1
|
Moreira X, Durán J, Rodríguez A, Cao A, Correia M, Serôdio J, Rodríguez-Echeverría S. Interactions between macro- and micro-climate: Effects on phenolic compound production in Nardus stricta at high elevations. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:417-425. [PMID: 39945121 DOI: 10.1111/plb.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/15/2025] [Indexed: 03/29/2025]
Abstract
Phenolic compounds are key to plant defence, offering protection as antioxidants, UV shields, and antimicrobials. Their production is largely shaped by environmental conditions. It is believed that plants at lower elevations increase phenolic content to counter herbivory, while those at higher elevations rely on phenolics to manage abiotic stresses, such as climate variability. Microhabitat warming also affects phenolic levels, but responses differ, depending on broader climatic contexts: plants in warmer, lower-elevation environments show limited adaptability, whereas high-elevation plants demonstrate greater plasticity. Despite the importance of these environmental interactions, many small-scale abiotic studies lack sufficient spatial replication across broader gradients like elevation or latitude, while large-scale studies frequently overlook microscale factors. This study investigated the effects of macroclimate factors and microhabitat warming on phenolic production in Nardus stricta across five semi-natural grassland sites (1546-1875 m a.s.l.) in Portugal's Serra da Estrela. Warming was simulated using open-top chambers over two growing seasons, after which leaf samples were analysed for phenolic compounds, and soil nutrients were measured. The N. stricta plants at the highest elevation site contained significantly higher leaf flavonoid concentrations. Microhabitat warming led to a significant decrease in flavonoid concentrations, but only at the highest elevation site. These effects occurred independently of soil nutrient levels, suggesting direct thermal effects or stress responses might be involved. Our findings highlight the complex interactions between macro- and microenvironmental factors in shaping plant chemistry, underscoring critical considerations for plant resilience in the face of climate change. This understanding is essential for developing strategies to support plant and ecosystem adaptation to changing climates.
Collapse
Affiliation(s)
- X Moreira
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - J Durán
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - A Rodríguez
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - A Cao
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - M Correia
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - J Serôdio
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - S Rodríguez-Echeverría
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Lupitu A, Moisa C, Bortes F, Peteleu D, Dochia M, Chambre D, Ciutină V, Copolovici DM, Copolovici L. The Impact of Increased CO 2 and Drought Stress on the Secondary Metabolites of Cauliflower ( Brassica oleracea var. botrytis) and Cabbage ( Brassica oleracea var. capitata). PLANTS (BASEL, SWITZERLAND) 2023; 12:3098. [PMID: 37687345 PMCID: PMC10490549 DOI: 10.3390/plants12173098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Elevated carbon dioxide and drought are significant stressors in light of climate change. This study explores the interplay between elevated atmospheric CO2, drought stress, and plant physiological responses. Two Brassica oleracea varieties (cauliflowers and cabbage) were utilized as model plants. Our findings indicate that elevated CO2 accelerates assimilation rate decline during drought. The integrity of photosynthetic components influenced electron transport, potentially due to drought-induced nitrate reductase activation changes. While CO2 positively influenced photosynthesis and water-use efficiency during drought, recovery saw decreased stomatal conductance in high-CO2-grown plants. Drought-induced monoterpene emissions varied, influenced by CO2 concentration and species-specific responses. Drought generally increased polyphenols, with an opposing effect under elevated CO2. Flavonoid concentrations fluctuated with drought and CO2 levels, while chlorophyll responses were complex, with high CO2 amplifying drought's effects on chlorophyll content. These findings contribute to a nuanced understanding of CO2-drought interactions and their intricate effects on plant physiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lucian Copolovici
- Institute for Research, Development and Innovation in Technical and Natural Sciences, Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi Street., No. 2, 310330 Arad, Romania; (A.L.); (C.M.); (F.B.); (D.P.); (M.D.); (D.C.); (V.C.); (D.M.C.)
| |
Collapse
|
3
|
de Souza Rodrigues T, Arge LWP, de Freitas Guedes FA, Travassos-Lins J, de Souza AP, Cocuron JC, Buckeridge MS, Grossi-de-Sá MF, Alves-Ferreira M. Elevated CO 2 increases biomass of Sorghum bicolor green prop roots under drought conditions via soluble sugar accumulation and photosynthetic activity. PHYSIOLOGIA PLANTARUM 2023; 175:e13984. [PMID: 37616001 DOI: 10.1111/ppl.13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Elevated [CO2 ] (E[CO2 ]) mitigates agricultural losses of C4 plants under drought. Although several studies have described the molecular responses of the C4 plant species Sorghum bicolor during drought exposure, few have reported the combined effects of drought and E[CO2 ] (E[CO2 ]/D) on the roots. A previous study showed that, among plant organs, green prop roots (GPRs) under E[CO2 ]/D presented the second highest increase in biomass after leaves compared with ambient [CO2 ]/D. GPRs are photosynthetically active and sensitive to drought. To understand which mechanisms are involved in the increase in biomass of GPRs, we performed transcriptome analyses of GPRs under E[CO2 ]/D. Whole-transcriptome analysis revealed several pathways altered under E[CO2 ]/D, among which photosynthesis was strongly affected. We also used previous metabolome data to support our transcriptome data. Activities associated with photosynthesis and central metabolism increased, as seen by the upregulation of photosynthesis-related genes, a rise in glucose and polyol contents, and increased contents of chlorophyll a and carotenoids. Protein-protein interaction networks revealed that proliferation, biogenesis, and homeostasis categories were enriched and contained mainly upregulated genes. The findings suggest that the previously reported increase in GPR biomass of plants grown under E[CO2 ]/D is mainly attributed to glucose and polyol accumulation, as well as photosynthesis activity and carbon provided by respiratory CO2 refixation. Our findings reveal that an intriguing and complex metabolic process occurs in GPRs under E[CO2 ]/D, showing the crucial role of these organs in plant drought /tolerance.
Collapse
Affiliation(s)
- Tamires de Souza Rodrigues
- Department of Genetics, Institute of Biology, Health Science Center, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Willian Pacheco Arge
- Department of Genetics, Institute of Biology, Health Science Center, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Alves de Freitas Guedes
- Department of Genetics, Institute of Biology, Health Science Center, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Travassos-Lins
- Department of Genetics, Institute of Biology, Health Science Center, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amanda Pereira de Souza
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | - Maria Fátima Grossi-de-Sá
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Catholic University of Brasília, Brasília-DF, Brazil
| | - Márcio Alves-Ferreira
- Department of Genetics, Institute of Biology, Health Science Center, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Wei X, Klinkhamer PGL, Mulder PPJ, van der Veen-van Wijk K, Vrieling K. Seasonal variation in defence compounds: A case study on pyrrolizidine alkaloids of clones of Jacobaea vulgaris, Jacobaea aquatica and their hybrids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111067. [PMID: 34763859 DOI: 10.1016/j.plantsci.2021.111067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Concentration of plant secondary metabolites (SMs) show seasonal variations. However, it is still not well understood how these abiotic and biotic factors influence the seasonal variations of SMs. In addition, it is of interest to know if and how SMs are reallocated to the different plant organs, in particular whether SMs are reallocated to the remaining tissues when biomass is lost, e.g., during winter. Here we used Jacobaea vulgaris, Jacobaea aquatica, two F1 and four F2 hybrids that differed in their pyrrolizidine alkaloids (PAs) bouquet as a study system. A series of clones of these genotypes were investigated during their vegetative stage spanning 14 months in a semi-natural environment. We found that the total PA concentration in roots and shoots showed a gradual increase until the spring of the second year, whereafter it dropped substantially in shoots. The variation in PA composition due to seasonal changes was significant but relatively small. Senecionine-like PAs were the dominant PAs in roots, while jacobine-/erucifoline-like PAs were dominant in shoots. The variation of PA concentration was significantly correlated with temperature, day length, and plant age. A correlation analysis showed that PAs were not reallocated when biomass was lost in winter. Overall, our study showed that PA composition of each genotype changed over seasons in a different manner but seasonal variation did not overrule the differences in PA composition among genotypes.
Collapse
Affiliation(s)
- Xianqin Wei
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China; Plant Cluster, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands.
| | - Peter G L Klinkhamer
- Plant Cluster, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Patrick P J Mulder
- Wageningen Food Safety Research-Wageningen University & Research, Akkermaalsbos 2, P.O. Box 230, 6700 AE, Wageningen, the Netherlands
| | - Karin van der Veen-van Wijk
- Plant Cluster, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Klaas Vrieling
- Plant Cluster, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| |
Collapse
|
5
|
Yang W, Cao J, Wu Y, Kong F, Li L. Review on plant terpenoid emissions worldwide and in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147454. [PMID: 34000546 DOI: 10.1016/j.scitotenv.2021.147454] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 05/21/2023]
Abstract
Biogenic volatile organic compounds (BVOCs), particularly terpenoids, can significantly drive the formation of ozone (O3) and secondary organic aerosols (SOA) in the atmosphere, as well as directly or indirectly affect global climate change. Understanding their emission mechanisms and the current progress in emission measurements and estimations are essential for the accurate determination of emission characteristics, as well as for evaluating their roles in atmospheric chemistry and climate change. This review summarizes the mechanisms of terpenoid synthesis and release, biotic and abiotic factors affecting their emissions, development of emission observation techniques, and emission estimations from hundreds of published papers. We provide a review of the main observations and estimations in China, which contributes a significant proportion to the total global BVOC emissions. The review suggests the need for further research on the comprehensive effects of environmental factors on terpenoid emissions, especially soil moisture and nitrogen content, which should be quantified in emission models to improve the accuracy of estimation. In China, it is necessary to conduct more accurate measurements for local plants in different regions using the dynamic enclosure technique to establish an accurate local emission rate database for dominant tree species. This will help improve the accuracy of both national and global emission inventories. This review provides a comprehensive understanding of terpenoid emissions as well as prospects for detailed research to accurately describe terpenoid emission characteristics worldwide and in China.
Collapse
Affiliation(s)
- Weizhen Yang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Jing Cao
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Lingyu Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|