1
|
Bai X, Wu S, Bai AN, Zhang YM, Zhang Y, Yao XF, Yang T, Chen MM, Liu JL, Li L, Zhou Y, Liu CM. OsSPL9 promotes Cu uptake and translocation in rice grown in high-Fe red soil. THE NEW PHYTOLOGIST 2025; 246:2207-2221. [PMID: 40123146 DOI: 10.1111/nph.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
Most rice varieties are able to grow in red high-Fe soil, but the underlying mechanism remains elusive. Through forward genetic screening, we identified a red soil-sensitive-1 (rss1) mutant that exhibited severely retarded growth when grown in red soil but showed no evident phenotype in cinnamon soil. Under the red soil/high-Fe conditions, rss1 exhibited increased Fe but decreased copper (Cu) concentrations in both roots and shoots, and the rss1 phenotype was partially rescued by Cu supplement. RSS1 encodes an OsSPL9 transcription factor that is expressed in pericycle cells and parenchyma cells surrounding xylem in roots. Under high-Fe conditions, OsSPL9 activated expression of Cu transporters, including OsYSL16, OsCOPT1, and OsCOPT5 by binding to their promoters, and OsYSL16 overexpression partially rescued rss1 defects. We thus propose that OsSPL9 overcomes high-Fe imposed Cu deficiency by activating the expressions of Cu transporter genes, allowing rice to adapt to red soil.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100094, China
| | - ShengYang Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ai-Ning Bai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yu-Meng Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Yan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Xue-Feng Yao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tao Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Meng-Meng Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Jin-Lei Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Yao Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100094, China
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100094, China
| |
Collapse
|
2
|
Yao X, Zhang M, Jetten MSM, Zhu L, Hu B. Iron Modulates the Growth and Activity of Nitrate-Dependent Methanotrophic Bacteria by Reprogramming Carbon Metabolism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9134-9145. [PMID: 40298613 DOI: 10.1021/acs.est.5c01275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Iron is indispensable for literally all microorganisms, yet becomes toxic at elevated levels. Protein-based iron storage compartments, such as ferritins, play a key role in maintaining iron homeostasis when the iron level surpasses microbial requirements. However, the energy-intensive nature of iron storage raises questions about how microbes balance this bioprocess between growth and metabolism. Here, using nitrate-dependent methanotrophic bacteria with the simplified metabolic system as a model, we propose a novel metabolic reprogramming pathway regulated by iron storage that controls the balance between growth and activity. Isotopic labeling and meta-omics analyses revealed a striking contrast between bacterial abundance and methane-dependent denitrification activity in "Ca. M. sinica". Using microscopy and energy dispersive spectroscopy, we identified iron-rich nanoparticles within cells exposed to 40 μM Fe2+, alongside increased expression of genes involved in iron metabolism and methane oxidation coupled with denitrification. Additionally, we observed a shift from the energy-demanding Calvin cycle to the more energy-efficient serine pathway for carbon fixation, promoting the synthesis of glycine and succinyl-CoA, which serve as key precursors for iron storage proteins. These metabolic adjustments highlight a strategy for coordinating both substance and energy metabolism in nitrate-dependent methanotrophic bacteria, thereby enhancing their capacity for simultaneous nitrogen and carbon removal. Our findings reveal that iron may act as a metabolic "switch" in microorganisms, offering new insights into the targeted manipulation of microbial metabolism to maximize their beneficial functions in both engineered and natural environments.
Collapse
Affiliation(s)
- Xiangwu Yao
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meng Zhang
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Lizhong Zhu
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| |
Collapse
|
3
|
Tang J, Wu Z, Sun Z, Liu H, Liu H. Lunar magnetism impairs wheat seedling photosynthesis: A simulated environment study. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:109996. [PMID: 40382801 DOI: 10.1016/j.plaphy.2025.109996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/20/2025]
Abstract
Plants evolved under Earth's stable geomagnetic field (GMF), a condition sharply contrasting with the near-absence of a global magnetic field on the Moon. However, the effects of this stark magnetic disparity on fundamental plant processes like photosynthesis remain underexplored, particularly in the context of future lunar agriculture. This study rigorously investigated the physiological and biochemical mechanisms underpinning the photosynthetic response of wheat seedlings - a staple crop selected for its centrality in closed-loop life support - to a simulated lunar weak magnetic field (WMF, <5 nT). We used a controlled environment and simulated lunar soil to compare wheat seedlings grown under precisely controlled WMF and GMF conditions. Our findings reveal that WMF significantly impeded seedling growth, as evidenced by diminished height, reduced hydration, and lower biomass accumulation. Photosynthetic gas exchange was severely compromised under WMF, manifesting as reduced net photosynthetic rate, stomatal conductance, and intercellular CO2 concentration. Light and CO2 response curve analyses further revealed a fundamental reduction in photosynthetic efficiency, characterized by lower apparent quantum efficiency and maximum photosynthetic capacity. Concomitantly, levels of key photosynthetic pigments (chlorophyll a, chlorophyll b, carotenoids) and ferritin were significantly depressed in WMF-exposed seedlings, suggesting a mechanistic link to impaired photosynthetic machinery and potentially compromised nutrient uptake. This inhibitory effect of lunar-level magnetic fields on photosynthetic carbon assimilation is likely mediated by disruptions in light energy conversion, electron transport chain efficiency, and RuBP regeneration capacity. Furthermore, the observed reduction in ferritin, a crucial iron storage protein, may exacerbate oxidative stress and limit iron availability for chlorophyll biosynthesis. These combined disruptions indicate a significant constraint on plant productivity in lunar environments, thereby limiting the viability of purely terrestrial-adapted crops for lunar agriculture. These findings underscore the need to consider magnetic field mitigation strategies or genetically adapt crops for optimal photosynthetic function in weak magnetic field environments to ensure sustainable plant-based life support beyond Earth. This research provides a vital foundation for future investigations into plant magneto-biology and the development of robust agricultural systems for space exploration.
Collapse
Affiliation(s)
- Jingkai Tang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Internet Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zizhou Wu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Internet Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhiyin Sun
- School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, 150001, China
| | - Hui Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Internet Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Hong Liu
- Innovation Center for Medical Engineering &Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China; Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Internet Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
4
|
Liu S, Liu B, Tan Y, Zhou H, Yang J, Ren P, Yu H, Geng C, Wang R, Yan X, Huang L. BAR11, a Ferritin Protein From Saccharothrix yanglingensis Enhances Disease Resistance in Malus domestica by Disrupting Iron Homoeostasis. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40230310 DOI: 10.1111/pce.15542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/19/2025] [Accepted: 03/30/2025] [Indexed: 04/16/2025]
Abstract
Previously, we identified BAR11, an uncharacterized protein from the biocontrol actinomycete Saccharothrix yanglingensis Hhs.015, as an elicitor of plant immunity. BAR11 pretreatment significantly suppressed Valsa mali infection in apple (Malus domestica); however, its molecular function remained unclear, as did the mechanisms governing the response of the apples to BAR11 treatment. Here, we demonstrate that BAR11 functions as a ferritin, defined by a conserved four-helical bundle structure, and enhances oxidative stress tolerance in actinomycetes. Confocal microscopy revealed that BAR11 was secreted and delivered into apple cells, where it sequestered labile ferrous iron (Fe2+) and inhibited iron uptake. Notably, BAR11 treatment and iron deficiency induced nearly identical transcriptional reprogramming of iron homoeostasis-related genes in apple roots and similar resistance phenotypes, suggesting that BAR11 triggers a low iron-mimicry state, which potentiates apple immunity. Transcriptomic analysis further supported that BAR11 disrupted the expression of iron homoeostasis-related genes while activating that of defence-related ones. Moreover, the apple WRKY family transcription factor MdWRKY40 responded robustly to BAR11 and low-iron treatments and positively modulated BAR11-induced resistance against V. mali. Our findings reveal a paradigm wherein actinomycete ferritins act as cross-kingdom immune elicitors by disrupting iron homoeostasis in apple, providing a mechanistic foundation for iron-targeted biocontrol strategies.
Collapse
Affiliation(s)
- Shang Liu
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Boya Liu
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Yuqin Tan
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Hanqi Zhou
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Jinhui Yang
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Peng Ren
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Hongjia Yu
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Chang Geng
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Ruolin Wang
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Xia Yan
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Hackl LS, Moretti D, Sabatier M. Absorption of Iron Naturally Present in Soy. Adv Nutr 2025; 16:100396. [PMID: 40020920 PMCID: PMC12008532 DOI: 10.1016/j.advnut.2025.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025] Open
Abstract
Plant-based foods can offer sustainable and healthy dietary choices. Soybeans and derivatives (for example, flour, concentrate, or isolate) are the primary protein source for plant-based products, including meat analogs, and are naturally rich in iron. To investigate the nutritional contribution of iron naturally present in soy, this narrative review presents iron bioavailability data from isotope studies in humans aged >3 y. To allow interstudy comparison, we adjusted mean iron absorption for iron status (that is, serum ferritin of 15 μg/L), quantified native iron absorbed, and compared with daily human requirements for absorbed iron where possible. Adjusted iron absorption from soybeans served as part of meals varied widely (4.1%-22.2%), translating to contributions of 13%-70% and 10%-40% to the daily requirements for absorbed iron in adult males and females, respectively. Similar results were found for meals prepared with soy flour (full fat, defatted, and texturized) and soy protein concentrates, whereas iron bioavailability from soy protein isolates may be reduced. Within a meal, partial substitution (≤30%) of meat with soy concentrates and isolates did not meaningfully impair total iron absorption. In all conditions, low phytic acid levels and co-ingestion of ascorbic acid improved the absorption of iron naturally present in soy. Available evidence suggests that soy-based products can provide a meaningful contribution to daily requirements for absorbed iron, especially if phytic acid is below defined thresholds to optimize absorption and/or if products include iron absorption enhancers such as ascorbic acid. Further research is needed to understand the factors affecting iron bioavailability from these products, especially the soy cultivar, the roles of phytoferritin and the protein profiles of different soy protein ingredients, as well as the processes to produce them. Long-term assessments of the impact of soybean-based products on iron status are also warranted.
Collapse
Affiliation(s)
- Laura S Hackl
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Diego Moretti
- Nutrition Research, Swiss Distance University of Applied Sciences (FFHS)/University of Applied Sciences of South Switzerland (SUPSI), Zürich, Switzerland
| | - Magalie Sabatier
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland.
| |
Collapse
|
6
|
Nasim A, Hao J, Tawab F, Jin C, Zhu J, Luo S, Nie X. Micronutrient Biofortification in Wheat: QTLs, Candidate Genes and Molecular Mechanism. Int J Mol Sci 2025; 26:2178. [PMID: 40076800 PMCID: PMC11900071 DOI: 10.3390/ijms26052178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Micronutrient deficiency (hidden hunger) is one of the serious health problems globally, often due to diets dominated by staple foods. Genetic biofortification of a staple like wheat has surfaced as a promising, cost-efficient, and sustainable strategy. Significant genetic diversity exists in wheat and its wild relatives, but the nutritional profile in commercial wheat varieties has inadvertently declined over time, striving for better yield and disease resistance. Substantial efforts have been made to biofortify wheat using conventional and molecular breeding. QTL and genome-wide association studies were conducted, and some of the identified QTLs/marker-trait association (MTAs) for grain micronutrients like Fe have been exploited by MAS. The genetic mechanisms of micronutrient uptake, transport, and storage have also been investigated. Although wheat biofortified varieties are now commercially cultivated in selected regions worldwide, further improvements are needed. This review provides an overview of wheat biofortification, covering breeding efforts, nutritional evaluation methods, nutrient assimilation and bioavailability, and microbial involvement in wheat grain enrichment. Emerging technologies such as non-destructive hyperspectral imaging (HSI)/red, green, and blue (RGB) phenotyping; multi-omics integration; CRISPR-Cas9 alongside genomic selection; and microbial genetics hold promise for advancing biofortification.
Collapse
Affiliation(s)
- Adnan Nasim
- Hainan Institute of Northwest A&F University, Sanya 572025, China;
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Junwei Hao
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Faiza Tawab
- Department of Botany, Shaheed Benazir Bhutto Women University Larama, Peshawar 25000, Pakistan;
| | - Ci Jin
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Jiamin Zhu
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Shuang Luo
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Xiaojun Nie
- Hainan Institute of Northwest A&F University, Sanya 572025, China;
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| |
Collapse
|
7
|
Wairich A, Wang Y, Werner BT, Vaziritabar Y, Frei M, Wu LB. The role of ascorbate redox turnover in iron toxicity tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109045. [PMID: 39154421 DOI: 10.1016/j.plaphy.2024.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Iron (Fe) toxicity is a major abiotic stress in lowland rice production. Breeding tolerant varieties has proven challenging due to the complex genetic architecture of Fe toxicity tolerance and the strong genotype-by-environment interactions. Additionally, conventional methods for phenotyping visible stress symptoms are often inaccurate, inconsistent, and lack reproducibility. In our previous work, we identified that ascorbate redox regulation, mediated by the activities of dehydroascorbate reductase (DHAR) and ascorbate oxidase (AO), contributed to high tolerance in an indica rice genotype across various environments. To explore whether this mechanism is common among other rice genotypes, we selected ten genotypes with contrasting stress symptoms under Fe-toxic conditions to examine the roles of DHAR and AO in regulating Fe toxicity tolerance. Additionally, we aimed to develop objective and accurate image-based phenotyping methods to replace the traditional leaf bronzing scoring method. Among the ten genotypes we tested, we found significant positive correlations between DHAR activity and stress symptoms in plants grown under both Fe toxicity and control conditions, suggesting a general link between ascorbate redox regulation and Fe toxicity tolerance. Using RGB signals from leaf images of plants exposed to 1000 mg/L Fe2+, we evaluated 36 different color indices to quantify stress symptoms. We identified the normalized green‒red difference index as most significant in quantifying stress symptoms under Fe toxicity conditions. Our findings suggest that DHAR activity could be potentially employed as a biomarker in the screening of rice germplasms and breeding tolerant cultivars to Fe toxicity.
Collapse
Affiliation(s)
- Andriele Wairich
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding I, Justus Liebig University, Giessen, Germany
| | - Yue Wang
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding I, Justus Liebig University, Giessen, Germany
| | - Bernhard T Werner
- Institute for Phytopathology, Justus Liebig University, Giessen, Germany
| | - Yavar Vaziritabar
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding I, Justus Liebig University, Giessen, Germany
| | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding I, Justus Liebig University, Giessen, Germany
| | - Lin-Bo Wu
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding I, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
8
|
Jin Q, Yang K, Zhang Y, Zhang S, Liu Z, Guan Y, Zhang L, Zhang Y, Wang Q. Physiological and molecular mechanisms of silicon and potassium on mitigating iron-toxicity stress in Panax ginseng. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108975. [PMID: 39084170 DOI: 10.1016/j.plaphy.2024.108975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Iron plays a crucial role in plant chlorophyll synthesis, respiration, and plant growth. However, excessive iron content can contribute to ginseng poisoning. We previously discovered that the application of silicon (Si) and potassium (K) can mitigate the iron toxicity on ginseng. To elucidate the molecular mechanism of how Si and K alleviate iron toxicity stress in ginseng. We investigated the physiological and transcriptional effects of exogenous Si and K on Panax ginseng. The results suggested that the leaves of ginseng with Si and K addition under iron stress increased antioxidant enzyme activity or secondary metabolite content, such as phenylalanine amino-lyase, polyphenol oxidase, ascorbate peroxidase, total phenols and lignin, by 6.21%-25.94%, 30.12%-309.19%, 32.26%-38.82%, 7.81%-23.66%, and 4.68%-48.42%, respectively. Moreover, Si and K increased the expression of differentially expressed genes (DEGs) associated with resistance to both biotic and abiotic stress, including WRKY (WRKY1, WRKY5, and WRKY65), bHLH (bHLH35, bHLH66, bHLH128, and bHLH149), EREBP, ERF10 and ZIP. Additionally, the amount of DEGs of ginseng by Si and K addition was enriched in metabolic processes, single-organism process pathways, signal transduction, metabolism, synthesis and disease resistance. In conclusion, the utilization of Si and K can potentially reduce the accumulation of iron in ginseng, regulate the expression of iron tolerance genes, and enhance the antioxidant enzyme activity and secondary metabolite production in both leaves and roots, thus alleviating the iron toxicity stress in ginseng.
Collapse
Affiliation(s)
- Qiao Jin
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Kexin Yang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yayu Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China; College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Shuna Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Zhengbo Liu
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yiming Guan
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Linlin Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yue Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Qiuxia Wang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China.
| |
Collapse
|
9
|
Wu R, Xie D, Du J. The binding pattern of ferric iron and iron-binding protein in Botrytis cinerea. Comput Biol Med 2024; 178:108686. [PMID: 38850956 DOI: 10.1016/j.compbiomed.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Iron-binding protein (Ibp) has protective effect on pathogen exposed to H2O2 in defense response of plants. Ibp in Botrytis cinerea (BcIbp) is related to its virulence. Bcibp mutation lead to virulence deficiencies in B. cinerea. BcIbp is involved in the Fe3+ homeostasis regulation. Recognition the binding site and binding pattern of ferric iron and iron-binding protein in B. cinerea are vital to understand its function. In this study, molecular dynamics (MD) simulations, gaussian accelerated molecular dynamics (GaMD) simulations, dynamic cross correlation analysis and quantum chemical energy calculation were used to explore binding pattern of ferric iron. MD results showed that the C-terminal region had little effect on the stability of residues in the Fe3+-binding pocket. Energy calculations suggested the most likely coordination pattern for ferric iron in iron-binding protein. These results will help to understand the binding of ferric iron to iron-binding protein and provide new ideas for regulating the virulence of B. cinerea.
Collapse
Affiliation(s)
- Ruihan Wu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Donglin Xie
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Juan Du
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
10
|
Qin H, Guo J, Jin Y, Li Z, Chen J, Bie Z, Luo C, Peng F, Yan D, Kong Q, Liang F, Zhang H, Hu X, Cui R, Cui X. Integrative analysis of transcriptome and metabolome provides insights into the mechanisms of leaf variegation in Heliopsis helianthoides. BMC PLANT BIOLOGY 2024; 24:731. [PMID: 39085772 PMCID: PMC11290119 DOI: 10.1186/s12870-024-05450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND In the field of ornamental horticulture, phenotypic mutations, particularly in leaf color, are of great interest due to their potential in developing new plant varieties. The introduction of variegated leaf traits in plants like Heliopsis helianthoides, a perennial herbaceous species with ecological adaptability, provides a rich resource for molecular breeding and research on pigment metabolism and photosynthesis. We aimed to explore the mechanism of leaf variegation of Heliopsis helianthoides (using HY2021F1-0915 variegated mutant named HY, and green-leaf control check named CK in 2020 April, May and June) by analyzing the transcriptome and metabolome. RESULTS Leaf color and physiological parameters were found to be significantly different between HY and CK types. Chlorophyll content of HY was lower than that of CK samples. Combined with the result of Weighted Gene Co-expression Network Analysis (WGCNA), 26 consistently downregulated differentially expressed genes (DEGs) were screened in HY compared to CK subtypes. Among the DEGs, 9 genes were verified to be downregulated in HY than CK by qRT-PCR. The reduction of chlorophyll content in HY might be due to the downregulation of FSD2. Low expression level of PFE2, annotated as ferritin-4, might also contribute to the interveinal chlorosis of HY. Based on metabolome data, differential metabolites (DEMs) between HY and CK samples were significantly enriched on ABC transporters in three months. By integrating DEGs and DEMs, they were enriched on carotenoids pathway. Downregulation of four carotenoid pigments might be one of the reasons for HY's light color. CONCLUSION FSD2 and PFE2 (ferritin-4) were identified as key genes which likely contribute to the reduced chlorophyll content and interveinal chlorosis observed in HY. The differential metabolites were significantly enriched in ABC transporters. Carotenoid biosynthesis pathway was highlighted with decreased pigments in HY individuals. These findings not only enhance our understanding of leaf variegation mechanisms but also offer valuable insights for future plant breeding strategies aimed at preserving and enhancing variegated-leaf traits in ornamental plants.
Collapse
Affiliation(s)
- Helan Qin
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China.
| | - Jia Guo
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Yingshan Jin
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Zijing Li
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Ju Chen
- Beijing Florascape Co., Ltd, No.2 Wenxing Dong Street, Xicheng District, Beijing, 100044, China
| | - Zhengwei Bie
- Beijing Qunfangpu Horticulture Co., Ltd, No.19 Madian East Road, Haidian District, Beijing, 100088, China
| | - Chunyu Luo
- Beijing Lv Xing Landscaping Co., Ltd, Zhangjiawan Town, Tongzhou District, Beijing, 101117, China
| | - Feitong Peng
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Dongyan Yan
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Qinggang Kong
- Beijing Florascape Co., Ltd, No.2 Wenxing Dong Street, Xicheng District, Beijing, 100044, China
| | - Fang Liang
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Hua Zhang
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Xuefan Hu
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Rongfeng Cui
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Xiuna Cui
- Beijing Florascape Co., Ltd, No.2 Wenxing Dong Street, Xicheng District, Beijing, 100044, China
| |
Collapse
|
11
|
Kumar J, Saini DK, Kumar A, Kumari S, Gahlaut V, Rahim MS, Pandey AK, Garg M, Roy J. Biofortification of Triticum species: a stepping stone to combat malnutrition. BMC PLANT BIOLOGY 2024; 24:668. [PMID: 39004715 PMCID: PMC11247745 DOI: 10.1186/s12870-024-05161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Biofortification represents a promising and sustainable strategy for mitigating global nutrient deficiencies. However, its successful implementation poses significant challenges. Among staple crops, wheat emerges as a prime candidate to address these nutritional gaps. Wheat biofortification offers a robust approach to enhance wheat cultivars by elevating the micronutrient levels in grains, addressing one of the most crucial global concerns in the present era. MAIN TEXT Biofortification is a promising, but complex avenue, with numerous limitations and challenges to face. Notably, micronutrients such as iron (Fe), zinc (Zn), selenium (Se), and copper (Cu) can significantly impact human health. Improving Fe, Zn, Se, and Cu contents in wheat could be therefore relevant to combat malnutrition. In this review, particular emphasis has been placed on understanding the extent of genetic variability of micronutrients in diverse Triticum species, along with their associated mechanisms of uptake, translocation, accumulation and different classical to advanced approaches for wheat biofortification. CONCLUSIONS By delving into micronutrient variability in Triticum species and their associated mechanisms, this review underscores the potential for targeted wheat biofortification. By integrating various approaches, from conventional breeding to modern biotechnological interventions, the path is paved towards enhancing the nutritional value of this vital crop, promising a brighter and healthier future for global food security and human well-being.
Collapse
Affiliation(s)
- Jitendra Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India.
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Ashish Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India
| | - Supriya Kumari
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Vijay Gahlaut
- Department of Biotechnology, University Center for Research and Development Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Mohammed Saba Rahim
- CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Ajay Kumar Pandey
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India
| | - Monika Garg
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India.
| |
Collapse
|
12
|
Krämer U. Metal Homeostasis in Land Plants: A Perpetual Balancing Act Beyond the Fulfilment of Metalloproteome Cofactor Demands. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:27-65. [PMID: 38277698 DOI: 10.1146/annurev-arplant-070623-105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
One of life's decisive innovations was to harness the catalytic power of metals for cellular chemistry. With life's expansion, global atmospheric and biogeochemical cycles underwent dramatic changes. Although initially harmful, they permitted the evolution of multicellularity and the colonization of land. In land plants as primary producers, metal homeostasis faces heightened demands, in part because soil is a challenging environment for nutrient balancing. To avoid both nutrient metal limitation and metal toxicity, plants must maintain the homeostasis of metals within tighter limits than the homeostasis of other minerals. This review describes the present model of protein metalation and sketches its transfer from unicellular organisms to land plants as complex multicellular organisms. The inseparable connection between metal and redox homeostasis increasingly draws our attention to more general regulatory roles of metals. Mineral co-option, the use of nutrient or other metals for functions other than nutrition, is an emerging concept beyond that of nutritional immunity.
Collapse
Affiliation(s)
- Ute Krämer
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany;
| |
Collapse
|
13
|
Kurepa J, Bruce KA, Gerhardt GA, Smalle JA. A Plant Model of α-Synucleinopathy: Expression of α-Synuclein A53T Variant in Hairy Root Cultures Leads to Proteostatic Stress and Dysregulation of Iron Metabolism. APPLIED BIOSCIENCES 2024; 3:233-249. [PMID: 38835931 PMCID: PMC11149894 DOI: 10.3390/applbiosci3020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Synucleinopathies, typified by Parkinson's disease (PD), entail the accumulation of α-synuclein (αSyn) aggregates in nerve cells. Various αSyn mutants, including the αSyn A53T variant linked to early-onset PD, increase the propensity for αSyn aggregate formation. In addition to disrupting protein homeostasis and inducing proteostatic stress, the aggregation of αSyn in PD is associated with an imbalance in iron metabolism, which increases the generation of reactive oxygen species and causes oxidative stress. This study explored the impact of αSyn A53T expression in transgenic hairy roots of four medicinal plants (Lobelia cardinalis, Artemisia annua, Salvia miltiorrhiza, and Polygonum multiflorum). In all tested plants, αSyn A53T expression triggered proteotoxic stress and perturbed iron homeostasis, mirroring the molecular profile observed in human and animal nerve cells. In addition to the common eukaryotic defense mechanisms against proteostatic and oxidative stresses, a plant stress response generally includes the biosynthesis of a diverse set of protective secondary metabolites. Therefore, the hairy root cultures expressing αSyn A53T offer a platform for identifying secondary metabolites that can ameliorate the effects of αSyn, thereby aiding in the development of possible PD treatments and/or treatments of synucleinopathies.
Collapse
Affiliation(s)
- Jasmina Kurepa
- Department of Plant and Soil Sciences, Martin-Gatton College of Agriculture Food and Environment, Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Kristen A. Bruce
- Naprogenix, Inc., UK-AsTeCC, 145 Graham Avenue, Lexington, KY 40506, USA
| | - Greg A. Gerhardt
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Jan A. Smalle
- Department of Plant and Soil Sciences, Martin-Gatton College of Agriculture Food and Environment, Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
14
|
Cao J, Tan X, Cheng X. Over-expression of the BnVIT-L2 gene improves the lateral root development and biofortification under iron stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108501. [PMID: 38452450 DOI: 10.1016/j.plaphy.2024.108501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/17/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024]
Abstract
The vacuolar iron transporter (VIT) family is responsible for absorbing and storing iron ions in vacuoles. Here, the BnVIT-L2 gene from Brassica napus has been cloned for the first time and was found to be expressed in multiple tissues and organs, induced by iron stress. The BnVIT-L2 protein is located in vacuolar membranes and has the ability to bind both iron and other bivalent metal ions. Over-expression of the BnVIT-L2 gene increased lateral root number and main root length, as well as chlorophyll and iron content in transgenic Arabidopsis plants (BnVIT-L2/At) exposed to iron stress, compared to wild type Col-0. Furthermore, over-expression of this gene improved the adaptability of transgenic B. napus plants (BnVIT-L2-OE) under iron stress. The regulation of plant tolerance under iron stress by BnVIT-L2 gene may involve in the signal of reactive oxygen species (ROS), as suggested by Ribosome profiling sequencing (Ribo-seq). This study provides a reference for investigating plant growth and biofortification under iron stress through the BnVIT-L2 gene.
Collapse
Affiliation(s)
- Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Xiaona Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiuzhu Cheng
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| |
Collapse
|
15
|
Murgia I, Morandini P. Plant Iron Research in African Countries: Current "Hot Spots", Approaches, and Potentialities. PLANTS (BASEL, SWITZERLAND) 2023; 13:14. [PMID: 38202322 PMCID: PMC10780554 DOI: 10.3390/plants13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024]
Abstract
Plant iron (Fe) nutrition and metabolism is a fascinating and challenging research topic; understanding the role of Fe in the life cycle of plants requires knowledge of Fe chemistry and biochemistry and their impact during development. Plant Fe nutritional status is dependent on several factors, including the surrounding biotic and abiotic environments, and influences crop yield and the nutritional quality of edible parts. The relevance of plant Fe research will further increase globally, particularly for Africa, which is expected to reach 2.5 billion people by 2050. The aim of this review is to provide an updated picture of plant Fe research conducted in African countries to favor its dissemination within the scientific community. Three main research hotspots have emerged, and all of them are related to the production of plants of superior quality, i.e., development of Fe-dense crops, development of varieties resilient to Fe toxicity, and alleviation of Fe deficiency, by means of Fe nanoparticles for sustainable agriculture. An intensification of research collaborations between the African research groups and plant Fe groups worldwide would be beneficial for the progression of the identified research topics.
Collapse
Affiliation(s)
- Irene Murgia
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy;
| | | |
Collapse
|
16
|
Świątek M, Antosik A, Kochanowska D, Jeżowski P, Smarzyński K, Tomczak A, Kowalczewski PŁ. The potential for the use of leghemoglobin and plant ferritin as sources of iron. Open Life Sci 2023; 18:20220805. [PMID: 38152583 PMCID: PMC10751998 DOI: 10.1515/biol-2022-0805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Iron is an essential component for the body, but it is also a major cause for the development of many diseases such as cancer, cardiovascular diseases, and autoimmune diseases. It has been suggested that a diet rich in meat products, especially red meat and highly processed products, constitute a nutritional model that increases the risk of developing. In this context, it is indicated that people on an elimination diet (vegetarians and vegans) may be at risk of deficiencies in iron, because this micronutrient is found mainly in foods of animal origin and has lower bioavailability in plant foods. This article reviews the knowledge on the use of leghemoglobin and plant ferritin as sources of iron and discusses their potential for use in vegetarian and vegan diets.
Collapse
Affiliation(s)
- Michał Świątek
- Ekosystem-Nature’s Heritage Association, Institute of Microbial Technologies, Al. NSZZ Solidarność 9, 62-700Turek, Poland
| | - Adrianna Antosik
- Ekosystem-Nature’s Heritage Association, Institute of Microbial Technologies, Al. NSZZ Solidarność 9, 62-700Turek, Poland
| | - Dominika Kochanowska
- Ekosystem-Nature’s Heritage Association, Institute of Microbial Technologies, Al. NSZZ Solidarność 9, 62-700Turek, Poland
| | - Paweł Jeżowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 4 Berdychowo St., 60-965Poznań, Poland
- InnPlantFood Research Group, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| | - Krzysztof Smarzyński
- InnPlantFood Research Group, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| | - Aneta Tomczak
- Department of Biochemistry and Food Analysis, Poznań University of Life Sciences, 48 Mazowiecka St., 60-623Poznań, Poland
| | - Przemysław Łukasz Kowalczewski
- InnPlantFood Research Group, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| |
Collapse
|
17
|
Yan P, Peng Y, Fan Y, Zhang M, Chen J, Gu X, Sun S, He S. Effects of ferrous addition to Vallisneria natans: An attempt to apply ferrous to submerged macrophyte restoration. ENVIRONMENTAL RESEARCH 2023; 237:117022. [PMID: 37657608 DOI: 10.1016/j.envres.2023.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Restoration of submerged macrophytes is an efficient way for endogenous nutrient control and aquatic ecological restoration, but slow growth and limited reproduction of submerged macrophytes still exist. In this research, the effect of ferrous on the seed germination and growth of Vallisneria natans (V. natans) were studied through aquatic simulation experiments and its influence on the rhizosphere microbial community was also explored. The seed germination, growth, and physiological and ecological parameters of V. natans were significantly affected by the ferrous treatments. Ferrous concentration above 5.0 mg/L showed significant inhibition of seed germination of V. natans and the best concentration for germination was 0.5 mg/L. During the growth of V. natans, after ferrous was added, a brief period of stress occurred, which then promoted the growth lasting for about 19 days under one addition. The diversity and richness of the rhizospheric microbial were increased after the ferrous addition. However, the function of the rhizospheric microbial community showed no significant difference between different concentrations of ferrous adding in the overlying water. Ferrous addition affected the growth condition of plants (content of CAT, Chl a, Chl b, etc.), thus indirectly affecting the rhizospheric microbial community of V. natans. These impacts on V. natans and rhizosphere microorganisms could generalize to other submerged macrophytes in freshwater ecosystems, particularly which have similar habits. These findings would contribute to the ecological evaluation of ferrous addition or iron-containing water, and provide a reference for submerged macrophytes restoration and ecological restoration in freshwater ecosystems.
Collapse
Affiliation(s)
- Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yuanyuan Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jiajie Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
18
|
Schmittling SR, Muhammad D, Haque S, Long TA, Williams CM. Cellular clarity: a logistic regression approach to identify root epidermal regulators of iron deficiency response. BMC Genomics 2023; 24:620. [PMID: 37853316 PMCID: PMC10583470 DOI: 10.1186/s12864-023-09714-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Plants respond to stress through highly tuned regulatory networks. While prior works identified master regulators of iron deficiency responses in A. thaliana from whole-root data, identifying regulators that act at the cellular level is critical to a more comprehensive understanding of iron homeostasis. Within the root epidermis complex molecular mechanisms that facilitate iron reduction and uptake from the rhizosphere are known to be regulated by bHLH transcriptional regulators. However, many questions remain about the regulatory mechanisms that control these responses, and how they may integrate with developmental processes within the epidermis. Here, we use transcriptional profiling to gain insight into root epidermis-specific regulatory processes. RESULTS Set comparisons of differentially expressed genes (DEGs) between whole root and epidermis transcript measurements identified differences in magnitude and timing of organ-level vs. epidermis-specific responses. Utilizing a unique sampling method combined with a mutual information metric across time-lagged and non-time-lagged windows, we identified relationships between clusters of functionally relevant differentially expressed genes suggesting that developmental regulatory processes may act upstream of well-known Fe-specific responses. By integrating static data (DNA motif information) with time-series transcriptomic data and employing machine learning approaches, specifically logistic regression models with LASSO, we also identified putative motifs that served as crucial features for predicting differentially expressed genes. Twenty-eight transcription factors (TFs) known to bind to these motifs were not differentially expressed, indicating that these TFs may be regulated post-transcriptionally or post-translationally. Notably, many of these TFs also play a role in root development and general stress response. CONCLUSIONS This work uncovered key differences in -Fe response identified using whole root data vs. cell-specific root epidermal data. Machine learning approaches combined with additional static data identified putative regulators of -Fe response that would not have been identified solely through transcriptomic profiles and reveal how developmental and general stress responses within the epidermis may act upstream of more specialized -Fe responses for Fe uptake.
Collapse
Affiliation(s)
- Selene R Schmittling
- Department of Electrical & Computer Engineering, North Carolina State University, Raleigh, USA
| | | | - Samiul Haque
- Life Sciences Customer Advisory, SAS Institute Inc, Cary, USA
| | - Terri A Long
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, USA
| | - Cranos M Williams
- Department of Electrical & Computer Engineering, North Carolina State University, Raleigh, USA.
| |
Collapse
|
19
|
Pandey SS. The Role of Iron in Phytopathogenic Microbe-Plant Interactions: Insights into Virulence and Host Immune Response. PLANTS (BASEL, SWITZERLAND) 2023; 12:3173. [PMID: 37687419 PMCID: PMC10563075 DOI: 10.3390/plants12173173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Iron is an essential element required for the growth and survival of nearly all forms of life. It serves as a catalytic component in multiple enzymatic reactions, such as photosynthesis, respiration, and DNA replication. However, the excessive accumulation of iron can result in cellular toxicity due to the production of reactive oxygen species (ROS) through the Fenton reaction. Therefore, to maintain iron homeostasis, organisms have developed a complex regulatory network at the molecular level. Besides catalyzing cellular redox reactions, iron also regulates virulence-associated functions in several microbial pathogens. Hosts and pathogens have evolved sophisticated strategies to compete against each other over iron resources. Although the role of iron in microbial pathogenesis in animals has been extensively studied, mechanistic insights into phytopathogenic microbe-plant associations remain poorly understood. Recent intensive research has provided intriguing insights into the role of iron in several plant-pathogen interactions. This review aims to describe the recent advances in understanding the role of iron in the lifestyle and virulence of phytopathogenic microbes, focusing on bacteria and host immune responses.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India; ; Tel.: +91-361-2270095 (ext. 216)
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| |
Collapse
|
20
|
Zhang H, Song J, Dong F, Li Y, Ge S, Wei B, Liu Y. Multiple roles of wheat ferritin genes during stress treatment and TaFER5D-1 as a positive regulator in response to drought and salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107921. [PMID: 37544121 DOI: 10.1016/j.plaphy.2023.107921] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Ferritin not only regulates the plant's iron content but also plays a significant role in the plant's development and resistance to oxidative damage. However, the role of the FER family in wheat has not been systematically elucidated. In this study, 39 FERs identified from wheat and its ancestral species were clustered into two subgroups, and gene members from the same group contain relatively conservative protein models. The structural analyses indicated that the gene members from the same group contained relatively conserved protein models. The cis-acting elements and expression patterns analysis suggested that TaFERs might play an important role combating to abiotic and biotic stresses. In the transcriptional analysis, the TaFER5D-1 gene was found to be significantly up-regulated under drought and salt stresses and was, therefore, selected to further explore the biological functions Moreover, the GFP expression assay revealed the subcellular localization of TaFER5D-1 proteins in the chloroplast, nucleus, membrane and cytoplasm. Over-expression of TaFER5D-1 in transgenic Arabidopsis lines conferred greater tolerance to drought and salt stress. According to the qRT-PCR data, TaFER5D-1 gene over-expression increased the expression of genes related to root development (Atsweet-17 and AtRSL4), iron storage (AtVIT1 and AtYSL1), and stress response (AtGolS1 and AtCOR47). So it is speculated that TaFER5D-1 could improve stress tolerance by promoting root growth, iron storage, and stress-response ability. Thus, the current study provides insight into the role of TaFER genes in wheat.
Collapse
Affiliation(s)
- Huadong Zhang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
| | - Jinghan Song
- National Key Laboratory of Rice Biology/Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Feiyan Dong
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
| | - Yaqian Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
| | - Shijie Ge
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
| | - Bo Wei
- Peking University Institute of Advanced Agricultural Sciences/National Key Laboratory of Wheat Improvement, Weifang, Shandong, 261325, China.
| | - Yike Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China.
| |
Collapse
|
21
|
Tola AJ, Missihoun TD. Iron Availability Influences Protein Carbonylation in Arabidopsis thaliana Plants. Int J Mol Sci 2023; 24:ijms24119732. [PMID: 37298684 DOI: 10.3390/ijms24119732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Protein carbonylation is an irreversible form of post-translational modification triggered by reactive oxygen species in animal and plant cells. It occurs either through the metal-catalyzed oxidation of Lys, Arg, Pro, and Thr side chains or the addition of α, β-unsaturated aldehydes and ketones to the side chains of Cys, Lys, and His. Recent genetic studies concerning plants pointed to an implication of protein carbonylation in gene regulation through phytohormones. However, for protein carbonylation to stand out as a signal transduction mechanism, such as phosphorylation and ubiquitination, it must be controlled in time and space by a still unknown trigger. In this study, we tested the hypothesis that the profile and extent of protein carbonylation are influenced by iron homeostasis in vivo. For this, we compared the profile and the contents of the carbonylated proteins in the Arabidopsis thaliana wild-type and mutant-deficient in three ferritin genes under normal and stress conditions. Additionally, we examined the proteins specifically carbonylated in wild-type seedlings exposed to iron-deficient conditions. Our results indicated that proteins were differentially carbonylated between the wild type and the triple ferritin mutant Fer1-3-4 in the leaves, stems, and flowers under normal growth conditions. The profile of the carbonylated proteins was also different between the wild type and the ferritin triple mutant exposed to heat stress, thus pointing to the influence of iron on the carbonylation of proteins. Consistent with this, the exposure of the seedlings to iron deficiency and iron excess greatly influenced the carbonylation of certain proteins involved in intracellular signal transduction, translation, and iron deficiency response. Overall, the study underlined the importance of iron homeostasis in the occurrence of protein carbonylation in vivo.
Collapse
Affiliation(s)
- Adesola J Tola
- Groupe de Recherche en Biologie Végétale (GRBV), Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boul. des Forges, Trois-Rivières, QC G9A 5H7, Canada
| | - Tagnon D Missihoun
- Groupe de Recherche en Biologie Végétale (GRBV), Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boul. des Forges, Trois-Rivières, QC G9A 5H7, Canada
| |
Collapse
|
22
|
Yang B, Xu C, Cheng Y, Jia T, Hu X. Research progress on the biosynthesis and delivery of iron-sulfur clusters in the plastid. PLANT CELL REPORTS 2023:10.1007/s00299-023-03024-7. [PMID: 37160773 DOI: 10.1007/s00299-023-03024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ancient protein cofactors ubiquitously exist in organisms. They are involved in many important life processes. Plastids are semi-autonomous organelles with a double membrane and it is believed to originate from a cyanobacterial endosymbiont. By learning form the research in cyanobacteria, a Fe-S cluster biosynthesis and delivery pathway has been proposed and partly demonstrated in plastids, including iron uptake, sulfur mobilization, Fe-S cluster assembly and delivery. Fe-S clusters are essential for the downstream Fe-S proteins to perform their normal biological functions. Because of the importance of Fe-S proteins in plastid, researchers have made a lot of research progress on this pathway in recent years. This review summarizes the detail research progress made in recent years. In addition, the scientific problems remained in this pathway are also discussed.
Collapse
Affiliation(s)
- Bing Yang
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Chenyun Xu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yuting Cheng
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
23
|
Girolametti F, Annibaldi A, Illuminati S, Damiani E, Carloni P, Truzzi C. Essential and Potentially Toxic Elements (PTEs) Content in European Tea ( Camellia sinensis) Leaves: Risk Assessment for Consumers. Molecules 2023; 28:molecules28093802. [PMID: 37175212 PMCID: PMC10179902 DOI: 10.3390/molecules28093802] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Tea (Camellia sinensis) is the second most consumed beverage worldwide, playing a key role in the human diet. Tea is considered a healthy drink, as its consumption has been linked to a lower risk of cardiovascular disease-related events and death, stroke, metabolic syndrome and obesity. However, several studies have shown that C. sinensis is a hyperaccumulator of Al and other elements that are considered potentially toxic. In the present study, the contents of 15 elements (both essential and toxic) were determined for the first time in tea leaves collected in tea gardens located in six different European countries and processed to provide black and green tea. The results showed that Al was the major toxic element detected, followed by Ni, Cr, Pb, As, Cd, Ag, and Hg. Essential elements were detected in the order of Mn, Fe, Zn, Cu, Co, and Se. Statistically significant correlations (p < 0.05) were found in the distribution of some elements, highlighting mechanisms of synergic or antagonist interaction. Multivariate analysis revealed that geographical origin was the main driver in clustering the samples, while the different treatment processes (black or green) did not significantly affect the contents of elements in the leaves. The estimation of potential non-carcinogenic risk revealed no risk for the consumption of European teas for consumers in terms of potentially toxic elements.
Collapse
Affiliation(s)
- Federico Girolametti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Anna Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Silvia Illuminati
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Patricia Carloni
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Cristina Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
24
|
Zandi P, Xia X, Yang J, Liu J, Remusat L, Rumpel C, Bloem E, Krasny BB, Schnug E. Speciation and distribution of chromium (III) in rice root tip and mature zone: The significant impact of root exudation and iron plaque on chromium bioavailability. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130992. [PMID: 36860064 DOI: 10.1016/j.jhazmat.2023.130992] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Evidence on the contribution of root regions with varied maturity levels in iron plaque (IP) formation and root exudation of metabolites and their consequences for uptake and bioavailability of chromium (Cr) remains unknown. Therefore, we applied combined nanoscale secondary ion mass spectrometry (NanoSIMS) and synchrotron-based techniques, micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption near-edge structure (µ-XANES) to examine the speciation and localisation of Cr and the distribution of (micro-) nutrients in rice root tip and mature region. µ-XRF mapping revealed that the distribution of Cr and (micro-) nutrients varied between root regions. Cr K-edge XANES analysis at Cr hotspots attributed the dominant speciation of Cr in outer (epidermal and sub-epidermal) cell layers of the root tips and mature root to Cr(III)-FA (fulvic acid-like anions) (58-64%) and Cr(III)-Fh (amorphous ferrihydrite) (83-87%) complexes, respectively. The co-occurrence of a high proportion of Cr(III)-FA species and strong co-location signals of 52Cr16O and 13C14N in the mature root epidermis relative to the sub-epidermis indicated an association of Cr with active root surfaces, where the dissolution of IP and release of their associated Cr are likely subject to the mediation of organic anions. The results of NanoSIMS (poor 52Cr16O and 13C14N signals), dissolution (no IP dissolution) and µ-XANES (64% in sub-epidermis >58% in the epidermis for Cr(III)-FA species) analyses of root tips may be indicative of the possible re-uptake of Cr by this region. The results of this research work highlight the significance of IP and organic anions in rice root systems on the bioavailability and dynamics of heavy metals (e.g. Cr).
Collapse
Affiliation(s)
- Peiman Zandi
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing 100081, China; International Faculty of Applied Technology, Yibin University, Yibin 644000, China
| | - Xing Xia
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Jin Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | - Laurent Remusat
- Muséum National d'Histoire Naturelle; Institut de Minéralogie, Physique des Matériaux et Cosmochimie; CNRS UMR 7590; Sorbonne Université; 61 rue Buffon, 75005 Paris, France
| | - Cornelia Rumpel
- Institute of Ecology and Environmental Sciences of Paris (IEES), UMR CNRS 7618, IRD 242, INRAE 1392, Université Paris Est Créteil, Sorbonne Université, Paris, 75005, France
| | - Elke Bloem
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science, Bundesallee 69, 38116, Braunschweig, Germany
| | - Beata Barabasz Krasny
- Department of Botany, Institute of Biology and Earth Science, Pedagogical University of Krakow, Podchorążych 2 St., 30-084 Kraków, Poland
| | - Ewald Schnug
- Institute for Plant Biology, Department of Life Sciences, Technical University of Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
25
|
Knödler M, Opdensteinen P, Sankaranarayanan RA, Morgenroth A, Buhl EM, Mottaghy FM, Buyel JF. Simple plant-based production and purification of the assembled human ferritin heavy chain as a nanocarrier for tumor-targeted drug delivery and bioimaging in cancer therapy. Biotechnol Bioeng 2023; 120:1038-1054. [PMID: 36539373 DOI: 10.1002/bit.28312] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Nanoparticles are used as carriers for the delivery of drugs and imaging agents. Proteins are safer than synthetic nanocarriers due to their greater biocompatibility and the absence of toxic degradation products. In this context, ferritin has the additional benefit of inherently targeting the membrane receptor transferrin 1, which is overexpressed by most cancer cells. Furthermore, this self-assembling multimeric protein can be loaded with more than 2000 iron atoms, as well as drugs, contrast agents, and other cargos. However, recombinant ferritin currently costs ~3.5 million € g-1 , presumably because the limited number of producers cannot meet demand, making it generally unaffordable as a nanocarrier. Because plants can produce proteins at very-large-scale, we developed a simple, proof-of-concept process for the production of the human ferritin heavy chain by transient expression in Nicotiana benthamiana. We optimized the protein yields by screening different compartments and 5'-untranslated regions in PCPs, and selected the best-performing construct for production in differentiated plants. We then established a rapid and scalable purification protocol by combining pH and heat treatment before extraction, followed by an ultrafiltration/diafiltration size-based separation process. The optimized process achieved ferritin levels of ~40 mg kg-1 fresh biomass although depth filtration limited product recovery to ~7%. The purity of the recombinant product was >90% at costs ~3% of the current sales price. Our method therefore allows the production of affordable ferritin heavy chain as a carrier for therapeutic and diagnostic agents, which is suitable for further stability and functionality testing in vitro and in vivo.
Collapse
Affiliation(s)
- Matthias Knödler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Patrick Opdensteinen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | | | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute for Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Johannes Felix Buyel
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| |
Collapse
|
26
|
Jahan TA, Kalve S, Belak Z, Eskiw C, Tar’an B. Iron accumulation and partitioning in hydroponically grown wild and cultivated chickpea ( Cicer arietinum L). FRONTIERS IN PLANT SCIENCE 2023; 14:1092493. [PMID: 37008497 PMCID: PMC10063876 DOI: 10.3389/fpls.2023.1092493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Chickpea (Cicer arietinum L.) is a staple food in many developing countries where iron (Fe) deficiency often occurs in their population. The crop is a good source of protein, vitamins, and micronutrients. Fe biofortification in chickpea can be part of long-term strategy to enhance Fe intake in human diet to help to alleviate Fe deficiency. To develop cultivars with high Fe concentration in seeds, understanding the mechanisms of absorption and translocation of Fe into the seeds is critical. An experiment was conducted using a hydroponic system to evaluate Fe accumulation in seeds and other organs at different growth stages of selected genotypes of cultivated and wild relatives of chickpea. Plants were grown in media with Fe zero and Fe added conditions. Six chickpea genotypes were grown and harvested at six different growth stages: V3, V10, R2, R5, R6, and RH for analysis of Fe concentration in roots, stems, leaves, and seeds. The relative expression of genes related to Fe-metabolism including FRO2, IRT1, NRAMP3, V1T1, YSL1, FER3, GCN2, and WEE1 was analyzed. The results showed that the highest and lowest accumulation of Fe throughout the plant growth stages were found in the roots and stems, respectively. Results of gene expression analysis confirmed that the FRO2 and IRT1 were involved in Fe uptake in chickpeas and expressed more in roots under Fe added condition. All transporter genes: NRAMP3, V1T1, YSL1 along with storage gene FER3 showed higher expression in leaves. In contrast, candidate gene WEE1 for Fe metabolism expressed more in roots under Fe affluent condition; however, GCN2 showed over-expression in roots under Fe zero condition. Current finding will contribute to better understanding of Fe translocation and metabolism in chickpea. This knowledge can further be used to develop chickpea varieties with high Fe in seeds.
Collapse
Affiliation(s)
- Tamanna A. Jahan
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shweta Kalve
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zachery Belak
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Christopher Eskiw
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bunyamin Tar’an
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
27
|
Dong Y, Duan S, Xia Q, Liang Z, Dong X, Margaryan K, Musayev M, Goryslavets S, Zdunić G, Bert PF, Lacombe T, Maul E, Nick P, Bitskinashvili K, Bisztray GD, Drori E, De Lorenzis G, Cunha J, Popescu CF, Arroyo-Garcia R, Arnold C, Ergül A, Zhu Y, Ma C, Wang S, Liu S, Tang L, Wang C, Li D, Pan Y, Li J, Yang L, Li X, Xiang G, Yang Z, Chen B, Dai Z, Wang Y, Arakelyan A, Kuliyev V, Spotar G, Girollet N, Delrot S, Ollat N, This P, Marchal C, Sarah G, Laucou V, Bacilieri R, Röckel F, Guan P, Jung A, Riemann M, Ujmajuridze L, Zakalashvili T, Maghradze D, Höhn M, Jahnke G, Kiss E, Deák T, Rahimi O, Hübner S, Grassi F, Mercati F, Sunseri F, Eiras-Dias J, Dumitru AM, Carrasco D, Rodriguez-Izquierdo A, Muñoz G, Uysal T, Özer C, Kazan K, Xu M, Wang Y, Zhu S, Lu J, Zhao M, Wang L, Jiu S, Zhang Y, Sun L, Yang H, Weiss E, Wang S, Zhu Y, Li S, Sheng J, Chen W. Dual domestications and origin of traits in grapevine evolution. Science 2023; 379:892-901. [PMID: 36862793 DOI: 10.1126/science.add8655] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
We elucidate grapevine evolution and domestication histories with 3525 cultivated and wild accessions worldwide. In the Pleistocene, harsh climate drove the separation of wild grape ecotypes caused by continuous habitat fragmentation. Then, domestication occurred concurrently about 11,000 years ago in Western Asia and the Caucasus to yield table and wine grapevines. The Western Asia domesticates dispersed into Europe with early farmers, introgressed with ancient wild western ecotypes, and subsequently diversified along human migration trails into muscat and unique western wine grape ancestries by the late Neolithic. Analyses of domestication traits also reveal new insights into selection for berry palatability, hermaphroditism, muscat flavor, and berry skin color. These data demonstrate the role of the grapevines in the early inception of agriculture across Eurasia.
Collapse
Affiliation(s)
- Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Shengchang Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Qiuju Xia
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Oenology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Xiao Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Kristine Margaryan
- Institute of Molecular Biology, NAS RA, 0014 Yerevan, Armenia.,Yerevan State University, 0014 Yerevan, Armenia
| | - Mirza Musayev
- Genetic Resources Institute, Azerbaijan National Academy of Sciences, AZ1106 Baku, Azerbaijan
| | | | - Goran Zdunić
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
| | - Pierre-François Bert
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, 33882 Villenave d'Ornon, France
| | - Thierry Lacombe
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Erika Maul
- Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | | | - György Dénes Bisztray
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Elyashiv Drori
- Department of Chemical Engineering, Ariel University, 40700 Ariel, Israel.,Eastern Regional R&D Center, 40700 Ariel, Israel
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences, University of Milano, 20133 Milano, Italy
| | - Jorge Cunha
- Instituto Nacional de Investigação Agrária e Veterinária, I.P./INIAV-Dois Portos, 2565-191 Torres Vedras, Portugal.,Green-it Unit, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Carmen Florentina Popescu
- National Research and Development Institute for Biotechnology in Horticulture, Stefanesti, 117715 Arges, Romania
| | - Rosa Arroyo-Garcia
- Center for Plant Biotechnology and Genomics, UPM-INIA/CSIC, Pozuelo de Alarcon, 28223 Madrid, Spain
| | | | - Ali Ergül
- Biotechnology Institute, Ankara University, 06135 Ankara, Turkey
| | - Yifan Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Shufen Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Liu Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Chunping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Dawei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Yunbing Pan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Jingxian Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Ling Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Xuzhen Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Guisheng Xiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Zijiang Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Baozheng Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Oenology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Oenology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Arsen Arakelyan
- Institute of Molecular Biology, NAS RA, 0014 Yerevan, Armenia.,Armenian Bioinformatics Institute, 0014 Yerevan, Armenia.,Biomedicine and Pharmacy, RAU, 0051 Yerevan, Armenia
| | - Varis Kuliyev
- Institute of Bioresources, Nakhchivan Branch of the Azerbaijan National Academy of Sciences, AZ7000 Nakhchivan, Azerbaijan
| | - Gennady Spotar
- National Institute of Viticulture and Winemaking Magarach, Yalta 298600, Crimea
| | - Nabil Girollet
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, 33882 Villenave d'Ornon, France
| | - Serge Delrot
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, 33882 Villenave d'Ornon, France
| | - Nathalie Ollat
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, 33882 Villenave d'Ornon, France
| | - Patrice This
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Cécile Marchal
- Vassal-Montpellier Grapevine Biological Resources Center, INRAE, 34340 Marseillan-Plage, France
| | - Gautier Sarah
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Valérie Laucou
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Roberto Bacilieri
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Franco Röckel
- Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | - Pingyin Guan
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Andreas Jung
- Historische Rebsorten-Sammlung, Rebschule (K39), 67599 Gundheim, Germany
| | - Michael Riemann
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Levan Ujmajuridze
- LEPL Scientific Research Center of Agriculture, 0159 Tbilisi, Georgia
| | | | - David Maghradze
- LEPL Scientific Research Center of Agriculture, 0159 Tbilisi, Georgia
| | - Maria Höhn
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Gizella Jahnke
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Erzsébet Kiss
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Tamás Deák
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Oshrit Rahimi
- Department of Chemical Engineering, Ariel University, 40700 Ariel, Israel
| | - Sariel Hübner
- Galilee Research Institute (Migal), Tel-Hai Academic College, 12210 Upper Galilee, Israel
| | - Fabrizio Grassi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.,NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Francesco Mercati
- Institute of Biosciences and Bioresources, National Research Council, 90129 Palermo, Italy
| | - Francesco Sunseri
- Department AGRARIA, University Mediterranea of Reggio Calabria, Reggio 89122 Calabria, Italy
| | - José Eiras-Dias
- Instituto Nacional de Investigação Agrária e Veterinária, I.P./INIAV-Dois Portos, 2565-191 Torres Vedras, Portugal.,Green-it Unit, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Anamaria Mirabela Dumitru
- National Research and Development Institute for Biotechnology in Horticulture, Stefanesti, 117715 Arges, Romania
| | - David Carrasco
- Center for Plant Biotechnology and Genomics, UPM-INIA/CSIC, Pozuelo de Alarcon, 28223 Madrid, Spain
| | | | | | - Tamer Uysal
- Viticulture Research Institute, Ministry of Agriculture and Forestry, 59200 Tekirdağ, Turkey
| | - Cengiz Özer
- Viticulture Research Institute, Ministry of Agriculture and Forestry, 59200 Tekirdağ, Turkey
| | - Kemal Kazan
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Meilong Xu
- Institute of Horticulture, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Yunyue Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Jiang Lu
- Center for Viticulture and Oenology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Maoxiang Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institutes, CAAS, Zhengzhou 450009, China
| | - Lei Sun
- Zhengzhou Fruit Research Institutes, CAAS, Zhengzhou 450009, China
| | | | - Ehud Weiss
- The Martin (Szusz) Department of Land of Israel Studies and Archaeology, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Oenology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Jun Sheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| |
Collapse
|
28
|
Gui JY, Rao S, Huang X, Liu X, Cheng S, Xu F. Interaction between selenium and essential micronutrient elements in plants: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158673. [PMID: 36096215 DOI: 10.1016/j.scitotenv.2022.158673] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Nutrient imbalance (i.e., deficiency and toxicity) of microelements is an outstanding environmental issue that influences each aspect of ecosystems. Although the crucial roles of microelements in entire lifecycle of plants have been widely acknowledged, the effective control of microelements is still neglected due to the narrow safe margins. Selenium (Se) is an essential element for humans and animals. Although it is not believed to be indispensable for plants, many literatures have reported the significance of Se in terms of the uptake, accumulation, and detoxification of essential microelements in plants. However, most papers only concerned on the antagonistic effect of Se on metal elements in plants and ignored the underlying mechanisms. There is still a lack of systematic review articles to summarize the comprehensive knowledge on the connections between Se and microelements in plants. In this review, we conclude the bidirectional effects of Se on micronutrients in plants, including iron, zinc, copper, manganese, nickel, molybdenum, sodium, chlorine, and boron. The regulatory mechanisms of Se on these micronutrients are also analyzed. Moreover, we further emphasize the role of Se in alleviating element toxicity and adjusting the concentration of micronutrients in plants by altering the soil conditions (e.g., adsorption, pH, and organic matter), promoting microbial activity, participating in vital physiological and metabolic processes, generating element competition, stimulating metal chelation, organelle compartmentalization, and sequestration, improving the antioxidant defense system, and controlling related genes involved in transportation and tolerance. Based on the current understanding of the interaction between Se and these essential elements, future directions for research are suggested.
Collapse
Affiliation(s)
- Jia-Ying Gui
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xinru Huang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiaomeng Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
29
|
da Silva DR, Schaefer CEGR, Kuki KN, Santos MFS, Heringer G, da Silva LC. Why is Brachiaria decumbens Stapf. a common species in the mining tailings of the Fundão dam in Minas Gerais, Brazil? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79168-79183. [PMID: 35708810 DOI: 10.1007/s11356-022-21345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Currently, more than five years after the Fundão dam failure in Mariana, Minas Gerais, Brazil, Brachiaria decumbens Stapf. is the main grass in pasturelands affected by the mining tailings. The aim of this study was to investigate the reason for this fact as well as to determine the ecophysiological effects of mining tailings on B. decumbens and to test whether mixing the tailings with unaffected local soil enhances the affected soil properties. For the experiment, two different soils were collected, one unaffected soil without mining tailings (Ref) and the mining tailings (Tec), and we also created a mixture with 50 % of each soil type (Ref/Tec). We cultivated B. decumbens in the three soil treatments in a greenhouse for 110 days and evaluated soil physical-chemical properties and plant ecophysiology. Our results show that the tailings (Tec) compromised the normal ecophysiological state of B. decumbens. The species survived these adverse conditions due to its great efficiency in acquiring some elements. The soil management tested by this work mitigated the stress caused by tailings and can represent an alternative for the environmental recovery of the affected soils.
Collapse
Affiliation(s)
- Daniel Rodrigues da Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | | | - Kacilda Naomi Kuki
- Departamento de Agronomia, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Michel Filiphy Silva Santos
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Gustavo Heringer
- Programa de Pós-Graduação em Ecologia Aplicada, Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras - UFLA, Lavras, Minas Gerais, CEP 37200-900, Brazil
| | - Luzimar Campos da Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
30
|
Leister D, Marino G, Minagawa J, Dann M. An ancient function of PGR5 in iron delivery? TRENDS IN PLANT SCIENCE 2022; 27:971-980. [PMID: 35618596 DOI: 10.1016/j.tplants.2022.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
In all phototrophic organisms, the photosynthetic apparatus must be protected from light-induced damage. One important mechanism that mitigates photodamage in plants is antimycin A (AA)-sensitive cyclic electron flow (CEF), the evolution of which remains largely obscure. Here we show that proton gradient regulation 5 (PGR5), a key protein involved in AA-sensitive CEF, displays intriguing commonalities - including sequence and structural features - with a group of ferritin-like proteins. We therefore propose that PGR5 may originally have been involved in prokaryotic iron mobilization and delivery, which facilitated a primordial type of CEF as a side effect. The abandonment of the bacterioferritin system during the transformation of cyanobacterial endosymbionts into chloroplasts might have allowed PGR5 to functionally specialize in CEF.
Collapse
Affiliation(s)
- Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | - Giada Marino
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Marcel Dann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany; Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.
| |
Collapse
|
31
|
Chesnais Q, Golyaev V, Velt A, Rustenholz C, Brault V, Pooggin MM, Drucker M. Comparative Plant Transcriptome Profiling of Arabidopsis thaliana Col-0 and Camelina sativa var. Celine Infested with Myzus persicae Aphids Acquiring Circulative and Noncirculative Viruses Reveals Virus- and Plant-Specific Alterations Relevant to Aphid Feeding Behavior and Transmission. Microbiol Spectr 2022; 10:e0013622. [PMID: 35856906 PMCID: PMC9430646 DOI: 10.1128/spectrum.00136-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/19/2022] [Indexed: 11/20/2022] Open
Abstract
Evidence is accumulating that plant viruses alter host plant traits in ways that modify their insect vectors' behavior. These alterations often enhance virus transmission, which has led to the hypothesis that these effects are manipulations caused by viral adaptation. However, we lack a mechanistic understanding of the genetic basis of these indirect, plant-mediated effects on vectors, their dependence on the plant host, and their relation to the mode of virus transmission. Transcriptome profiling of Arabidopsis thaliana and Camelina sativa plants infected with turnip yellows virus (TuYV) or cauliflower mosaic virus (CaMV) and infested with the common aphid vector Myzus persicae revealed strong virus- and host-specific differences in gene expression patterns. CaMV infection caused more severe effects on the phenotype of both plant hosts than did TuYV infection, and the severity of symptoms correlated strongly with the proportion of differentially expressed genes, especially photosynthesis genes. Accordingly, CaMV infection modified aphid behavior and fecundity more strongly than did infection with TuYV. Overall, infection with CaMV, relying on the noncirculative transmission mode, tends to have effects on metabolic pathways, with strong potential implications for insect vector-plant host interactions (e.g., photosynthesis, jasmonic acid, ethylene, and glucosinolate biosynthetic processes), while TuYV, using the circulative transmission mode, alters these pathways only weakly. These virus-induced deregulations of genes that are related to plant physiology and defense responses might impact both aphid probing and feeding behavior on infected host plants, with potentially distinct effects on virus transmission. IMPORTANCE Plant viruses change the phenotype of their plant hosts. Some of the changes impact interactions of the plant with insects that feed on the plants and transmit these viruses. These modifications may result in better virus transmission. We examine here the transcriptomes of two plant species infected with two viruses with different transmission modes to work out whether there are plant species-specific and transmission mode-specific transcriptome changes. Our results show that both are the case.
Collapse
Affiliation(s)
- Quentin Chesnais
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Victor Golyaev
- PHIM Plant Health Institute, Université Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Amandine Velt
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Camille Rustenholz
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Véronique Brault
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, Université Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Martin Drucker
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| |
Collapse
|
32
|
Islam N, Krishnan HB, Natarajan SS. Protein profiling of fast neutron soybean mutant seeds reveals differential accumulation of seed and iron storage proteins. PHYTOCHEMISTRY 2022; 200:113214. [PMID: 35469783 DOI: 10.1016/j.phytochem.2022.113214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
A fast neutron (FN) radiated mutant soybean (Glycine max (L.) Merr., Fabaceae) displaying large duplications exhibited an increase in total seed protein content. A tandem mass tag (TMT) based protein profiling of matured seeds resulted in the identification of 4338 proteins. Gene duplication resulted in a significant increase in several seed storage proteins and protease inhibitors. Among the storage proteins, basic 7 S globulin, glycinin G4, and beta-conglycinin showed higher abundance in matured FN mutant seeds in addition to protease inhibitors. A significantly higher abundance of L-ascorbate peroxidases, acid phosphatases, and iron storage proteins was also observed. A higher amount of albumin, sucrose synthase, iron storage, and ascorbate family proteins in the mutant seeds was observed at the mid-stage of seed filling. We anticipate that the duplicated genes might have a cascading effect on the genome constituents, thus, resulting in increased storage and iron-containing protein content in the mutant seeds.
Collapse
Affiliation(s)
- Nazrul Islam
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Hari B Krishnan
- Plant Genetics Research Unit, USDA-ARS, University of Missouri, Columbia, MO, 65211, USA
| | | |
Collapse
|
33
|
Fu D, Li J, Yang X, Li W, Zhou Z, Xiao S, Xue C. Iron redistribution induces oxidative burst and resistance in maize against Curvularia lunata. PLANTA 2022; 256:46. [PMID: 35867182 DOI: 10.1007/s00425-022-03963-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
ΔClnps6 induced iron redistribution in maize B73 leaf cells and resulted in reactive oxygen species (ROS) burst to enhance plant resistance against Curvularia lunata. Iron is an indispensable co-factor of various crucial enzymes that are involved in cellular metabolic processes and energy metabolism in eukaryotes. For this reason, plants and pathogens compete for iron to maintain their iron homeostasis, respectively. In our previous study, ΔClnps6, the extracellular siderophore biosynthesis deletion mutant of Curvularia lunata, was sensitive to exogenous hydrogen peroxide and virulence reduction. However, the mechanism was not studied. Here, we report that maize B73 displayed highly resistance to ΔClnps6. The plants recruited more iron at cell wall appositions (CWAs) to cause ROS bursts. Intracellular iron deficiency induced by iron redistribution originated form up-regulated expression of genes involved in intracellular iron consumption in leaves and absorption in roots. The RNA-sequencing data also showed that the expression of respiratory burst oxidase homologue (ZmRBOH4) and NADP-dependent malic enzyme 4 (ZmNADP-ME4) involved in ROS production was up-regulated in maize B73 after ΔClnps6 infection. Simultaneously, jasmonic acid (JA) biosynthesis genes lipoxygenase (ZmLOX), allene oxide synthase (ZmAOS), GA degradation gene gibberellin 2-beta-dioxygenase (ZmGA2OX6) and ABA degradation genes abscisic acid hydroxylase (ZmABH1, ZmABH2) involved in iron homeostasis were up-regulated expression. Ferritin1 (ZmFER1) positive regulated maize resistance against C. lunata via ROS burst under Fe-limiting conditions. Overall, our results showed that iron played vital roles in activating maize resistance in B73-C. lunata interaction.
Collapse
Affiliation(s)
- Dandan Fu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiayang Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xue Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenling Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zengran Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuqin Xiao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Chunsheng Xue
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
34
|
Chen S, Su H, Xing H, Mao J, Sun P, Li M. Comparative Proteomics Reveals the Difference in Root Cold Resistance between Vitis. riparia × V. labrusca and Cabernet Sauvignon in Response to Freezing Temperature. PLANTS (BASEL, SWITZERLAND) 2022; 11:971. [PMID: 35406951 PMCID: PMC9003149 DOI: 10.3390/plants11070971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Grapevines, bearing fruit containing large amounts of bioactive metabolites that offer health benefits, are widely cultivated around the world. However, the cold damage incurred when grown outside in extremely low temperatures during the overwintering stage limits the expansion of production. Although the morphological, biochemical, and molecular levels in different Vitis species exposed to different temperatures have been investigated, differential expression of proteins in roots is still limited. Here, the roots of cold-resistant (Vitis. riparia × V. labrusca, T1) and cold-sensitive varieties (Cabernet Sauvignon, T3) at -4 °C, and also at -15 °C for the former (T2), were measured by iTRAQ-based proteomic analysis. Expression levels of genes encoding candidate proteins were validated by qRT-PCR, and the root activities during different treatments were determined using a triphenyl tetrazolium chloride method. The results show that the root activity of the cold-resistant variety was greater than that of the cold-sensitive variety, and it declined with the decrease in temperature. A total of 25 proteins were differentially co-expressed in T2 vs. T1 and T1 vs. T3, and these proteins were involved in stress response, bio-signaling, metabolism, energy, and translation. The relative expression levels of the 13 selected genes were consistent with their fold-change values of proteins. The signature translation patterns for the roots during spatio-temporal treatments of different varieties at different temperatures provide insight into the differential mechanisms of cold resistance of grapevine.
Collapse
Affiliation(s)
- Sijin Chen
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.C.); (H.S.); (H.X.)
| | - Hongyan Su
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.C.); (H.S.); (H.X.)
| | - Hua Xing
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.C.); (H.S.); (H.X.)
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ping Sun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.C.); (H.S.); (H.X.)
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.C.); (H.S.); (H.X.)
| |
Collapse
|
35
|
Sági-Kazár M, Solymosi K, Solti Á. Iron in leaves: chemical forms, signalling, and in-cell distribution. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1717-1734. [PMID: 35104334 PMCID: PMC9486929 DOI: 10.1093/jxb/erac030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Iron (Fe) is an essential transition metal. Based on its redox-active nature under biological conditions, various Fe compounds serve as cofactors in redox enzymes. In plants, the photosynthetic machinery has the highest demand for Fe. In consequence, the delivery and incorporation of Fe into cofactors of the photosynthetic apparatus is the focus of Fe metabolism in leaves. Disturbance of foliar Fe homeostasis leads to impaired biosynthesis of chlorophylls and composition of the photosynthetic machinery. Nevertheless, mitochondrial function also has a significant demand for Fe. The proper incorporation of Fe into proteins and cofactors as well as a balanced intracellular Fe status in leaf cells require the ability to sense Fe, but may also rely on indirect signals that report on the physiological processes connected to Fe homeostasis. Although multiple pieces of information have been gained on Fe signalling in roots, the regulation of Fe status in leaves has not yet been clarified in detail. In this review, we give an overview on current knowledge of foliar Fe homeostasis, from the chemical forms to the allocation and sensing of Fe in leaves.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| |
Collapse
|
36
|
Singh N, Bhatla SC. Heme oxygenase-nitric oxide crosstalk-mediated iron homeostasis in plants under oxidative stress. Free Radic Biol Med 2022; 182:192-205. [PMID: 35247570 DOI: 10.1016/j.freeradbiomed.2022.02.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022]
Abstract
Plant growth under abiotic stress conditions significantly enhances intracellular generation of reactive oxygen species (ROS). Oxidative status of plant cells is directly affected by the modulation of iron homeostasis. Among mammals and plants, heme oxygenase-1 (HO-1) is a well-known antioxidant enzyme. It catalyzes oxygenation of heme, thereby producing Fe2+, CO and biliverdin as byproducts. The antioxidant potential of HO-1 is primarily due to its catalytic reaction byproducts. Biliverdin and bilirubin possess conjugated π-electrons which escalate the ability of these biomolecules to scavenge free radicals. CO also enhances the ROS scavenging ability of plants cells by upregulating catalase and peroxidase activity. Enhanced expression of HO-1 in plants under oxidative stress accompanies sequestration of iron in specialized iron storage proteins localized in plastids and mitochondria, namely ferritin for Fe3+ storage and frataxin for storage of Fe-S clusters, respectively. Nitric oxide (NO) crosstalks with HO-1 at multiple levels, more so in plants under oxidative stress, in order to maintain intracellular iron status. Formation of dinitrosyl-iron complexes (DNICs) significantly prevents Fenton reaction during oxidative stress. DNICs also release NO upon dissociation in target cells over long distance in plants. They also function as antioxidants against superoxide anions and lipidic free radicals. A number of NO-modulated transcription factors also facilitate iron homeostasis in plant cells. Plants facing oxidative stress exhibit modulation of lateral root formation by HO-1 through NO and auxin-dependent pathways. The present review provides an in-depth analysis of the structure-function relationship of HO-1 in plants and mammals, correlating them with their adaptive mechanisms of survival under stress.
Collapse
Affiliation(s)
- Neha Singh
- Department of Botany, Gargi College, University of Delhi, India.
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
37
|
Kirk GJD, Manwaring HR, Ueda Y, Semwal VK, Wissuwa M. Below-ground plant-soil interactions affecting adaptations of rice to iron toxicity. PLANT, CELL & ENVIRONMENT 2022; 45:705-718. [PMID: 34628670 DOI: 10.1111/pce.14199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Iron toxicity is a major constraint to rice production, particularly in highly weathered soils of inland valleys in sub-Saharan Africa where the rice growing area is rapidly expanding. There is a wide variation in tolerance of iron toxicity in the rice germplasm. However, the introgression of tolerance traits into high-yielding germplasm has been slow owing to the complexity of the tolerance mechanisms and large genotype-by-environment effects. We review current understanding of tolerance mechanisms, particularly those involving below-ground plant-soil interactions. Until now these have been less studied than above-ground mechanisms. We cover processes in the rhizosphere linked to exclusion of toxic ferrous iron by oxidation, and resulting effects on the mobility of nutrient ions. We also cover the molecular physiology of below-ground processes controlling iron retention in roots and root-shoot transport, and also plant iron sensing. We conclude that future breeding programmes should be based on well-characterized molecular markers for iron toxicity tolerance traits. To successfully identify such markers, the complex tolerance response should be broken down into its components based on understanding of tolerance mechanisms, and tailored screening methods should be developed for individual mechanisms.
Collapse
Affiliation(s)
- Guy J D Kirk
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
| | - Hanna R Manwaring
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
| | - Yoshiaki Ueda
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| | | | - Matthias Wissuwa
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| |
Collapse
|
38
|
Urwat U, Ahmad SM, Masi A, Ganai NA, Murtaza I, Khan I, Zargar SM. Fe and Zn stress induced gene expression analysis unraveled mechanisms of mineral homeostasis in common bean (Phaseolus vulgaris L.). Sci Rep 2021; 11:24026. [PMID: 34912040 PMCID: PMC8674274 DOI: 10.1038/s41598-021-03506-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022] Open
Abstract
Iron (Fe) and zinc (Zn) stress significantly affects fundamental metabolic and physiological processes in plants that results in reduction of plant growth and development. In the present study, common bean variety; Shalimar French Bean-1 (SFB-1) was used as an experimental material. Four different MGRL media i.e. normal MGRL medium (Control), media without Fe (0-Fe), media without Zn (0-Zn) and media with excess Zn (300-Zn) were used for growing seeds of SFB-1 under in vitro condition for three weeks under optimum conditions. Three week old shoot and root tissues were harvested from the plants grown in these four different in vitro conditions and were, subjected to Fe and Zn estimation. Further, extraction of total RNA for differential gene expression of ten candidate genes selected based on our in silico investigation and their classification, phylogeny and expression pattern was unraveled. Expression analysis of three candidate genes (OPT3, NRAMP2 and NRAMP3) in roots revealed possible cross talk among Fe/Zn stress that was further confirmed by observing less accumulation of Fe in roots under both these conditions. However, we observed, higher accumulation of Fe in shoots under 0-Fe condition compared to control that suggests precise sensing for priority based compartmentalization and partitioning leading to higher accumulation of Fe in shoots. Furthermore, the expression analysis of IRT1, FRO1 and Ferritin 1 genes under Fe/Zn stress suggested their role in uptake/transport and signaling of Fe and Zn, whereas the expression of ZIP2, NRAMP1, HA2 and GLP1 genes were highly responsive to Zn in Phaseolus vulgaris. The identified genes highly responsive to Fe and Zn stress condition can be potential candidates for overcoming mineral stress in dicot crop plants.
Collapse
Affiliation(s)
- Uneeb Urwat
- grid.444725.40000 0004 0500 6225Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India
| | - Syed Mudasir Ahmad
- grid.444725.40000 0004 0500 6225Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shuhama Campus, Jammu & Kashmir, India
| | - Antonio Masi
- grid.5608.b0000 0004 1757 3470Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Nazir Ahmad Ganai
- grid.444725.40000 0004 0500 6225Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shuhama Campus, Jammu & Kashmir, India
| | - Imtiyaz Murtaza
- grid.444725.40000 0004 0500 6225Divisions of Basic Sciences, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shuhama Campus, Jammu & Kashmir, India
| | - Imran Khan
- grid.444725.40000 0004 0500 6225Division of Statistics, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shuhama Campus, Jammu & Kashmir, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India.
| |
Collapse
|
39
|
Transcriptome Profiling of Cu Stressed Petunia Petals Reveals Candidate Genes Involved in Fe and Cu Crosstalk. Int J Mol Sci 2021; 22:ijms222111604. [PMID: 34769033 PMCID: PMC8583722 DOI: 10.3390/ijms222111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
Copper (Cu) is an essential element for most living plants, but it is toxic for plants when present in excess. To better understand the response mechanism under excess Cu in plants, especially in flowers, transcriptome sequencing on petunia buds and opened flowers under excess Cu was performed. Interestingly, the transcript level of FIT-independent Fe deficiency response genes was significantly affected in Cu stressed petals, probably regulated by basic-helix-loop-helix 121 (bHLH121), while no difference was found in Fe content. Notably, the expression level of bHLH121 was significantly down-regulated in petals under excess Cu. In addition, the expression level of genes related to photosystem II (PSII), photosystem I (PSI), cytochrome b6/f complex, the light-harvesting chlorophyll II complex and electron carriers showed disordered expression profiles in petals under excess Cu, thus photosynthesis parameters, including the maximum PSII efficiency (FV/FM), nonphotochemical quenching (NPQ), quantum yield of the PSII (ΦPS(II)) and photochemical quenching coefficient (qP), were reduced in Cu stressed petals. Moreover, the chlorophyll a content was significantly reduced, while the chlorophyll b content was not affected, probably caused by the increased expression of chlorophyllide a oxygenase (CAO). Together, we provide new insight into excess Cu response and the Cu–Fe crosstalk in flowers.
Collapse
|
40
|
Zahra N, Hafeez MB, Shaukat K, Wahid A, Hasanuzzaman M. Fe toxicity in plants: Impacts and remediation. PHYSIOLOGIA PLANTARUM 2021; 173:201-222. [PMID: 33547807 DOI: 10.1111/ppl.13361] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/17/2021] [Accepted: 02/01/2021] [Indexed: 05/07/2023]
Abstract
Fe is the fourth abundant element in the earth crust. Fe toxicity is not often discussed in plant science though it causes severe morphological and physiological disorders, including reduced germination percentage, interferes with enzymatic activities, nutritional imbalance, membrane damage, and chloroplast ultrastructure. It also causes severe toxicity to important biomolecules, which leads to ferroptotic cell death and induces structural changes in the photosynthetic apparatus, which results in retardation of carbon metabolism. However, some agronomic practices like soil remediation through chemicals, nutrients, and organic amendments and some breeding and genetic approaches can provide fruitful results in enhancing crop production in Fe-contaminated soils. Some quantitative trait loci have been reported for Fe tolerance in plants but the function of underlying genes is just emerging. Physiological and molecular mechanism of Fe uptake, translocation, toxicity, and remediation techniques are still under experimentation. In this review, the toxic effects of Fe on seed germination, carbon assimilation, water relations, nutrient uptake, oxidative damages, enzymatic activities, and overall plant growth and development have been discussed. The Fe dynamics in soil rhizosphere and role of remediation strategies, that is, biological, physical, and chemical, have also been described. Use of organic amendments, microbe, phytoremediation, and biological strategies is considered to be both cost and environment friendly for the purification of Fe-contaminated soil, while to ensure better crop yield and quality the manipulation of agronomic practices are suggested.
Collapse
Affiliation(s)
- Noreen Zahra
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | | | - Kanval Shaukat
- Department of Botany, University of Balochistan, Quetta, Pakistan
| | - Abdul Wahid
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
41
|
Sági-Kazár M, Zelenyánszki H, Müller B, Cseh B, Gyuris B, Farkas SZ, Fodor F, Tóth B, Kovács B, Koncz A, Visnovitz T, Buzás EI, Bánkúti B, Bánáti F, Szenthe K, Solti Á. Supraoptimal Iron Nutrition of Brassica napus Plants Suppresses the Iron Uptake of Chloroplasts by Down-Regulating Chloroplast Ferric Chelate Reductase. FRONTIERS IN PLANT SCIENCE 2021; 12:658987. [PMID: 34093616 PMCID: PMC8172622 DOI: 10.3389/fpls.2021.658987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 05/31/2023]
Abstract
Iron (Fe) is an essential micronutrient for plants. Due to the requirement for Fe of the photosynthetic apparatus, the majority of shoot Fe content is localised in the chloroplasts of mesophyll cells. The reduction-based mechanism has prime importance in the Fe uptake of chloroplasts operated by Ferric Reductase Oxidase 7 (FRO7) in the inner chloroplast envelope membrane. Orthologue of Arabidopsis thaliana FRO7 was identified in the Brassica napus genome. GFP-tagged construct of BnFRO7 showed integration to the chloroplast. The time-scale expression pattern of BnFRO7 was studied under three different conditions: deficient, optimal, and supraoptimal Fe nutrition in both leaves developed before and during the treatments. Although Fe deficiency has not increased BnFRO7 expression, the slight overload in the Fe nutrition of the plants induced significant alterations in both the pattern and extent of its expression leading to the transcript level suppression. The Fe uptake of isolated chloroplasts decreased under both Fe deficiency and supraoptimal Fe nutrition. Since the enzymatic characteristics of the ferric chelate reductase (FCR) activity of purified chloroplast inner envelope membranes showed a significant loss for the substrate affinity with an unchanged saturation rate, protein level regulation mechanisms are suggested to be also involved in the suppression of the reduction-based Fe uptake of chloroplasts together with the saturation of the requirement for Fe.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Helga Zelenyánszki
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Brigitta Müller
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barnabás Cseh
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Gyuris
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Sophie Z. Farkas
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Fodor
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Brigitta Tóth
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Béla Kovács
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Anna Koncz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit I. Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SE Extracellular Vesicle Research Group, Budapest, Hungary
| | - Barbara Bánkúti
- RT-Europe Non-profit Research Ltd., Mosonmagyaróvár, Hungary
| | - Ferenc Bánáti
- RT-Europe Non-profit Research Ltd., Mosonmagyaróvár, Hungary
| | - Kálmán Szenthe
- Carlsbad Research Organization Center Ltd., Újrónafõ, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
42
|
Hussain A, Noman A, Arif M, Farooq S, Khan MI, Cheng P, Qari SH, Anwar M, Hashem M, Ashraf MF, Alamri S, Adnan M, Khalofah A, Al-Zoubi OM, Ansari MJ, Khan KA, Sun Y. A basic helix-loop-helix transcription factor CabHLH113 positively regulate pepper immunity against Ralstonia solanacearum. Microb Pathog 2021; 156:104909. [PMID: 33964418 DOI: 10.1016/j.micpath.2021.104909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 11/26/2022]
Abstract
Pepper's (Capsicum annum) response to bacterial pathogen Ralstonia solanacearm inoculation (RSI) and abiotic stresses is known to be synchronized by transcriptional network; however, related molecular mechanisms need extensive experimentation. We identified and characterized functions of CabHLH113 -a basic helix-loop-helix transcription factor-in pepper immunity to R. solanacearum infection. The RSI and foliar spray of phytohormones, including salicylic acid (SA), methyl jasmonate (MeJA), ethylene (ETH), and absicic acid (ABA) induced transcription of CabHLH113 in pepper. Loss of function of CabHLH113 by virus-induced-gene-silencing (VIGS) compromised defense of pepper plants against RSI and suppressed relative expression levels of immunity-associated marker genes, i.e., CaPR1, CaNPR1, CaDEF1, CaHIR1 and CaABR1. Pathogen growth was significantly increased after loss of function of CabHLH113 compared with un-silenced plants with remarkable increase in pepper susceptibility. Besides, transiently over-expression of CabHLH113 induced HR-like cell death, H2O2 accumulation and up-regulation of defense-associated marker genes, e.g. CaPR1, CaNPR1, CaDEF1, CaHIR1 and CaABR1. Additionally, transient over-expression of CabHLH113 enhanced the transcriptional levels of CaWRKY6, CaWRKY27 and CaWRKY40. Conversely, transient over-expression of CaWRKY6, CaWRKY27 and CaWRKY40 enhanced the transcriptional levels of CabHLH113. Collectively, our results indicate that newly characterized CabHLH113 has novel defense functions in pepper immunity against RSI via triggering HR-like cell death and cellular levels of defense linked genes.
Collapse
Affiliation(s)
- Ansar Hussain
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China; Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan.
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan.
| | - Muhammad Arif
- Department of Plant Protection, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Shahid Farooq
- Department of Agronomy, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Ifnan Khan
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Sameer H Qari
- Biology Department, Aljumum University College, Umm Al - Qura University, Makkah, Saudi Arabia
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, 71516, Egypt
| | - Muhammad Furqan Ashraf
- College of Life Sciences, South China Agricultural University, No.483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Saad Alamri
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | - Muhammad Adnan
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ahlam Khalofah
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | | | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), 244001, India
| | - Khalid Ali Khan
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Yunhao Sun
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
| |
Collapse
|
43
|
Native Amazonian Canga Grasses Show Distinct Nitrogen Growth Responses in Iron Mining Substrates. PLANTS 2021; 10:plants10050849. [PMID: 33922282 PMCID: PMC8146357 DOI: 10.3390/plants10050849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
Native species may have adaptive traits that are advantageous for overcoming the adverse environmental conditions faced during the early stages of mine land rehabilitation. Here, we examined the nitrogen (N) growth responses of two native perennial grasses (Axonopus longispicus and Paspalum cinerascens) from canga in nutrient-poor iron mining substrates. We carried out vegetative propagation and recovered substantial healthy tillers from field-collected tussocks of both species. These tillers were cultivated in mining substrates at increasing N levels. The tillering rates of both species increased with the N application. Nonetheless, only in P. cinerascens did the N application result in significant biomass increase. Such growth gain was a result of changes in leaf pigment, stomatal morphology, gas exchanges, and nutrients absorption that occurred mainly under the low N additions. Reaching optimum growth at 80 mg N dm−3, these plants showed no differences from those in the field. Our study demonstrates that an input of N as fertilizer can differentially improve the growth of native grasses and that P. cinerascens plants are able to deposit high quantities of carbon and protect soil over the seasons, thus, making them promising candidates for restoring nutrient cycling, accelerating the return of other species and ecosystem services.
Collapse
|
44
|
Single-cell visualization and quantification of trace metals in Chlamydomonas lysosome-related organelles. Proc Natl Acad Sci U S A 2021; 118:2026811118. [PMID: 33879572 DOI: 10.1073/pnas.2026811118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The acidocalcisome is an acidic organelle in the cytosol of eukaryotes, defined by its low pH and high calcium and polyphosphate content. It is visualized as an electron-dense object by transmission electron microscopy (TEM) or described with mass spectrometry (MS)-based imaging techniques or multimodal X-ray fluorescence microscopy (XFM) based on its unique elemental composition. Compared with MS-based imaging techniques, XFM offers the additional advantage of absolute quantification of trace metal content, since sectioning of the cell is not required and metabolic states can be preserved rapidly by either vitrification or chemical fixation. We employed XFM in Chlamydomonas reinhardtii to determine single-cell and organelle trace metal quotas within algal cells in situations of trace metal overaccumulation (Fe and Cu). We found up to 70% of the cellular Cu and 80% of Fe sequestered in acidocalcisomes in these conditions and identified two distinct populations of acidocalcisomes, defined by their unique trace elemental makeup. We utilized the vtc1 mutant, defective in polyphosphate synthesis and failing to accumulate Ca, to show that Fe sequestration is not dependent on either. Finally, quantitation of the Fe and Cu contents of individual cells and compartments via XFM, over a range of cellular metal quotas created by nutritional and genetic perturbations, indicated excellent correlation with bulk data from corresponding cell cultures, establishing a framework to distinguish the nutritional status of single cells.
Collapse
|
45
|
Wairich A, de Oliveira BHN, Wu LB, Murugaiyan V, Margis-Pinheiro M, Fett JP, Ricachenevsky FK, Frei M. Chromosomal introgressions from Oryza meridionalis into domesticated rice Oryza sativa result in iron tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2242-2259. [PMID: 33035327 DOI: 10.1093/jxb/eraa461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/03/2020] [Indexed: 05/07/2023]
Abstract
Iron (Fe) toxicity is one of the most common mineral disorders affecting rice (Oryza sativa) production in flooded lowland fields. Oryza meridionalis is indigenous to northern Australia and grows in regions with Fe-rich soils, making it a candidate for use in adaptive breeding. With the aim of understanding tolerance mechanisms in rice, we screened a population of interspecific introgression lines from a cross between O. sativa and O. meridionalis for the identification of quantitative trait loci (QTLs) contributing to Fe-toxicity tolerance. Six putative QTLs were identified. A line carrying one introgression from O. meridionalis on chromosome 9 associated with one QTL was highly tolerant despite very high shoot Fe concentrations. Physiological, biochemical, ionomic, and transcriptomic analyses showed that the tolerance of the introgression lines could partly be explained by higher relative Fe retention in the leaf sheath and culm. We constructed the interspecific hybrid genome in silico for transcriptomic analysis and identified differentially regulated introgressed genes from O. meridionalis that could be involved in shoot-based Fe tolerance, such as metallothioneins, glutathione S-transferases, and transporters from the ABC and MFS families. This work demonstrates that introgressions of O. meridionalis into the O. sativa genome can confer increased tolerance to excess Fe.
Collapse
Affiliation(s)
- Andriele Wairich
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ben Hur Neves de Oliveira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lin-Bo Wu
- Institute for Crop Science and Resource Conservation (INRES), University of Bonn, 53115 Bonn, Germany
- Institute for Molecular Physiology, Heinrich Heine University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Varunseelan Murugaiyan
- Institute for Crop Science and Resource Conservation (INRES), University of Bonn, 53115 Bonn, Germany
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Marcia Margis-Pinheiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Janette Palma Fett
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Klein Ricachenevsky
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Michael Frei
- Institute for Crop Science and Resource Conservation (INRES), University of Bonn, 53115 Bonn, Germany
- Institute of Agronomy and Crop Physiology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
46
|
Kobayashi T, Nagano AJ, Nishizawa NK. Iron deficiency-inducible peptide-coding genes OsIMA1 and OsIMA2 positively regulate a major pathway of iron uptake and translocation in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2196-2211. [PMID: 33206982 DOI: 10.1093/jxb/eraa546] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/12/2020] [Indexed: 05/16/2023]
Abstract
Under low iron (Fe) availability, plants transcriptionally induce various genes responsible for Fe uptake and translocation to obtain adequate amounts of Fe. Although transcription factors and ubiquitin ligases involved in these Fe deficiency responses have been identified, the mechanisms coordinating these pathways have not been clarified in rice. Recently identified Fe-deficiency-inducible IRON MAN (IMA)/FE UPTAKE-INDUCING PEPTIDE (FEP) positively regulates many Fe-deficiency-inducible genes for Fe uptake in Arabidopsis. Here, we report that the expression of two IMA/FEP genes in rice, OsIMA1 and OsIMA2, is strongly induced under Fe deficiency, positively regulated by the transcription factors IDEF1, OsbHLH058, and OsbHLH059, as well as OsIMA1 and OsIMA2 themselves, and negatively regulated by HRZ ubiquitin ligases. Overexpression of OsIMA1 or OsIMA2 in rice conferred tolerance to Fe deficiency and accumulation of Fe in leaves and seeds. These OsIMA-overexpressing rice exhibited enhanced expression of all of the known Fe-deficiency-inducible genes involved in Fe uptake and translocation, except for OsYSL2, a Fe-nicotianamine transporter gene, in roots but not in leaves. Knockdown of OsIMA1 or OsIMA2 caused minor effects, including repression of some Fe uptake- and translocation-related genes in OsIMA1 knockdown roots. These results indicate that OsIMA1 and OsIMA2 play key roles in enhancing the major pathway of the Fe deficiency response in rice.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi, Ishikawa, Japan
| | | | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi, Ishikawa, Japan
| |
Collapse
|
47
|
Zhong S, Bird A, Kopec RE. The Metabolism and Potential Bioactivity of Chlorophyll and Metallo‐chlorophyll Derivatives in the Gastrointestinal Tract. Mol Nutr Food Res 2021; 65:e2000761. [DOI: 10.1002/mnfr.202000761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/08/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Siqiong Zhong
- OSU Interdisciplinary Nutrition Graduate Program, Department of Human Sciences The Ohio State University Columbus OH 43214 USA
| | - Amanda Bird
- OSU Interdisciplinary Nutrition Graduate Program, Department of Human Sciences The Ohio State University Columbus OH 43214 USA
- Department of Molecular Genetics The Ohio State University Columbus OH 43214 USA
| | - Rachel E. Kopec
- OSU Interdisciplinary Nutrition Graduate Program, Department of Human Sciences The Ohio State University Columbus OH 43214 USA
- Foods for Health Discovery Theme The Ohio State University Columbus OH 43214 USA
| |
Collapse
|
48
|
Tewari RK, Horemans N, Watanabe M. Evidence for a role of nitric oxide in iron homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:990-1006. [PMID: 33196822 DOI: 10.1093/jxb/eraa484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/13/2020] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO), once regarded as a poisonous air pollutant, is now understood as a regulatory molecule essential for several biological functions in plants. In this review, we summarize NO generation in different plant organs and cellular compartments, and also discuss the role of NO in iron (Fe) homeostasis, particularly in Fe-deficient plants. Fe is one of the most limiting essential nutrient elements for plants. Plants often exhibit Fe deficiency symptoms despite sufficient tissue Fe concentrations. NO appears to not only up-regulate Fe uptake mechanisms but also makes Fe more bioavailable for metabolic functions. NO forms complexes with Fe, which can then be delivered into target cells/tissues. NO generated in plants can alleviate oxidative stress by regulating antioxidant defense processes, probably by improving functional Fe status and by inducing post-translational modifications in the enzymes/proteins involved in antioxidant defense responses. It is hypothesized that NO acts in cooperation with transcription factors such as bHLHs, FIT, and IRO to regulate the expression of enzymes and proteins essential for Fe homeostasis. However, further investigations are needed to disentangle the interaction of NO with intracellular target molecules that leads to enhanced internal Fe availability in plants.
Collapse
Affiliation(s)
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang, Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, Belgium
| | - Masami Watanabe
- Laboratory of Plant Biochemistry, Chiba University, Inage-ward, Yayoicho, Chiba, Japan
| |
Collapse
|
49
|
Mase K, Tsukagoshi H. Reactive Oxygen Species Link Gene Regulatory Networks During Arabidopsis Root Development. FRONTIERS IN PLANT SCIENCE 2021; 12:660274. [PMID: 33986765 PMCID: PMC8110921 DOI: 10.3389/fpls.2021.660274] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 05/22/2023]
Abstract
Plant development under altered nutritional status and environmental conditions and during attack from invaders is highly regulated by plant hormones at the molecular level by various signaling pathways. Previously, reactive oxygen species (ROS) were believed to be harmful as they cause oxidative damage to cells; however, in the last decade, the essential role of ROS as signaling molecules regulating plant growth has been revealed. Plant roots accumulate relatively high levels of ROS, and thus, maintaining ROS homeostasis, which has been shown to regulate the balance between cell proliferation and differentiation at the root tip, is important for proper root growth. However, when the balance is disturbed, plants are unable to respond to the changes in the surrounding conditions and cannot grow and survive. Moreover, ROS control cell expansion and cell differentiation processes such as root hair formation and lateral root development. In these processes, the transcription factor-mediated gene expression network is important downstream of ROS. Although ROS can independently regulate root growth to some extent, a complex crosstalk occurs between ROS and other signaling molecules. Hormone signals are known to regulate root growth, and ROS are thought to merge with these signals. In fact, the crosstalk between ROS and these hormones has been elucidated, and the central transcription factors that act as a hub between these signals have been identified. In addition, ROS are known to act as important signaling factors in plant immune responses; however, how they also regulate plant growth is not clear. Recent studies have strongly indicated that ROS link these two events. In this review, we describe and discuss the role of ROS signaling in root development, with a particular focus on transcriptional regulation. We also summarize the crosstalk with other signals and discuss the importance of ROS as signaling molecules for plant root development.
Collapse
|
50
|
Berni R, Charton S, Planchon S, Legay S, Romi M, Cantini C, Cai G, Hausman JF, Renaut J, Guerriero G. Molecular investigation of Tuscan sweet cherries sampled over three years: gene expression analysis coupled to metabolomics and proteomics. HORTICULTURE RESEARCH 2021; 8:12. [PMID: 33384418 PMCID: PMC7775447 DOI: 10.1038/s41438-020-00445-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Sweet cherry (Prunus avium L.) is a stone fruit widely consumed and appreciated for its organoleptic properties, as well as its nutraceutical potential. We here investigated the characteristics of six non-commercial Tuscan varieties of sweet cherry maintained at the Regional Germplasm Bank of the CNR-IBE in Follonica (Italy) and sampled ca. 60 days post-anthesis over three consecutive years (2016-2017-2018). We adopted an approach merging genotyping and targeted gene expression profiling with metabolomics. To complement the data, a study of the soluble proteomes was also performed on two varieties showing the highest content of flavonoids. Metabolomics identified the presence of flavanols and proanthocyanidins in highest abundance in the varieties Morellona and Crognola, while gene expression revealed that some differences were present in genes involved in the phenylpropanoid pathway during the 3 years and among the varieties. Finally, proteomics on Morellona and Crognola showed variations in proteins involved in stress response, primary metabolism and cell wall expansion. To the best of our knowledge, this is the first multi-pronged study focused on Tuscan sweet cherry varieties providing insights into the differential abundance of genes, proteins and metabolites.
Collapse
Affiliation(s)
- Roberto Berni
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, I-53100, Siena, Italy
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
| | - Sophie Charton
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 41, Rue du Brill, L-4422, Belvaux, Luxembourg
| | - Sébastien Planchon
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 41, Rue du Brill, L-4422, Belvaux, Luxembourg
| | - Sylvain Legay
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, L-4940, Hautcharage, Luxembourg
| | - Marco Romi
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, I-53100, Siena, Italy
| | - Claudio Cantini
- Istituto per la BioEconomia (IBE CNR), Dipartimento di Scienze BioAgroAlimentari, via Aurelia 49, 58022, Follonica, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, I-53100, Siena, Italy
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, L-4940, Hautcharage, Luxembourg
| | - Jenny Renaut
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 41, Rue du Brill, L-4422, Belvaux, Luxembourg.
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, L-4940, Hautcharage, Luxembourg.
| |
Collapse
|