1
|
Barelli C, Kaluthantrige Don F, Iannuzzi RM, Faletti S, Bertani I, Osei I, Sorrentino S, Villa G, Sokolova V, Campione A, Minotti MR, Sicuri GM, Stefini R, Iorio F, Kalebic N. Morphoregulatory ADD3 underlies glioblastoma growth and formation of tumor-tumor connections. Life Sci Alliance 2025; 8:e202402823. [PMID: 39592188 PMCID: PMC11599137 DOI: 10.26508/lsa.202402823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Glioblastoma is a major unmet clinical need characterized by striking inter- and intra-tumoral heterogeneity and a population of glioblastoma stem cells (GSCs), conferring aggressiveness and therapy resistance. GSCs communicate through a network of tumor-tumor connections (TTCs), including nanotubes and microtubes, promoting tumor progression. However, very little is known about the mechanisms underlying TTC formation and overall GSC morphology. As GSCs closely resemble neural progenitor cells during neurodevelopment, we hypothesized that GSCs' morphological features affect tumor progression. We identified GSC morphology as a new layer of tumoral heterogeneity with important consequences on GSC proliferation. Strikingly, we showed that the neurodevelopmental morphoregulator ADD3 is sufficient and necessary for maintaining proper GSC morphology, TTC abundance, cell cycle progression, and chemoresistance, as well as required for cell survival. Remarkably, both the effects on cell morphology and proliferation depend on the stability of actin cytoskeleton. Hence, cell morphology and its regulators play a key role in tumor progression by mediating cell-cell communication. We thus propose that GSC morphological heterogeneity holds the potential to identify new therapeutic targets and diagnostic markers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alberto Campione
- Human Technopole, Milan, Italy
- Ospedale Nuovo di Legnano, Legnano, Italy
| | | | | | | | | | | |
Collapse
|
2
|
Licón-Muñoz Y, Avalos V, Subramanian S, Granger B, Martinez F, García-Montaño LA, Varela S, Moore D, Perkins E, Kogan M, Berto S, Chohan MO, Bowers CA, Piccirillo SGM. Single-nucleus and spatial landscape of the sub-ventricular zone in human glioblastoma. Cell Rep 2025; 44:115149. [PMID: 39752252 DOI: 10.1016/j.celrep.2024.115149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/22/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The sub-ventricular zone (SVZ) is the most well-characterized neurogenic area in the mammalian brain. We previously showed that in 65% of patients with glioblastoma (GBM), the SVZ is a reservoir of cancer stem-like cells that contribute to treatment resistance and the emergence of recurrence. Here, we build a single-nucleus RNA-sequencing-based microenvironment landscape of the tumor mass and the SVZ of 15 patients and two histologically normal SVZ samples as controls. We identify a ZEB1-centered mesenchymal signature in the tumor cells of the SVZ. Moreover, the SVZ microenvironment is characterized by tumor-supportive microglia, which spatially coexist and establish crosstalks with tumor cells. Last, differential gene expression analyses, predictions of ligand-receptor and incoming/outgoing interactions, and functional assays reveal that the interleukin (IL)-1β/IL-1RAcP and Wnt-5a/Frizzled-3 pathways represent potential therapeutic targets in the SVZ. Our data provide insights into the biology of the SVZ in patients with GBM and identify potential targets of this microenvironment.
Collapse
Affiliation(s)
- Yamhilette Licón-Muñoz
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Vanessa Avalos
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Suganya Subramanian
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bryan Granger
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Frank Martinez
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Leopoldo A García-Montaño
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Samantha Varela
- University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Drew Moore
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Eddie Perkins
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Michael Kogan
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, NM 87131, USA
| | - Stefano Berto
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Muhammad O Chohan
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Christian A Bowers
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, NM 87131, USA
| | - Sara G M Piccirillo
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
3
|
Laviv Y, Regev O, Kanner AA, Fichman S, Limon D, Siegal T, Yust-Katz S, Benouaich-Amiel A. Stem the blood flow: beneficial impact of bevacizumab on survival of subventricular zone glioblastoma patients. J Neurooncol 2025; 171:201-211. [PMID: 39316315 DOI: 10.1007/s11060-024-04828-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE Angiogenesis is a crucial step in tumorigenesis of glioblastoma (GBM). Bevacizumab, an anti-vascular endothelial growth factor drug, is approved for second-line therapy for GBM. Glioma stem cells, presumably the cell of origin of GBM, take an active role in angiogenesis. The subventricular zone (SVZ) is the brain's largest reservoir of neural stem cells, and GBM near this region (SVZ GBM) is associated with a poor prognosis. This study aims to evaluate the potential impact of second-line bevacizumab treatment on survival in patients with SVZ GBM. METHODS The electronic medical records of adult patients with newly diagnosed SVZ GDM under treated between 1/2011 and 12/2021 were retrospectively reviewed. Clinical, surgical, radiological, and outcome parameters were compared between patients treated with bevacizumab after first relapse to patients without such treatment. RESULTS The cohort included 67 patients. 45 (67.1%) were treated with bevacizumab after the first relapse while 22 (32.9%) were not. The only statistically significant difference between groups was the rate of re-surgery, which was higher in the non-bevacizumab group (40.9% vs. 15.6%; p = 0.023), indicating that the groups were quite homogenous. In general, bevacizumab as a second-line treatment did not affect OS in SVZ GBM cases. However, it significantly prolongs survival time from 1st relapse by an average of more than 4 months, including after adjustment to re-surgery variable (HR = 0.57, 95% CI 0.34-0.94, p = 0.028 and HR = 0.57, 95%CI = 0.34-0.97, PV = 0.038; respectively). Furthermore, when adjusting to time from diagnosis to 1st relapse, bevacizumab treatment was also associated with prolonged OS (HR = 0.58; p = 0.043). In a subgroup analysis, comparing patients treated with both re-surgery and bevacizumab to patients treated in any other way, patients with the combined treatment had the longest mean OS of the entire cohort (22.16 ± 7.81 m vs. 13.60 ± 6.86, p = 0.049; HR = 0.361 95%CI 0.108-1.209, p = 0.085). CONCLUSIONS The use of bevacizumab as a second-line therapy in SVZ GBM cases may positively affect survival after relapse, even when given as a monotherapy. Additionally, in certain yet-to-be-identified sub-populations, bevacizumab may even extend overall survival. Further research is required to accurately identify SVZ GBM patients who would benefit most from anti-angiogenic therapy.
Collapse
Affiliation(s)
- Yosef Laviv
- Neurosurgery department, Beilinson hospital, Rabin Medical Center, 39 Zeev Jabotinsky St, Petach Tikva, 4941492, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ohad Regev
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Meir Medical Center, Kfar Saba, Israel
| | - Andrew A Kanner
- Neurosurgery department, Beilinson hospital, Rabin Medical Center, 39 Zeev Jabotinsky St, Petach Tikva, 4941492, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Susana Fichman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pathology department, Beilinson hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Dror Limon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Neuro-Oncology Unit, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Tali Siegal
- Neuro-Oncology Unit, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
- Hebrew University, Jerusalem, Israel
| | - Shlomit Yust-Katz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Neuro-Oncology Unit, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Alexandra Benouaich-Amiel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Neuro-Oncology Unit, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| |
Collapse
|
4
|
Wang F, Dong J, Xu Y, Jin J, Xu Y, Yan X, Liu Z, Zhao H, Zhang J, Wang N, Hu X, Gao X, Xu L, Yang C, Ma S, Du J, Hu Y, Ji H, Hu S. Turning attention to tumor-host interface and focus on the peritumoral heterogeneity of glioblastoma. Nat Commun 2024; 15:10885. [PMID: 39738017 PMCID: PMC11685534 DOI: 10.1038/s41467-024-55243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Approximately 90% of glioblastoma recurrences occur in the peritumoral brain zone (PBZ), while the spatial heterogeneity of the PBZ is not well studied. In this study, two PBZ tissues and one tumor tissue sample are obtained from each patient via preoperative imaging. We assess the microenvironment and the characteristics of infiltrating immune/tumor cells using various techniques. Our data indicate there are one or more regions with higher cerebral blood flow in PBZ, which we collectively name the "higher cerebral blood flow interface" (HBI). The HBI exhibited more neovascularization than the "lower cerebral blood flow interfaces" (LBI). The HBI tend to have increased infiltration of macrophages and T lymphocytes infiltration compared with that in LBI. There are more tumor cells in the HBI than in LBI, with substantial differences in the gene expression profiles of these tumor cells. HBI may be the key area of PBZ-targeting therapy after surgical resection.
Collapse
Affiliation(s)
- Fang Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiawei Dong
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuyun Xu
- Department of Radiology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaqi Jin
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Xu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiuwei Yan
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhihui Liu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongtao Zhao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiheng Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xueyan Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xin Gao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lei Xu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chengyun Yang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shuai Ma
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianyang Du
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China.
| | - Hang Ji
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Department of Neurosurgery, West China Hospital Sichuan University, Chengdu, Sichuan, China.
| | - Shaoshan Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Wang X, Sun Q, Liu T, Lu H, Lin X, Wang W, Liu Y, Huang Y, Huang G, Sun H, Chen Q, Wang J, Tian D, Yuan F, Liu L, Wang B, Gu Y, Liu B, Chen L. Single-cell multi-omics sequencing uncovers region-specific plasticity of glioblastoma for complementary therapeutic targeting. SCIENCE ADVANCES 2024; 10:eadn4306. [PMID: 39576855 PMCID: PMC11584018 DOI: 10.1126/sciadv.adn4306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Glioblastoma (GBM) cells are highly heterogeneous and invasive, leading to treatment resistance and relapse. However, the molecular regulation in and distal to tumors remains elusive. Here, we collected paired tissues from the tumor core (TC) and peritumoral brain (PTB) for integrated snRNA-seq and snATAC-seq analyses. Tumor cells infiltrating PTB from TC behave more like oligodendrocyte progenitor cells than astrocytes at the transcriptome level. Dual-omics analyses further suggest that the distal regulatory regions in the tumor genome and specific transcription factors are potential determinants of regional heterogeneity. Notably, while activator protein 1 (AP-1) is active in all GBM states, its activity declines from TC to PTB, with another transcription factor, BACH1, showing the opposite trend. Combined inhibition of AP-1 and BACH1 more efficiently attenuates the tumor progression in mice and prolongs survival than either single-target treatment. Together, our work reveals marked molecular alterations of infiltrated GBM cells and a synergy of combination therapy targeting intratumor heterogeneity in and distal to GBM.
Collapse
Affiliation(s)
- Xin Wang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- BGI Research, Hangzhou 310030, China
| | - Qian Sun
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | | | - Haoran Lu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xuyi Lin
- BGI Research, Hangzhou 310030, China
| | - Weiwen Wang
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Yang Liu
- BGI Research, Hangzhou 310030, China
| | - Yunting Huang
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | | | - Haixi Sun
- BGI Research, Shenzhen 518083, China
- BGI Research, Beijing 102601, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianxue Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Junmin Wang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Daofeng Tian
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Fan'en Yuan
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | | | - Bo Wang
- China National GeneBank, BGI Research, Shenzhen 518120, China
- BGI Research, Shenzhen 518083, China
| | - Ying Gu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
- BGI Research, Beijing 102601, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baohui Liu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- BGI Research, Hangzhou 310030, China
| |
Collapse
|
6
|
Al‐Kharboosh R, Bechtle A, Tzeng SY, Zheng J, Mondal SK, Wilson DR, Perez‐Vega C, Green JJ, Quiñones‐Hinojosa A. Therapeutic potential and impact of nanoengineered patient-derived mesenchymal stem cells in a murine resection and recurrence model of human glioblastoma. Bioeng Transl Med 2024; 9:e10675. [PMID: 39545093 PMCID: PMC11558202 DOI: 10.1002/btm2.10675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 11/17/2024] Open
Abstract
Confounding results of engineered mesenchymal stem cells (MSCs) used as cellular vehicles has plagued technologies whereby success or failure of novel approaches may be dismissed or inaccurately ascribed solely to the biotechnology platform rather than suitability of the human donor. Polymeric materials were screened for non-viral engineering of MSCs from multiple human donors to deliver bone morphogenic protein-4 (BMP4), a protein previously investigated in clinical trials for glioblastoma (GBM) to combat a subpopulation of highly invasive and tumorigenic clones. A "smart technology" that target the migratory and stem-like nature of GBM will require: (1) a cellular vehicle (MSC) which can scavenge and target residual cells left behind after surgical debulking and deliver; (2) anti-glioma cargo (BMP4). Multiple MSC donors are safely engineered, though varied in susceptibility to accept BMP4 due to intrinsic characteristics revealed by their molecular signatures. Efficiency is compared via secretion, downstream signaling, differentiation, and anti-proliferative properties across all donors. In a clinically relevant resection and recurrence model of patient-derived human GBM, we demonstrate that nanoengineered MSCs are not "donor agnostic" and efficacy is influenced by the inherent suitability of the MSC to the cargo. Therefore, donor profiles hold greater influence in determining downstream outcomes than the technical capabilities of the engineering technology.
Collapse
Affiliation(s)
- Rawan Al‐Kharboosh
- Department of NeurosurgeryMayo ClinicJacksonvilleFloridaUSA
- Department of NeuroscienceMayo Clinic Graduate SchoolJacksonvilleFloridaUSA
- AtPoint tx Co.WashingtonDistrict of ColumbiaUSA
| | - Alex Bechtle
- Department of NeurosurgeryMayo ClinicJacksonvilleFloridaUSA
| | - Stephany Y. Tzeng
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Johns Hopkins Translational Immuno Engineering Center, Translational Tissue Engineering Center, and Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jiaying Zheng
- Department of NeuroscienceMayo Clinic Graduate SchoolJacksonvilleFloridaUSA
| | | | - David R. Wilson
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Johns Hopkins Translational Immuno Engineering Center, Translational Tissue Engineering Center, and Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Jordan J. Green
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Johns Hopkins Translational Immuno Engineering Center, Translational Tissue Engineering Center, and Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Departments of Neurosurgery, Oncology, Ophthalmology, Materials Science & Engineering, and Chemical & Biomolecular EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | |
Collapse
|
7
|
Zhang Y, Fang Z, Liu Z, Xi K, Zhang Y, Zhao D, Feng F, Geng H, Liu M, Lou J, Chen C, Zhang Y, Wu Z, Xu F, Jiang X, Ni S. Implantable Microneedle-Mediated Eradication of Postoperative Tumor Foci Mitigates Glioblastoma Relapse. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409857. [PMID: 39205511 DOI: 10.1002/adma.202409857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma multiforme (GBM) remains incurable despite multimodal treatments after surgical debulking. Almost all patients with GBM relapse within a narrow margin (2-3 cm) of the initial resected lesion due to the unreachable residual cancerous cells. Here, a completely biodegradable microneedle for surgical cavity delivery glioblastoma-associated macrophages (GAMs)-activating immune nano-stimulator that mitigates glioblastoma relapse is reported. The residual tumor lesion-directed biocompatible microneedle releases the nano-stimulator and toll-like receptor 9 agonist in a controlled manner until the microneedles completely degrade over 1 week, efferently induce in situ phonotypic shifting of GAMs from anti- to pro-inflammatory and the tumor recurrence is obviously inhibited. The implantable microneedles offer a significant improvement over conventional transdermal ones, as they are 100% degradable, ensuring safe application within surgical cavities. It is also revealed that the T cells are recruited to the tumor niche as the GAMs initiate anti-tumor response and eradicate residual GBM cells. Taken together, this work provides a potential strategy for immunomodulating the postoperative tumor niche to mitigate tumor relapse in GBM patients, which may have broad applications in other malignancies with surgical intervention.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key laboratory for technology Research and evaluation of drug Products and Key laboratory of chemical Biology, Ministry of education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Zezheng Fang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Zejuan Liu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Kaiyan Xi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Yi Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Dawang Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Fan Feng
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Humin Geng
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Minglu Liu
- Bellastem Biotechnology Limited, High-Tech incubator, Intersection of Liquan Street and Gaoxin Er Road, Gaomi, Shandong, 261500, China
| | - Jingzhao Lou
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key laboratory for technology Research and evaluation of drug Products and Key laboratory of chemical Biology, Ministry of education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Chen Chen
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key laboratory for technology Research and evaluation of drug Products and Key laboratory of chemical Biology, Ministry of education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Yanmin Zhang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Zimei Wu
- Faculty of Medicine and Health Sciences, School of Pharmacy, University of Auckland, Auckland, 1023, New Zealand
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xinyi Jiang
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key laboratory for technology Research and evaluation of drug Products and Key laboratory of chemical Biology, Ministry of education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| |
Collapse
|
8
|
Zhang X, Shao X, Bao Q, He L, Qi X. Integrated network pharmacology and experimental verification to reveal the role of Shezhi Huangling Decoction against glioma by inactivating PI3K/Akt-HIF1A axis. Heliyon 2024; 10:e34215. [PMID: 39092253 PMCID: PMC11292238 DOI: 10.1016/j.heliyon.2024.e34215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Shezhi Huangling Decoction (SHD) has been proven clinically effective in regulating metabolic and immune homeostasis in the treatment of glioma. The investigation aimed to deconstruct the active constituents and mechanisms of SHD. Effects of SHD on malignant characteristics of HS683 and KNS89 cells have been investigated by CCK-8, clone formation, flow cytometry, and Transwell assays. A mouse xenograft model was established to assess the effect of SHD or SHD + temozolomide (TMZ) in vivo. A total of 461 constituents were found from SHD in UPLC/Q-TOF-MS/MS analysis. Functional enrichment analysis showed that pathway in cancer, proteoglycans in cancer, regulation of epithelial cell proliferation, inflammation/immune, gliogenesis, brain development, cell adhesion, and autophagy could participate in the treatment of SHD. Additionally, 9 hub genes (AKT1, TP53, CTNNB1, STAT3, EGFR, VEGFA, PIK3CA, ERBB2, and HIF1A) were identified as hub genes. Moreover, we found that SHD may greatly reduce the migration and accelerate apoptosis of HS683 and KNS89 cells. Additionally, SHD coordinates TMZ to restrict tumor growth were found in the mice. Our results suggest that the malignant behaviors of glioma cells are suppressed by SHD and the mechanism may be closing on the inhibition of the PI3K/Akt-HIF1A axis. SHD may serve as a synergistic therapeutic choice for TMZ to suppress glioblastoma growth.
Collapse
Affiliation(s)
- Xiaobing Zhang
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Xian Shao
- Department of Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Qingquan Bao
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Lingyan He
- Department of Traditional Chinese Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
9
|
Tropeano MP, Raspagliesi L, Bono BC, Baram A, Rossini Z, Franzini A, Navarria P, Clerici E, Bellu L, Simonelli M, Scorsetti M, Riva M, Politi LS, Pessina F. Supramaximal resection: retrospective study on IDH-wildtype Glioblastomas based on the new RANO-Resect classification. Acta Neurochir (Wien) 2024; 166:196. [PMID: 38676720 DOI: 10.1007/s00701-024-06090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The prognostic value of the extent of resection in the management of Glioblastoma is a long-debated topic, recently widened by the 2022 RANO-Resect Classification, which advocates for the resection of the non-enhancing disease surrounding the main core of tumors (supramaximal resection, SUPR) to achieve additional survival benefits. We conducted a retrospective analysis to corroborate the role of SUPR by the RANO-Resect Classification in a single center, homogenous cohort of patients. METHODS Records of patients operated for WHO-2021 Glioblastomas at our institution between 2007 and 2018 were retrospectively reviewed; volumetric data of resected lesions were computed and classified by RANO-Resect criteria. Survival and correlation analyses were conducted excluding patients below near-total resection. RESULTS 117 patients met the inclusion criteria, encompassing 45 near-total resections (NTR), 31 complete resections (CR), and 41 SUPR. Median progression-free and overall survival were 11 and 15 months for NTR, 13 and 17 months or CR, 20 and 24 months for SUPR, respectively (p < 0.001), with inverse correlation observed between survival and FLAIR residual volume (r -0.28). SUPR was not significantly associated with larger preoperative volumes or higher rates of postoperative deficits, although it was less associated with preoperative neurological deficits (OR 3.37, p = 0.003). The impact of SUPR on OS varied between MGMT unmethylated (HR 0.606, p = 0.044) and methylated (HR 0.273, p = 0.002) patient groups. CONCLUSIONS Results of the present study support the validity of supramaximal resection by the new RANO-Resect classification, also highlighting a possible surgical difference between tumors with methylated and unmethylated MGMT promoter.
Collapse
Affiliation(s)
- Maria Pia Tropeano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Pieve Emanuele, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Luca Raspagliesi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Pieve Emanuele, Italy.
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Rozzano, Italy.
| | - Beatrice Claudia Bono
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Pieve Emanuele, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Ali Baram
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Pieve Emanuele, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Zefferino Rossini
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Andrea Franzini
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Elena Clerici
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Luisa Bellu
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Matteo Simonelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Pieve Emanuele, Italy
- Department of Medical Oncology and Hematology, Humanitas Clinical and Research Center - IRCCS, Humanitas Cancer Center, Milan, Italy
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Pieve Emanuele, Italy
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Marco Riva
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Pieve Emanuele, Italy
| | - Letterio Salvatore Politi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Pieve Emanuele, Italy
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Pieve Emanuele, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| |
Collapse
|
10
|
Licón-Muñoz Y, Avalos V, Subramanian S, Granger B, Martinez F, Varela S, Moore D, Perkins E, Kogan M, Berto S, Chohan M, Bowers C, Piccirillo S. Single-nucleus and spatial landscape of the sub-ventricular zone in human glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590852. [PMID: 38712234 PMCID: PMC11071523 DOI: 10.1101/2024.04.24.590852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The sub-ventricular zone (SVZ) is the most well-characterized neurogenic area in the mammalian brain. We previously showed that in 65% of patients with glioblastoma (GBM), the SVZ is a reservoir of cancer stem-like cells that contribute to treatment resistance and emergence of recurrence. Here, we built a single-nucleus RNA-sequencing-based microenvironment landscape of the tumor mass (T_Mass) and the SVZ (T_SVZ) of 15 GBM patients and 2 histologically normal SVZ (N_SVZ) samples as controls. We identified a mesenchymal signature in the T_SVZ of GBM patients: tumor cells from the T_SVZ relied on the ZEB1 regulatory network, whereas tumor cells in the T_Mass relied on the TEAD1 regulatory network. Moreover, the T_SVZ microenvironment was predominantly characterized by tumor-supportive microglia, which spatially co-exist and establish heterotypic interactions with tumor cells. Lastly, differential gene expression analyses, predictions of ligand-receptor and incoming/outgoing interactions, and functional assays revealed that the IL-1β/IL-1RAcP and Wnt-5a/Frizzled-3 pathways are therapeutic targets in the T_SVZ microenvironment. Our data provide insights into the biology of the SVZ in GBM patients and identify specific targets of this microenvironment.
Collapse
Affiliation(s)
- Y. Licón-Muñoz
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - V. Avalos
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - S. Subramanian
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - B. Granger
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - F. Martinez
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - S. Varela
- University of New Mexico School of Medicine, Albuquerque, NM
| | - D. Moore
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - E. Perkins
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS
| | - M. Kogan
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, NM
| | - S. Berto
- Bioinformatics Core, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Neurogenomics Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - M.O. Chohan
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS
| | - C.A. Bowers
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, NM
| | - S.G.M. Piccirillo
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| |
Collapse
|
11
|
Underhill HR, Karsy M, Davidson CJ, Hellwig S, Stevenson S, Goold EA, Vincenti S, Sellers DL, Dean C, Harrison BE, Bronner MP, Colman H, Jensen RL. Subclonal Cancer Driver Mutations Are Prevalent in the Unresected Peritumoral Edema of Adult Diffuse Gliomas. Cancer Res 2024; 84:1149-1164. [PMID: 38270917 PMCID: PMC10982644 DOI: 10.1158/0008-5472.can-23-2557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
Adult diffuse gliomas commonly recur regardless of therapy. As recurrence typically arises from the peritumoral edema adjacent to the resected bulk tumor, the profiling of somatic mutations from infiltrative malignant cells within this critical, unresected region could provide important insights into residual disease. A key obstacle has been the inability to distinguish between next-generation sequencing (NGS) noise and the true but weak signal from tumor cells hidden among the noncancerous brain tissue of the peritumoral edema. Here, we developed and validated True2 sequencing to reduce NGS-associated errors to <1 false positive/100 kb panel positions while detecting 97.6% of somatic mutations with an allele frequency ≥0.1%. True2 was then used to study the tumor and peritumoral edema of 22 adult diffuse gliomas including glioblastoma, astrocytoma, oligodendroglioma, and NF1-related low-grade neuroglioma. The tumor and peritumoral edema displayed a similar mutation burden, indicating that surgery debulks these cancers physically but not molecularly. Moreover, variants in the peritumoral edema included unique cancer driver mutations absent in the bulk tumor. Finally, analysis of multiple samples from each patient revealed multiple subclones with unique mutations in the same gene in 17 of 22 patients, supporting the occurrence of convergent evolution in response to patient-specific selective pressures in the tumor microenvironment that may form the molecular foundation of recurrent disease. Collectively, True2 enables the detection of ultralow frequency mutations during molecular analyses of adult diffuse gliomas, which is necessary to understand cancer evolution, recurrence, and individual response to therapy. SIGNIFICANCE True2 is a next-generation sequencing workflow that facilitates unbiased discovery of somatic mutations across the full range of variant allele frequencies, which could help identify residual disease vulnerabilities for targeted adjuvant therapies.
Collapse
Affiliation(s)
- Hunter R. Underhill
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah
- Department of Radiology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Michael Karsy
- Department of Neurological Surgery, University of Utah, Salt Lake City, Utah
| | | | | | - Samuel Stevenson
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah
| | - Eric A. Goold
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | | | - Drew L. Sellers
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Charlie Dean
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Brion E. Harrison
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah
| | - Mary P. Bronner
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Howard Colman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Neurological Surgery, University of Utah, Salt Lake City, Utah
- Department of Internal Medicine, Division of Oncology, University of Utah, Salt Lake City, Utah
| | - Randy L. Jensen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Neurological Surgery, University of Utah, Salt Lake City, Utah
| |
Collapse
|
12
|
Gagg H, Williams ST, Conroy S, Myers KN, McGarrity-Cottrell C, Jones C, Helleday T, Rantala J, Rominiyi O, Danson SJ, Collis SJ, Wells G. Ex-vivo drug screening of surgically resected glioma stem cells to replace murine avatars and provide personalise cancer therapy for glioblastoma patients. F1000Res 2024; 12:954. [PMID: 37799492 PMCID: PMC10548111 DOI: 10.12688/f1000research.135809.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/07/2023] Open
Abstract
With diminishing returns and high clinical failure rates from traditional preclinical and animal-based drug discovery strategies, more emphasis is being placed on alternative drug discovery platforms. Ex vivo approaches represent a departure from both more traditional preclinical animal-based models and clinical-based strategies and aim to address intra-tumoural and inter-patient variability at an earlier stage of drug discovery. Additionally, these approaches could also offer precise treatment stratification for patients within a week of tumour resection in order to direct tailored therapy. One tumour group that could significantly benefit from such ex vivo approaches are high-grade gliomas, which exhibit extensive heterogeneity, cellular plasticity and therapy-resistant glioma stem cell (GSC) niches. Historic use of murine-based preclinical models for these tumours has largely failed to generate new therapies, resulting in relatively stagnant and unacceptable survival rates of around 12-15 months post-diagnosis over the last 50 years. The near universal use of DNA damaging chemoradiotherapy after surgical resection within standard-of-care (SoC) therapy regimens provides an opportunity to improve current treatments if we can identify efficient drug combinations in preclinical models that better reflect the complex inter-/intra-tumour heterogeneity, GSC plasticity and inherent DNA damage resistance mechanisms. We have therefore developed and optimised a high-throughput ex vivo drug screening platform; GliExP, which maintains GSC populations using immediately dissociated fresh surgical tissue. As a proof-of-concept for GliExP, we have optimised SoC therapy responses and screened 30+ small molecule therapeutics and preclinical compounds against tumours from 18 different patients, including multi-region spatial heterogeneity sampling from several individual tumours. Our data therefore provides a strong basis to build upon GliExP to incorporate combination-based oncology therapeutics in tandem with SoC therapies as an important preclinical alternative to murine models (reduction and replacement) to triage experimental therapeutics for clinical translation and deliver rapid identification of effective treatment strategies for individual gliomas.
Collapse
Affiliation(s)
- Hannah Gagg
- Oncology & Metabolism, The University of Sheffield, Sheffield, England, S10 2RX, UK
| | - Sophie T. Williams
- Oncology & Metabolism, The University of Sheffield, Sheffield, England, S10 2RX, UK
- Neurosurgery, Royal Hallamshire Hospital, Sheffield, S10 2JF, UK
| | - Samantha Conroy
- Oncology & Metabolism, The University of Sheffield, Sheffield, England, S10 2RX, UK
- Urology, Royal Hallamshire Hospital, Sheffield, S10 2JF, UK
| | - Katie N. Myers
- Oncology & Metabolism, The University of Sheffield, Sheffield, England, S10 2RX, UK
| | | | - Callum Jones
- Oncology & Metabolism, The University of Sheffield, Sheffield, England, S10 2RX, UK
| | - Thomas Helleday
- Oncology & Metabolism, The University of Sheffield, Sheffield, England, S10 2RX, UK
- Karolinska Institut, Solnavägen, Solna, 171 77, Sweden
| | - Juha Rantala
- Oncology & Metabolism, The University of Sheffield, Sheffield, England, S10 2RX, UK
- Misvik Biology Ltd, Karjakatu, Turku, FI-20520, Finland
| | - Ola Rominiyi
- Oncology & Metabolism, The University of Sheffield, Sheffield, England, S10 2RX, UK
- Neurosurgery, Royal Hallamshire Hospital, Sheffield, S10 2JF, UK
| | - Sarah J. Danson
- Oncology & Metabolism, The University of Sheffield, Sheffield, England, S10 2RX, UK
- Weston Park Hospital, Sheffield, S10 2SJ, UK
| | - Spencer J. Collis
- Oncology & Metabolism, The University of Sheffield, Sheffield, England, S10 2RX, UK
| | - Greg Wells
- Oncology & Metabolism, The University of Sheffield, Sheffield, England, S10 2RX, UK
| |
Collapse
|
13
|
De Fazio E, Pittarello M, Gans A, Ghosh B, Slika H, Alimonti P, Tyler B. Intrinsic and Microenvironmental Drivers of Glioblastoma Invasion. Int J Mol Sci 2024; 25:2563. [PMID: 38473812 PMCID: PMC10932253 DOI: 10.3390/ijms25052563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Gliomas are diffusely infiltrating brain tumors whose prognosis is strongly influenced by their extent of invasion into the surrounding brain tissue. While lower-grade gliomas present more circumscribed borders, high-grade gliomas are aggressive tumors with widespread brain infiltration and dissemination. Glioblastoma (GBM) is known for its high invasiveness and association with poor prognosis. Its low survival rate is due to the certainty of its recurrence, caused by microscopic brain infiltration which makes surgical eradication unattainable. New insights into GBM biology at the single-cell level have enabled the identification of mechanisms exploited by glioma cells for brain invasion. In this review, we explore the current understanding of several molecular pathways and mechanisms used by tumor cells to invade normal brain tissue. We address the intrinsic biological drivers of tumor cell invasion, by tackling how tumor cells interact with each other and with the tumor microenvironment (TME). We focus on the recently discovered neuronal niche in the TME, including local as well as distant neurons, contributing to glioma growth and invasion. We then address the mechanisms of invasion promoted by astrocytes and immune cells. Finally, we review the current literature on the therapeutic targeting of the molecular mechanisms of invasion.
Collapse
Affiliation(s)
- Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
| | - Matilde Pittarello
- Department of Medicine, Humanitas University School of Medicine, 20089 Rozzano, Italy;
| | - Alessandro Gans
- Department of Neurology, University of Milan, 20122 Milan, Italy;
| | - Bikona Ghosh
- School of Medicine and Surgery, Dhaka Medical College, Dhaka 1000, Bangladesh;
| | - Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Paolo Alimonti
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
14
|
Zhang J, Zhao L, Xuan S, Liu Z, Weng Z, Wang Y, Dai K, Gu A, Zhao P. Global analysis of iron metabolism-related genes identifies potential mechanisms of gliomagenesis and reveals novel targets. CNS Neurosci Ther 2024; 30:e14386. [PMID: 37545464 PMCID: PMC10848104 DOI: 10.1111/cns.14386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/16/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023] Open
Abstract
AIMS This study aimed to investigate key regulators of aberrant iron metabolism in gliomas, and evaluate their effect on biological functions and clinical translational relevance. METHODS We used transcriptomic data from multiple cross-platform glioma cohorts to identify key iron metabolism-related genes (IMRGs) based on a series of bioinformatic and machine learning methods. The associations between IMRGs and prognosis, mesenchymal phenotype, and genomic alterations were analyzed in silico. The performance of the IMRGs-based signature in predicting temozolomide (TMZ) treatment sensitivity was evaluated. In vitro and in vivo experiments were used to explore the biological functions of these key IMRGs. RESULTS HMOX1, LTF, and STEAP3 were identified as the most essential IMRGs in gliomas. The expression levels of these genes were strongly related to clinicopathological and molecular features. The robust IMRG-based gene signature could be used for prognosis prediction. These genes facilitate mesenchymal transformation, driver gene mutations, and oncogenic alterations in gliomas. The gene signature was also associated with TMZ resistance. HMOX1, LTF, and STEAP3 knockdown in glioma cells significantly reduced cell proliferation, colony formation, migration, and malignant invasion. CONCLUSION The study presented a comprehensive view of key regulators underpinning iron metabolism in gliomas and provided new insights into novel therapeutic approaches.
Collapse
Affiliation(s)
- Jiayue Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Liang Zhao
- Department of NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Shurui Xuan
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhiyuan Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public HealthNanjing Medical UniversityNanjingChina
- Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global Health, Nanjing Medical UniversityNanjingChina
| | - Yu Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kexiang Dai
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public HealthNanjing Medical UniversityNanjingChina
- Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global Health, Nanjing Medical UniversityNanjingChina
| | - Peng Zhao
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
15
|
Xiong Z, Raphael I, Olin M, Okada H, Li X, Kohanbash G. Glioblastoma vaccines: past, present, and opportunities. EBioMedicine 2024; 100:104963. [PMID: 38183840 PMCID: PMC10808938 DOI: 10.1016/j.ebiom.2023.104963] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024] Open
Abstract
Glioblastoma (GBM) is one of the most lethal central nervous systems (CNS) tumours in adults. As supplements to standard of care (SOC), various immunotherapies improve the therapeutic effect in other cancers. Among them, tumour vaccines can serve as complementary monotherapy or boost the clinical efficacy with other immunotherapies, such as immune checkpoint blockade (ICB) and chimeric antigen receptor T cells (CAR-T) therapy. Previous studies in GBM therapeutic vaccines have suggested that few neoantigens could be targeted in GBM due to low mutation burden, and single-peptide therapeutic vaccination had limited efficacy in tumour control as monotherapy. Combining diverse antigens, including neoantigens, tumour-associated antigens (TAAs), and pathogen-derived antigens, and optimizing vaccine design or vaccination strategy may help with clinical efficacy improvement. In this review, we discussed current GBM therapeutic vaccine platforms, evaluated and potential antigenic targets, current challenges, and perspective opportunities for efficacy improvement.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Michael Olin
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China.
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
16
|
Younis M, Shaikh S, Shahzad KA, Tan F, Wang Z, Lashari MH. Amrubicin encapsulated PLGA NPs inhibits the PI3K/AKT signaling pathway by activating PTEN and inducing apoptosis in TMZ-resistant Glioma. Biomed Mater 2024; 19:025003. [PMID: 38181444 DOI: 10.1088/1748-605x/ad1bb2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Glioblastoma (GBM) remains a challenging malignancy due to its aggressive nature and the lack of efficacious therapeutic interventions. Nanotechnology-based approaches exhibit promise in GBM treatment; however, the successful translation of these strategies from preclinical models to clinical settings is hindered by inefficient nanoparticle clearance from vital organs. Addressing this concern, we investigated the therapeutic potential of amrubicin (AMR) encapsulated within poly (lactic-co-glycolic acid) nanoparticles (AMR-PLGA-NPs) in combating temozolomide (TMZ) resistant GBM. The study demonstrated that AMR-PLGA-NPs exerted a pronounced inhibitory effect on the cellular viability and migratory capacity of TMZ-resistant GBM cells. Furthermore, these nanoparticles exhibited considerable efficacy in downregulating the PI3K/AKT signaling pathway, thereby inducing apoptosis specifically in TMZ-resistant glioma cells and glioma stem-like cells through the activation of PTEN. Notably,in vivoexperimentation revealed the ability of AMR-PLGA-NPs to traverse biological barriers within murine models. Collectively, these findings underscore the potential therapeutic utility of AMR-PLGA-NPs as a versatile nanoplatform for addressing the formidable challenges posed by GBM, particularly in mitigating drug resistance mechanisms. The study substantiates the stability and safety profile of AMR-PLGA-NPs, positioning them as a promising avenue for combating drug resistance in GBM therapeutics.
Collapse
Affiliation(s)
- Muhammad Younis
- Center for Inflammation, Immunity & Infection, Georgia State University, Institute for Biomedical Sciences, Atlanta, GA, United States of America
| | - Sana Shaikh
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, People's Republic of China
| | - Khawar Ali Shahzad
- Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai 200120, People's Republic of China
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Fei Tan
- Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai 200120, People's Republic of China
- The Royal College of Surgeons in Ireland, Dublin D01F5P2, Ireland
- The Royal College of Surgeons of England, London NW1 0RY, United Kingdom
| | - Zhao Wang
- Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai 200120, People's Republic of China
| | | |
Collapse
|
17
|
Wang J, Zhang J, Zhang Q, Zhang W, Zhang Q, Jin G, Liu F. TS-2021, a third-generation oncolytic adenovirus that carried Ki67 promoter, TGF-β2 5'UTR, and IL-15 against experimental glioblastoma. J Med Virol 2024; 96:e29335. [PMID: 38149454 DOI: 10.1002/jmv.29335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/21/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Oncolytic virotherapy is a promising therapeutic approach for glioblastoma (GBM) treatment, although the outcomes are partially satisfactory. Hence, more effective strategies are needed urgently to modify therapeutic viruses to enhance their efficiency and safety in killing tumor cells and improve the survival rate of GBM patients. This study generated a new-generation oncolytic adenovirus Ad5 KT-E1A-IL-15 (TS-2021) and evaluated its antitumor efficacy. Ex vivo analyses revealed Ki67 and TGF-β2 co-localized in GBM cells. In addition, TS-2021 selectively replicated in GBM cells, which was dependent on the expression of Ki67 and TGF-β2. The immunocompetent mice model of GBM demonstrated the in vivo efficacy of TS-2021 by inhibiting tumor growth and improving survival proficiently. Notably, TS-2021 effectively reduced MMP3 expression by inactivating the MKK4/JNK pathway, thereby reducing tumor invasiveness. Altogether, the findings of the present study highlight that TS-2021 can effectively target GBM cells expressing high levels of Ki67 and TGF-β2, exerting potent antitumor effects. Additionally, it can improve efficacy and suppress tumor invasiveness by inhibiting the MKK4/JNK/MMP3 pathway. Thus our study demonstrates the efficiency of the novel TS-2021 in the mouse model and provides a potential therapeutic option for patients with GBM.
Collapse
Affiliation(s)
- Jialin Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Qing Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Wenxin Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Qi Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| |
Collapse
|
18
|
Vanderlinden A, Jones CG, Myers KN, Rominiyi O, Collis SJ. DNA damage response inhibitors enhance tumour treating fields (TTFields) potency in glioma stem-like cells. Br J Cancer 2023; 129:1829-1840. [PMID: 37777579 PMCID: PMC10667536 DOI: 10.1038/s41416-023-02454-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND High-grade gliomas are primary brain cancers with unacceptably low and persistent survival rates of 10-16 months for WHO grade 4 gliomas over the last 40 years, despite surgical resection and DNA-damaging chemo-radiotherapy. More recently, tumour-treating fields therapy (TTFields) has demonstrated modest survival benefit and been clinically approved in several countries. TTFields is thought to mediate anti-cancer activity by primarily disrupting mitosis. However, recent data suggest that TTFields may also attenuate DNA damage repair and replication fork dynamics, providing a potential platform for therapeutic combinations incorporating standard-of-care treatments and targeted DNA damage response inhibitors (DDRi). METHODS We have used patient-derived, typically resistant, glioma stem-like cells (GSCs) in combination with the previously validated preclinical Inovitro™ TTFields system together with a number of therapeutic DDRi. RESULTS We show that TTFields robustly activates PARP- and ATR-mediated DNA repair (including PARylation and CHK1 phosphorylation, respectively), whilst combining TTFields with PARP1 or ATR inhibitor treatment leads to significantly reduced clonogenic survival. The potency of each of these strategies is further enhanced by radiation treatment, leading to increased amounts of DNA damage with profound delay in DNA damage resolution. CONCLUSION To our knowledge, our findings represent the first report of TTFields applied with clinically approved or in-trial DDRi in GSC models and provides a basis for translational studies toward multimodal DDRi/TTFields-based therapeutic strategies for patients with these currently incurable tumours.
Collapse
Affiliation(s)
- Aurelie Vanderlinden
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK
| | - Callum G Jones
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK
| | - Katie N Myers
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK
| | - Ola Rominiyi
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK.
- Division of Neuroscience, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK.
- Department of Neurosurgery, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, S10 2JF, UK.
| | - Spencer J Collis
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK.
| |
Collapse
|
19
|
Hu LS, D'Angelo F, Weiskittel TM, Caruso FP, Fortin Ensign SP, Blomquist MR, Flick MJ, Wang L, Sereduk CP, Meng-Lin K, De Leon G, Nespodzany A, Urcuyo JC, Gonzales AC, Curtin L, Lewis EM, Singleton KW, Dondlinger T, Anil A, Semmineh NB, Noviello T, Patel RA, Wang P, Wang J, Eschbacher JM, Hawkins-Daarud A, Jackson PR, Grunfeld IS, Elrod C, Mazza GL, McGee SC, Paulson L, Clark-Swanson K, Lassiter-Morris Y, Smith KA, Nakaji P, Bendok BR, Zimmerman RS, Krishna C, Patra DP, Patel NP, Lyons M, Neal M, Donev K, Mrugala MM, Porter AB, Beeman SC, Jensen TR, Schmainda KM, Zhou Y, Baxter LC, Plaisier CL, Li J, Li H, Lasorella A, Quarles CC, Swanson KR, Ceccarelli M, Iavarone A, Tran NL. Integrated molecular and multiparametric MRI mapping of high-grade glioma identifies regional biologic signatures. Nat Commun 2023; 14:6066. [PMID: 37770427 PMCID: PMC10539500 DOI: 10.1038/s41467-023-41559-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Sampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution. Infiltrative NE tumor is alternatively enriched with tumor cells exhibiting neuronal or glycolytic/plurimetabolic cellular states, two principal transcriptomic pathway-based glioma subtypes, which respectively demonstrate abundant private mutations or enrichment in immune cell signatures. These NE phenotypes are non-invasively identified through normalized K2 imaging signatures, which discern cell size heterogeneity on dynamic susceptibility contrast (DSC)-MRI. NE tumor populations predicted to display increased cellular proliferation by mean diffusivity (MD) MRI metrics are uniquely associated with EGFR amplification and CDKN2A homozygous deletion. The biophysical mapping of infiltrative HGG potentially enables the clinical recognition of tumor subpopulations with aggressive molecular signatures driving tumor progression, thereby informing precision medicine targeting.
Collapse
Affiliation(s)
- Leland S Hu
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA.
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| | - Fulvio D'Angelo
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Taylor M Weiskittel
- Mayo Clinic Alix School of Medicine Minnesota, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Francesca P Caruso
- Department of Electrical Engineering and Information Technologies, University of Naples, "Federico II", I-80128, Naples, Italy
- BIOGEM Institute of Molecular Biology and Genetics, I-83031, Ariano Irpino, Italy
| | - Shannon P Fortin Ensign
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Hematology and Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Mylan R Blomquist
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Alix School of Medicine Arizona, Scottsdale, AZ, USA
| | - Matthew J Flick
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Mayo Clinic Alix School of Medicine Arizona, Scottsdale, AZ, USA
| | - Lujia Wang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Christopher P Sereduk
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Kevin Meng-Lin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gustavo De Leon
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Ashley Nespodzany
- Department of Neuroimaging Research, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Javier C Urcuyo
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Ashlyn C Gonzales
- Department of Neuroimaging Research, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Lee Curtin
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Erika M Lewis
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Kyle W Singleton
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | - Aliya Anil
- Department of Neuroimaging Research, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Natenael B Semmineh
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Teresa Noviello
- Department of Electrical Engineering and Information Technologies, University of Naples, "Federico II", I-80128, Naples, Italy
- BIOGEM Institute of Molecular Biology and Genetics, I-83031, Ariano Irpino, Italy
| | - Reyna A Patel
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Panwen Wang
- Quantitative Health Sciences, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Junwen Wang
- Division of Applied Oral Sciences & Community Dental Care, The University of Hong Kong, Hong Kong SAR, China
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | | | - Pamela R Jackson
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Itamar S Grunfeld
- Department of Psychology, Hunter College, The City University of New York, New York, NY, USA
- Department of Psychology, The Graduate Center, The City University of New York, New York, NY, USA
| | | | - Gina L Mazza
- Quantitative Health Sciences, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Sam C McGee
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, USA
| | - Lisa Paulson
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | | | - Kris A Smith
- Department of Neurosurgery, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Peter Nakaji
- Department of Neurosurgery, Banner University Medical Center, University of Arizona, Phoenix, AZ, USA
| | - Bernard R Bendok
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Richard S Zimmerman
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Chandan Krishna
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Devi P Patra
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Naresh P Patel
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Mark Lyons
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Matthew Neal
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Kliment Donev
- Department of Pathology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | | | - Alyx B Porter
- Department of Neurology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Scott C Beeman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Kathleen M Schmainda
- Departments of Biophysics and Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yuxiang Zhou
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Leslie C Baxter
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
- Departments of Psychiatry and Psychology, Mayo Clinic, AZ, USA
| | - Christopher L Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jing Li
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Anna Lasorella
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - C Chad Quarles
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin R Swanson
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Michele Ceccarelli
- Department of Public Health Sciences, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Antonio Iavarone
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Nhan L Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| |
Collapse
|
20
|
Liu G, Bu C, Guo G, Zhang Z, Sheng Z, Deng K, Wu S, Xu S, Bu Y, Gao Y, Wang M, Liu G, Kong L, Li T, Li M, Bu X. Molecular and clonal evolution in vivo reveal a common pathway of distant relapse gliomas. iScience 2023; 26:107528. [PMID: 37649695 PMCID: PMC10462858 DOI: 10.1016/j.isci.2023.107528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/18/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
The evolutionary trajectories of genomic alterations underlying distant recurrence in glioma remain largely unknown. To elucidate glioma evolution, we analyzed the evolutionary trajectories of matched pairs of primary tumors and relapse tumors or tumor in situ fluid (TISF) based on deep whole-genome sequencing data (ctDNA). We found that MMR gene mutations occurred in the late stage in IDH-mutant glioma during gene evolution, which activates multiple signaling pathways and significantly increases distant recurrence potential. The proneural subtype characterized by PDGFRA amplification was likely prone to hypermutation and distant recurrence following treatment. The classical and mesenchymal subtypes tended to progress locally through subclonal reconstruction, trunk genes transformation, and convergence evolution. EGFR and NOTCH signaling pathways and CDNK2A mutation play an important role in promoting tumor local progression. Glioma subtypes displayed distinct preferred evolutionary patterns. ClinicalTrials.gov, NCT05512325.
Collapse
Affiliation(s)
- Guanzheng Liu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Chaojie Bu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Guangzhong Guo
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Zhiyue Zhang
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Zhiyuan Sheng
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Kaiyuan Deng
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Shuang Wu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Sensen Xu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Yage Bu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Yushuai Gao
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Gang Liu
- Department of Center for Clinical Single Cell Biomedicine, Clinical Research Center, Department of Oncology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou 450003, China
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Tianxiao Li
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Ming Li
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Xingyao Bu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| |
Collapse
|
21
|
Hershey BJ, Barozzi S, Orsenigo F, Pompei S, Iannelli F, Kamrad S, Matafora V, Pisati F, Calabrese L, Fragale G, Salvadori G, Martini E, Totaro MG, Magni S, Guan R, Parazzoli D, Maiuri P, Bachi A, Patil KR, Cosentino Lagomarsino M, Havas KM. Clonal cooperation through soluble metabolite exchange facilitates metastatic outgrowth by modulating Allee effect. SCIENCE ADVANCES 2023; 9:eadh4184. [PMID: 37713487 PMCID: PMC10881076 DOI: 10.1126/sciadv.adh4184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023]
Abstract
Cancers feature substantial intratumoral heterogeneity of genetic and phenotypically distinct lineages. Although interactions between coexisting lineages are emerging as a potential contributor to tumor evolution, the extent and nature of these interactions remain largely unknown. We postulated that tumors develop ecological interactions that sustain diversity and facilitate metastasis. Using a combination of fluorescent barcoding, mathematical modeling, metabolic analysis, and in vivo models, we show that the Allee effect, i.e., growth dependency on population size, is a feature of tumor lineages and that cooperative ecological interactions between lineages alleviate the Allee barriers to growth in a model of triple-negative breast cancer. Soluble metabolite exchange formed the basis for these cooperative interactions and catalyzed the establishment of a polyclonal community that displayed enhanced metastatic dissemination and outgrowth in xenograft models. Our results highlight interclonal metabolite exchange as a key modulator of tumor ecology and a contributing factor to overcoming Allee effect-associated growth barriers to metastasis.
Collapse
Affiliation(s)
| | - Sara Barozzi
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Simone Pompei
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Fabio Iannelli
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | | | | | | | | | | | | - Serena Magni
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Rui Guan
- Medical Research Council Toxicology Unit, Cambridge, UK
| | - Dario Parazzoli
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Angela Bachi
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | |
Collapse
|
22
|
García-Montaño LA, Licón-Muñoz Y, Martinez FJ, Keddari YR, Ziemke MK, Chohan MO, Piccirillo SG. Dissecting Intra-tumor Heterogeneity in the Glioblastoma Microenvironment Using Fluorescence-Guided Multiple Sampling. Mol Cancer Res 2023; 21:755-767. [PMID: 37255362 PMCID: PMC10390891 DOI: 10.1158/1541-7786.mcr-23-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/25/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
The treatment of the most aggressive primary brain tumor in adults, glioblastoma (GBM), is challenging due to its heterogeneous nature, invasive potential, and poor response to chemo- and radiotherapy. As a result, GBM inevitably recurs and only a few patients survive 5 years post-diagnosis. GBM is characterized by extensive phenotypic and genetic heterogeneity, creating a diversified genetic landscape and a network of biological interactions between subclones, ultimately promoting tumor growth and therapeutic resistance. This includes spatial and temporal changes in the tumor microenvironment, which influence cellular and molecular programs in GBM and therapeutic responses. However, dissecting phenotypic and genetic heterogeneity at spatial and temporal levels is extremely challenging, and the dynamics of the GBM microenvironment cannot be captured by analysis of a single tumor sample. In this review, we discuss the current research on GBM heterogeneity, in particular, the utility and potential applications of fluorescence-guided multiple sampling to dissect phenotypic and genetic intra-tumor heterogeneity in the GBM microenvironment, identify tumor and non-tumor cell interactions and novel therapeutic targets in areas that are key for tumor growth and recurrence, and improve the molecular classification of GBM.
Collapse
Affiliation(s)
- Leopoldo A. García-Montaño
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Yamhilette Licón-Muñoz
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Frank J. Martinez
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Yasine R. Keddari
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of California, Merced, California
| | - Michael K. Ziemke
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Muhammad O. Chohan
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sara G.M. Piccirillo
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| |
Collapse
|
23
|
Castillo SP, Galvez-Cancino F, Liu J, Pollard SM, Quezada SA, Yuan Y. The tumour ecology of quiescence: Niches across scales of complexity. Semin Cancer Biol 2023; 92:139-149. [PMID: 37037400 DOI: 10.1016/j.semcancer.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 04/08/2023] [Indexed: 04/12/2023]
Abstract
Quiescence is a state of cell cycle arrest, allowing cancer cells to evade anti-proliferative cancer therapies. Quiescent cancer stem cells are thought to be responsible for treatment resistance in glioblastoma, an aggressive brain cancer with poor patient outcomes. However, the regulation of quiescence in glioblastoma cells involves a myriad of intrinsic and extrinsic mechanisms that are not fully understood. In this review, we synthesise the literature on quiescence regulatory mechanisms in the context of glioblastoma and propose an ecological perspective to stemness-like phenotypes anchored to the contemporary concepts of niche theory. From this perspective, the cell cycle regulation is multiscale and multidimensional, where the niche dimensions extend to extrinsic variables in the tumour microenvironment that shape cell fate. Within this conceptual framework and powered by ecological niche modelling, the discovery of microenvironmental variables related to hypoxia and mechanosignalling that modulate proliferative plasticity and intratumor immune activity may open new avenues for therapeutic targeting of emerging biological vulnerabilities in glioblastoma.
Collapse
Affiliation(s)
- Simon P Castillo
- Centre for Evolution and Cancer & Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Felipe Galvez-Cancino
- Immune Regulation and Tumor Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Jiali Liu
- Immune Regulation and Tumor Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine and Cancer Research UK Scotland Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sergio A Quezada
- Immune Regulation and Tumor Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Yinyin Yuan
- Centre for Evolution and Cancer & Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|
24
|
Caravagna G. Mathematical modeling of neuroblastoma associates evolutionary patterns with outcomes. Nat Genet 2023; 55:530-531. [PMID: 36973453 DOI: 10.1038/s41588-023-01358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Affiliation(s)
- Giulio Caravagna
- Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
25
|
Zhang J, Wang J, Li M, Su X, Tian Y, Wang P, Zhou X, Jin G, Liu F. Oncolytic HSV-1 suppresses cell invasion through downregulating Sp1 in experimental glioblastoma. Cell Signal 2023; 103:110581. [PMID: 36572188 DOI: 10.1016/j.cellsig.2022.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Gliomas are highly aggressive intracranial tumors that are difficult to resect and have high lethality and recurrence rates. According to WHO grading criteria, glioblastoma with wild-type IDH1 has a poorer prognosis than WHO grade 4 IDH-mutant astrocytomas. To date, no effective therapeutic strategies have been developed to treat glioblastoma. Clinical trials have shown that herpes simplex virus (HSV)-1 is the safest and most efficacious oncolytic virus against glioblastoma, but the molecular antitumor mechanism of action of HSV-1 has not yet been determined. Deletion of the γ34.5 and ICP47 genes from a strain of HSV-1 yielded the oncolytic virus, oHSV-1, which reduced glioma cell viability, migration, and invasive capacity, as well as the growth of microvilli. Infected cell polypeptide 4 (ICP4) expressed by oHSV-1 was found to suppress the expression of the transcription factor Sp1, reducing the expression of host invasion-related genes. In vivo, oHSV-1 showed significant antitumor effects by suppressing the expression of Sp1 and invasion-associated genes, highly expressed in high-grade glioblastoma tissue specimens. These findings indicate that Sp1 may be a molecular marker predicting the antitumor effects of oHSV-1 in the treatment of glioma and that oHSV-1 suppresses host cell invasion through the ICP4-mediated downregulation of Sp1.
Collapse
Affiliation(s)
- Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Jialin Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Mingxin Li
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Xiaodong Su
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Yifu Tian
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Peiwen Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Xianzhe Zhou
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China.
| |
Collapse
|
26
|
Liu Y, Zhao X, Bian J, Wang G. Feature selection combined with top-down and bottom-up strategies for survival analysis: A case of prognostic prediction in glioblastoma. Comput Biol Med 2023; 153:106486. [PMID: 36603438 DOI: 10.1016/j.compbiomed.2022.106486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
Over the last decades, molecular signatures have attracted extensive attention in cancer research. However, most of the reported biomarkers show a weak distinguishing ability in predicting the survival risks of patients. Actually, univariate analysis is generally considered in regression analysis, which makes the existing statistical methods ineffective. Furthermore, there is too much human involvement in the ways of classifying patients with high and low risk. Last but not least, the participation of therapy after conservative surgery also makes the survival analysis more complex. In order to solve these problems, we propose a solid method of feature selection which combines top-down and bottom-up strategies. The top-down strategy is to randomly extract some genes each time and select candidate genes through cumulative voting. The bottom-up strategy is to fully enumerate the selected genes and to use a clustering algorithm to classify samples. We analyzed glioblastoma data from the Cancer Genome Atlas (TCGA) and got candidate signatures. The results of simulation data, as well as an independent test set the Chinese Glioma Genome Atlas (CGGA), verified the reliability of the method and validity of the selected features.
Collapse
Affiliation(s)
- Yanan Liu
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Xudong Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China.
| | - Jilong Bian
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Guohua Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
27
|
Abbott RC, Iliopoulos M, Watson KA, Arcucci V, Go M, Hughes-Parry HE, Smith P, Call MJ, Cross RS, Jenkins MR. Human EGFRvIII chimeric antigen receptor T cells demonstrate favorable safety profile and curative responses in orthotopic glioblastoma. Clin Transl Immunology 2023; 12:e1440. [PMID: 36890859 PMCID: PMC9986233 DOI: 10.1002/cti2.1440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
Objectives Glioblastoma is a highly aggressive and fatal brain malignancy, and effective targeted therapies are required. The combination of standard treatments including surgery, chemotherapy and radiotherapy is not curative. Chimeric antigen receptor (CAR) T cells are known to cross the blood-brain barrier, mediating antitumor responses. A tumor-expressed deletion mutant of the epidermal growth factor receptor (EGFRvIII) is a robust CAR T cell target in glioblastoma. Here, we show our de novo generated, high-affinity EGFRvIII-specific CAR; GCT02, demonstrating curative efficacy in human orthotopic glioblastoma models. Methods The GCT02 binding epitope was predicted using Deep Mutational Scanning (DMS). GCT02 CAR T cell cytotoxicity was investigated in three glioblastoma models in vitro using the IncuCyte platform, and cytokine secretion with a cytometric bead array. GCT02 in vivo functionality was demonstrated in two NSG orthotopic glioblastoma models. The specificity profile was generated by measuring T cell degranulation in response to coculture with primary human healthy cells. Results The GCT02 binding location was predicted to be located at a shared region of EGFR and EGFRvIII; however, the in vitro functionality remained exquisitely EGFRvIII specific. A single CAR T cell infusion generated curative responses in two orthotopic models of human glioblastoma in NSG mice. The safety analysis further validated the specificity of GCT02 for mutant-expressing cells. Conclusion This study demonstrates the preclinical functionality of a highly specific CAR targeting EGFRvIII on human cells. This CAR could be an effective treatment for glioblastoma and warrants future clinical investigation.
Collapse
Affiliation(s)
- Rebecca C Abbott
- Immunology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,The Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Melinda Iliopoulos
- Immunology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Katherine A Watson
- Immunology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Valeria Arcucci
- Immunology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Margareta Go
- Structural Biology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Hannah E Hughes-Parry
- Immunology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,The Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Pete Smith
- Myrio Therapeutics Blackburn North, Melbourne VIC Australia
| | - Melissa J Call
- The Department of Medical Biology University of Melbourne Parkville VIC Australia.,Structural Biology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Ryan S Cross
- Immunology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Misty R Jenkins
- Immunology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,The Department of Medical Biology University of Melbourne Parkville VIC Australia.,Department of Biochemistry and Chemistry Institute for Molecular Science, La Trobe University Bundoora VIC Australia
| |
Collapse
|
28
|
Yang K, Ma Y, Chen G, Zeng S, Guo T, Yang Z. Comparative analysis of the prognosis of external beam radiation therapy (EBRT) and EBRT plus brachytherapy for glioblastoma multiforme: a SEER population-based study. Radiat Oncol 2022; 17:174. [PMID: 36307810 PMCID: PMC9617429 DOI: 10.1186/s13014-022-02141-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Radiotherapy is one of the effective ways to treat glioblastoma multiforme (GBM). We aimed to explore the prognostic difference between external beam radiotherapy (EBRT) and EBRT combined with brachytherapy (EBRT + BT). Methods The GBM patients from the Surveillance, Epidemiology, and End Results (SEER) database were divided into two cohorts: the EBRT cohort and the EBRT + BT cohort. Kaplan–Meier (KM) analysis and Cox proportional hazards regression were used to determine the underlying risk factors for overall survival (OS) and disease-specific survival (DSS). And the competing risk model and propensity score matching (PSM) was adopted to eliminate potential biases. We also conducted subgroup analyses and interaction tests as well. Results There was a total of 41,010 eligible GBM patients. The median OS (15 months) and DSS (17 months) of the EBRT + BT cohort were significantly longer than that of the EBRT cohort (OS = 11 months, DSS = 12 months). After using the competing risk model and PSM, we found that only advanced age was the independent risk factor, while only EBRT + BT was the independent protective factor (HR = 0.84, 95%CI [0.74,0.96], p = 0.01). EBRT had universal effects in the treatment of GBM, and EBRT + BT had a more pronounced protective effect in the subgroups of males (HR = 0.81, 95%CI [0.68,0.97], p = 0.02) and local excision (HR = 0.82, 95%CI [0.34,0.95], p = 0.01). Conclusions The therapeutical effect of EBRT + BT treatment is better than that of EBRT alone, especially in male patients or patients who have undergone local resection. Our findings may provide novel evidence to develop a better radiotherapy strategy for GBM patients.
Collapse
Affiliation(s)
- Kai Yang
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, China
| | - Yan Ma
- Department of Gynecology and Obstetrics, Xi Jing Hospital, Air Force Medical University, Xi'an, China
| | - Guo Chen
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Air Force Medical University, Xi'an, China
| | - Shaojie Zeng
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, China
| | - Ting Guo
- Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Zelong Yang
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
29
|
Yoo J, Yoon SJ, Kim KH, Jung IH, Lim SH, Kim W, Yoon HI, Kim SH, Sung KS, Roh TH, Moon JH, Park HH, Kim EH, Suh CO, Kang SG, Chang JH. Patterns of recurrence according to the extent of resection in patients with IDH-wild-type glioblastoma: a retrospective study. J Neurosurg 2022; 137:533-543. [PMID: 34972087 DOI: 10.3171/2021.10.jns211491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/06/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In glioblastoma (GBM) patients, controlling the microenvironment around the tumor using various treatment modalities, including surgical intervention, is essential in determining the outcome of treatment. This study was conducted to elucidate whether recurrence patterns differ according to the extent of resection (EOR) and whether this difference affects prognosis. METHODS This single-center study included 358 eligible patients with histologically confirmed isocitrate dehydrogenase (IDH)-wild-type GBM from November 1, 2005, to December 31, 2018. Patients were assigned to one of three separate groups according to EOR: supratotal resection (SupTR), gross-total resection (GTR), and subtotal resection (STR) groups. The patterns of recurrence were classified as local, marginal, and distant based on the range of radiation. The relationship between EOR and recurrence pattern was statistically analyzed. RESULTS Observed tumor recurrence rates for each group were as follows: SupTR group, 63.4%; GTR group, 75.3%; and STR group, 80.5% (p = 0.072). Statistically significant differences in patterns of recurrences among groups were observed with respect to local recurrence (SupTR, 57.7%; GTR, 76.0%; STR, 82.8%; p = 0.036) and distant recurrence (SupTR, 50.0%; GTR, 30.1%; STR, 23.2%; p = 0.028). Marginal recurrence showed no statistical difference between groups. Both overall survival and progression-free survival were significantly increased in the SupTR group compared with the STR and GTR groups (p < 0.0001). CONCLUSIONS In this study, the authors investigated the association between EOR and patterns of recurrence in patients with IDH-wild-type GBM. The findings not only show that recurrence patterns differ according to EOR but also provide clinical evidence supporting the hypothesized mechanism by which distant recurrence occurs.
Collapse
Affiliation(s)
- Jihwan Yoo
- 1Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine
- 2Yonsei University College of Medicine
- 3Department of Neurosurgery, Brain Tumor Center, Gangnam Severance Hospital, Yonsei University College of Medicine
| | - Seon-Jin Yoon
- 1Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine
- 4Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine
| | - Kyung Hwan Kim
- 5Department of Radiation Oncology, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine
| | - In-Ho Jung
- 1Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine
| | - Seung Hoon Lim
- 1Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine
| | - Woohyun Kim
- 1Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine
| | - Hong In Yoon
- 5Department of Radiation Oncology, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine
| | - Se Hoon Kim
- 6Department of Pathology, Yonsei University College of Medicine, Seoul
| | - Kyoung Su Sung
- 7Department of Neurosurgery, Dong-A University College of Medicine, Busan
| | - Tae Hoon Roh
- 8Department of Neurosurgery, Ajou University School of Medicine, Suwon
| | - Ju Hyung Moon
- 1Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine
| | - Hun Ho Park
- 3Department of Neurosurgery, Brain Tumor Center, Gangnam Severance Hospital, Yonsei University College of Medicine
| | - Eui Hyun Kim
- 1Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine
| | - Chang-Ok Suh
- 9Department of Radiation Oncology, CHA Bundang Medical Center, CHA University College of Medicine, Bundang; and
| | - Seok-Gu Kang
- 1Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine
- 10Department of Medical Science, Yonsei University Graduate School, Seoul, Republic of Korea
| | - Jong Hee Chang
- 1Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine
| |
Collapse
|
30
|
Rominiyi O, Collis SJ. DDRugging glioblastoma: understanding and targeting the DNA damage response to improve future therapies. Mol Oncol 2022; 16:11-41. [PMID: 34036721 PMCID: PMC8732357 DOI: 10.1002/1878-0261.13020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most frequently diagnosed type of primary brain tumour in adults. These aggressive tumours are characterised by inherent treatment resistance and disease progression, contributing to ~ 190 000 brain tumour-related deaths globally each year. Current therapeutic interventions consist of surgical resection followed by radiotherapy and temozolomide chemotherapy, but average survival is typically around 1 year, with < 10% of patients surviving more than 5 years. Recently, a fourth treatment modality of intermediate-frequency low-intensity electric fields [called tumour-treating fields (TTFields)] was clinically approved for glioblastoma in some countries after it was found to increase median overall survival rates by ~ 5 months in a phase III randomised clinical trial. However, beyond these treatments, attempts to establish more effective therapies have yielded little improvement in survival for patients over the last 50 years. This is in contrast to many other types of cancer and highlights glioblastoma as a recognised tumour of unmet clinical need. Previous work has revealed that glioblastomas contain stem cell-like subpopulations that exhibit heightened expression of DNA damage response (DDR) factors, contributing to therapy resistance and disease relapse. Given that radiotherapy, chemotherapy and TTFields-based therapies all impact DDR mechanisms, this Review will focus on our current knowledge of the role of the DDR in glioblastoma biology and treatment. We also discuss the potential of effective multimodal targeting of the DDR combined with standard-of-care therapies, as well as emerging therapeutic targets, in providing much-needed improvements in survival rates for patients.
Collapse
Affiliation(s)
- Ola Rominiyi
- Weston Park Cancer CentreSheffieldUK
- Department of Oncology & MetabolismThe University of Sheffield Medical SchoolUK
- Department of NeurosurgeryRoyal Hallamshire HospitalSheffield Teaching Hospitals NHS Foundation TrustUK
| | - Spencer J. Collis
- Weston Park Cancer CentreSheffieldUK
- Department of Oncology & MetabolismThe University of Sheffield Medical SchoolUK
- Sheffield Institute for Nucleic Acids (SInFoNiA)University of SheffieldUK
| |
Collapse
|
31
|
Yabo YA, Niclou SP, Golebiewska A. Cancer cell heterogeneity and plasticity: A paradigm shift in glioblastoma. Neuro Oncol 2021; 24:669-682. [PMID: 34932099 PMCID: PMC9071273 DOI: 10.1093/neuonc/noab269] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phenotypic plasticity has emerged as a major contributor to intra-tumoral heterogeneity and treatment resistance in cancer. Increasing evidence shows that glioblastoma (GBM) cells display prominent intrinsic plasticity and reversibly adapt to dynamic microenvironmental conditions. Limited genetic evolution at recurrence further suggests that resistance mechanisms also largely operate at the phenotypic level. Here we review recent literature underpinning the role of GBM plasticity in creating gradients of heterogeneous cells including those that carry cancer stem cell (CSC) properties. A historical perspective from the hierarchical to the nonhierarchical concept of CSCs towards the recent appreciation of GBM plasticity is provided. Cellular states interact dynamically with each other and with the surrounding brain to shape a flexible tumor ecosystem, which enables swift adaptation to external pressure including treatment. We present the key components regulating intra-tumoral phenotypic heterogeneity and the equilibrium of phenotypic states, including genetic, epigenetic, and microenvironmental factors. We further discuss plasticity in the context of intrinsic tumor resistance, where a variable balance between preexisting resistant cells and adaptive persisters leads to reversible adaptation upon treatment. Innovative efforts targeting regulators of plasticity and mechanisms of state transitions towards treatment-resistant states are needed to restrict the adaptive capacities of GBM.
Collapse
Affiliation(s)
- Yahaya A Yabo
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anna Golebiewska
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
32
|
Comba A, Faisal SM, Varela ML, Hollon T, Al-Holou WN, Umemura Y, Nunez FJ, Motsch S, Castro MG, Lowenstein PR. Uncovering Spatiotemporal Heterogeneity of High-Grade Gliomas: From Disease Biology to Therapeutic Implications. Front Oncol 2021; 11:703764. [PMID: 34422657 PMCID: PMC8377724 DOI: 10.3389/fonc.2021.703764] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastomas (GBM) are the most common and aggressive tumors of the central nervous system. Rapid tumor growth and diffuse infiltration into healthy brain tissue, along with high intratumoral heterogeneity, challenge therapeutic efficacy and prognosis. A better understanding of spatiotemporal tumor heterogeneity at the histological, cellular, molecular, and dynamic levels would accelerate the development of novel treatments for this devastating brain cancer. Histologically, GBM is characterized by nuclear atypia, cellular pleomorphism, necrosis, microvascular proliferation, and pseudopalisades. At the cellular level, the glioma microenvironment comprises a heterogeneous landscape of cell populations, including tumor cells, non-transformed/reactive glial and neural cells, immune cells, mesenchymal cells, and stem cells, which support tumor growth and invasion through complex network crosstalk. Genomic and transcriptomic analyses of gliomas have revealed significant inter and intratumoral heterogeneity and insights into their molecular pathogenesis. Moreover, recent evidence suggests that diverse dynamics of collective motion patterns exist in glioma tumors, which correlate with histological features. We hypothesize that glioma heterogeneity is not stochastic, but rather arises from organized and dynamic attributes, which favor glioma malignancy and influences treatment regimens. This review highlights the importance of an integrative approach of glioma histopathological features, single-cell and spatially resolved transcriptomic and cellular dynamics to understand tumor heterogeneity and maximize therapeutic effects.
Collapse
Affiliation(s)
- Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Todd Hollon
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yoshie Umemura
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Felipe J Nunez
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Sebastien Motsch
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, United States
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
33
|
Brognaro E. The inverse paradigm and the ancestral cell of IDH-wildtype glioblastoma. Clin Transl Oncol 2021; 24:13-23. [PMID: 34152549 DOI: 10.1007/s12094-021-02663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 11/30/2022]
Abstract
Rethinking IDH-wildtype glioblastoma through its unique features can help researchers find innovative and effective treatments. It is currently emerging that, after decades of therapeutic impasse, some traditional concepts regarding IDH-wildtype glioblastoma need to be supplemented and updated to overcome therapeutic resistance. Indeed, multiple clinical aspects and recent indirect and direct experimental data are providing evidence that the supratentorial brain parenchyma becomes entirely and quiescently micro-infiltrated long before primary tumor bulk growth. Furthermore, they are indicating that the known micro-infiltration that occurs during the IDH-wildtype glioblastoma growth and evolution is not at the origin of distant relapses. It follows that the ubiquitous supratentorial brain parenchyma micro-infiltration as a source for the development of widespread distant recurrences is actually due to the silent stage that precedes tumor growth rather than to the latter. All this implies that, in addition to the heterogeneity of the primary bulk, there is a second crucial cause of therapeutic resistance that has never hitherto been identified and challenged. In this regard, the ancestral founder cancer stem cell (CSC) appears as the key cell that can link the two causes of resistance.
Collapse
Affiliation(s)
- Enrico Brognaro
- Department of Neurosurgery, S. Maria della Misericordia Hospital, Viale Tre Martiri, 45100, Rovigo, Italy.
| |
Collapse
|
34
|
Li K, Song H, Wang C, Lin Z, Yi G, Yang R, Ni B, Wang Z, Zhu T, Zhang W, Wang X, Liu Z, Huang G, Liu Y. The Ependymal Region Prevents Glioblastoma From Penetrating Into the Ventricle via a Nonmechanical Force. Front Neuroanat 2021; 15:679405. [PMID: 34163334 PMCID: PMC8215287 DOI: 10.3389/fnana.2021.679405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Background Intraventricular penetration is rare in glioblastoma (GBM). Whether the ependymal region including the ependyma and subventricular zone (SVZ) can prevent GBM invasion remains unclear. Methods Magnetic resonance imaging (MRI) and haematoxylin–eosin (HE) staining were performed to evaluate the size and anatomical locations of GBM. Binary logistic regression analysis was used to assess the correlation between tumor-ependyma contact, ventricle penetration and clinical characteristics. Cell migration and invasion were assessed via Transwell assays and an orthotopic transplantation model. Results Among 357 patients with GBM, the majority (66%) showed ependymal region contact, and 34 patients (10%) showed ventricle penetration of GBM. GBM cells were spread along the ependyma in the orthotopic transplantation model. The longest tumor diameter was an independent risk factor for GBM-ependymal region contact, as demonstrated by univariate (OR = 1.706, p < 0.0001) and multivariate logistic regression analyses (OR = 1.767, p < 0.0001), but was not associated with ventricle penetration. Cerebrospinal fluid (CSF) could significantly induce tumor cell migration (p < 0.0001), and GBM could grow in CSF. Compared with those from the cortex, cells from the ependymal region attenuated the invasion of C6 whether cocultured with C6 or mixed with Matrigel (p = 0.0054 and p = 0.0488). Immunofluorescence analysis shows a thin gap with GFAP expression delimiting the tumor and ependymal region. Conclusion The ependymal region might restrict GBM cells from entering the ventricle via a non-mechanical force. Further studies in this area may reveal mechanisms that occur in GBM patients and may enable the design of new therapeutic strategies.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Haimin Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaohu Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiying Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Runwei Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bowen Ni
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ziyu Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Taichen Zhu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanghao Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiran Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhifeng Liu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yawei Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Abstract
Tumour evolution is a complex interplay between the acquisition of somatic (epi)genomic changes in tumour cells and the phenotypic consequences they cause, all in the context of a changing microenvironment. Single-cell sequencing offers a window into this dynamic process at the ultimate resolution of individual cells. In this review, we discuss the transformative insight offered by single-cell sequencing technologies for understanding tumour evolution.
Collapse
Affiliation(s)
- Maximilian Mossner
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ann-Marie C Baker
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
36
|
Multiregional Sequencing of IDH-WT Glioblastoma Reveals High Genetic Heterogeneity and a Dynamic Evolutionary History. Cancers (Basel) 2021; 13:cancers13092044. [PMID: 33922652 PMCID: PMC8122908 DOI: 10.3390/cancers13092044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Glioblastoma is the most common and aggressive primary brain malignancy in adults. In addition to extensive inter-patient heterogeneity, glioblastoma shows intra-tumor extensive cellular and molecular heterogeneity, both spatially and temporally. This heterogeneity is one of the main reasons for the poor prognosis and overall survival. Moreover, it raises the important question of whether the molecular characterization of a single biopsy sample, as performed in standard diagnostics, actually represents the entire lesion. In this study, we sequenced the whole exome of nine spatially different cancer regions of three primary glioblastomas. We characterized their mutational profiles and copy number alterations, with implications for our understanding of tumor biology in relation to clonal architecture and evolutionary dynamics, as well as therapeutically relevant alterations. Abstract Glioblastoma is one of the most common and lethal primary neoplasms of the brain. Patient survival has not improved significantly over the past three decades and the patient median survival is just over one year. Tumor heterogeneity is thought to be a major determinant of therapeutic failure and a major reason for poor overall survival. This work aims to comprehensively define intra- and inter-tumor heterogeneity by mapping the genomic and mutational landscape of multiple areas of three primary IDH wild-type (IDH-WT) glioblastomas. Using whole exome sequencing, we explored how copy number variation, chromosomal and single loci amplifications/deletions, and mutational burden are spatially distributed across nine different tumor regions. The results show that all tumors exhibit a different signature despite the same diagnosis. Above all, a high inter-tumor heterogeneity emerges. The evolutionary dynamics of all identified mutations within each region underline the questionable value of a single biopsy and thus the therapeutic approach for the patient. Multiregional collection and subsequent sequencing are essential to try to address the clinical challenge of precision medicine. Especially in glioblastoma, this approach could provide powerful support to pathologists and oncologists in evaluating the diagnosis and defining the best treatment option.
Collapse
|
37
|
Bailey C, Black JRM, Reading JL, Litchfield K, Turajlic S, McGranahan N, Jamal-Hanjani M, Swanton C. Tracking Cancer Evolution through the Disease Course. Cancer Discov 2021; 11:916-932. [PMID: 33811124 PMCID: PMC7611362 DOI: 10.1158/2159-8290.cd-20-1559] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
During cancer evolution, constituent tumor cells compete under dynamic selection pressures. Phenotypic variation can be observed as intratumor heterogeneity, which is propagated by genome instability leading to mutations, somatic copy-number alterations, and epigenomic changes. TRACERx was set up in 2014 to observe the relationship between intratumor heterogeneity and patient outcome. By integrating multiregion sequencing of primary tumors with longitudinal sampling of a prospectively recruited patient cohort, cancer evolution can be tracked from early- to late-stage disease and through therapy. Here we review some of the key features of the studies and look to the future of the field. SIGNIFICANCE: Cancers evolve and adapt to environmental challenges such as immune surveillance and treatment pressures. The TRACERx studies track cancer evolution in a clinical setting, through primary disease to recurrence. Through multiregion and longitudinal sampling, evolutionary processes have been detailed in the tumor and the immune microenvironment in non-small cell lung cancer and clear-cell renal cell carcinoma. TRACERx has revealed the potential therapeutic utility of targeting clonal neoantigens and ctDNA detection in the adjuvant setting as a minimal residual disease detection tool primed for translation into clinical trials.
Collapse
Affiliation(s)
- Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - James R M Black
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London, UK
| | - James L Reading
- Research Department of Haematology, University College London Cancer Institute, University College London, London, UK
| | - Kevin Litchfield
- The Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, University College London Cancer Institute, University College London, London, UK
| | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London, UK
- University College London Hospitals NHS Trust, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London, UK
- University College London Hospitals NHS Trust, London, UK
| |
Collapse
|
38
|
Sheng Z, Yu J, Deng K, Andrade-Barazarte H, Zemmar A, Li S, Li N, Yan Z, Chen Z, Sun Y, Hernesniemi J, Bu X. Characterizing the Genomic Landscape of Brain Glioma With Circulating Tumor DNA From Tumor In Situ Fluid. Front Oncol 2021; 11:584988. [PMID: 33868989 PMCID: PMC8045748 DOI: 10.3389/fonc.2021.584988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor in situ fluid (TISF) refers to the fluid at the local surgical cavity. We evaluated the feasibility of TISF-derived circulating tumor DNA (ctDNA) characterizing the genomic landscape for glioma. This retrospective study included TISF and tumor samples from 10 patients with glioma, we extracted cell-free DNA (cfDNA) from the TISF and then performed deep sequencing on that. And we compared genomic alterations between TISF and tumor tissue. Results showed that the concentration of cfDNA fragments from the patients for TISF ranged from 7.2 to 1,397 ng/ml. At least one tumor-specific mutation was identified in all 10 patients (100%). Further analysis of TISF ctDNA revealed a broad spectrum of genetic mutations, which have been reported to have clinical relevance. The analysis of concordance between TISF and tumor tissue reflected the spatiotemporal heterogeneity of glioma. Collectively, TISF ctDNA was a powerfully potential source for characterizing the genomic landscape of glioma, which provided new possibilities for precision medicine in patients with glioma.
Collapse
Affiliation(s)
- Zhiyuan Sheng
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jinliang Yu
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Kaiyuan Deng
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hugo Andrade-Barazarte
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ajmal Zemmar
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Sijia Li
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nianxuan Li
- School of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhaoyue Yan
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhongcan Chen
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yong Sun
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Juha Hernesniemi
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xingyao Bu
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
39
|
Putavet DA, de Keizer PLJ. Residual Disease in Glioma Recurrence: A Dangerous Liaison with Senescence. Cancers (Basel) 2021; 13:1560. [PMID: 33805316 PMCID: PMC8038015 DOI: 10.3390/cancers13071560] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
With a dismally low median survival of less than two years after diagnosis, Glioblastoma (GBM) is the most lethal type of brain cancer. The standard-of-care of surgical resection, followed by DNA-damaging chemo-/radiotherapy, is often non-curative. In part, this is because individual cells close to the resection border remain alive and eventually undergo renewed proliferation. These residual, therapy-resistant cells lead to rapid recurrence, against which no effective treatment exists to date. Thus, new experimental approaches need to be developed against residual disease to prevent GBM survival and recurrence. Cellular senescence is an attractive area for the development of such new approaches. Senescence can occur in healthy cells when they are irreparably damaged. Senescent cells develop a chronic secretory phenotype that is generally considered pro-tumorigenic and pro-migratory. Age is a negative prognostic factor for GBM stage, and, with age, senescence steadily increases. Moreover, chemo-/radiotherapy can provide an additional increase in senescence close to the tumor. In light of this, we will review the importance of senescence in the tumor-supportive brain parenchyma, focusing on the invasion and growth of GBM in residual disease. We will propose a future direction on the application of anti-senescence therapies against recurrent GBM.
Collapse
Affiliation(s)
| | - Peter L. J. de Keizer
- Center for Molecular Medicine, Division LAB, University Medical Center Utrecht, 3584CG Utrecht, The Netherlands;
| |
Collapse
|
40
|
Lah TT, Novak M, Pena Almidon MA, Marinelli O, Žvar Baškovič B, Majc B, Mlinar M, Bošnjak R, Breznik B, Zomer R, Nabissi M. Cannabigerol Is a Potential Therapeutic Agent in a Novel Combined Therapy for Glioblastoma. Cells 2021; 10:cells10020340. [PMID: 33562819 PMCID: PMC7914500 DOI: 10.3390/cells10020340] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Among primary brain tumours, glioblastoma is the most aggressive. As early relapses are unavoidable despite standard-of-care treatment, the cannabinoids delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) alone or in combination have been suggested as a combined treatment strategy for glioblastomas. However, the known psychoactive effects of THC hamper its medical applications in these patients with potential cognitive impairment due to the progression of the disease. Therefore, nontoxic cannabigerol (CBG), being recently shown to exhibit anti-tumour properties in some carcinomas, is assayed here for the first time in glioblastoma with the aim to replace THC. We indeed found CBG to effectively impair the relevant hallmarks of glioblastoma progression, with comparable killing effects to THC and in addition inhibiting the invasion of glioblastoma cells. Moreover, CBG can destroy therapy-resistant glioblastoma stem cells, which are the root of cancer development and extremely resistant to various other treatments of this lethal cancer. CBG should present a new yet unexplored adjuvant treatment strategy of glioblastoma. Abstract Glioblastoma is the most aggressive cancer among primary brain tumours. As with other cancers, the incidence of glioblastoma is increasing; despite modern therapies, the overall mean survival of patients post-diagnosis averages around 16 months, a figure that has not changed in many years. Cannabigerol (CBG) has only recently been reported to prevent the progression of certain carcinomas and has not yet been studied in glioblastoma. Here, we have compared the cytotoxic, apoptotic, and anti-invasive effects of the purified natural cannabinoid CBG together with CBD and THC on established differentiated glioblastoma tumour cells and glioblastoma stem cells. CBG and THC reduced the viability of both types of cells to a similar extent, whereas combining CBD with CBG was more efficient than with THC. CBD and CBG, both alone and in combination, induced caspase-dependent cell apoptosis, and there was no additive THC effect. Of note, CBG inhibited glioblastoma invasion in a similar manner to CBD and the chemotherapeutic temozolomide. We have demonstrated that THC has little added value in combined-cannabinoid glioblastoma treatment, suggesting that this psychotropic cannabinoid should be replaced with CBG in future clinical studies of glioblastoma therapy.
Collapse
Affiliation(s)
- Tamara T. Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.Ž.B.); (B.M.); (M.M.); (B.B.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-41-651-629
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.Ž.B.); (B.M.); (M.M.); (B.B.)
| | - Milagros A. Pena Almidon
- School of Pharmacy, Experimental Medicine Section, University of Camerino, 62032 Camerino, Italy; (M.A.P.A.); (O.M.); (M.N.)
| | - Oliviero Marinelli
- School of Pharmacy, Experimental Medicine Section, University of Camerino, 62032 Camerino, Italy; (M.A.P.A.); (O.M.); (M.N.)
| | - Barbara Žvar Baškovič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.Ž.B.); (B.M.); (M.M.); (B.B.)
| | - Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.Ž.B.); (B.M.); (M.M.); (B.B.)
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Mateja Mlinar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.Ž.B.); (B.M.); (M.M.); (B.B.)
| | - Roman Bošnjak
- Department of Neurosurgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.Ž.B.); (B.M.); (M.M.); (B.B.)
| | - Roby Zomer
- MGC Pharmaceuticals d.o.o., 1000 Ljubljana, Slovenia;
| | - Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, 62032 Camerino, Italy; (M.A.P.A.); (O.M.); (M.N.)
| |
Collapse
|
41
|
Molotkov A, Doubrovin M, Bhatt N, Hsu FC, Beserra A, Chopra R, Mintz A. 3D optical/CT as a preclinical companion imaging platform for glioblastoma drug development. Drug Deliv 2020; 27:1686-1694. [PMID: 33263448 PMCID: PMC7717859 DOI: 10.1080/10717544.2020.1833381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023] Open
Abstract
Multimodality 3D Optical Imaging (OI)/CT has the potential to play a major role in drug development for glioblastomas (GBM), as it is an accessible preclinical method. To demonstrate the potential of 3D OI/CT to visualize orthotopic GBM implantation, we labeled GBM cells with Cy7 and imaged their location using 3D OI/CT. To confirm the accuracy of the spatial localization and demonstrate the ability to image locoregionally delivered therapies, we labeled mouse albumin with Cy7 (Cy7ALB) and delivered it via locoregional infusion 1 mm or 3 mm into the brain and demonstrated correlation of signal between the 3D OI/CT and post necropsy brain slices. In addition, we demonstrated the potential of systemically delivered Cy7ALB contrast to detect blood-brain barrier (BBB) permeability caused by orthotopic GBMs using 3D OI/CT. We also tested the potential of 3D OI/CT to assess focal BBB permeability induced by high intensity focused ultrasound (HIFU), a methodology being used in clinical trials to noninvasively permeabilize the BBB for systemic therapeutic delivery to GBM. We demonstrated the ability of systemic Cy7ALB contrast together with 3D OI/CT to accurately assess real-time HIFU-induced BBB permeability, which correlated to post necropsy imaging of brains. Furthermore, we demonstrated that 3D OI/CT can also image the therapeutic distribution of a Cy7-labeled anti-PD-1 antibody, a prototype translational antibody therapy. We successfully imaged real-time antibody distribution after HIFU-induced BBB permeability, which correlated with post necropsy Cy7 signal and translational PET imaging after injection of [89Zr] anti-PD-1 antibody. Thus, we demonstrated the broad potential of using 3D OI/CT as an accessible preclinical tool to develop anti-GBM therapies.
Collapse
Affiliation(s)
- Andrei Molotkov
- Columbia University PET Center, Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Mikhail Doubrovin
- Columbia University PET Center, Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Nikunj Bhatt
- Columbia University PET Center, Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amanda Beserra
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rajiv Chopra
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Akiva Mintz
- Columbia University PET Center, Department of Radiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
42
|
Caravagna G, Sanguinetti G, Graham TA, Sottoriva A. The MOBSTER R package for tumour subclonal deconvolution from bulk DNA whole-genome sequencing data. BMC Bioinformatics 2020; 21:531. [PMID: 33203356 PMCID: PMC7672894 DOI: 10.1186/s12859-020-03863-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/04/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The large-scale availability of whole-genome sequencing profiles from bulk DNA sequencing of cancer tissues is fueling the application of evolutionary theory to cancer. From a bulk biopsy, subclonal deconvolution methods are used to determine the composition of cancer subpopulations in the biopsy sample, a fundamental step to determine clonal expansions and their evolutionary trajectories. RESULTS In a recent work we have developed a new model-based approach to carry out subclonal deconvolution from the site frequency spectrum of somatic mutations. This new method integrates, for the first time, an explicit model for neutral evolutionary forces that participate in clonal expansions; in that work we have also shown that our method improves largely over competing data-driven methods. In this Software paper we present mobster, an open source R package built around our new deconvolution approach, which provides several functions to plot data and fit models, assess their confidence and compute further evolutionary analyses that relate to subclonal deconvolution. CONCLUSIONS We present the mobster package for tumour subclonal deconvolution from bulk sequencing, the first approach to integrate Machine Learning and Population Genetics which can explicitly model co-existing neutral and positive selection in cancer. We showcase the analysis of two datasets, one simulated and one from a breast cancer patient, and overview all package functionalities.
Collapse
Affiliation(s)
- Giulio Caravagna
- University of Trieste, Trieste, Italy.
- The Institute of Cancer Research, London, UK.
| | | | - Trevor A Graham
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | |
Collapse
|
43
|
Kimmel GJ, Dane M, Heiser LM, Altrock PM, Andor N. Integrating Mathematical Modeling with High-Throughput Imaging Explains How Polyploid Populations Behave in Nutrient-Sparse Environments. Cancer Res 2020; 80:5109-5120. [PMID: 32938640 DOI: 10.1158/0008-5472.can-20-1231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/30/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
Breast cancer progresses in a multistep process from primary tumor growth and stroma invasion to metastasis. Nutrient-limiting environments promote chemotaxis with aggressive morphologies characteristic of invasion. It is unknown how coexisting cells differ in their response to nutrient limitations and how this impacts invasion of the metapopulation as a whole. In this study, we integrate mathematical modeling with microenvironmental perturbation data to investigate invasion in nutrient-limiting environments inhabited by one or two cancer cell subpopulations. Subpopulations were defined by their energy efficiency and chemotactic ability. Invasion distance traveled by a homogeneous population was estimated. For heterogeneous populations, results suggest that an imbalance between nutrient efficacy and chemotactic superiority accelerates invasion. Such imbalance will spatially segregate the two populations and only one type will dominate at the invasion front. Only if these two phenotypes are balanced, the two subpopulations compete for the same space, which decelerates invasion. We investigate ploidy as a candidate biomarker of this phenotypic heterogeneity and discuss its potential to inform the dose of mTOR inhibitors (mTOR-I) that can inhibit chemotaxis just enough to facilitate such competition. SIGNIFICANCE: This study identifies the double-edged sword of high ploidy as a prerequisite to personalize combination therapies with cytotoxic drugs and inhibitors of signal transduction pathways such as mTOR-Is. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/22/5109/F1.large.jpg.
Collapse
Affiliation(s)
- Gregory J Kimmel
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Mark Dane
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Laura M Heiser
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida.,Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Philipp M Altrock
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Noemi Andor
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida.
| |
Collapse
|
44
|
Upreti D, Bakhshinyan D, Bloemberg D, Vora P, Venugopal C, Singh SK. Strategies to Enhance the Efficacy of T-Cell Therapy for Central Nervous System Tumors. Front Immunol 2020; 11:599253. [PMID: 33281826 PMCID: PMC7689359 DOI: 10.3389/fimmu.2020.599253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Mortality rates in patients diagnosed with central nervous system (CNS) tumors, originating in the brain or spinal cord, continue to remain high despite the advances in multimodal treatment regimens, including surgery, radiation, and chemotherapy. Recent success of adoptive cell transfer immunotherapy treatments using chimeric antigen receptor (CAR) engineered T cells against in chemotherapy resistant CD19 expressing B-cell lymphomas, has provided the foundation for investigating efficacy of CAR T immunotherapies in the context of brain tumor. Although significant efforts have been made in developing and translating the novel CAR T therapies for CNS tumors, including glioblastoma (GBM), researchers are yet to achieve a similar level of success as with liquid malignancies. In this review, we discuss strategies and considerations essential for developing robust preclinical models for the translation of T cell-based therapies for CNS tumors. Some of the key considerations include route of delivery, increasing persistence of T cells in tumor environment, remodeling of myeloid environment, establishing the window of treatment opportunity, harnessing endogenous immune system, designing multiple antigen targeting T cells, and rational combination of immunotherapy with the current standard of care. Although this review focuses primarily on CAR T therapies for GBM, similar strategies, and considerations are applicable to all CNS tumors in general.
Collapse
Affiliation(s)
- Deepak Upreti
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - David Bakhshinyan
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Darin Bloemberg
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Parvez Vora
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
45
|
Yalcin GD, Danisik N, Baygin RC, Acar A. Systems Biology and Experimental Model Systems of Cancer. J Pers Med 2020; 10:E180. [PMID: 33086677 PMCID: PMC7712848 DOI: 10.3390/jpm10040180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/29/2022] Open
Abstract
Over the past decade, we have witnessed an increasing number of large-scale studies that have provided multi-omics data by high-throughput sequencing approaches. This has particularly helped with identifying key (epi)genetic alterations in cancers. Importantly, aberrations that lead to the activation of signaling networks through the disruption of normal cellular homeostasis is seen both in cancer cells and also in the neighboring tumor microenvironment. Cancer systems biology approaches have enabled the efficient integration of experimental data with computational algorithms and the implementation of actionable targeted therapies, as the exceptions, for the treatment of cancer. Comprehensive multi-omics data obtained through the sequencing of tumor samples and experimental model systems will be important in implementing novel cancer systems biology approaches and increasing their efficacy for tailoring novel personalized treatment modalities in cancer. In this review, we discuss emerging cancer systems biology approaches based on multi-omics data derived from bulk and single-cell genomics studies in addition to existing experimental model systems that play a critical role in understanding (epi)genetic heterogeneity and therapy resistance in cancer.
Collapse
Affiliation(s)
| | | | | | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupınar Bulvarı 1, Çankaya, Ankara 06800, Turkey; (G.D.Y.); (N.D.); (R.C.B.)
| |
Collapse
|
46
|
Zhang Y, Fu X, Jia J, Wikerholmen T, Xi K, Kong Y, Wang J, Chen H, Ma Y, Li Z, Wang C, Qi Q, Thorsen F, Wang J, Cui J, Li X, Ni S. Glioblastoma Therapy Using Codelivery of Cisplatin and Glutathione Peroxidase Targeting siRNA from Iron Oxide Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43408-43421. [PMID: 32885649 DOI: 10.1021/acsami.0c12042] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Glioblastoma (GBM) is the most common and lethal type of malignant brain tumor in adults. Currently, interventions are lacking, the median overall survival of patients with GBM is less than 15 months, and the postoperative recurrence rate is greater than 60%. We proposed an innovative local chemotherapy involving the construction of gene therapy-based iron oxide nanoparticles (IONPs) as a treatment for patients with glioblastoma after surgery that targeted ferroptosis and apoptosis to address these problems. The porous structure of IONPs with attached carboxyl groups was modified for the codelivery of small interfering RNA (siRNA) targeting glutathione peroxidase 4 (si-GPX4) and cisplatin (Pt) with high drug loading efficiencies. The synthesized folate (FA)/Pt-si-GPX4@IONPs exerted substantial effects on glioblastoma in U87MG and P3#GBM cells, but limited effects on normal human astrocytes (NHAs). During intracellular degradation, IONPs significantly increased iron (Fe2+ and Fe3+) levels, while Pt destroyed nuclear DNA and mitochondrial DNA, leading to apoptosis. Furthermore, IONPs increased H2O2 levels by activating reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). The Fenton reaction between Fe2+, Fe3+, and intracellular H2O2 generated potent reactive oxygen species (ROS) to initiate ferroptosis, while the co-released si-GPX4 inhibited GPX4 expression and synergistically improved the therapeutic efficacy through a mechanism related to ferroptosis. As a result, superior therapeutic effects with low systemic toxicity were achieved both in vitro and in vivo, indicating that our nanoformulations might represent safe and efficient ferroptosis and apoptosis inducers for use in combinatorial glioblastoma therapy.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, P. R. China
| | - Xiao Fu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, P. R. China
| | - Junsheng Jia
- Department of Neurosurgery, Chiping District People's Hospital, 1057 Wenhua Road, Liaocheng, Chiping, Shandong 252100, P. R. China
| | - Tobias Wikerholmen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Kaiyan Xi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, P. R. China
| | - Yang Kong
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, P. R. China
| | - Junpeng Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, P. R. China
| | - Haijun Chen
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, P. R. China
| | - Yuan Ma
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, P. R. China
| | - Zhiwei Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, P. R. China
| | - Chuanwei Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, P. R. China
| | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, P. R. China
| | - Frits Thorsen
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, P. R. China
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, P. R. China
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, P. R. China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, P. R. China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
47
|
Blomquist MR, Ensign SF, D'Angelo F, Phillips JJ, Ceccarelli M, Peng S, Halperin RF, Caruso FP, Garofano L, Byron SA, Liang WS, Craig DW, Carpten JD, Prados MD, Trent JM, Berens ME, Iavarone A, Dhruv H, Tran NL. Temporospatial genomic profiling in glioblastoma identifies commonly altered core pathways underlying tumor progression. Neurooncol Adv 2020; 2:vdaa078. [PMID: 32743548 PMCID: PMC7388612 DOI: 10.1093/noajnl/vdaa078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Tumor heterogeneity underlies resistance and disease progression in glioblastoma (GBM), and tumors most commonly recur adjacent to the surgical resection margins in contrast non-enhancing (NE) regions. To date, no targeted therapies have meaningfully altered overall patient survival in the up-front setting. The aim of this study was to characterize intratumoral heterogeneity in recurrent GBM using bulk samples from primary resection and recurrent samples taken from contrast-enhancing (EN) and contrast NE regions. Methods Whole exome and RNA sequencing were performed on matched bulk primary and multiple recurrent EN and NE tumor samples from 16 GBM patients who received standard of care treatment alone or in combination with investigational clinical trial regimens. Results Private mutations emerge across multi-region sampling in recurrent tumors. Genomic clonal analysis revealed increased enrichment in gene alterations regulating the G2M checkpoint, Kras signaling, Wnt signaling, and DNA repair in recurrent disease. Subsequent functional studies identified augmented PI3K/AKT transcriptional and protein activity throughout progression, validated by phospho-protein levels. Moreover, a mesenchymal transcriptional signature was observed in recurrent EN regions, which differed from the proneural signature in recurrent NE regions. Conclusions Subclonal populations observed within bulk resected primary GBMs transcriptionally evolve across tumor recurrence (EN and NE regions) and exhibit aberrant gene expression of common signaling pathways that persist despite standard or targeted therapy. Our findings provide evidence that there are both adaptive and clonally mediated dependencies of GBM on key pathways, such as the PI3K/AKT axis, for survival across recurrences.
Collapse
Affiliation(s)
- Mylan R Blomquist
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA.,Department of Neurosurgery, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | | | - Fulvio D'Angelo
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York, USA
| | - Joanna J Phillips
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | | | - Sen Peng
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Rebecca F Halperin
- Integrated Cancer Genomics Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Francesca P Caruso
- Department of Science and Technology, Università degli Studi del Sannio, Benevento, Italy
| | - Luciano Garofano
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York, USA.,Department of Science and Technology, Università degli Studi del Sannio, Benevento, Italy
| | - Sara A Byron
- Integrated Cancer Genomics Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Winnie S Liang
- Integrated Cancer Genomics Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - David W Craig
- Department of Translational Genomics, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - John D Carpten
- Department of Translational Genomics, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Michael D Prados
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Jeffrey M Trent
- Integrated Cancer Genomics Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Michael E Berens
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York, USA
| | - Harshil Dhruv
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Nhan L Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA.,Department of Neurosurgery, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| |
Collapse
|
48
|
Lah TT, Novak M, Breznik B. Brain malignancies: Glioblastoma and brain metastases. Semin Cancer Biol 2020; 60:262-273. [DOI: 10.1016/j.semcancer.2019.10.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
|
49
|
Yoon SJ, Park J, Jang DS, Kim HJ, Lee JH, Jo E, Choi RJ, Shim JK, Moon JH, Kim EH, Chang JH, Lee JH, Kang SG. Glioblastoma Cellular Origin and the Firework Pattern of Cancer Genesis from the Subventricular Zone. J Korean Neurosurg Soc 2019; 63:26-33. [PMID: 31592000 PMCID: PMC6952738 DOI: 10.3340/jkns.2019.0129] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is a disease without any definite cure. Numerous approaches have been tested in efforts to conquer this brain disease, but patients invariably experience recurrence or develop resistance to treatment. New surgical tools, carefully chosen samples, and experimental methods are enabling discoveries at single-cell resolution. The present article reviews the cell-of-origin of isocitrate dehydrogenase (IDH)-wildtype GBM, beginning with the historical background for focusing on cellular origin and introducing the cancer genesis patterned on firework. The authors also review mutations associated with the senescence process in cells of the subventricular zone (SVZ), and biological validation of somatic mutations in a mouse SVZ model. Understanding GBM would facilitate research on the origin of other cancers and may catalyze the development of new management approaches or treatments against IDH-wildtype GBM.
Collapse
Affiliation(s)
- Seon-Jin Yoon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong-Su Jang
- Medical Research Support Services, Yonsei University College of Medicine, Seoul, Korea.,Department of Sculpture, Hongik University, Seoul, Korea
| | - Hyun Jung Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Joo Ho Lee
- Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Euna Jo
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Kyung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eui-Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
50
|
The 'Ins and Outs' of Early Preclinical Models for Brain Tumor Research: Are They Valuable and Have We Been Doing It Wrong? Cancers (Basel) 2019; 11:cancers11030426. [PMID: 30934632 PMCID: PMC6468723 DOI: 10.3390/cancers11030426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 01/06/2023] Open
Abstract
In this perspective, we congratulate the international efforts to highlight critical challenges in brain tumor research through a recent Consensus Statement. We also illustrate the importance of developing more accurate and clinically relevant early translational in vitro brain tumor models—a perspective given limited emphasis in the Consensus Statement, despite in vitro models being widely used to prioritize candidate therapeutic strategies prior to in vivo studies and subsequent clinical trials. We argue that successful translation of effective novel treatments into the clinic will require investment into the development of more predictive early pre-clinical models. It is in the interest of researchers, clinicians, and ultimately, patients that the most promising therapeutic candidates are identified and translated toward use in the clinic. Highlighting the value of early pre-clinical brain tumor models and debating how such models can be improved is of the utmost importance to the neuro-oncology research community and cancer research more broadly.
Collapse
|