISTs), these targeted therapies are administered either through off-label prescription of an approved drug or enrollment in a matched clinical trial. Based mainly on anecdotal reports, the outcome of targeted therapies in the different STS histotypes is discussed. Prospective studies are warranted to assess whether genomic profiling improves the management of STS patients.
Collapse
Affiliation(s)
- Stefania Kokkali
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece;
- Oncology Unit, 2nd Department of Medicine, Medical School, Hippocratio General Hospital of Athens, National and Kapodistrian University of Athens, V. Sofias 114, 11527 Athens, Greece;
| | - Eleni Georgaki
- Oncology Unit, 2nd Department of Medicine, Medical School, Hippocratio General Hospital of Athens, National and Kapodistrian University of Athens, V. Sofias 114, 11527 Athens, Greece;
| | - Georgios Mandrakis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece;
| | - Claudia Valverde
- Medical Oncology Department, Vall d’Hebron University Hospital, Pg. Vall d’Hebron 119-12, 08035 Barcelona, Spain;
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece;
| |
Collapse
|
10
|
Fujiwara T, Kunisada T, Nakata E, Nishida K, Yanai H, Nakamura T, Tanaka K, Ozaki T. Advances in treatment of alveolar soft part sarcoma: an updated review. Jpn J Clin Oncol 2023; 53:1009-1018. [PMID: 37626447 PMCID: PMC10632598 DOI: 10.1093/jjco/hyad102] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Alveolar soft part sarcoma is a rare neoplasm of uncertain histogenesis that belongs to a newly defined category of ultra-rare sarcomas. The neoplasm is characterized by a specific chromosomal translocation, der (17) t(X; 17)(p11.2;q25), that results in ASPSCR1-TFE3 gene fusion. The natural history of alveolar soft part sarcoma describes indolent behaviour with slow progression in deep soft tissues of the extremities, trunk and head/neck in adolescents and young adults. A high rate of detection of distant metastasis at presentation has been reported, and the most common metastatic sites in decreasing order of frequency are the lung, bone and brain. Complete surgical resection remains the standard treatment strategy, whereas radiotherapy is indicated for patients with inadequate surgical margins or unresectable tumours. Although alveolar soft part sarcoma is refractory to conventional doxorubicin-based chemotherapy, monotherapy or combination therapy using tyrosine kinase inhibitors and immune checkpoint inhibitors have provided antitumor activity and emerged as new treatment strategies. This article provides an overview of the current understanding of this ultra-rare sarcoma and recent advancements in treatments according to the clinical stage of alveolar soft part sarcoma.
Collapse
Affiliation(s)
- Tomohiro Fujiwara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyuki Kunisada
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Eiji Nakata
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kenji Nishida
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Hiroyuki Yanai
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Tomoki Nakamura
- Department of Orthopaedic Surgery, Mie University, Tsu, Japan
| | - Kazuhiro Tanaka
- Department of Advanced Medical Sciences, Oita University, Yufu, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
11
|
Spinnato P, Papalexis N, Colangeli M, Miceli M, Crombé A, Parmeggiani A, Palmerini E, Righi A, Bianchi G. Imaging Features of Alveolar Soft Part Sarcoma: Single Institution Experience and Literature Review. Clin Pract 2023; 13:1369-1382. [PMID: 37987424 PMCID: PMC10660714 DOI: 10.3390/clinpract13060123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Alveolar soft part sarcoma (ASPS) is an extremely rare and aggressive soft-tissue sarcoma (STS) subtype with poor prognosis and limited response to radiation therapy and chemotherapy. Prompt recognition and referral to sarcoma centers for appropriate management are crucial for patients' survival. The purpose of this study was to report ASPS pre-treatment imaging features and to examine the existing literature on this topic. Twelve patients (7 women, 5 men-mean age 27.1 ± 10.7 years) were included from our single-center experience. Ultrasonography (US), computed tomography (CT), and magnetic resonance imaging (MRI) available were reviewed according to an analysis grid incorporating features from the latest research on STS. Clinical, histological, and outcome data were collected. MRI was available in 10 patients (83.3%), US in 7 patients (58.3%), and CT in 3 patients (25%). Mean longest tumor diameter was 7.6 ± 2.9 cm, and all tumors were deeply seated. Large peritumoral feeding vessels were systematically found and identified on ultrasonography (7/7), MRI (10/10), and CT (3/3). US revealed a well-defined heterogeneous hypoechoic pattern, with abundant flow signals in all patients (7/7). In all patients, MRI showed mildly high signal intensity (SI) on T1-WI and high SI on T2-WI and peritumoral edema. Moreover, flow-voids (due to arteriosus high-flow) into the peritumoral/intratumoral feeding vessels were detected in the MRI fluid-sensitive sequences of all patients. At baseline, whole-body contrast-enhanced CT revealed metastases in 8/12 (66.7%) patients. A pre-treatment longest diameter > 5 cm was significantly associated with distant metastases at diagnosis (p = 0.01). A maximum diameter > 5 cm represents a risk of metastatic disease at diagnosis (odds ratio = 45.0000 (95% CI: 1.4908-1358.3585), p = 0.0285). In the comprehensive literature review, we found 14 articles (case series or original research) focusing on ASPS imaging, with a total of 151 patients included. Merging our experience with the data from the existing literature, we conclude that the hallmark of ASPS imaging at presentation are the following characteristics: deep location, a slight hyperintense MRI SI on T1-WI and a hyperintense SI on T2-WI, numerous MRI flow voids, high internal vascularization, and large peritumoral feeding vessels.
Collapse
Affiliation(s)
- Paolo Spinnato
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Nicolas Papalexis
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Marco Colangeli
- Department of Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Marco Miceli
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Amandine Crombé
- Department of Musculoskeletal Imaging, Pellegrin University Hospital, University of Bordeaux, 33000 Bordeaux, France
| | - Anna Parmeggiani
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Emanuela Palmerini
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Righi
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giuseppe Bianchi
- Orthopaedic Oncology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
12
|
Blay JY, Chevret S, Le Cesne A, Brahmi M, Penel N, Cousin S, Bertucci F, Bompas E, Ryckewaert T, Soibinet P, Boudou-Rouquette P, Saada Bouzid E, Soulie P, Valentin T, Lotz JP, Tosi D, Neviere Z, Cancel M, Ray-Coquard I, Gambotti L, Legrand F, Lamrani-Ghaouti A, Simon C, Even C, Massard C. Pembrolizumab in patients with rare and ultra-rare sarcomas (AcSé Pembrolizumab): analysis of a subgroup from a non-randomised, open-label, phase 2, basket trial. Lancet Oncol 2023; 24:892-902. [PMID: 37429302 DOI: 10.1016/s1470-2045(23)00282-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Sarcoma is a heterogeneous group of diseases with few treatment options. Immunotherapy has shown little activity in studies including unselected sarcomas, but immune checkpoint blockers have shown activity in specific histotypes. We evaluated the activity of pembrolizumab in rare and ultra-rare sarcomas. METHODS AcSé Pembrolizumab is an ongoing phase 2, basket, multitumour study investigating the activity of pembrolizumab monotherapy in rare cancers. Here, we report the results obtained in patients with selected histotypes of rare sarcomas (incidence of less than one case per 1 000 000 people per year) recruited at 24 French hospitals. Key inclusion criteria were age 15 years or older, Eastern Cooperative Oncology Group performance status of 0-1, and advanced disease that was untreated and resistant to treatment. Patients were given pembrolizumab 200 mg intravenously on day 1 of every 21-day cycle for a maximum of 24 months. The primary endpoint was objective response rate at week 12 using Response Evaluation Criteria in Solid Tumours version 1.1, assessed by local investigators. The primary endpoint and safety were analysed in the intention-to-treat population. The AcSé Pembrolizumab study is registered with ClinicalTrials.gov, NCT03012620. FINDINGS Between Sept 4, 2017, and Dec 29, 2020, 98 patients were enrolled, of whom 97 received treatment and were included in analyses (median age 51 years [IQR 35-65]; 53 [55%] were male; 44 [45%] were female; no data were collected on race or ethnicity). 34 (35%) patients had chordomas, 14 (14%) had alveolar soft part sarcomas, 12 (12%) had SMARCA4-deficient sarcomas or malignant rhabdoid tumours, eight (8%) had desmoplastic small round cell tumours, six (6%) had epithelioid sarcomas, four (4%) had dendritic cell sarcomas, three (3%) each had clear cell sarcomas, solitary fibrous tumours, and myxoid liposarcomas, and ten (10%) had other ultra-rare histotypes. As of data cutoff (April 11, 2022), median follow-up was 13·1 months (range 0·1-52·8; IQR 4·3-19·7). At week 12, objective response rate was 6·2% (95% CI 2·3-13·0), with no complete responses and six partial responses in the 97 patients. The most common grade 3-4 adverse events were anaemia (eight [8%] of 97), alanine aminotransferase and aspartate aminotransferase increase (six [6%]), and dyspnoea (five [5%]). 86 serious adverse events were reported in 37 patients. Five deaths due to adverse events were reported, none of which were determined to be related to treatment (two due to disease progression, two due to cancer, and one due to unknown cause). INTERPRETATION Our data show the activity and manageable toxicity of pembrolizumab in some rare and ultra-rare sarcoma histotypes, and support the PD-1/PD-L1 pathway as a potential therapeutic target in selected histotypes. The completion of the basket study will provide further evidence regarding the activity and toxicity of pembrolizumab in identified rare types of cancer. FUNDING The Ligue contre le cancer, INCa, MSD. TRANSLATION For the French translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Jean-Yves Blay
- Centre Léon Bérard & Université Claude Bernard Lyon 1, Lyon, France.
| | - Sylvie Chevret
- Service de Biostatistique, Hôpital Saint Louis (AP-HP), Université Paris Cité, Paris, France
| | - Axel Le Cesne
- Gustave Roussy, Cancer Campus, Grand Paris, Villejuif, France
| | - Mehdi Brahmi
- Centre Léon Bérard & Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Emmanuelle Bompas
- Institut de Cancérologie de l'Ouest, Centre René Gauducheau, Nantes, France
| | | | | | | | | | - Patrick Soulie
- Institut de Cancérologie de l'Ouest, Centre Paul Papin, Angers, France
| | | | | | - Diego Tosi
- Institut Régional du Cancer de Montpellier, Centre Val d'Aurelle, Montpellier, France
| | | | | | | | | | | | | | | | - Caroline Even
- Gustave Roussy, Cancer Campus, Grand Paris, Villejuif, France
| | | |
Collapse
|
13
|
Ahn WK, Hahn SM, Yoon HI, Kim SH, Kim SK, Lyu CJ, Han JW. Sustained deep partial response with axitinib and pembrolizumab in a patient with alveolar soft-part sarcoma: A case report and review of the literature. Pediatr Blood Cancer 2023:e30491. [PMID: 37335266 DOI: 10.1002/pbc.30491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Affiliation(s)
- Won Kee Ahn
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
- Department of Pediatric Hemato-Oncology, Yonsei Cancer Center, Yonsei University Health System, Seoul, South Korea
| | - Seung Min Hahn
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
- Department of Pediatric Hemato-Oncology, Yonsei Cancer Center, Yonsei University Health System, Seoul, South Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Seung Hyun Kim
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Sang Kyum Kim
- Department of Pathology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Chuhl Joo Lyu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
- Department of Pediatric Hemato-Oncology, Yonsei Cancer Center, Yonsei University Health System, Seoul, South Korea
| | - Jung Woo Han
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
- Department of Pediatric Hemato-Oncology, Yonsei Cancer Center, Yonsei University Health System, Seoul, South Korea
| |
Collapse
|
14
|
Tsuchiya R, Yoshimatsu Y, Noguchi R, Sin Y, Ono T, Akiyama T, Kosako H, Yoshida A, Ohtori S, Kawai A, Kondo T. Integrating analysis of proteome profile and drug screening identifies therapeutic potential of MET pathway for the treatment of malignant peripheral nerve sheath tumor. Expert Rev Proteomics 2023:1-11. [PMID: 37229542 DOI: 10.1080/14789450.2023.2218035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Malignant peripheral nerve sheath tumor (MPNST) is an aggressive sarcoma with a poor prognosis that requires novel therapeutic agents. Proteome information is useful for identifying new therapeutic candidates because it directly reflects the biological phenotype. Additionally, in vitro drug screening is an effective tool to identify candidate drugs for common cancers. Hence, we attempted to identify novel therapeutic candidates for MPNST by integrating proteomic analysis and drug screening. METHODS We performed comprehensive proteomic analysis on 23 MPNST tumor samples using liquid chromatography-tandem mass spectrometry to identify therapeutic targets. We also conducted drug screening of six MPNST cell lines using 214 drugs. RESULTS Proteomic analysis revealed that the MET and IGF pathways were significantly enriched in the local recurrence/distant metastasis group of MPNST, whereas drug screening revealed that 24 drugs showed remarkable antitumor effects on the MPNST cell lines. By integrating the results of these two approaches, MET inhibitors, crizotinib and foretinib, were identified as novel therapeutic candidates for the treatment of MPNST. CONCLUSIONS We successfully identified novel therapeutic candidates for the treatment of MPNST, namely crizotinib and foretinib, which target the MET pathway. We hope that these candidate drugs will contribute to the treatment of MPNST.
Collapse
Affiliation(s)
- Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yooksil Sin
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Taro Akiyama
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
15
|
Choi JH, Ro JY. The Recent Advances in Molecular Diagnosis of Soft Tissue Tumors. Int J Mol Sci 2023; 24:ijms24065934. [PMID: 36983010 PMCID: PMC10051446 DOI: 10.3390/ijms24065934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Soft tissue tumors are rare mesenchymal tumors with divergent differentiation. The diagnosis of soft tissue tumors is challenging for pathologists owing to the diversity of tumor types and histological overlap among the tumor entities. Present-day understanding of the molecular pathogenesis of soft tissue tumors has rapidly increased with the development of molecular genetic techniques (e.g., next-generation sequencing). Additionally, immunohistochemical markers that serve as surrogate markers for recurrent translocations in soft tissue tumors have been developed. This review aims to provide an update on recently described molecular findings and relevant novel immunohistochemical markers in selected soft tissue tumors.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Namgu, Daegu 42415, Republic of Korea
| | - Jae Y Ro
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Medical College, Cornell University, Houston, TX 77030, USA
| |
Collapse
|
16
|
Treatment of metastatic alveolar soft part sarcoma with axitinib and pembrolizumab in an 80-year-old patient with a history of autoimmune disorders. Anticancer Drugs 2023; 34:311-316. [PMID: 36206096 DOI: 10.1097/cad.0000000000001398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Alveolar soft part sarcoma (ASPS) is a rare malignancy with low sensitivity to chemotherapy. While localized ASPS has a very good prognosis after resection, the 5-year overall survival rate drops substantially in metastatic disease. We report the case of an 80-year-old male patient with ASPS of the left elbow and metastasis to the lung, lymph nodes and peritoneum. After weighing the benefits and risks, systemic treatment with the anti-PD-1 checkpoint inhibitor pembrolizumab combined with the vascular endothelial growth factor receptor tyrosinkinase inhibitor axitinib was initiated in this patient with a history of psoriasis and Crohn's disease. After only two cycles of therapy, a significant size reduction of the nodal cervical metastasis became apparent. A partial response of all metastases was then confirmed in the first computed tomography restaging. So far, side effects have remained manageable, especially with regard to the development or worsening of autoimmune adverse events. The patient continued to have a high quality of life, while also remaining in ongoing partial response for 15 months at the time of submission. While sarcomas generally have low sensitivity to immunotherapies, ASPS is an exception, and checkpoint inhibition is an integral part of its systemic therapy.
Collapse
|
17
|
Pena-Burgos EM, Pozo-Kreilinger JJ, Tapia-Viñe M, Redondo A, Mendiola-Sabio M, Ortiz-Cruz EJ. Primary intraosseous alveolar soft part sarcoma: Report of two cases with radiologic-pathologic correlation. Ann Diagn Pathol 2023; 62:152078. [PMID: 36543620 DOI: 10.1016/j.anndiagpath.2022.152078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Alveolar soft part sarcoma (ASPS) accounts for less than 1 % of all soft tissue sarcomas. ASPS presents a poor prognosis and develops frequent metastases, especially in the lungs, brain and bones. Current therapies, such as surgery, radiotherapy and chemotherapy, are not fully effective and other alternative treatments are currently being studied. ASPS is predominantly found in the deep soft tissues of the lower extremities. To our knowledge, only thirteen primary intraosseous ASPS have been reported in the literature. In this study, we report two new cases of this exceedingly rare entity. Both cases already had multiple metastases since diagnosis; one of them represents the first case of a primary bone ASPS in the ulna and is also the primary intraosseous ASPS with the longest reported case of survival, after having maintained long periods of stabilization despite not having received any systemic treatment.
Collapse
Affiliation(s)
| | | | - M Tapia-Viñe
- La Paz University Hospital, Radiology Department, Spain
| | - A Redondo
- La Paz University Hospital, Medical Oncology Department, Spain
| | - M Mendiola-Sabio
- La Paz University Hospital, Molecular Pathology and Therapeutic Targets Group, Instituto de Investigación del Hospital Universitario La Paz (IdiPAZ), Spain
| | - E J Ortiz-Cruz
- La Paz University Hospital, Orthopaedics and Traumatology Department, Spain
| |
Collapse
|
18
|
Soft-tissue sarcoma in adolescents and young adults. Int J Clin Oncol 2023; 28:1-11. [PMID: 35084598 DOI: 10.1007/s10147-022-02119-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 01/11/2023]
Abstract
Soft-tissue sarcoma is a rare cancer that accounts for approximately 1% of all malignant tumors. Although they occur in various age groups, soft-tissue sarcomas account for 8% of all malignant tumors developing in adolescents and young adults, suggesting that they are not rare in this age group. This study aimed to evaluate the clinical and pathological characteristics of soft-tissue sarcoma in adolescents and young adults. According to the Bone and Soft-Tissue Tumor Registry in Japan, myxoid liposarcoma is the most common type of soft-tissue sarcoma found in adolescents and young adults; alveolar soft part sarcoma, extraskeletal Ewing sarcoma, epithelioid sarcoma, clear cell sarcoma and synovial sarcoma occur predominantly in this age group among soft-tissue sarcomas. The analysis based on this registry demonstrated that age was not a prognostic factor for poor survival of soft-tissue sarcoma, although the prognosis in adolescents and young adults was better than that in older patients in the US and Scandinavia. Adolescent and young adult patients with soft-tissue sarcoma have age-specific problems, and a multidisciplinary approach to physical, psychological, and social issues is necessary to improve the management of these young patients both during and after treatment.
Collapse
|
19
|
Philip DSJ, Bajpai J. How I Treat Alveolar Soft Part Sarcoma? The Therapeutic Journey from Nihilism to Cautious Optimism…. Indian J Med Paediatr Oncol 2022. [DOI: 10.1055/s-0042-1758540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Affiliation(s)
| | - Jyoti Bajpai
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India
| |
Collapse
|
20
|
Zhang N, Ren Y, Zan L, Zhang X, Zhao J, Wen L, Wang Y. Case report: Kidney perivascular epithelioid cell tumor treated with anti-VEGFR tyrosine kinase inhibitor and MTOR inhibitor. Front Oncol 2022; 12:966818. [PMID: 36465390 PMCID: PMC9709202 DOI: 10.3389/fonc.2022.966818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/31/2022] [Indexed: 10/12/2023] Open
Abstract
Perivascular epithelioid cell tumors (PEComas) are rare mesenchymal tumors arising from perivascular epithelial cells. There was no standard treatment for unresectable PEComa before 2021. For a low incidence and a rarely curable disease, development of new therapy is essential. A 45-year-old female was diagnosed with malignant renal PEComa (likely with TFE3 rearrangement) that underwent rapid progression after 10 months of surgery. The patient then received the tyrosine kinase inhibitor (TKI) Apatinib, and the tumor remained stable for 15 months before another progression. The patient then received the MTOR inhibitor everolimus that alleviated her symptoms but the tumor went into remission again after another 15 months. This result suggests that antagonizing the vascular endothelial growth factor receptor (VEGFR) pathway be a useful strategy for malignant PEComas, along with the MTOR pathway inhibition that had recently been approved for the rare tumor.
Collapse
Affiliation(s)
- Ninggang Zhang
- Department of Gastrointestinal Oncology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yaqiong Ren
- Department of Radiotherapy Oncology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Likun Zan
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xuting Zhang
- Department of Imaging, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jian Zhao
- Department of Gastrointestinal Oncology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Lu Wen
- Department of Gastrointestinal Oncology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yusheng Wang
- Department of Gastrointestinal Oncology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
21
|
Yang Y, Beeraka NM, Liu J, Zuo X, Wang X, Li T, Fan R. Comparative Combinatorial Implications and Theranostics of Immunotherapy in the Impediment of Alveolar Soft Part Sarcoma. Curr Pharm Des 2022; 28:3404-3412. [PMID: 36154597 DOI: 10.2174/1381612828666220921151750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/21/2022] [Accepted: 08/10/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs), specifically programmed cell death receptor- 1/ligand 1 (PD-1/L1) inhibitors, have shown potential pharmacological efficacy in several cancers. Nonetheless, data pertinent to their therapeutic efficacy in alveolar soft-part sarcoma (ASPS) are limited. OBJECTIVE The retrospective aspects of ICIs (anti-PD1/PD-L1 blockers) to target ASPS are comparatively analyzed for clinical outcomes with other targeted immunotherapy modalities. METHODS We have conducted a systematic review without statistical analysis or comprehensive meta-analysis by collecting the articles published between 1952 and Sep 10th, 2020, by searching the following words: alveolar soft part sarcoma and immunotherapy including immune checkpoint, immune checkpoint inhibitors, and PD-1, PD-L1. We performed a pooled analysis of case reports, conferences, clinical trials, and other research reports pertinent to the efficacy of a PD-1 or PD-L1 antagonist in patients diagnosed with metastatic ASPS. RESULTS The effective studies include 10 case reports, 2 conference reports, 5 clinical trials, and 2 additional research reports. A total of 110 patients were reported to be enrolled in the pooled analysis; among them, 87 (78.38%) received a PD-1/PD-L1 antagonist. For patients who received anti-PD-1/PD-L1as monotherapy, their clinical response rates (CRR) were 63.22% whereas those who received targeted therapy and immunotherapy had a CRR of 78.95% (15/19). In the patients treated with double immunotherapy, their CRR was 100% (4/4). Tumor mutational burden and mismatch repair status have significant implications for predicting the ASPS prognosis. CONCLUSION Alveolar soft-part sarcoma patients with distant metastases can exhibit better clinical outcomes with immunotherapy, particularly toripalimab, atezolizumab, and axitinib combinatorial regimen with pembrolizumab. In addition, this review describes the therapeutic implications to guide personalized medicine depending on the expression patterns of PD-1/PD-L1 during the immunotherapy with ASPS.
Collapse
Affiliation(s)
- Ya Yang
- Department of Radiation Therapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Narasimha M Beeraka
- Department of Radiation Therapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya str., Moscow, 119991, Russia.,Department of Pharmaceutical Chemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS College of Pharmacy, Mysuru, Karnataka, India
| | - Junqi Liu
- Department of Radiation Therapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoxiao Zuo
- Department of Radiation Therapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Wang
- Department of Radiation Therapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tingxuan Li
- Department of Radiation Therapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ruitai Fan
- Department of Radiation Therapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
22
|
Kyriazoglou A, Gkaralea LE, Kotsantis I, Anastasiou M, Pantazopoulos A, Prevezanou M, Chatzidakis I, Kavourakis G, Economopoulou P, Nixon IF, Psyrri A. Tyrosine kinase inhibitors in sarcoma treatment. Oncol Lett 2022; 23:183. [PMID: 35527786 PMCID: PMC9073578 DOI: 10.3892/ol.2022.13303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/29/2022] [Indexed: 11/05/2022] Open
Abstract
Sarcomas are a group of rare mesenchymal malignant tumors that arise from transformed cells of the mesenchymal connective tissue, which are challenging to treat. The majority of sarcomas are soft tissue sarcomas (STSs; 75%) and this heterogeneous group of tumors is further comprised of gastrointestinal stromal tumors (~15%) and bone sarcomas (10%). Although surgery remains the current primary therapeutic approach for localized disease, recurrent, metastatic and refractory sarcomas require cytotoxic chemotherapy, which usually yields poor results. Therefore the efficiency of sarcoma treatment imposes a difficult problem. Furthermore, even though progress has been made towards understanding the underlying molecular signaling pathways of sarcoma, there are limited treatment options. The aim of the present study was therefore to perform a systematic literature review of the available clinical evidence regarding the role of tyrosine kinase inhibitors (TKIs) in patients with recurrent or refractory STSs and bone sarcomas over the last two decades. Tyrosine kinases are principal elements of several intracellular molecular signaling pathways. Deregulation of these proteins has been implicated in driving oncogenesis via the crosstalk of pivotal cellular signaling pathways and cascades, including cell proliferation, migration, angiogenesis and apoptosis. Subsequently, small molecule TKIs that target these proteins provide a novel potential therapeutic approach for several types of tumor by offering significant clinical benefits. Among the eligible articles, there were 45 prospective clinical trials, primarily multicentric, single arm, phase II and non-randomized. Numerous studies have reported promising results regarding the use of TKIs, mainly resulting in disease control in patients with STSs. The lack of randomized clinical trials demonstrates the ambiguous efficiency of various studied treatment options, which therefore currently limits the approved drugs used in clinical practice. Research both in clinical and preclinical settings is needed to shed light on the underlying molecular drivers of sarcomagenesis and will identify novel therapeutic approaches for pretreated patients.
Collapse
Affiliation(s)
- Anastasios Kyriazoglou
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 12462 Athens, Greece
| | | | - Ioannis Kotsantis
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 12462 Athens, Greece
| | - Maria Anastasiou
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 12462 Athens, Greece
| | | | - Maria Prevezanou
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 12462 Athens, Greece
| | - Ioannis Chatzidakis
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 12462 Athens, Greece
| | - Georgios Kavourakis
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 12462 Athens, Greece
| | - Panagiota Economopoulou
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 12462 Athens, Greece
| | | | - Amanda Psyrri
- Second Propaedeutic Department of Medicine, Attikon University Hospital, 12462 Athens, Greece
| |
Collapse
|
23
|
Abstract
This review focuses on recent advances in epithelioid and myxoid uterine mesenchymal neoplasms, a category of tumors whereby diagnostic criteria have been rapidly evolving due to advances in molecular testing. Pertinent clinicopathological and molecular features are highlighted for perivascular epithelioid cell tumors, uterine tumors resembling ovarian sex cord tumors, BCOR/BCORL1-altered high-grade endometrial stromal sarcomas, and inflammatory myofibroblastic tumors. Novel developments in epithelioid and myxoid leiomyosarcomas are briefly discussed, and differential diagnoses with key diagnostic criteria are provided for morphologic mimickers.
Collapse
Affiliation(s)
- Elizabeth C Kertowidjojo
- Department of Pathology, University of Chicago Medicine, 5837 South Maryland Avenue, MC 6101, Chicago, IL 60637, USA
| | - Jennifer A Bennett
- Department of Pathology, University of Chicago Medicine, 5837 South Maryland Avenue, MC 6101, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Lee CJ, Modave E, Boeckx B, Kasper B, Aamdal S, Leahy MG, Rutkowski P, Bauer S, Debiec-Rychter M, Sciot R, Lambrechts D, Wozniak A, Schöffski P. Correlation of Immunological and Molecular Profiles with Response to Crizotinib in Alveolar Soft Part Sarcoma: An Exploratory Study Related to the EORTC 90101 "CREATE" Trial. Int J Mol Sci 2022; 23:ijms23105689. [PMID: 35628499 PMCID: PMC9145625 DOI: 10.3390/ijms23105689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
Alveolar soft part sarcoma (ASPS) is a rare subtype of soft tissue sarcoma characterized by an unbalanced translocation, resulting in ASPSCR1-TFE3 fusion that transcriptionally upregulates MET expression. The European Organization for Research and Treatment of Cancer (EORTC) 90101 “CREATE” phase II trial evaluated the MET inhibitor crizotinib in ASPS patients, achieving only limited antitumor activity. We performed a comprehensive molecular analysis of ASPS tissue samples collected in this trial to identify potential biomarkers correlating with treatment outcome. A tissue microarray containing 47 ASPS cases was used for the characterization of the tumor microenvironment using multiplex immunofluorescence. DNA isolated from 34 available tumor samples was analyzed to detect recurrent gene copy number alterations (CNAs) and mutations by low-coverage whole-genome sequencing and whole-exome sequencing. Pathway enrichment analysis was used to identify diseased-associated pathways in ASPS sarcomagenesis. Kaplan–Meier estimates, Cox regression, and the Fisher’s exact test were used to correlate histopathological and molecular findings with clinical data related to crizotinib treatment, aiming to identify potential factors associated with patient outcome. Tumor microenvironment characterization showed the presence of PD-L1 and CTLA-4 in 10 and 2 tumors, respectively, and the absence of PD-1 in all specimens. Apart from CD68, other immunological markers were rarely expressed, suggesting a low level of tumor-infiltrating lymphocytes in ASPS. By CNA analysis, we detected a number of broad and focal alterations. The most common alteration was the loss of chromosomal region 1p36.32 in 44% of cases. The loss of chromosomal regions 1p36.32, 1p33, 1p22.2, and 8p was associated with shorter progression-free survival. Using whole-exome sequencing, 13 cancer-associated genes were found to be mutated in at least three cases. Pathway enrichment analysis identified genetic alterations in NOTCH signaling, chromatin organization, and SUMOylation pathways. NOTCH4 intracellular domain dysregulation was associated with poor outcome, while inactivation of the beta-catenin/TCF complex correlated with improved outcome in patients receiving crizotinib. ASPS is characterized by molecular heterogeneity. We identify genetic aberrations potentially predictive of treatment outcome during crizotinib therapy and provide additional insights into the biology of ASPS, paving the way to improve treatment approaches for this extremely rare malignancy.
Collapse
Affiliation(s)
- Che-Jui Lee
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (C.-J.L.); (A.W.)
| | - Elodie Modave
- VIB Center for Cancer Biology, VIB and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (E.M.); (B.B.); (D.L.)
| | - Bram Boeckx
- VIB Center for Cancer Biology, VIB and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (E.M.); (B.B.); (D.L.)
| | - Bernd Kasper
- Sarcoma Unit, Interdisciplinary Tumor Center, Mannheim University Medical Center, 68167 Mannheim, Germany;
| | - Steinar Aamdal
- Department of Oncology, Oslo University Hospital, 0315 Oslo, Norway;
| | | | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 00-001 Warsaw, Poland;
| | - Sebastian Bauer
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany;
| | - Maria Debiec-Rychter
- Department of Human Genetics, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium;
| | - Raf Sciot
- Department of Pathology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium;
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (E.M.); (B.B.); (D.L.)
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (C.-J.L.); (A.W.)
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (C.-J.L.); (A.W.)
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-1634-1019
| |
Collapse
|
25
|
van der Graaf W, Tesselaar M, McVeigh T, Oyen W, Fröhling S. Biology-Guided Precision Medicine in Rare Cancers: Lessons from Sarcomas and Neuroendocrine Tumours. Semin Cancer Biol 2022; 84:228-241. [DOI: 10.1016/j.semcancer.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022]
|
26
|
Nassif EF, Blay JY, Massard C, Dufresne A, Brahmi M, Cassier P, Ray-Coquard I, Pautier P, Leary A, Sunyach MP, Bahleda R, Levy A, Le Pechoux C, Honoré C, Mir O, Le Cesne A. Early phase trials in soft-tissue sarcomas: clinical benefit of inclusion in early lines of treatment, molecular screening, and histology-driven trials. ESMO Open 2022; 7:100425. [PMID: 35255445 PMCID: PMC9058915 DOI: 10.1016/j.esmoop.2022.100425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The prognosis of patients with advanced soft-tissue sarcomas (STS) remains dismal, and systemic therapeutic options are limited. Early phase trials are becoming increasingly safe and effective. This study aimed to identify the prognostic factors for progression-free survival (PFS). PATIENTS AND METHODS This retrospective analysis included all STS patients participating in early phase trials at Gustave Roussy and Léon Bérard between 1 January 2012 and 31 December 2020. RESULTS Overall, 199 patients accounted for 214 inclusions in advanced STS. The most frequent histotypes were well-differentiated/dedifferentiated liposarcomas (n = 55), leiomyosarcomas (n = 53), synovial sarcomas (n = 22), undifferentiated pleomorphic sarcomas (n = 15), angiosarcomas (n = 12), and myxoid liposarcomas (n = 10). The median PFS was 2.8 months (95% confidence interval 2.7-4.1 months). The median PFS in the first, second, and later lines was 8.3, 5.4, and 2.6 months, respectively (P = 0.00015). The median PFS was 2.8 months in case of molecular screening, 4.1 months in case of histology-driven screening, and 1.6 months (P = 0.00014) in the absence of either screening modalities. In univariate analysis, histotype (P = 0.026), complex genomics (P = 0.008), number of prior lines (P < 0.001), prior anthracyclines (P < 0.001), number of metastatic sites (P = 0.003), liver metastasis (P < 0.001), lung metastasis (P < 0.001), absence of molecular or histology-driven screening (P < 0.001), first-in-human trials (P < 0.001), dose-escalation cohorts (P = 0.011), and Royal Marsden Hospital (RMH) score >1 (P < 0.001) were significantly associated with shorter PFS. In multivariate analysis, independent prognostic factors for shorter PFS were myxoid liposarcoma (P = 0.031), ≥2 prior lines of treatment (P = 0.033), liver metastasis (P = 0.007), and RMH score >2 (P = 0.006). Factors associated with improved PFS were leiomyosarcomas (P = 0.010), molecular screening (P = 0.025), and histology-driven screening (P = 0.010). The median overall survival rates were 36.3, 12.6, and 9.2 months in the first, second, and later lines, respectively (P = 0.0067). The grade 3-4 toxicity rate was 36%. CONCLUSIONS Early phase trials provide an active therapeutic option for STS, even in first-line settings. Molecular screening and histology-driven trials further improve the clinical benefit.
Collapse
Affiliation(s)
- E F Nassif
- Cancer Medicine Department, Centre Léon Bérard, Lyon, France. https://twitter.com/NassifElise
| | - J-Y Blay
- Cancer Medicine Department, Centre Léon Bérard, Lyon, France. https://twitter.com/jeanyvesblay
| | - C Massard
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France. https://twitter.com/drcmassard
| | - A Dufresne
- Cancer Medicine Department, Centre Léon Bérard, Lyon, France
| | - M Brahmi
- Cancer Medicine Department, Centre Léon Bérard, Lyon, France
| | - P Cassier
- Early Phase Trial Unit, Centre Léon Bérard, Lyon, France
| | - I Ray-Coquard
- Cancer Medicine Department, Centre Léon Bérard, Lyon, France. https://twitter.com/CoquardRay
| | - P Pautier
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
| | - A Leary
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
| | - M-P Sunyach
- Radiation Oncology Department, Centre Léon Bérard, Lyon, France
| | - R Bahleda
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
| | - A Levy
- Radiation Oncology Department, Gustave Roussy, Villejuif, France
| | - C Le Pechoux
- Radiation Oncology Department, Gustave Roussy, Villejuif, France
| | - C Honoré
- Surgical Oncology Department, Gustave Roussy, Villejuif, France
| | - O Mir
- Ambulatory Cancer Care Department, Gustave Roussy, Villejuif, France
| | - A Le Cesne
- International Department, Gustave Roussy, Villejuif, France.
| |
Collapse
|
27
|
Casali P, Licitra L, Frezza A, Trama A. “Rare cancers”: not all together in clinical studies! Ann Oncol 2022; 33:463-465. [DOI: 10.1016/j.annonc.2022.01.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/23/2021] [Accepted: 01/30/2022] [Indexed: 11/01/2022] Open
|
28
|
O'Sullivan Coyne G, Kummar S, Hu J, Ganjoo K, Chow WA, Do KT, Zlott J, Bruns A, Rubinstein L, Foster JC, Juwara L, Meehan R, Piekarz R, Streicher H, Sharon E, Takebe N, Voth AR, Bottaro D, Costello R, Wright JJ, Doroshow JH, Chen AP. Clinical Activity of Single-Agent Cabozantinib (XL184), a Multi-receptor Tyrosine Kinase Inhibitor, in Patients with Refractory Soft-Tissue Sarcomas. Clin Cancer Res 2022; 28:279-288. [PMID: 34716194 PMCID: PMC8776602 DOI: 10.1158/1078-0432.ccr-21-2480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/17/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Soft-tissue sarcomas (STS) are a rare, heterogeneous group of mesenchymal tumors. For decades the mainstay of treatment for advanced, unresectable STS has been palliative chemotherapy. High levels of activated MET receptor have been reported in various sarcoma cell lines, together with elevated vascular endothelial growth factor (VEGF) levels in patients with STS, suggesting that dual targeting of the VEGF and MET pathways with the multi-receptor tyrosine kinase inhibitor cabozantinib would result in clinical benefit in this population. PATIENTS AND METHODS We performed an open-label, multi-institution, single-arm phase II trial of single-agent cabozantinib in adult patients with advanced STS and progressive disease after at least 1 standard line of systemic therapy. Patients received 60 mg oral cabozantinib once daily in 28-day cycles, and dual primary endpoints of overall response rate and 6-month progression-free survival (PFS) were assessed. Changes in several circulating biomarkers were assessed as secondary endpoints. RESULTS Six (11.1%; 95% CI, 4.2%-22.6%) of the 54 evaluable patients enrolled experienced objective responses (all partial responses). Six-month PFS was 49.3% (95% CI, 36.2%-67.3%), with a median time on study of 4 cycles (range, 1-99). The most common grade 3/4 adverse events were hypertension (7.4%) and neutropenia (16.7%). Patients' levels of circulating hepatocyte growth factor (HGF), soluble MET, and VEGF-A generally increased after a cycle of therapy, while soluble VEGFR2 levels decreased, regardless of clinical outcome. CONCLUSIONS Cabozantinib single-agent antitumor activity was observed in patients with selected STS histologic subtypes (alveolar soft-part sarcoma, undifferentiated pleomorphic sarcoma, extraskeletal myxoid chondrosarcoma, and leiomyosarcoma) highlighting the biomolecular diversity of STS.
Collapse
Affiliation(s)
- Geraldine O'Sullivan Coyne
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Shivaani Kummar
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - James Hu
- University of Southern California, Los Angeles, California
| | - Kristen Ganjoo
- Stanford Cancer Center, Stanford University, Palo Alto, California
| | | | - Khanh T Do
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Jennifer Zlott
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Ashley Bruns
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Lawrence Rubinstein
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Jared C Foster
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Lamin Juwara
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Robert Meehan
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Richard Piekarz
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Howard Streicher
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Elad Sharon
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Naoko Takebe
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Andrea Regier Voth
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Donald Bottaro
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Rene Costello
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - John J Wright
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - James H Doroshow
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Alice P Chen
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
29
|
Salgia SK, Govindarajan A, Salgia R, Pal SK. ALK-Directed Therapy in Non-NSCLC Malignancies: Are We Ready? JCO Precis Oncol 2022; 5:767-770. [PMID: 34994610 DOI: 10.1200/po.21.00078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Sabrina K Salgia
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Ameish Govindarajan
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Sumanta K Pal
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| |
Collapse
|
30
|
Chen JY, Cen B, Hu F, Qiu Y, Xiao GM, Zhou JG, Zhang FC. Clinical characteristics and outcomes of primary intracranial alveolar soft-part sarcoma: A case report. World J Clin Cases 2022; 10:296-303. [PMID: 35071531 PMCID: PMC8727262 DOI: 10.12998/wjcc.v10.i1.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/15/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Primary intracranial alveolar soft-part sarcoma (PIASPS) is a rare malignancy. We aimed to investigate the clinical profiles and outcomes for PIASPS.
CASE SUMMARY We firstly reported five consecutive cases from our institute. Then, the cases from previous studies were pooled and analyzed to delineate the characteristics of this disease. Our cohort included two males and three females. The median age was 21-years-old (range: 8-54-years-old). All the patients received surgical treatment. Gross total resection (GTR), radiotherapy, and chemotherapy were administered in 3 patients, 4 patients, and 1 patient, respectively. After a median follow-up of 36 mo, tumor progression was noticed in 4 patients; and 3 patients died of the disease. Pooled data (n = 14) contained 5 males and 9 females with a median age of 19 years. The log-rank tests showed that GTR (P = 0.011) could prolong progression-free survival, and radiotherapy (P < 0.001) resulted in longer overall survival.
CONCLUSION Patients with PIASPS suffer from poor outcomes. Surgical treatment is the first choice, and GTR should be achieved when the tumor is feasible. Patients with PIASPS benefit from radiotherapy, which should be considered as a part of treatment therapies.
Collapse
Affiliation(s)
- Jun-Yu Chen
- Department of Neurosurgery, General Hospital of the Yangtze River Shipping, Wuhan 430010, Hubei Province, China
| | - Bo Cen
- Department of Neurosurgery, General Hospital of the Yangtze River Shipping, Wuhan 430010, Hubei Province, China
| | - Fei Hu
- Department of Neurosurgery, General Hospital of the Yangtze River Shipping, Wuhan 430010, Hubei Province, China
| | - Yong Qiu
- Department of Neurosurgery, General Hospital of the Yangtze River Shipping, Wuhan 430010, Hubei Province, China
| | - Guo-Min Xiao
- Department of Neurosurgery, General Hospital of the Yangtze River Shipping, Wuhan 430010, Hubei Province, China
| | - Jun-Ge Zhou
- Department of Neurosurgery, General Hospital of the Yangtze River Shipping, Wuhan 430010, Hubei Province, China
| | - Fang-Cheng Zhang
- Department of Neurosurgery, Wuhan Union Hospital, Wuhan 430010, Hubei Province, China
| |
Collapse
|
31
|
Grundy M, Narendran A. The hepatocyte growth factor/mesenchymal epithelial transition factor axis in high-risk pediatric solid tumors and the anti-tumor activity of targeted therapeutic agents. Front Pediatr 2022; 10:910268. [PMID: 36034555 PMCID: PMC9399617 DOI: 10.3389/fped.2022.910268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/15/2022] [Indexed: 01/04/2023] Open
Abstract
Clinical trials completed in the last two decades have contributed significantly to the improved overall survival of children with cancer. In spite of these advancements, disease relapse still remains a significant cause of death in this patient population. Often, increasing the intensity of current protocols is not feasible because of cumulative toxicity and development of drug resistance. Therefore, the identification and clinical validation of novel targets in high-risk and refractory childhood malignancies are essential to develop effective new generation treatment protocols. A number of recent studies have shown that the hepatocyte growth factor (HGF) and its receptor Mesenchymal epithelial transition factor (c-MET) influence the growth, survival, angiogenesis, and metastasis of cancer cells. Therefore, the c-MET receptor tyrosine kinase and HGF have been identified as potential targets for cancer therapeutics and recent years have seen a race to synthesize molecules to block their expression and function. In this review we aim to summarize the literature that explores the potential and biological rationale for targeting the HGF/c-MET pathway in common and high-risk pediatric solid tumors. We also discuss selected recent and ongoing clinical trials with these agents in relapsed pediatric tumors that may provide applicable future treatments for these patients.
Collapse
Affiliation(s)
- Megan Grundy
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aru Narendran
- POETIC Laboratory for Preclinical and Drug Discovery Studies, Division of Pediatric Oncology, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
32
|
Roulleaux Dugage M, Nassif EF, Italiano A, Bahleda R. Improving Immunotherapy Efficacy in Soft-Tissue Sarcomas: A Biomarker Driven and Histotype Tailored Review. Front Immunol 2021; 12:775761. [PMID: 34925348 PMCID: PMC8678134 DOI: 10.3389/fimmu.2021.775761] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Anti-PD-(L)1 therapies yield a disappointing response rate of 15% across soft-tissue sarcomas, even if some subtypes benefit more than others. The proportions of TAMs and TILs in their tumor microenvironment are variable, and this heterogeneity correlates to histotype. Tumors with a richer CD8+ T cell, M1 macrophage, and CD20+ cells infiltrate have a better prognosis than those infiltrated by M0/M2 macrophages and a high immune checkpoint protein expression. PD-L1 and CD8+ infiltrate seem correlated to response to immune checkpoint inhibitors (ICI), but tertiary lymphoid structures have the best predictive value and have been validated prospectively. Trials for combination therapies are ongoing and focus on the association of ICI with chemotherapy, achieving encouraging results especially with pembrolizumab and doxorubicin at an early stage, or ICI with antiangiogenics. A synergy with oncolytic viruses is seen and intratumoral talimogene laherpavec yields an impressive 35% ORR when associated to pembrolizumab. Adoptive cellular therapies are also of great interest in tumors with a high expression of cancer-testis antigens (CTA), such as synovial sarcomas or myxoid round cell liposarcomas with an ORR ranging from 20 to 50%. It seems crucial to adapt the design of clinical trials to histology. Leiomyosarcomas are characterized by complex genomics but are poorly infiltrated by immune cells and do not benefit from ICI. They should be tested with PIK3CA/AKT inhibition, IDO blockade, or treatments aiming at increasing antigenicity (radiotherapy, PARP inhibitors). DDLPS are more infiltrated and have higher PD-L1 expression, but responses to ICI remain variable across clinical studies. Combinations with MDM2 antagonists or CDK4/6 inhibitors may improve responses for DDLPS. UPS harbor the highest copy number alterations (CNA) and mutation rates, with a rich immune infiltrate containing TLS. They have a promising 15-40% ORR to ICI. Trials for ICB should focus on immune-high UPS. Association of ICI with FGFR inhibitors warrants further exploration in the immune-low group of UPS. Finally translocation-related sarcomas are heterogeneous, and although synovial sarcomas a poorly infiltrated and have a poor response rate to ICI, ASPS largely benefit from ICB monotherapy or its association with antiangiogenics agents. Targeting specific neoantigens through vaccine or adoptive cellular therapies is probably the most promising approach in synovial sarcomas.
Collapse
Affiliation(s)
- Matthieu Roulleaux Dugage
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Elise F. Nassif
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Antoine Italiano
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
- Département d’Oncologie Médicale, Institut Bergonié, Bordeaux, France
| | - Rastislav Bahleda
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| |
Collapse
|
33
|
Yuan J, Li X, Yu S. Molecular targeted therapy for advanced or metastatic soft tissue sarcoma. Cancer Control 2021; 28:10732748211038424. [PMID: 34844463 PMCID: PMC8727831 DOI: 10.1177/10732748211038424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Soft tissue sarcomas are a form of rare and heterogeneous neoplasms with high recurrence rate and mortality. Over the past decades, less progress has been achieved. Surgical management with or without adjuvant/neoadjuvant radiotherapy is still the first-line treatment for localized soft tissue sarcomas, and chemotherapy is the additional option for those with high-risk. However, not all patients with advanced or metastatic soft tissue sarcomas benefit from conventional chemotherapy, targeted therapy takes the most relevant role in the management of those resistant to or failed to conventional chemotherapy. Heterogeneous soft tissue sarcomas vary from biological behavior, genetic mutations, and clinical presentation with a low incidence, indicating the future direction of histotype-based even molecule-based personalized therapy. Furthermore, increasing preclinical studies were carried out to investigate the pathogenesis and potential therapeutic targets of soft tissue sarcomas and increasing new drugs have been developed in recent years, which had started opening new doors for clinical treatment for patients with advanced/metastatic soft tissue sarcomas. Here we sought to summarize the concise characteristics and advance in the targeted therapy for the most common subtypes of soft tissue sarcomas.
Collapse
Affiliation(s)
- Jin Yuan
- Departments of Orthopedics, 71041National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyang Li
- Departments of Orthopedics, 71041National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengji Yu
- Departments of Orthopedics, 71041National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Chang X, Li Y, Xue X, Zhou H, Hou L. The current management of alveolar soft part sarcomas. Medicine (Baltimore) 2021; 100:e26805. [PMID: 34397835 PMCID: PMC8341245 DOI: 10.1097/md.0000000000026805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Alveolar soft part sarcomas (ASPS) which has high potential ability of metastasis, is a rare and slowly growing malignant tumor, and mainly primary localized in limbs. To date, little is known about the best treatment of ASPS. This study aims to review the current management and advance of ASPS. METHODS WANFANG MED ONLINE, CNKI, and NCBI PUBMED were used to search literature spanning from 1963 to 2020, and all cases of ASPS about "ASPS, diagnosis, treatment, surgery, radiotherapy, chemotherapy, target therapy or immune therapy" with detailed data were included. RESULTS Complete surgical resection remained the standard management strategy, radiotherapy was reported to be used for the patients of micro- or macroscopical incomplete residue or the surgical margin was questionable. Chemotherapy was controversial. Some target drugs and immune checkpoint inhibitors had produced antitumor activity. CONCLUSION Complete surgical resection is the cure treatment for ASPS, and adjuvant chemotherapy is not recommended excepted clinical trials. For the patients with micro- or macroscopical incomplete residue, radiotherapy should be appreciated. Furthermore, for recurrence, distant metastasis, and refractory of ASPS, combination therapy, especially combination with multiple target agents and/or immune checkpoint inhibitors may prolong survival time.
Collapse
Affiliation(s)
- Xiaojing Chang
- Department of Radiotherapy, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuehong Li
- Department of Pathology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoying Xue
- Department of Radiotherapy, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huandi Zhou
- Department of Radiotherapy, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liubing Hou
- Department of Radiotherapy, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
35
|
O'Sullivan Coyne G, Naqash AR, Sankaran H, Chen AP. Advances in the management of alveolar soft part sarcoma. Curr Probl Cancer 2021; 45:100775. [PMID: 34284873 DOI: 10.1016/j.currproblcancer.2021.100775] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022]
Abstract
Alveolar Soft Part Sarcoma is one of the less commonly diagnosed soft tissue sarcoma subtypes, an infrequent subtype within the already rare category of human malignancy of sarcoma. In this article we will summarize the histopathological features, natural history and distinct molecular and biological features that have become increasingly appreciated with newer technologies and precision oncology. We will discuss the contemporary management of this disease as well as emerging treatment options.
Collapse
Affiliation(s)
- Geraldine O'Sullivan Coyne
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Abdul Rafeh Naqash
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hari Sankaran
- Biometric Research Program, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alice P Chen
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
36
|
Lam SW, Kostine M, de Miranda NFCC, Schöffski P, Lee CJ, Morreau H, Bovée JVMG. Mismatch repair deficiency is rare in bone and soft tissue tumors. Histopathology 2021; 79:509-520. [PMID: 33825202 PMCID: PMC8518745 DOI: 10.1111/his.14377] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
Introduction There has been an increased demand for mismatch repair (MMR) status testing in sarcoma patients after the success of immune checkpoint inhibition (ICI) in MMR deficient tumors. However, data on MMR deficiency in bone and soft tissue tumors is sparse, rendering it unclear if routine screening should be applied. Hence, we aimed to study the frequency of MMR deficiency in bone and soft tissue tumors after we were prompted by two (potential) Lynch syndrome patients developing sarcomas. Methods Immunohistochemical expression of MLH1, PMS2, MSH2 and MSH6 was assessed on tissue micro arrays (TMAs), and included 353 bone and 539 soft tissue tumors. Molecular data was either retrieved from reports or microsatellite instability (MSI) analysis was performed. In MLH1 negative cases, additional MLH1 promoter hypermethylation analysis followed. Furthermore, a systematic literature review on MMR deficiency in bone and soft tissue tumors was conducted. Results Eight MMR deficient tumors were identified (1%), which included four leiomyosarcoma, two rhabdomyosarcoma, one malignant peripheral nerve sheath tumor and one radiation‐associated sarcoma. Three patients were suspected for Lynch syndrome. Literature review revealed 30 MMR deficient sarcomas, of which 33% were undifferentiated/unclassifiable sarcomas. 57% of the patients were genetically predisposed. Conclusion MMR deficiency is rare in bone and soft tissue tumors. Screening focusing on tumors with myogenic differentiation, undifferentiated/unclassifiable sarcomas and in patients with a genetic predisposition / co‐occurrence of other malignancies can be helpful in identifying patients potentially eligible for ICI.
Collapse
Affiliation(s)
- Suk Wai Lam
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie Kostine
- Department of Rheumatology, Centre Hospitalier Universitaire de Bordeaux Groupe hospitalier Pellegrin, Bordeaux, France
| | | | - Patrick Schöffski
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.,Department of Oncology, KU Leuven, Laboratory of Experimental Oncology, Leuven, Belgium
| | - Che-Jui Lee
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.,Department of Oncology, KU Leuven, Laboratory of Experimental Oncology, Leuven, Belgium
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
37
|
Moosavi F, Giovannetti E, Peters GJ, Firuzi O. Combination of HGF/MET-targeting agents and other therapeutic strategies in cancer. Crit Rev Oncol Hematol 2021; 160:103234. [PMID: 33497758 DOI: 10.1016/j.critrevonc.2021.103234] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
MET receptor has emerged as a druggable target across several human cancers. Agents targeting MET and its ligand hepatocyte growth factor (HGF) including small molecules such as crizotinib, tivantinib and cabozantinib or antibodies including rilotumumab and onartuzumab have proven their values in different tumors. Recently, capmatinib was approved for treatment of metastatic lung cancer with MET exon 14 skipping. In this review, we critically examine the current evidence on how HGF/MET combination therapies may take advantage of synergistic effects, overcome primary or acquired drug resistance, target tumor microenvironment, modulate drug metabolism or tackle pharmacokinetic issues. Preclinical and clinical studies on the combination of HGF/MET-targeted agents with conventional chemotherapeutics or molecularly targeted treatments (including EGFR, VEGFR, HER2, RAF/MEK, and PI3K/Akt targeting agents) and also the value of biomarkers are examined. Our deeper understanding of molecular mechanisms underlying successful pharmacological combinations is crucial to find the best personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
38
|
Su H, Yu C, Ma X, Song Q. Combined immunotherapy and targeted treatment for primary alveolar soft part sarcoma of the lung: case report and literature review. Invest New Drugs 2021; 39:1411-1418. [PMID: 33765213 DOI: 10.1007/s10637-021-01105-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
Primary acinar soft part sarcoma of the lung (ASPS) is a rare malignancy with unique cellular structure and clinical and genetic characteristics. Most patients do not exhibit clear clinical symptoms, with only a few developing respiratory symptoms. The typical histological characteristics are acinoid or organ-like structures. Immunofluorescence in situ hybridization suggests a rearrangement of the transcription factor E3 gene. Patients respond poorly to chemotherapy and are, thus, primarily treated with surgery and targeted therapy. We report herein a unique case of primary alveolar soft part sarcoma of the lung. The patient was a 24-year-old man with metastases to multiple organs, such as the brain, lungs, pancreas, and liver. The craniocerebral lesions attained partial remission after whole-brain radiotherapy and targeted combined immunotherapy, and other distant metastases completely disappeared after targeted combined immunotherapy (anlotinib and camrelizumab), indicating significant treatment efficacy. Anlotinib is an oral multi-target tyrosine kinase inhibitor (TKI) that exerts its anti-tumor effects by acting on various kinases. Camrelizumab is a humanized immunoglobulin G4 monoclonal antibody that can target PD-1 to block the interaction between PD-L1 and programmed death ligand 2, ultimately causing an anti-tumor effect. This is the first report of successful use of anlotinib combined with camrelizumab in the treatment of advanced primary ASPS. The treatment benefit provides preliminary evidence that targeted therapy, combined with immunotherapy, may be a safe and effective approach to treat primary pulmonary ASPS patients, thus warranting further investigation.
Collapse
Affiliation(s)
- Hui Su
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, China.,Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Chao Yu
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266000, Shandong, China
| | - Qingcui Song
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, China.
| |
Collapse
|
39
|
Establishment of an Academic Tissue Microarray Platform as a Tool for Soft Tissue Sarcoma Research. Sarcoma 2021; 2021:6675260. [PMID: 34413700 PMCID: PMC8369337 DOI: 10.1155/2021/6675260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Soft tissue sarcoma (STS) is a heterogeneous family of rare mesenchymal tumors, characterized by histopathological and molecular diversity. Tissue microarray (TMA) is a tool that allows performing research in orphan diseases in a more efficient and cost-effective way. TMAs are paraffin blocks consisting of multiple small representative tissue cores from biological samples, for example, from multiple donors, diverse sites of disease, or multiple different diseases. In 2015, we began constructing TMAs using archival tumor material from STS patients. Specimens were well annotated in terms of histopathological diagnosis, treatment, and clinical follow-up of the tissue donors. Each TMA block contains duplicate or triplicate 1.0–1.5 mm tissue cores from representative tumor areas selected by sarcoma pathologists. The construction of TMAs was performed with TMA Grand Master (3DHistech). So far, we have established disease-specific TMAs from 7 STS subtypes: gastrointestinal stromal tumor (72 cases included in the array), alveolar soft part sarcoma (n = 12 + 47), clear cell sarcoma (n = 22 + 32), leiomyosarcoma (n = 55), liposarcoma (n = 42), inflammatory myofibroblastic tumor (n = 12 + 21), and alveolar rhabdomyosarcoma (n = 24). We also constructed a multisarcoma TMA covering a representative number of important histopathological subtypes on arrays for screening purposes, namely, angiosarcoma, dedifferentiated liposarcoma, pleomorphic liposarcoma, and myxoid liposarcoma, leiomyosarcoma, malignant peripheral nerve sheath tumor, myxofibrosarcoma, rhabdomyosarcoma, synovial sarcoma, and undifferentiated pleomorphic sarcoma, with 7–11 individual cases per subtype. We are currently expanding the list of TMAs with additional sarcoma entities, considering the heterogeneity of this family of tumors. Our extensive STS TMA platform is suitable for rapid and cost-effective morphological, immunohistochemical, and molecular characterization of the tumor as well as for the identification of potential novel diagnostic markers and drug targets. It is readily available for collaborative projects with research partners.
Collapse
|
40
|
Smolle MA, Szkandera J, Andreou D, Palmerini E, Bergovec M, Leithner A. Treatment options in unresectable soft tissue and bone sarcoma of the extremities and pelvis - a systematic literature review. EFORT Open Rev 2020; 5:799-814. [PMID: 33312707 PMCID: PMC7722943 DOI: 10.1302/2058-5241.5.200069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In patients with metastatic or unresectable soft tissue and bone sarcoma of extremities and pelvis, survival is generally poor. The aim of the current systematic review was to analyse recent publications on treatment approaches in patients with inoperable and/or metastatic sarcoma. Original articles published between 1st January 2011 and 2nd May 2020, using the search terms ‘unresectable sarcoma’, ‘inoperability AND sarcoma’, ‘inoperab* AND sarcoma’, and ‘treatment AND unresectable AND sarcoma’ in PubMed, were potentially eligible. Out of the 839 initial articles (containing 274 duplicates) obtained and 23 further articles identified by cross-reference checking, 588 were screened, of which 447 articles were removed not meeting the inclusion criteria. A further 54 articles were excluded following full-text assessment, resulting in 87 articles finally being analysed. Of the 87 articles, 38 were retrospective (43.7%), two prospective (2.3%), six phase I or I/II trials (6.9%), 22 phase II non-randomized trials (27.6%), nine phase II randomized trials (10.3%) and eight phase III randomized trials (9.2%). Besides radio/particle therapy, isolated limb perfusion and conventional chemotherapy, novel therapeutic approaches, including immune checkpoint inhibitors and tyrosine kinase inhibitors were also identified, with partially very promising effects in advanced sarcomas. Management of inoperable, advanced or metastatic sarcomas of the pelvis and extremities remains challenging, with the optimal treatment to be defined individually. Besides conventional chemotherapy, some novel therapeutic approaches have promising effects in both bone and soft tissue subtypes. Considering that only a small proportion of studies were randomized, the clinical evidence currently remains moderate and thus calls for further large, randomized clinical trials.
Cite this article: EFORT Open Rev 2020;5:799-814. DOI: 10.1302/2058-5241.5.200069
Collapse
Affiliation(s)
- Maria Anna Smolle
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Joanna Szkandera
- Division of Clinical Oncology, Internal Medicine, Medical University of Graz, Graz, Austria
| | - Dimosthenis Andreou
- Division of Orthopaedic Oncology and Sarcoma Surgery, Helios Klinikum Bad Saarow, Sarcoma Center Berlin-Brandenburg, Berlin, Germany
| | - Emanuela Palmerini
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna University, Bologna, Italy
| | - Marko Bergovec
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| |
Collapse
|
41
|
Schmiester M, Dolnik A, Kornak U, Pfitzner B, Hummel M, Treue D, Hartmann A, Agaimy A, Weyerer V, Lekaj A, Brakemeier S, Peters R, Öllinger R, Märdian S, Bullinger L, Striefler JK, Flörcken A. TFE3 activation in a TSC1-altered malignant PEComa: challenging the dichotomy of the underlying pathogenic mechanisms. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2020; 7:3-9. [PMID: 33180365 PMCID: PMC7737753 DOI: 10.1002/cjp2.187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
Perivascular epithelioid cell tumors (PEComas) form a family of rare mesenchymal neoplasms that typically display myomelanocytic differentiation. Upregulation of mTOR signaling due the inactivation of TSC1/2 (Tuberous Sclerosis 1 and 2) is believed to be a key oncogenic driver in this disease. Recently, a subgroup of PEComas harboring TFE3 (Transcription Factor E3) rearrangements and presenting with a distinctive morphology has been identified. TSC1/2 and TFE3 aberrations are deemed to be mutually exclusive in PEComa, with two different pathogenic mechanisms assumed to lead to tumorigenesis. Here, we challenge this dichotomy by presenting a case of a clinically aggressive TCS1‐mutated PEComa displaying a TFE3‐altered phenotype. FISH analysis was suggestive of a TFE3 inversion; however, RNA and whole genome sequencing was ultimately unable to identify a fusion involving the gene. However, a copy number increase of the chromosomal region encompassing TFE3 was detected and transcriptome analysis confirmed upregulation of TFE3, which was also seen at the protein level. Therefore, we believe that the TSC1/2‐mTOR pathway and TFE3 overexpression can simultaneously contribute to tumorigenesis in PEComa. Our comprehensive genetic analyses add to the understanding of the complex pathogenic mechanisms underlying PEComa and harbor insights for clinical treatment options.
Collapse
Affiliation(s)
- Maren Schmiester
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Anna Dolnik
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Berit Pfitzner
- Institute of Pathology, DRK Kliniken Berlin Westend, Berlin, Germany
| | - Michael Hummel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Denise Treue
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Veronika Weyerer
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Anja Lekaj
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanne Brakemeier
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Peters
- Department of Urology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Öllinger
- Department of Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sven Märdian
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana Käthe Striefler
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anne Flörcken
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
42
|
Basket trials: From tumour gnostic to tumour agnostic drug development. Cancer Treat Rev 2020; 90:102082. [DOI: 10.1016/j.ctrv.2020.102082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
|
43
|
Liu J, Fan Z, Li S, Gao T, Xue R, Bai C, Zhang L, Tan Z, Fang Z. Target therapy for metastatic alveolar soft part sarcoma: a retrospective study with 47 cases. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1493. [PMID: 33313238 PMCID: PMC7729354 DOI: 10.21037/atm-20-6377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Alveolar soft part sarcoma (ASPS) is a translocation-associated soft-tissue tumor resistant to conventional cytotoxic agents. This report aims to compare the efficacy of anlotinib versus pazopanib as targeted monotherapy in metastatic ASPS and to determine the impact of drug dosage reduction on disease control. Methods Sixteen and 31 patients with metastatic ASPS were respectively treated with anlotinib and pazopanib monotherapy at a single institution. Objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) were retrieved and compared between both therapeutic arms. Adverse events (AEs) within each group were recorded. Kaplan-Meier survivorship curves computed the impact of drug dosage reduction on PFS. Results The anlotinib group showed an ORR of 31.2%, compared to 35.5% in the pazopanib arm (P=0.772). Median PFS was 23.6 months [95% confidence interval (CI), 16.2-31.0 months] in patients treated with anlotinib, but dropped to 13.7 months (95% CI, 10.8-16.7 months) in those managed with pazopanib (P=0.023). One (6.3%) patient on anlotinib and 11 (35.5%) on pazopanib developed AEs requiring drug dosage reduction (P=0.029), which significantly reduced patients' PFS in the latter setting (10.5 vs. 15.8 months, P=0.012). In patients without dosage reduction, anlotinib showed a bordering advantage than pazopanib on median PFS (24.5 vs. 15.8 months, P=0.112). Conclusions Compared to pazopanib, anlotinib yielded longer PFS and lower incidence of AEs in ASPS patients. Drug dosage reduction was more frequently encountered with the former agent and affected the disease control.
Collapse
Affiliation(s)
- Jiayong Liu
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital, Beijing, China
| | - Zhengfu Fan
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital, Beijing, China
| | - Shu Li
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital, Beijing, China
| | - Tian Gao
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital, Beijing, China
| | - Ruifeng Xue
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital, Beijing, China
| | - Chujie Bai
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital, Beijing, China
| | - Lu Zhang
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital, Beijing, China
| | - Zhichao Tan
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital, Beijing, China
| | - Zhiwei Fang
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital, Beijing, China
| |
Collapse
|
44
|
Mcaddy NC, Saffar H, Litière S, Jespers P, Schöffski P, Messiou C. iCREATE: imaging features of primary and metastatic alveolar soft part sarcoma from the EORTC CREATE study. Cancer Imaging 2020; 20:79. [PMID: 33121537 PMCID: PMC7597361 DOI: 10.1186/s40644-020-00352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/27/2020] [Indexed: 11/10/2022] Open
Abstract
Background Alveolar Soft Part Sarcoma (ASPS) is a rare, slow-growing, but highly vascular soft tissue sarcoma, characterised by a high rate of metastases at presentation. Although imaging features of the primary are well described, less detail is available on the imaging pattern of metastatic ASPS. The EORTC 90101 (CREATE) study assessed the efficacy of Crizotinib in patients with metastatic ASPS and presents a unique opportunity to describe the imaging phenotype of primary and metastatic ASPS, based on prospectively collected imaging. Methods A retrospective review of the staging CT scans of 32 patients with ASPS from the CREATE study was undertaken and the imaging features of primary and metastatic disease were assessed. Results Imaging of the primary tumour was available in 7/32 cases (28%). All primary tumours demonstrated marked vascularity with prominent feeding vessels (7/7, 100%). The most frequent sites of metastases included lung (30/32, 94%), nodal (7/32, 22%), bone (5/32, 16%) and muscle/subcutaneous (5/32, 16%). Features of hypervascularity were identified at all sites, more appreciable in the lungs, with feeding vessels frequently demonstrated in pulmonary metastases (21/32, 66%). Conclusion Analysis of imaging from the CREATE cohort of patients with metastatic ASPS demonstrates that metastases from ASPS are predominantly hypervascular and demonstrate feeding vessels comparable to primary ASPS, suggesting potential sensitivity of this rare sarcoma for antivascular/antiangiogenic treatment approaches.
Collapse
Affiliation(s)
| | - Hind Saffar
- Department of Radiology, The Royal Marsden Hospital, London, UK
| | - Saskia Litière
- Soft Tissue and Bone Sarcoma Group, European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Pieter Jespers
- Soft Tissue and Bone Sarcoma Group, European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Patrick Schöffski
- Department of General Medical Oncology and Department of Oncology, KU Leuven, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium.,The Institute of Cancer Research, London, UK
| | - Christina Messiou
- Department of Radiology, The Royal Marsden Hospital, London, UK.,Soft Tissue and Bone Sarcoma Group, European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium.,The Institute of Cancer Research, London, UK
| |
Collapse
|
45
|
Zhu MMT, Shenasa E, Nielsen TO. Sarcomas: Immune biomarker expression and checkpoint inhibitor trials. Cancer Treat Rev 2020; 91:102115. [PMID: 33130422 DOI: 10.1016/j.ctrv.2020.102115] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022]
Abstract
Sarcomas are a heterogenous group of mesenchymal cancers comprising over 100 subtypes. Current chemotherapy for all but a very few subtypes has limited efficacy, resulting in 5-year relative survival rates of 16% for metastatic patients. While sarcomas have often been regarded as an "immune cold" tumor category, recent biomarker studies have confirmed a great deal of immune heterogeneity across sarcoma subtypes. Reports from the first generation of clinical trials treating sarcomas with immunotherapy demonstrate a few positive responses, supporting efforts to stratify patients to optimize response rates. This review summarizes recent advances in knowledge around immune biomarker expression in sarcomas, the potential use of new technologies to complement these study results, and clinical trials particularly of immune checkpoint inhibitor therapy in sarcomas. Each of the immune biomarkers assessed was reviewed for subtype-specific expression patterns and correlation with prognosis. Overall, there is extensive heterogeneity of immune biomarker presence across sarcoma subtypes, and no consensus on the prognostic effect of these biomarkers. New technologies such as multiplex immunohistochemistry and high plex in situ profiling may offer more insights into the sarcoma microenvironment. To date, clinical trials using immune checkpoint inhibitor monotherapy have not shown compelling clinical benefits. Combination therapy with dual checkpoint inhibitors or in combinations with other agents has yielded more promising results in dedifferentiated liposarcoma, undifferentiated pleomorphic sarcoma, angiosarcoma and alveolar soft-part sarcoma. Better understanding of the sarcoma immune status through biomarkers may help decipher the reasons behind differential responses to immunotherapy.
Collapse
Affiliation(s)
- Mayanne M T Zhu
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elahe Shenasa
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Torsten O Nielsen
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology, Vancouver General Hospital, British Columbia, Canada.
| |
Collapse
|
46
|
Gadducci A, Zannoni GF. Perivascular epithelioid cell tumors (PEComa) of the female genital tract: A challenging question for gynaecologic oncologist and pathologist. Gynecol Oncol Rep 2020; 33:100603. [PMID: 32685651 PMCID: PMC7356199 DOI: 10.1016/j.gore.2020.100603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Perivascular epithelioid cell tumors (PEComa)s are mesenchymal neoplasms composed of perivascular epithelioid cells, which express both melanocytic and myogenic markers. These neoplastic cells are thought to arise from undifferentiated cells of the neural crest, or from myoblastic cells harbouring a molecular alteration leading to expression of melanocytic markers, or from pericytic cells. The majority of cases are benign, but a small subset behaves in a malignant fashion. Unfortunately, given their rarity, reliable criteria for predicting malignancy have yet to be established. PEComas of the female genital tract account for nearly 25% of PEComas of all body sites, and the most common site of occurrence is the uterine corpus; less common sites include the cervix, adnexa, vagina/vulva or broad or round ligament exceptionally. The present review aims to elucidate the clinical, pathological and molecular features of gynecological PEComas. Moreover, prognostic and therapeutic implications are also discussed.
Collapse
Affiliation(s)
- Angiolo Gadducci
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Italy
| | - Gian Franco Zannoni
- Division of Anatomic Pathology and Histology - Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore School of Medicine, Rome, Italy
| |
Collapse
|
47
|
Wang XT, Fang R, Zhang RS, Ye SB, Li R, Wang X, Pan R, Liu C, Chen JY, Zhao M, Teng XD, Yu WJ, Li YJ, Wang FH, Zhang JG, Yang QC, Zhang YS, Lu ZF, Ma HH, Zhou XJ, Xia QY, Rao Q. Malignant melanotic Xp11 neoplasms exhibit a clinicopathologic spectrum and gene expression profiling akin to alveolar soft part sarcoma: a proposal for reclassification. J Pathol 2020; 251:365-377. [PMID: 32418203 DOI: 10.1002/path.5470] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
The classification of the distinct group of mesenchymal neoplasms, first described as 'Xp11 translocation perivascular epithelioid cell tumor (PEComa)' and for which the term 'melanotic Xp11 neoplasm' or 'Xp11 neoplasm with melanocytic differentiation' has recently been proposed, remains challenging and controversial. We collected 27 melanotic Xp11 neoplasms, the largest series to date, for a comprehensive evaluation. Fourteen of the cases, together with eight alveolar soft part sarcomas (ASPS), nine conventional PEComas and a control group of seven normal tissues were submitted to RNA sequencing. Follow-up available in 22 patients showed 5-year overall survival and 5-year disease-free survival of 47.6 and 35.7%, respectively, which were similar to ASPS and significantly worse than conventional PEComa. Univariate analysis of location (occurring in the kidney versus not kidney), infiltrative growth pattern, nuclear pleomorphism, mitotic activity ≥2/50 high-power fields (HPF), necrosis and lymphovascular invasion were found to be associated with overall survival and/or disease-free survival. Multivariate analysis identified that location was the only factor found to independently correlate with disease-free survival. More importantly, RNA sequencing-based clustering analysis segregated melanotic Xp11 neoplasm and ASPS from other tumors, including conventional PEComa and Xp11 translocation renal cell carcinoma, and formed a compact cluster representative of the largely similar expression signature. Here we clearly define the true biologic nature of melanotic Xp11 neoplasms which are distinctive malignant mesenchymal tumors, rather than simply PEComa variants with occasionally unpredictable behavior. Meanwhile, melanotic Xp11 neoplasm and ASPS more likely represent phenotypic variants of the same entity, which is distinct from conventional PEComa and Xp11 translocation renal cell carcinoma. Based on these important findings, melanotic Xp11 neoplasm might be reclassified into a distinctive entity together with ASPS, independent from PEComa, in future revisions of the current WHO categories of tumors of soft tissue and bone for the improved reclassification. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xiao-Tong Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Ru Fang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Ru-Song Zhang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Sheng-Bing Ye
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Rui Li
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Xuan Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Rui Pan
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Chong Liu
- Department of Pathology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, PR China
| | - Jie-Yu Chen
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, PR China
| | - Ming Zhao
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, PR China
| | - Xiao-Dong Teng
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Wen-Juan Yu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Yu-Jun Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Feng-Hua Wang
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou, PR China
| | - Jian-Guo Zhang
- Department of Pathology, The Affiliated Hospital of Nantong University, Nantong, PR China
| | - Qi-Chang Yang
- Department of Pathology, The Second Affiliated Hospital of Nantong University, Nantong, PR China
| | - Yong-Sheng Zhang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Zhen-Feng Lu
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Heng-Hui Ma
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Xiao-Jun Zhou
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Qiu-Yuan Xia
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Qiu Rao
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| |
Collapse
|
48
|
Stockwin LH. Alveolar soft-part sarcoma (ASPS) resembles a mesenchymal stromal progenitor: evidence from meta-analysis of transcriptomic data. PeerJ 2020; 8:e9394. [PMID: 32596059 PMCID: PMC7307565 DOI: 10.7717/peerj.9394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Alveolar soft-part sarcoma (ASPS) is an extremely rare malignancy characterized by the unbalanced translocation der(17)t(X;17)(p11;q25). This translocation generates a fusion protein, ASPL-TFE3, that drives pathogenesis through aberrant transcriptional activity. Although considerable progress has been made in identifying ASPS therapeutic vulnerabilities (e.g., MET inhibitors), basic research efforts are hampered by the lack of appropriate in vitro reagents with which to study the disease. In this report, previously unmined microarray data for the ASPS cell line, ASPS-1, was analyzed relative to the NCI sarcoma cell line panel. These data were combined with meta-analysis of pre-existing ASPS patient microarray and RNA-seq data to derive a platform-independent ASPS transcriptome. Results demonstrated that ASPS-1, in the context of the NCI sarcoma cell panel, had some similarities to normal mesenchymal cells and connective tissue sarcomas. The cell line was characterized by high relative expression of transcripts such as CRYAB, MT1G, GCSAML, and SV2B. Notably, ASPS-1 lacked mRNA expression of myogenesis-related factors MYF5, MYF6, MYOD1, MYOG, PAX3, and PAX7. Furthermore, ASPS-1 had a predicted mRNA surfaceome resembling an undifferentiated mesenchymal stromal cell through expression of GPNMB, CD9 (TSPAN29), CD26 (DPP4), CD49C (ITGA3), CD54 (ICAM1), CD63 (TSPAN30), CD68 (SCARD1), CD130 (IL6ST), CD146 (MCAM), CD147 (BSG), CD151 (SFA-1), CD166 (ALCAM), CD222 (IGF2R), CD230 (PRP), CD236 (GPC), CD243 (ABCB1), and CD325 (CDHN). Subsequent re-analysis of ASPS patient data generated a consensus expression profile with considerable overlap between studies. In common with ASPS-1, elevated expression was noted for CTSK, DPP4, GPNMB, INHBE, LOXL4, PSG9, SLC20A1, STS, SULT1C2, SV2B, and UPP1. Transcripts over-expressed only in ASPS patient samples included ABCB5, CYP17A1, HIF1A, MDK, P4HB, PRL, and PSAP. These observations are consistent with that expected for a mesenchymal progenitor cell with adipogenic, osteogenic, or chondrogenic potential. In summary, the consensus data generated in this study highlight the unique and highly conserved nature of the ASPS transcriptome. Although the ability of the ASPL-TFE3 fusion to perturb mRNA expression must be acknowledged, the prevailing ASPS transcriptome resembles that of a mesenchymal stromal progenitor.
Collapse
|
49
|
Novel therapeutic options for alveolar soft part sarcoma: antiangiogenic therapy, immunotherapy and beyond. Curr Opin Oncol 2020; 32:295-300. [PMID: 32541316 DOI: 10.1097/cco.0000000000000652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Alveolar soft part sarcoma (ASPS) represent 0.5% of sarcomas, defining a rarest among rare malignancies. It affects young adults, displaying slow-growing mass of the thigh, head and neck, and trunk. Although quite indolent, a majority of cases displays an advanced disease with lung bone or central nervous system metastasis. Complete surgery is the cornerstone of localized ASPS, and advanced diseases poorly respond to chemotherapy. Here discuss recent progress in molecular characterization of ASPS and future prospects of therapeutic approaches. RECENT FINDINGS ASPS is characterized by a specific oncogenic translocation ASPSCR1-TFE3 that induce hepatocyte growth factor receptor (MET) overexpression, angiogenesis, and immunosuppression in the tumor microenvironment. These specific biological features have encouraged the successful exploration of MET inhibitors, antiangiogenic drugs, and immunotherapy. We reviewed the main tracks of ASPS biology and recent insights from targeted therapies is ASPS mainly driven tyrosine kinase inhibitors (especially antiangiogenics), immune-checkpoint inhibitors, and their combinations. SUMMARY Overall, antiangiogenics and anti Programmed cell death 1/Programmed cell death ligand 1 therapies showed a significant activity in ASPS that warrants additional investigation through randomized trials to validate those results and through ancillary biological studies to better understand resistance mechanisms and biomarkers of response.
Collapse
|
50
|
Groisberg R, Roszik J, Conley AP, Lazar AJ, Portal DE, Hong DS, Naing A, Herzog CE, Somaiah N, Zarzour MA, Patel S, Brown RE, Subbiah V. Genomics, Morphoproteomics, and Treatment Patterns of Patients with Alveolar Soft Part Sarcoma and Response to Multiple Experimental Therapies. Mol Cancer Ther 2020; 19:1165-1172. [PMID: 32127467 DOI: 10.1158/1535-7163.mct-19-0579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/18/2019] [Accepted: 02/17/2020] [Indexed: 01/18/2023]
Abstract
Overexpression of transcription factor 3 in alveolar soft part sarcoma(ASPS) results in upregulation of cell proliferation pathways. No standard treatment algorithm exists for ASPS; multikinase inhibitors[tyrosine kinase inhibitor (TKI)] and immune checkpoint inhibitors (ICI) have shown clinical benefit. To date, no studies have reported on management strategies or sequencing of therapy. We evaluated ASPS treatment patterns and responses in an experimental therapeutics clinic. Genomic and morphoproteomic analysis was performed to further elucidate novel targets. We retrospectively reviewed patients with ASPS treated on clinical trials. Demographic and clinical next-generation sequencing (NGS) profiles were collected. AACR GENIE database was queried to further evaluate aberrations in ASPS. Morphoproteomic analysis was carried out to better define the biology of ASPS with integration of genomic and proteomic findings. Eleven patients with ASPS were identified; 7 received NGS testing and mutations in CDKN2A (n = 1) and hepatocyte growth factor (n = 1) were present. Ten patients were treated with TKIs with stable disease as best response and 4 patients with ICI (three partial responses). Within GENIE, 20 patients were identified harboring 3 called pathogenic mutations. Tumor mutation burden was low in all samples. Morphoproteomic analysis confirmed the expression of phosphorylated c-Met. In addition, fatty acid synthase and phosphorylated-STAT3 were detected in tumor cell cytoplasm and nuclei. Patients with ASPS have a quiescent genome and derive clinical benefit from VEGF-targeting TKIs. Morphoproteomic analysis has provided both additional correlative pathways and angiogenic mechanisms that are targetable for patients with ASPS. Our study suggests that sequential therapy with TKIs and immune checkpoint inhibitors is a reasonable management strategy.
Collapse
Affiliation(s)
- Roman Groisberg
- Department of Melanoma/Sarcoma Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Jason Roszik
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anthony P Conley
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander J Lazar
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniella E Portal
- Department of Melanoma/Sarcoma Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - David S Hong
- Department of Investigational Cancer Therapeutics (Phase 1 Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aung Naing
- Department of Investigational Cancer Therapeutics (Phase 1 Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cynthia E Herzog
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria A Zarzour
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shreyaskumar Patel
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert E Brown
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, Texas
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics (Phase 1 Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|