1
|
Velandia K, Reid JB, Foo E. Right time, right place: The dynamic role of hormones in rhizobial infection and nodulation of legumes. PLANT COMMUNICATIONS 2022; 3:100327. [PMID: 35605199 PMCID: PMC9482984 DOI: 10.1016/j.xplc.2022.100327] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/24/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Many legume plants form beneficial associations with rhizobial bacteria that are hosted in new plant root organs, nodules, in which atmospheric nitrogen is fixed. This association requires the precise coordination of two separate programs, infection in the epidermis and nodule organogenesis in the cortex. There is extensive literature indicating key roles for plant hormones during nodulation, but a detailed analysis of the spatial and temporal roles of plant hormones during the different stages of nodulation is required. This review analyses the current literature on hormone regulation of infection and organogenesis to reveal the differential roles and interactions of auxin, cytokinin, brassinosteroids, ethylene, and gibberellins during epidermal infection and cortical nodule initiation, development, and function. With the exception of auxin, all of these hormones suppress infection events. By contrast, there is evidence that all of these hormones promote nodule organogenesis, except ethylene, which suppresses nodule initiation. This differential role for many of the hormones between the epidermal and cortical programs is striking. Future work is required to fully examine hormone interactions and create a robust model that integrates this knowledge into our understanding of nodulation pathways.
Collapse
Affiliation(s)
- Karen Velandia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - James B Reid
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Eloise Foo
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| |
Collapse
|
2
|
|
3
|
Du Y, Luo S, Zhao J, Feng Z, Chen X, Ren W, Liu X, Wang Z, Yu L, Li W, Qu Y, Liu J, Zhou L. Genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus. BMC PLANT BIOLOGY 2021; 21:510. [PMID: 34732128 PMCID: PMC8564971 DOI: 10.1186/s12870-021-03283-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Flower longevity is closely related to pollen dispersal and reproductive success in all plants, as well as the commercial value of ornamental plants. Mutants that display variation in flower longevity are useful tools for understanding the mechanisms underlying this trait. Heavy-ion beam irradiation has great potential to improve flower shapes and colors; however, few studies are available on the mutation of flower senescence in leguminous plants. RESULTS A mutant (C416) exhibiting blossom duration eight times longer than that of the wild type (WT) was isolated in Lotus japonicus derived from carbon ion beam irradiation. Genetic assays supported that the delayed flower senescence of C416 was a dominant trait controlled by a single gene, which was located between 4,616,611 Mb and 5,331,876 Mb on chromosome III. By using a sorting strategy of multi-sample parallel genome sequencing, candidate genes were narrowed to the gene CUFF.40834, which exhibited high identity to ethylene receptor 1 in other model plants. A physiological assay demonstrated that C416 was insensitive to ethylene precursor. Furthermore, the dynamic changes of phytohormone regulatory network in petals at different developmental stages was compared by using RNA-seq. In brief, the ethylene, jasmonic acid (JA), and salicylic acid (SA) signaling pathways were negatively regulated in C416, whereas the brassinosteroid (BR) and cytokinin signaling pathways were positively regulated, and auxin exhibited dual effects on flower senescence in Lotus japonicus. The abscisic acid (ABA) signaling pathway is positively regulated in C416. CONCLUSION So far, C416 might be the first reported mutant carrying a mutation in an endogenous ethylene-related gene in Lotus japonicus, rather than through the introduction of exogenous genes by transgenic techniques. A schematic of the flower senescence of Lotus japonicus from the perspective of the phytohormone regulatory network was provided based on transcriptome profiling of petals at different developmental stages. This study is informative for elucidating the molecular mechanism of delayed flower senescence in C416, and lays a foundation for candidate flower senescence gene identification in Lotus japonicus. It also provides another perspective for the improvement of flower longevity in legume plants by heavy-ion beam.
Collapse
Affiliation(s)
- Yan Du
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Shanwei Luo
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Jian Zhao
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730000, People's Republic of China
| | - Zhuo Feng
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Xia Chen
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Weibin Ren
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Xiao Liu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Zhuanzi Wang
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
| | - Lixia Yu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
| | - Wenjian Li
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
| | - Ying Qu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin, 730900, People's Republic of China
| | - Jie Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Libin Zhou
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China.
- Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin, 730900, People's Republic of China.
| |
Collapse
|
4
|
Muñoz VL, Figueredo MS, Reinoso H, Fabra A. Role of ethylene in effective establishment of the peanut-bradyrhizobia symbiotic interaction. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:1141-1148. [PMID: 34490719 DOI: 10.1111/plb.13333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Ethylene has been implicated in nitrogen fixing symbioses in legumes, where rhizobial invasion occurs via infection threads (IT). In the symbiosis between peanut (Arachis hypogaea L.) and bradyrhizobia, the bacteria penetrate the root cortex intercellularly and IT are not formed. Little attention has been paid to the function of ethylene in the establishment of this symbiosis. The aim of this article is to evaluate whether ethylene plays a role in the development of this symbiotic interaction and the participation of Nod Factors (NF) in the regulation of ethylene signalling. Manipulation of ethylene in peanut was accomplished by application of 1-aminocyclopropane-1-carboxylic acid (ACC), which mimics applied ethylene, or AgNO3, which blocks ethylene responses. To elucidate the participation of NF in the regulation of ethylene signalling, we inoculated plants with a mutant isogenic rhizobial strain unable to produce NF and evaluated the effect of AgNO3 on gene expression of NF and ethylene responsive signalling pathways. Data revealed that ethylene perception is required for the formation of nitrogen-fixing nodules, while addition of ACC does not affect peanut symbiotic performance. This phenotypic evidence is in agreement with transcriptomic data from genes involved in symbiotic and ethylene signalling pathways. NF seem to modulate the expression of ethylene signalling genes. Unlike legumes infected through IT formation, ACC addition to peanut does not adversely affect nodulation, but ethylene perception is required for establishment of this symbiosis. Evidence for the contribution of NF to the modulation of ethylene-inducible defence gene expression is provided.
Collapse
Affiliation(s)
- V L Muñoz
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - M S Figueredo
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Instituto de Investigaciones Agrobiotecnológicas, CONICET, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - H Reinoso
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - A Fabra
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Instituto de Investigaciones Agrobiotecnológicas, CONICET, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
5
|
Characteristics and Research Progress of Legume Nodule Senescence. PLANTS 2021; 10:plants10061103. [PMID: 34070891 PMCID: PMC8227080 DOI: 10.3390/plants10061103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022]
Abstract
Delaying the nodule senescence of legume crops can prolong the time of nitrogen fixation and attenuate the lack of fertilizer in the later stage of legume crop cultivation, resulting in improved crop yield and reduced usage of nitrogen fertilizer. However, effective measures to delay the nodule senescence of legume crops in agriculture are relatively lacking. In the present review, we summarized the structural and physiological characteristics of nodule senescence, as well as the corresponding detection methods, providing technical support for the identification of nodule senescence phenotype. We then outlined the key genes currently known to be involved in the regulation of nodule senescence, offering the molecular genetic information for breeding varieties with delayed nodule senescence. In addition, we reviewed various abiotic factors affecting nodule senescence, providing a theoretical basis for the interaction between molecular genetics and abiotic factors in the regulation of nodule senescence. Finally, we briefly prospected research foci of nodule senescence in the future.
Collapse
|
6
|
Huo H, Wang X, Liu Y, Chen J, Wei G. A Nod factor- and type III secretion system-dependent manner for Robinia pseudoacacia to establish symbiosis with Mesorhizobium amorphae CCNWGS0123. TREE PHYSIOLOGY 2021; 41:817-835. [PMID: 33219377 DOI: 10.1093/treephys/tpaa160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/15/2020] [Indexed: 06/11/2023]
Abstract
Under nitrogen-limiting conditions, symbiotic nodulation promotes the growth of legume plants via the fixation of atmospheric nitrogen to ammonia by rhizobia in root nodules. The rhizobial Nod factor (NF) and type III secretion system (T3SS) are two key signaling pathways for establishing the legume-rhizobium symbiosis. However, whether NF signaling is involved in the nodulation of Robinia pseudoacacia and Mesorhizobium amorphae CCNWGS0123, and its symbiotic differences compared with T3SS signaling remain unclear. Therefore, to elucidate the function of NF signaling in nodulation, we mutated nodC in M. amorphae CCNWGS0123, which aborted NF synthesis. Compared with the plants inoculated with the wild type strain, the plants inoculated with the NF-deficient strain exhibited shorter shoots with etiolated leaves. These phenotypic characteristics were similar to those of the plants inoculated with the T3SS-deficient strain, which served as a Nod- (non-effective nodulation) control. The plants inoculated with both the NF- and T3SS-deficient strains formed massive root hair swellings, but no normal infection threads were detected. Sections of the nodules showed that inoculation with the NF- and T3SS-deficient strains induced small, white bumps without any rhizobia inside. Analyzing the accumulation of 6 plant hormones and the expression of 10 plant genes indicated that the NF- and T3SS-deficient strains activated plant defense reactions while suppressing plant symbiotic signaling during the perception and nodulation processes. The requirement for NF signaling appeared to be conserved in two other leguminous trees that can establish symbiosis with M. amorphae CCNWGS0123. In contrast, the function of the T3SS might differ among species, even within the same subfamily (Faboideae). Overall, this work demonstrated that nodulation of R. pseudoacacia and M. amorphae CCNWGS0123 was both NF and T3SS dependent.
Collapse
Affiliation(s)
- Haibo Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Xinye Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Yao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water conservation, Northwest A&F University, 26 Xinong Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
7
|
Jaiswal SK, Mohammed M, Ibny FYI, Dakora FD. Rhizobia as a Source of Plant Growth-Promoting Molecules: Potential Applications and Possible Operational Mechanisms. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.619676] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The symbiotic interaction between rhizobia and legumes that leads to nodule formation is a complex chemical conversation involving plant release of nod-gene inducing signal molecules and bacterial secretion of lipo-chito-oligossacharide nodulation factors. During this process, the rhizobia and their legume hosts can synthesize and release various phytohormones, such as IAA, lumichrome, riboflavin, lipo-chito-oligossacharide Nod factors, rhizobitoxine, gibberellins, jasmonates, brassinosteroids, ethylene, cytokinins and the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase that can directly or indirectly stimulate plant growth. Whereas these attributes may promote plant adaptation to various edapho-climatic stresses including the limitations in nutrient elements required for plant growth promotion, tapping their full potential requires understanding of the mechanisms involved in their action. In this regard, several N2-fixing rhizobia have been cited for plant growth promotion by solubilizing soil-bound P in the rhizosphere via the synthesis of gluconic acid under the control of pyrroloquinoline quinone (PQQ) genes, just as others are known for the synthesis and release of siderophores for enhanced Fe nutrition in plants, the chelation of heavy metals in the reclamation of contaminated soils, and as biocontrol agents against diseases. Some of these metabolites can enhance plant growth via the suppression of the deleterious effects of other antagonistic molecules, as exemplified by the reduction in the deleterious effect of ethylene by ACC deaminase synthesized by rhizobia. Although symbiotic rhizobia are capable of triggering biological outcomes with direct and indirect effects on plant mineral nutrition, insect pest and disease resistance, a greater understanding of the mechanisms involved remains a challenge in tapping the maximum benefits of the molecules involved. Rather than the effects of individual rhizobial or plant metabolites however, a deeper understanding of their synergistic interactions may be useful in alleviating the effects of multiple plant stress factors for increased growth and productivity.
Collapse
|
8
|
Alemneh AA, Zhou Y, Ryder MH, Denton MD. Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses. J Appl Microbiol 2020; 129:1133-1156. [PMID: 32592603 DOI: 10.1111/jam.14754] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/07/2020] [Accepted: 06/20/2020] [Indexed: 12/21/2022]
Abstract
Nitrogen fixation is an important biological process in terrestrial ecosystems and for global crop production. Legume nodulation and N2 fixation have been improved using nodule-enhancing rhizobacteria (NER) under both regular and stressed conditions. The positive effect of NER on legume-rhizobia symbiosis can be facilitated by plant growth-promoting (PGP) mechanisms, some of which remain to be identified. NER that produce aminocyclopropane-1-carboxylic acid deaminase and indole acetic acid enhance the legume-rhizobia symbiosis through (i) enhancing the nodule induction, (ii) improving the competitiveness of rhizobia for nodulation, (iii) prolonging functional nodules by suppressing nodule senescence and (iv) upregulating genes associated with legume-rhizobia symbiosis. The means by which these processes enhance the legume-rhizobia symbiosis is the focus of this review. A better understanding of the mechanisms by which PGP rhizobacteria operate, and how they can be altered, will provide opportunities to enhance legume-rhizobial interactions, to provide new advances in plant growth promotion and N2 fixation.
Collapse
Affiliation(s)
- A A Alemneh
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - Y Zhou
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M H Ryder
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M D Denton
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
9
|
Mamenko TP, Kots SY, Khomenko YO. The intensity of ethylene release by soybean plants under the influence of fungicides in the early stages of legume-rhizobial symbiosis. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The effect of pre-sowing treatment of soybean seeds with fungicides on the intensity of ethylene release, the processes of nodulation and nitrogen fixation in different symbiotic systems in the early stages of ontogenesis were investigated. The objects of the study were selected symbiotic systems formed with the participation of soybean (Glycine max (L.) Merr.) Diamond variety, strains Bradyrhizobium japonicum 634b (active, virulent) and 604k (inactive, highly virulent) and fungicides Maxim XL 035 PS (fludioxonil, 25 g/L, metalaxyl, 10 g/L), and Standak Top (fipronil, 250 g/L, thiophanate methyl, 225 g/L, piraclostrobin, 25 g/L). Before sowing, the seeds of soybean were treated with solutions of fungicides, calculated on the basis of one rate of expenditure of the active substance of each preparation indicated by the producer per ton of seed. One part of the seeds treated with fungicides was inoculated with rhizobium culture for 1 h (the titre of bacteria was 107 cells/mL). To conduct the research we used microbiological, physiological, biochemical methods, gas chromatography and spectrophotometry. It is found that, regardless of the effectiveness of soybean rhizobial symbiosis, the highest level of ethylene release by plants was observed in the stages of primordial leaf and first true leaf. This is due to the initial processes of nodulation – the laying of nodule primordia and the active formation of nodules on the roots of soybeans. The results show that with the participation of fungicides in different symbiotic systems, there are characteristic changes in phytohormone synthesis in the primordial leaf stage, when the nodule primordia are planted on the root system of plants. In particular, in the ineffective symbiotic system, the intensity of phytohormone release decreases, while in the effective symbiotic system it increases. At the same time, a decrease in the number of nodules on soybean roots inoculated with an inactive highly virulent rhizobia 604k strain due to the action of fungicides and an increase in their number in variants with co-treatment of fungicides and active virulent strain 634b into the stage of the second true leaf were revealed. It was shown that despite a decrease in the mass of root nodules, there is an increase in their nitrogen-fixing activity in an effective symbiotic system with the participation of fungicides in the stage of the second true leaf. The highest intensity of ethylene release in both symbiotic systems was recorded in the stage of the first true leaf, which decreased in the stage of the second true leaf and was independent of the nature of the action of the active substances of fungicides. The obtained data prove that the action of fungicides changes the synthesis of ethylene by soybean plants, as well as the processes of nodulation and nitrogen fixation, which depend on the efficiency of the formed soybean-rhizobial systems and their ability to realize their symbiotic potential under appropriate growing conditions.
Collapse
|
10
|
Yoro E, Suzaki T, Kawaguchi M. CLE-HAR1 Systemic Signaling and NIN-Mediated Local Signaling Suppress the Increased Rhizobial Infection in the daphne Mutant of Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:320-327. [PMID: 31880983 DOI: 10.1094/mpmi-08-19-0223-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Legumes survive in nitrogen-limited soil by forming a symbiosis with rhizobial bacteria. During root nodule symbiosis, legumes strictly control the development of their symbiotic organs, the nodules, in a process known as autoregulation of nodulation (AON). The study of hypernodulation mutants has elucidated the molecular basis of AON. Some hypernodulation mutants show an increase in rhizobial infection in addition to developmental alteration. However, the relationship between the AON and the regulation of rhizobial infection has not been clarified. We previously isolated daphne, a nodule inception (nin) allelic mutant, in Lotus japonicus. This mutant displayed dramatically increased rhizobial infection, suggesting the existence of NIN-mediated negative regulation of rhizobial infection. Here, we investigated whether the previously isolated components of AON, especially CLAVATA3/ESR (CLE)-RELATED-ROOT SIGNAL1 (CLE-RS1), CLE-RS2, and their putative receptor HYPERNODULATION AND ABERRANT ROOT FORMATION1 (HAR1), were able to suppress increased infection in the daphne mutant. The constitutive expression of LjCLE-RS1/2 strongly reduced the infection in the daphne mutant in a HAR1-dependent manner. Moreover, reciprocal grafting analysis showed that strong reduction of infection in daphne rootstock constitutively expressing LjCLE-RS1 was canceled by a scion of the har1 or klavier mutant, the genes responsible for encoding putative LjCLE-RS1 receptors. These data indicate that rhizobial infection is also systemically regulated by CLE-HAR1 signaling, a component of AON. In addition, the constitutive expression of NIN in daphne har1 double-mutant roots only partially reduced the rhizobial infection. Our findings indicate that the previously identified NIN-mediated negative regulation of infection involves unknown local signaling, as well as CLE-HAR1 long-distance signaling.
Collapse
Affiliation(s)
- Emiko Yoro
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| | - Takuya Suzaki
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
11
|
Fukudome M, Watanabe E, Osuki KI, Imaizumi R, Aoki T, Becana M, Uchiumi T. Stably Transformed Lotus japonicus Plants Overexpressing Phytoglobin LjGlb1-1 Show Decreased Nitric Oxide Levels in Roots and Nodules as Well as Delayed Nodule Senescence. PLANT & CELL PHYSIOLOGY 2019; 60:816-825. [PMID: 30597068 DOI: 10.1093/pcp/pcy245] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/20/2018] [Indexed: 05/16/2023]
Abstract
The class 1 phytoglobin, LjGlb1-1, is expressed in various tissues of the model legume Lotus japonicus, where it may play multiple functions by interacting with nitric oxide (NO). One of such functions is the onset of a proper symbiosis with Mesorhizobium loti resulting in the formation of actively N2-fixing nodules. Stable overexpression lines (Ox1 and Ox2) of LjGlb1-1 were generated and phenotyped. Both Ox lines showed reduced NO levels in roots and enhanced nitrogenase activity in mature and senescent nodules relative to the wild-type (WT). Physiological and cytological observations indicated that overexpression of LjGlb1-1 delayed nodule senescence. The application to WT nodules of the NO donor S-nitroso-N-acetyl-dl-penicillamine (SNAP) or the phytohormones abscisic acid (ABA) and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) repressed nitrogenase activity, induced the expression of three senescence-associated genes and caused cytological changes evidencing nodule senescence. These effects were almost completely reverted by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. Our results reveal that overexpression of LjGlb1-1 improves the activity of mature nodules and delays nodule senescence in the L.japonicus-M.loti symbiosis. These beneficial effects are probably mediated by the participation of LjGlb1-1 in controlling the concentration of NO that may be produced downstream in the phytohormone signaling pathway in nodules.
Collapse
Affiliation(s)
- Mitsutaka Fukudome
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Japan
| | - Eri Watanabe
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Japan
| | - Ken-Ichi Osuki
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Japan
| | - Ryujiro Imaizumi
- Department of Applied Biological Sciences, Nihon University, 1866 Kameino, Fujisawa, Japan
| | - Toshio Aoki
- Department of Applied Biological Sciences, Nihon University, 1866 Kameino, Fujisawa, Japan
| | - Manuel Becana
- Departamento de Nutrici�n Vegetal, Estaci�n Experimental de Aula Dei, Consejo Superior de Investigaciones Cient�ficas, Apartado 13034, Zaragoza, Spain
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Japan
| |
Collapse
|
12
|
Ferguson BJ, Mens C, Hastwell AH, Zhang M, Su H, Jones CH, Chu X, Gresshoff PM. Legume nodulation: The host controls the party. PLANT, CELL & ENVIRONMENT 2019; 42:41-51. [PMID: 29808564 DOI: 10.1111/pce.13348] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 05/21/2023]
Abstract
Global demand to increase food production and simultaneously reduce synthetic nitrogen fertilizer inputs in agriculture are underpinning the need to intensify the use of legume crops. The symbiotic relationship that legume plants establish with nitrogen-fixing rhizobia bacteria is central to their advantage. This plant-microbe interaction results in newly developed root organs, called nodules, where the rhizobia convert atmospheric nitrogen gas into forms of nitrogen the plant can use. However, the process of developing and maintaining nodules is resource intensive; hence, the plant tightly controls the number of nodules forming. A variety of molecular mechanisms are used to regulate nodule numbers under both favourable and stressful growing conditions, enabling the plant to conserve resources and optimize development in response to a range of circumstances. Using genetic and genomic approaches, many components acting in the regulation of nodulation have now been identified. Discovering and functionally characterizing these components can provide genetic targets and polymorphic markers that aid in the selection of superior legume cultivars and rhizobia strains that benefit agricultural sustainability and food security. This review addresses recent findings in nodulation control, presents detailed models of the molecular mechanisms driving these processes, and identifies gaps in these processes that are not yet fully explained.
Collapse
Affiliation(s)
- Brett J Ferguson
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Céline Mens
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - April H Hastwell
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Mengbai Zhang
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Huanan Su
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
- National Navel Orange Engineering Research Center, College of Life and Environmental Science, Gannan Normal University, Ganzhou, China
| | - Candice H Jones
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Xitong Chu
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
13
|
Liu H, Zhang C, Yang J, Yu N, Wang E. Hormone modulation of legume-rhizobial symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:632-648. [PMID: 29578639 DOI: 10.1111/jipb.12653] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/23/2018] [Indexed: 05/16/2023]
Abstract
Leguminous plants can establish symbiotic associations with diazotropic rhizobia to form nitrogen-fixating nodules, which are classified as determinate or indeterminate based on the persistence of nodule meristem. The formation of nitrogen-fixing nodules requires coordinating rhizobial infection and root nodule organogenesis. The formation of an infection thread and the extent of nodule formation are largely under plant control, but vary with environmental conditions and the physiological state of the host plants. Many achievements in these two areas have been made in recent decades. Phytohormone signaling pathways have gradually emerged as important regulators of root nodule symbiosis. Cytokinin, strigolactones (SLs) and local accumulation of auxin can promote nodule development. Ethylene, jasmonic acid (JA), abscisic acid (ABA) and gibberellic acid (GA) all negatively regulate infection thread formation and nodule development. However, salicylic acid (SA) and brassinosteroids (BRs) have different effects on the formation of these two nodule types. Some peptide hormones are also involved in nodulation. This review summarizes recent findings on the roles of these plant hormones in legume-rhizobial symbiosis, and we propose that DELLA proteins may function as a node to integrate plant hormones to regulate nodulation.
Collapse
Affiliation(s)
- Huan Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
14
|
van Zeijl A, Wardhani TAK, Seifi Kalhor M, Rutten L, Bu F, Hartog M, Linders S, Fedorova EE, Bisseling T, Kohlen W, Geurts R. CRISPR/Cas9-Mediated Mutagenesis of Four Putative Symbiosis Genes of the Tropical Tree Parasponia andersonii Reveals Novel Phenotypes. FRONTIERS IN PLANT SCIENCE 2018; 9:284. [PMID: 29559988 PMCID: PMC5845686 DOI: 10.3389/fpls.2018.00284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/19/2018] [Indexed: 05/18/2023]
Abstract
Parasponia represents five fast-growing tropical tree species in the Cannabaceae and is the only plant lineage besides legumes that can establish nitrogen-fixing nodules with rhizobium. Comparative analyses between legumes and Parasponia allows identification of conserved genetic networks controlling this symbiosis. However, such studies are hampered due to the absence of powerful reverse genetic tools for Parasponia. Here, we present a fast and efficient protocol for Agrobacterium tumefaciens-mediated transformation and CRISPR/Cas9 mutagenesis of Parasponia andersonii. Using this protocol, knockout mutants are obtained within 3 months. Due to efficient micro-propagation, bi-allelic mutants can be studied in the T0 generation, allowing phenotypic evaluation within 6 months after transformation. We mutated four genes - PanHK4, PanEIN2, PanNSP1, and PanNSP2 - that control cytokinin, ethylene, or strigolactone hormonal networks and that in legumes commit essential symbiotic functions. Knockout mutants in Panhk4 and Panein2 displayed developmental phenotypes, namely reduced procambium activity in Panhk4 and disturbed sex differentiation in Panein2 mutants. The symbiotic phenotypes of Panhk4 and Panein2 mutant lines differ from those in legumes. In contrast, PanNSP1 and PanNSP2 are essential for nodule formation, a phenotype similar as reported for legumes. This indicates a conserved role for these GRAS-type transcriptional regulators in rhizobium symbiosis, illustrating the value of Parasponia trees as a research model for reverse genetic studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rene Geurts
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
15
|
Reid D, Liu H, Kelly S, Kawaharada Y, Mun T, Andersen SU, Desbrosses G, Stougaard J. Dynamics of Ethylene Production in Response to Compatible Nod Factor. PLANT PHYSIOLOGY 2018; 176:1764-1772. [PMID: 29187569 PMCID: PMC5813561 DOI: 10.1104/pp.17.01371] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/28/2017] [Indexed: 05/22/2023]
Abstract
Establishment of symbiotic nitrogen-fixation in legumes is regulated by the plant hormone ethylene, but it has remained unclear whether and how its biosynthesis is regulated by the symbiotic pathway. We established a sensitive ethylene detection system for Lotus japonicus and found that ethylene production increased as early as 6 hours after inoculation with Mesorhizobium loti This ethylene response was dependent on Nod factor production by compatible rhizobia. Analyses of nodulation mutants showed that perception of Nod factor was required for ethylene emission, while downstream transcription factors including CYCLOPS, NIN, and ERN1 were not required for this response. Activation of the nodulation signaling pathway in spontaneously nodulating mutants was also sufficient to elevate ethylene production. Ethylene signaling is controlled by EIN2, which is duplicated in L. japonicus We obtained a L. japonicus Ljein2a Ljein2b double mutant that exhibits complete ethylene insensitivity and confirms that these two genes act redundantly in ethylene signaling. Consistent with this redundancy, both LjEin2a and LjEin2b are required for negative regulation of nodulation and Ljein2a Ljein2b double mutants are hypernodulating and hyperinfected. We also identified an unexpected role for ethylene in the onset of nitrogen fixation, with the Ljein2a Ljein2b double mutant showing severely reduced nitrogen fixation. These results demonstrate that ethylene production is an early and sustained nodulation response that acts at multiple stages to regulate infection, nodule organogenesis, and nitrogen fixation in L. japonicus.
Collapse
Affiliation(s)
- Dugald Reid
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Huijun Liu
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Simon Kelly
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Yasuyuki Kawaharada
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Terry Mun
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Stig U Andersen
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Guilhem Desbrosses
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Université Montpellier 2, IRD, CIRAD, SupAgro, INRA Montpellier Cedex 05 France
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
16
|
Kohlen W, Ng JLP, Deinum EE, Mathesius U. Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:229-244. [PMID: 28992078 DOI: 10.1093/jxb/erx308] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Most legumes can form a unique type of lateral organ on their roots: root nodules. These structures host symbiotic nitrogen-fixing bacteria called rhizobia. Several different types of nodules can be found in nature, but the two best-studied types are called indeterminate and determinate nodules. These two types differ with respect to the presence or absence of a persistent nodule meristem, which consistently correlates with the cortical cell layers giving rise to the nodule primordia. Similar to other plant developmental processes, auxin signalling overlaps with the site of organ initiation and meristem activity. Here, we review how auxin contributes to early nodule development. We focus on changes in auxin transport, signalling, and metabolism during nodule initiation, describing both experimental evidence and computer modelling. We discuss how indeterminate and determinate nodules may differ in their mechanisms for generating localized auxin response maxima and highlight outstanding questions for future research.
Collapse
Affiliation(s)
- Wouter Kohlen
- Laboratory for Molecular Biology, Wageningen University & Research, The Netherlands
| | - Jason Liang Pin Ng
- Division of Plant Science, Research School of Biology, The Australian National University, Australia
| | - Eva E Deinum
- Mathematical and Statistical Methods, Wageningen University & Research, The Netherlands
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, The Australian National University, Australia
| |
Collapse
|
17
|
Wang Y, Yuan J, Yang W, Zhu L, Su C, Wang X, Wu H, Sun Z, Li X. Genome Wide Identification and Expression Profiling of Ethylene Receptor Genes during Soybean Nodulation. FRONTIERS IN PLANT SCIENCE 2017; 8:859. [PMID: 28659933 PMCID: PMC5469071 DOI: 10.3389/fpls.2017.00859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/09/2017] [Indexed: 05/28/2023]
Abstract
It has long been known that the gaseous plant hormone ethylene plays a key role in nodulation in legumes. The perception of ethylene by a family of five membrane-localized receptors is necessary to trigger the ethylene signaling pathway, which regulates various biological responses in Arabidopsis. However, a systematic analysis of the ethylene receptors in leguminous plants and their roles in nodule development is lacking. In this study, we performed a characterization of ethylene receptor genes based on the latest Glycine max genome sequence and a public microarray database. Eleven ethylene receptor family genes were identified in soybean through homology searches, and they were divided into two subgroups. Exon-intron analysis showed that the gene structures are highly conserved within each group. Further analysis of their expression patterns showed that these ethylene receptor genes are differentially expressed in various soybean tissues and organs, including functional nodules. Notably, the ethylene receptor genes showed different responses to rhizobial infection and Nod factors, suggesting a possible role for ethylene receptors and ethylene signaling in rhizobia-host cell interactions and nodulation in soybean. Together, these data indicate the functional divergence of ethylene receptor genes in soybean, and that some of these receptors mediate nodulation, including rhizobial infection, nodule development, and nodule functionality. These findings provide a foundation for further elucidation of the molecular mechanism by which the ethylene signaling pathway regulates nodulation in soybean, as well as other legumes.
Collapse
Affiliation(s)
- Youning Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jinhong Yuan
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Wei Yang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Lin Zhu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Chao Su
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xiaodi Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Haiyan Wu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Zhengxi Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology – Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
18
|
Roy S, Robson F, Lilley J, Liu CW, Cheng X, Wen J, Walker S, Sun J, Cousins D, Bone C, Bennett MJ, Downie JA, Swarup R, Oldroyd G, Murray JD. MtLAX2, a Functional Homologue of the Arabidopsis Auxin Influx Transporter AUX1, Is Required for Nodule Organogenesis. PLANT PHYSIOLOGY 2017; 174:326-338. [PMID: 28363992 PMCID: PMC5411133 DOI: 10.1104/pp.16.01473] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/25/2017] [Indexed: 05/22/2023]
Abstract
Most legume plants can form nodules, specialized lateral organs that form on roots, and house nitrogen-fixing bacteria collectively called rhizobia. The uptake of the phytohormone auxin into cells is known to be crucial for development of lateral roots. To test the role of auxin influx in nodulation we used the auxin influx inhibitors 1-naphthoxyacetic acid (1-NOA) and 2-NOA, which we found reduced nodulation of Medicago truncatula. This suggested the possible involvement of the AUX/LAX family of auxin influx transporters in nodulation. Gene expression studies identified MtLAX2, a paralogue of Arabidopsis (Arabidopsis thaliana) AUX1, as being induced at early stages of nodule development. MtLAX2 is expressed in nodule primordia, the vasculature of developing nodules, and at the apex of mature nodules. The MtLAX2 promoter contains several auxin response elements, and treatment with indole-acetic acid strongly induces MtLAX2 expression in roots. mtlax2 mutants displayed root phenotypes similar to Arabidopsis aux1 mutants, including altered root gravitropism, fewer lateral roots, shorter root hairs, and auxin resistance. In addition, the activity of the synthetic DR5-GUS auxin reporter was strongly reduced in mtlax2 roots. Following inoculation with rhizobia, mtlax2 roots developed fewer nodules, had decreased DR5-GUS activity associated with infection sites, and had decreased expression of the early auxin responsive gene ARF16a Our data indicate that MtLAX2 is a functional analog of Arabidopsis AUX1 and is required for the accumulation of auxin during nodule formation in tissues underlying sites of rhizobial infection.
Collapse
Affiliation(s)
- Sonali Roy
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Fran Robson
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Jodi Lilley
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Cheng-Wu Liu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Xiaofei Cheng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Jiangqi Wen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Simon Walker
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Jongho Sun
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Donna Cousins
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Caitlin Bone
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Malcolm J Bennett
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - J Allan Downie
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Ranjan Swarup
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Giles Oldroyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Jeremy D Murray
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.);
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.);
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.);
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| |
Collapse
|
19
|
Osuki KI, Hashimoto S, Suzuki A, Araragi M, Takahara A, Kurosawa M, Kucho KI, Higashi S, Abe M, Uchiumi T. Gene expression and localization of a β-1,3-glucanase of Lotus japonicus. JOURNAL OF PLANT RESEARCH 2016; 129:749-758. [PMID: 26951113 DOI: 10.1007/s10265-016-0811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Phytohormone abscisic acid (ABA) inhibits root nodule formation of leguminous plants. LjGlu1, a β-1,3-glucanase gene of Lotus japonicus, has been identified as an ABA responsive gene. RNA interference of LjGlu1 increased nodule number. This suggests that LjGlu1 is involved in the regulation of nodule formation. Host legumes control nodule number by autoregulation of nodulation (AON), in which the presence of existing root nodules inhibits further nodulation. For further characterization of LjGlu1, we focused on the expression of LjGlu1 in relation to AON. In a split-root system, LjGlu1 expression peaked when AON was fully induced. Hairy roots transformed with LjCLE-RS1, a gene that induces AON, were generated. Expression of LjGlu1 was greater in the transgenic roots than in untransformed roots. LjGlu1 was not induced in a hypernodulating mutant inoculated with Mesorhizobium loti. These results suggest that the expression of LjGlu1 is involved in the system of AON. However, neither hypernodulation nor enlarged nodulation zone was observed on the transgenic hairy roots carrying LjGlu1-RNAi, suggesting that LjGlu1 is not a key player of AON. Recombinant LjGlu1 showed endo-β-1,3-glucanase activity. LjGlu1-mOrange fusion protein suggested that LjGlu1 associated with M. loti on the root hairs. Exogenous β-1,3-glucanase inhibited infection thread formation by both the wild type and the mutant, and nodule numbers were reduced. These results suggest that LjGlu1 is expressed in response to M. loti infection and functions outside root tissues, resulting in the inhibition of infection.
Collapse
Affiliation(s)
- Ken-Ichi Osuki
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Shun Hashimoto
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Akihiro Suzuki
- Department of Environmental Science, Saga University, 1 Honjo-machi, Saga, 840-8502, Japan
| | - Masato Araragi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Akihito Takahara
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Makiko Kurosawa
- Department of Chemistry and Bioscience, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Ken-Ichi Kucho
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Shiro Higashi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Mikiko Abe
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
20
|
Guinel FC. Ethylene, a Hormone at the Center-Stage of Nodulation. FRONTIERS IN PLANT SCIENCE 2015; 6:1121. [PMID: 26834752 PMCID: PMC4714629 DOI: 10.3389/fpls.2015.01121] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/26/2015] [Indexed: 05/19/2023]
Abstract
Nodulation is the result of a beneficial interaction between legumes and rhizobia. It is a sophisticated process leading to nutrient exchange between the two types of symbionts. In this association, within a nodule, the rhizobia, using energy provided as photosynthates, fix atmospheric nitrogen and convert it to ammonium which is available to the plant. Nodulation is recognized as an essential process in nitrogen cycling and legume crops are known to enrich agricultural soils in nitrogenous compounds. Furthermore, as they are rich in nitrogen, legumes are considered important as staple foods for humans and fodder for animals. To tightly control this association and keep it mutualistic, the plant uses several means, including hormones. The hormone ethylene has been known as a negative regulator of nodulation for almost four decades. Since then, much progress has been made in the understanding of both the ethylene signaling pathway and the nodulation process. Here I have taken a large view, using recently obtained knowledge, to describe in some detail the major stages of the process. I have not only reviewed the steps most commonly covered (the common signaling transduction pathway, and the epidermal and cortical programs), but I have also looked into steps less understood (the pre-infection step with the plant defense response, the bacterial release and the formation of the symbiosome, and nodule functioning and senescence). After a succinct review of the ethylene signaling pathway, I have used the knowledge obtained from nodulation- and ethylene-related mutants to paint a more complete picture of the role played by the hormone in nodule organogenesis, functioning, and senescence. It transpires that ethylene is at the center of this effective symbiosis. It has not only been involved in most of the steps leading to a mature nodule, but it has also been implicated in host immunity and nodule senescence. It is likely responsible for the activation of other hormonal signaling pathways. I have completed the review by citing three studies which makes one wonder whether knowledge gained on nodulation in the last decades is ready to be transferred to agricultural fields.
Collapse
|
21
|
Bensmihen S. Hormonal Control of Lateral Root and Nodule Development in Legumes. PLANTS (BASEL, SWITZERLAND) 2015; 4:523-47. [PMID: 27135340 PMCID: PMC4844399 DOI: 10.3390/plants4030523] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 11/23/2022]
Abstract
Many plants can establish symbioses with nitrogen-fixing bacteria, some of which lead to nodulation, including legumes. Indeed, in the rhizobium/legume symbiosis, new root organs, called nodules, are formed by the plant in order to host the rhizobia in protective conditions, optimized for nitrogen fixation. In this way, these plants can benefit from the reduction of atmospheric dinitrogen into ammonia by the hosted bacteria, and in exchange the plant provides the rhizobia with a carbon source. Since this symbiosis is costly for the plant it is highly regulated. Both legume nodule and lateral root organogenesis involve divisions of the root inner tissues, and both developmental programs are tightly controlled by plant hormones. In fact, most of the major plant hormones, such as auxin, cytokinins, abscisic acid, and strigolactones, control both lateral root formation and nodule organogenesis, but often in an opposite manner. This suggests that the sensitivity of legume plants to some phytohormones could be linked to the antagonism that exists between the processes of nodulation and lateral root formation. Here, we will review the implication of some major phytohormones in lateral root formation in legumes, compare them with their roles in nodulation, and discuss specificities and divergences from non-legume eudicot plants such as Arabidopsis thaliana.
Collapse
Affiliation(s)
- Sandra Bensmihen
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France.
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
22
|
Suzaki T, Yoro E, Kawaguchi M. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:111-58. [PMID: 25805123 DOI: 10.1016/bs.ircmb.2015.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Legumes and a few other plant species can establish a symbiotic relationship with nitrogen-fixing rhizobia, which enables them to survive in a nitrogen-deficient environment. During the course of nodulation, infection with rhizobia induces the dedifferentiation of host cells to form primordia of a symbiotic organ, the nodule, which prepares plants to accommodate rhizobia in host cells. While these nodulation processes are known to be genetically controlled by both plants and rhizobia, recent advances in studies on two model legumes, Lotus japonicus and Medicago truncatula, have provided great insight into the underlying plant-side molecular mechanism. In this chapter, we review such knowledge, with particular emphasis on two key processes of nodulation, nodule development and rhizobial invasion.
Collapse
Affiliation(s)
- Takuya Suzaki
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Emiko Yoro
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
23
|
Gresshoff PM, Hayashi S, Biswas B, Mirzaei S, Indrasumunar A, Reid D, Samuel S, Tollenaere A, van Hameren B, Hastwell A, Scott P, Ferguson BJ. The value of biodiversity in legume symbiotic nitrogen fixation and nodulation for biofuel and food production. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:128-36. [PMID: 25240795 DOI: 10.1016/j.jplph.2014.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 05/08/2023]
Abstract
Much of modern agriculture is based on immense populations of genetically identical or near-identical varieties, called cultivars. However, advancement of knowledge, and thus experimental utility, is found through biodiversity, whether naturally-found or induced by the experimenter. Globally we are confronted by ever-growing food and energy challenges. Here we demonstrate how such biodiversity from the food legume crop soybean (Glycine max L. Merr) and the bioenergy legume tree Pongamia (Millettia) pinnata is a great value. Legume plants are diverse and are represented by over 18,000 species on this planet. Some, such as soybean, pea and medics are used as food and animal feed crops. Others serve as ornamental (e.g., wisteria), timber (e.g., acacia/wattle) or biofuel (e.g., Pongamia pinnata) resources. Most legumes develop root organs (nodules) after microsymbiont induction that serve as their habitat for biological nitrogen fixation. Through this, nitrogen fertiliser demand is reduced by the efficient symbiosis between soil Rhizobium-type bacteria and the appropriate legume partner. Mechanistic research into the genetics, biochemistry and physiology of legumes is thus strategically essential for future global agriculture. Here we demonstrate how molecular plant science analysis of the genetics of an established food crop (soybean) and an emerging biofuel P. pinnata feedstock contributes to their utility by sustainable production aided by symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Peter M Gresshoff
- Centre for Integrative Legume Research (CILR), and School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia.
| | - Satomi Hayashi
- Centre for Integrative Legume Research (CILR), and School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Bandana Biswas
- Centre for Integrative Legume Research (CILR), and School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Saeid Mirzaei
- Centre for Integrative Legume Research (CILR), and School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia; Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Arief Indrasumunar
- Centre for Integrative Legume Research (CILR), and School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Dugald Reid
- Centre for Integrative Legume Research (CILR), and School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Sharon Samuel
- Centre for Integrative Legume Research (CILR), and School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Alina Tollenaere
- Centre for Integrative Legume Research (CILR), and School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Bethany van Hameren
- Centre for Integrative Legume Research (CILR), and School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - April Hastwell
- Centre for Integrative Legume Research (CILR), and School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Paul Scott
- Centre for Integrative Legume Research (CILR), and School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Brett J Ferguson
- Centre for Integrative Legume Research (CILR), and School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| |
Collapse
|
24
|
Hayashi S, Gresshoff PM, Ferguson BJ. Mechanistic action of gibberellins in legume nodulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:971-8. [PMID: 24673766 DOI: 10.1111/jipb.12201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/25/2014] [Indexed: 05/26/2023]
Abstract
Legume plants are capable of entering into a symbiotic relationship with rhizobia bacteria. This results in the formation of novel organs on their roots, called nodules, in which the bacteria capture atmospheric nitrogen and provide it as ammonium to the host plant. Complex molecular and physiological changes are involved in the formation and establishment of such nodules. Several phytohormones are known to play key roles in this process. Gibberellins (gibberellic acids; GAs), a class of phytohormones known to be involved in a wide range of biological processes (i.e., cell elongation, germination) are reported to be involved in the formation and maturation of legume nodules, highlighted by recent transcriptional analyses of early soybean symbiotic steps. Here, we summarize what is currently known about GAs in legume nodulation and propose a model of GA action during nodule development. Results from a wide range of studies, including GA application, mutant phenotyping, and gene expression studies, indicate that GAs are required at different stages, with an optimum, tightly regulated level being key to achieve successful nodulation. Gibberellic acids appear to be required at two distinct stages of nodulation: (i) early stages of rhizobia infection and nodule primordium establishment; and (ii) later stages of nodule maturation.
Collapse
Affiliation(s)
- Satomi Hayashi
- Centre for Integrative Legume Research, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
25
|
Ferguson BJ, Mathesius U. Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 2014; 40:770-90. [PMID: 25052910 DOI: 10.1007/s10886-014-0472-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/16/2022]
Abstract
The symbiosis between legumes and nitrogen fixing bacteria called rhizobia leads to the formation of root nodules. Nodules are highly organized root organs that form in response to Nod factors produced by rhizobia, and they provide rhizobia with a specialized niche to optimize nutrient exchange and nitrogen fixation. Nodule development and invasion by rhizobia is locally controlled by feedback between rhizobia and the plant host. In addition, the total number of nodules on a root system is controlled by a systemic mechanism termed 'autoregulation of nodulation'. Both the local and the systemic control of nodulation are regulated by phytohormones. There are two mechanisms by which phytohormone signalling is altered during nodulation: through direct synthesis by rhizobia and through indirect manipulation of the phytohormone balance in the plant, triggered by bacterial Nod factors. Recent genetic and physiological evidence points to a crucial role of Nod factor-induced changes in the host phytohormone balance as a prerequisite for successful nodule formation. Phytohormones synthesized by rhizobia enhance symbiosis effectiveness but do not appear to be necessary for nodule formation. This review provides an overview of recent advances in our understanding of the roles and interactions of phytohormones and signalling peptides in the regulation of nodule infection, initiation, positioning, development, and autoregulation. Future challenges remain to unify hormone-related findings across different legumes and to test whether hormone perception, response, or transport differences among different legumes could explain the variety of nodules types and the predisposition for nodule formation in this plant family. In addition, the molecular studies carried out under controlled conditions will need to be extended into the field to test whether and how phytohormone contributions by host and rhizobial partners affect the long term fitness of the host and the survival and competition of rhizobia in the soil. It also will be interesting to explore the interaction of hormonal signalling pathways between rhizobia and plant pathogens.
Collapse
Affiliation(s)
- Brett J Ferguson
- Centre for Integrative Legume Research, School of Agricultural and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | | |
Collapse
|
26
|
Hewitt DKL, Mills G, Hayes F, Wilkinson S, Davies W. Highlighting the threat from current and near-future ozone pollution to clover in pasture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 189:111-117. [PMID: 24657604 DOI: 10.1016/j.envpol.2014.02.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 06/03/2023]
Abstract
Globally, the legume-rhizobia symbiosis, contained within specialised organs called root nodules, is thought to add at least 30 Tg N annually to agricultural land. The growth and functioning of a modern white clover (Trifolium repens cv. Crusader) and red clover (T. pratense cv. Merviot) cultivar were investigated in current and future ozone scenarios in solardomes. Both cultivars developed leaf injury and had significant reductions in root biomass and root nodule number in response to ozone, with Crusader also displaying a reduced size and mass of nodules. In-situ measurements of N-fixation in Crusader by acetylene reduction assay revealed reduced N-fixation rates in a future scenario with an increased background and moderate peaks of ozone. The implications for the sustainability of temperate pasture are discussed.
Collapse
Affiliation(s)
- D K L Hewitt
- Centre for Ecology & Hydrology, Environment Centre Wales, Deinol Road, Bangor, Gwynedd LL57 2UW, UK; Lancaster University, Lancaster Environment Centre, Lancaster, Lancashire LA1 4YQ, UK.
| | - G Mills
- Centre for Ecology & Hydrology, Environment Centre Wales, Deinol Road, Bangor, Gwynedd LL57 2UW, UK
| | - F Hayes
- Centre for Ecology & Hydrology, Environment Centre Wales, Deinol Road, Bangor, Gwynedd LL57 2UW, UK
| | - S Wilkinson
- Lancaster University, Lancaster Environment Centre, Lancaster, Lancashire LA1 4YQ, UK
| | - W Davies
- Lancaster University, Lancaster Environment Centre, Lancaster, Lancashire LA1 4YQ, UK
| |
Collapse
|
27
|
Li X, Lei M, Yan Z, Wang Q, Chen A, Sun J, Luo D, Wang Y. The REL3-mediated TAS3 ta-siRNA pathway integrates auxin and ethylene signaling to regulate nodulation in Lotus japonicus. THE NEW PHYTOLOGIST 2014; 201:531-544. [PMID: 24164597 DOI: 10.1111/nph.12550] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/10/2013] [Indexed: 05/04/2023]
Abstract
The ta-siRNA pathway is required for lateral organ development, including leaf patterning, flower differentiation and lateral root growth. Legumes can develop novel lateral root organs--nodules--resulting from symbiotic interactions with rhizobia. However, ta-siRNA regulation in nodule formation remains unknown. To explore ta-siRNA regulation in nodule formation, we investigated the roles of REL3, a key component of TAS3 ta-siRNA biogenesis, during nodulation in Lotus japonicus. We characterized the symbiotic phenotypes of the TAS3 ta-siRNA defective rel3 mutant, and analyzed the responses of the rel3 mutant to auxin and ethylene in order to gain insight into TAS3 ta-siRNA regulation of nodulation. The rel3 mutant produced fewer pink nitrogen-fixing nodules, with substantially decreased infection frequency and nodule initiation. Moreover, the rel3 mutant was more resistant than wild-type to 1-naphthaleneacetic acid (NAA) and N-1-naphthylphthalamic acid (NPA) in root growth, and exhibited insensitivity to auxins but greater sensitivity to auxin transport inhibitors during nodulation. Furthermore, the rel3 mutant has enhanced root-specific ethylene sensitivity and altered responses to ethylene during nodulation; the low-nodulating phenotype of the rel3 mutant can be restored by ethylene synthesis inhibitor L-α-(2-aminoethoxyvinyl)-glycine (AVG) or action inhibitor Ag(+). The REL3-mediated TAS3 ta-siRNA pathway regulates nodulation by integrating ethylene and auxin signaling.
Collapse
Affiliation(s)
- Xiaolin Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mingjuan Lei
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhongyuan Yan
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qi Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Aimin Chen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jie Sun
- The key Laboratory of Oasis Eco-agriculture, Agriculture College of Shihezi University, Shihezi, 832003, China
| | - Da Luo
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanzhang Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
28
|
Merchante C, Vallarino JG, Osorio S, Aragüez I, Villarreal N, Ariza MT, Martínez GA, Medina-Escobar N, Civello MP, Fernie AR, Botella MA, Valpuesta V. Ethylene is involved in strawberry fruit ripening in an organ-specific manner. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4421-39. [PMID: 24098047 PMCID: PMC3808323 DOI: 10.1093/jxb/ert257] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The fruit of the strawberry Fragaria×ananassa has traditionally been classified as non-climacteric because its ripening process is not governed by ethylene. However, previous studies have reported the timely endogenous production of minor amounts of ethylene by the fruit as well as the differential expression of genes of the ethylene synthesis, reception, and signalling pathways during fruit development. Mining of the Fragaria vesca genome allowed for the identification of the two main ethylene biosynthetic genes, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. Their expression pattern during fruit ripening was found to be stage and organ (achene or receptacle) specific. Strawberry plants with altered sensitivity to ethylene could be employed to unravel the role of ethylene in the ripening process of the strawberry fruit. To this end, independent lines of transgenic strawberry plants were generated that overexpress the Arabidopsis etr1-1 mutant ethylene receptor, which is a dominant negative allele, causing diminished sensitivity to ethylene. Genes involved in ethylene perception as well as in its related downstream processes, such as flavonoid biosynthesis, pectin metabolism, and volatile biosynthesis, were differently expressed in two transgenic tissues, the achene and the receptacle. The different transcriptional responsiveness of the achene and the receptacle to ethylene was also revealed by the metabolic profiling of the primary metabolites in these two organs. The free amino acid content was higher in the transgenic lines compared with the control in the mature achene, while glucose and fructose, and citric and malic acids were at lower levels. In the receptacle, the most conspicuous change in the transgenic lines was the depletion of the tricarboxylic acid cycle intermediates at the white stage of development, most probably as a consequence of diminished respiration. The results are discussed in the context of the importance of ethylene during strawberry fruit ripening.
Collapse
Affiliation(s)
- Catharina Merchante
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - José G. Vallarino
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Sonia Osorio
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Irene Aragüez
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Natalia Villarreal
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Camino de Circunvalación Laguna, Km 6, (B7130IWA) Chascomús, Pcia, Buenos Aires, Argentina
| | - María T. Ariza
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Gustavo A. Martínez
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Camino de Circunvalación Laguna, Km 6, (B7130IWA) Chascomús, Pcia, Buenos Aires, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, (1900) La Plata, Argentina
| | - Nieves Medina-Escobar
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Marcos P. Civello
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, (1900) La Plata, Argentina
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diag. 113 y Calle 61 no. 495 – C.c 327, (1900) La Plata, Argentina
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Miguel A. Botella
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Victoriano Valpuesta
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| |
Collapse
|
29
|
Miyata K, Kawaguchi M, Nakagawa T. Two distinct EIN2 genes cooperatively regulate ethylene signaling in Lotus japonicus. PLANT & CELL PHYSIOLOGY 2013; 54:1469-77. [PMID: 23825220 DOI: 10.1093/pcp/pct095] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Leguminous plants establish a mutualistic symbiosis with bacteria, collectively referred to as rhizobia. Host plants positively and negatively regulate the symbiotic processes to keep the symbiosis at an appropriate level. Although the plant hormone ethylene is known as a negative regulator of symbiotic processes, the molecular mechanisms of ethylene signaling remain unresolved, especially in the model plant Lotus japonicus. Here, we identified two genes, LjEIN2-1 and LjEIN2-2, from L. japonicus. These genes share moderate similarity in their amino acid sequences, are located on different chromosomes and are composed of different numbers of exons. Suppression of either LjEIN2-1 or LjEIN2-2 expression significantly promoted the root growth of transformed plants on plates containing 1-amino-cyclopropane-carboxylic acid (ACC), the biosynthetic precursor of ethylene. Simultaneous suppression of both LjEIN2-1 and LjEIN2-2 markedly increased the ethylene insensitivity of transgenic roots and resulted in an increased nodulation phenotype. These results indicate that LjEIN2-1 and LjEIN2-2 concertedly regulate ethylene signaling in L. japonicus. We also observed that Nod factor (NF) induced the expression of the ethylene-responsive gene LjACO2, and simultaneous treatment with NF and ACC markedly increases its transcript level compared with either NF or ACC alone. Because LjACO2 encodes ACC oxidase, which is a key enzyme in ethylene biosynthesis, this result suggests the existence of an NF-triggered negative feedback mechanism through ethylene signaling.
Collapse
Affiliation(s)
- Kana Miyata
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | | | | |
Collapse
|
30
|
Murakami Y, Yokoyama H, Fukui R, Kawaguchi M. Down-regulation of NSP2 expression in developmentally young regions of Lotus japonicus roots in response to rhizobial inoculation. PLANT & CELL PHYSIOLOGY 2013; 54:518-27. [PMID: 23335614 DOI: 10.1093/pcp/pct008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
During the early 1980s, Bauer and associates reported that nodulation potential in primary roots of soybean seedlings following inoculation with rhizobia was significantly reduced in developmentally younger regions. They suggested that this phenomenon might be due to a fast-acting regulatory mechanism in the host that prevented excessive nodulation. However, the molecular mechanism of this fast-acting regulatory response remains uncertain. Here, we sought to elucidate components of this regulatory mechanism by investigating the expression of the NSP1 and NSP2 genes that encode a GRAS transcription factor required for nodule initiation. First, we confirmed that younger regions of Lotus japonicus roots also show a reduction in nodule numbers in response to Mesorhizobium loti. Then, we compared the expression levels of NSP1 and NSP2 in developmentally younger regions of primary roots. After inoculation with M. loti, expression of NSP1 was transiently induced whereas that of NSP2 was significantly down-regulated 1 d after inoculation. This result implicates that down-regulation of NSP2 might cause a fast-acting regulatory mechanism to prevent further nodulation. Next we overexpressed NSP2 in wild-type plants. Overexpression resulted in the clustering of nodules in the upper region of the root but strong suppression of nodulation in the lower region. In contrast, overexpression of NSP2 in har1 hypernodulating mutants resulted in an increased number of nodule primordia even in the root tip region. These results indicate that HAR1 negatively regulates NSP2-induced excessive nodule formation in the developmentally younger regions of roots.
Collapse
Affiliation(s)
- Yasuhiro Murakami
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, 444-8585 Japan
| | | | | | | |
Collapse
|
31
|
Chan PK, Biswas B, Gresshoff PM. Classical ethylene insensitive mutants of the Arabidopsis EIN2 orthologue lack the expected 'hypernodulation' response in Lotus japonicus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:395-408. [PMID: 23452324 DOI: 10.1111/jipb.12040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Three independent ethylene insensitive mutants were selected from an EMS- mutagenized population of Lotus japonicus MG-20 (Miyakojima). The mutants, called 'Enigma', were mutated in the LjEIN2a gene from Lotus chromosome 1, sharing significant homology with Arabidopsis EIN2 (ethylene-insensitive2). All three alleles showed classical ethylene insensitivity phenotypes (e.g., Triple Response), but lacked the increased nodulation phenotype commonly associated with ethylene insensitivity. Indeed, all showed a marginal reduction in nodule number per plant, a phenotype that is enigmatic to sickle, an ethylene-insensitive EIN2 mutant in Medicago truncatula. In contrast to wild type, but similar to an ETR1-1 ethylene ethylene-insensitive transgenic of L. japonicus, enigma mutants formed nodules in between the protoxylem poles, demonstrating the influence of ethylene on radial positioning. Suppression of nodule numbers by nitrate and colonisation by mycorrhizal fungi in the enigma-1 mutant were indistinguishable from the wild-type MG-20. However, reflecting endogenous ethylene feedback, the enigma-1 mutant released more than twice the wild-type amount of ethylene. enigma-1 had a moderate reduction in growth, greater root mass (and lateral root formation), delayed flowering and ripening, smaller pods and seeds. Expression analysis of ethylene-regulated genes, such as ETR1, NRL1 (neverripe-like 1), and EIL3 in shoots and roots of enigma-1 and MG-20 illustrated that the ethylene-insensitive mutation strongly affected transcriptional responses in the root. These mutants open the possibility that EIN2 in L. japonicus, a determinate nodulating legume, acts in a more complex fashion possibly through the presence of a duplicated copy of LjEIN2.
Collapse
Affiliation(s)
- Pick Kuen Chan
- Australian Research Council Centre of Excellence for Integrative Legume Research, The University of Queensland, St. Lucia, Brisbane QLD 4072, Australia
| | | | | |
Collapse
|
32
|
Cervantes E, Martín JJ, Chan PK, Gresshoff PM, Tocino Á. Seed shape in model legumes: approximation by a cardioid reveals differences in ethylene insensitive mutants of Lotus japonicus and Medicago truncatula. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1359-65. [PMID: 22809828 DOI: 10.1016/j.jplph.2012.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/03/2012] [Accepted: 05/11/2012] [Indexed: 05/11/2023]
Abstract
Seed shape in the model legumes Lotus japonicus and Medicago truncatula is described. Based in previous work with Arabidopsis, the outline of the longitudinal sections of seeds is compared with a cardioid curve. L. japonicus seeds adjust well to an unmodified cardioid, whereas accurate adjustment in M. truncatula is obtained by the simple transformation of scaling the vertical axis by a factor equal to the Golden Ratio. Adjustments of seed shape measurements with simple geometrical forms are essential tools for the statistical analysis of variations in seed shape under different conditions or in mutants. The efficiency of the adjustment to a cardioid in the model plants suggests that seed morphology may be related to genome complexity. Seeds of ethylene insensitive mutants present differences in size and shape as well as altered responses to imbibition. The biological implication and meaning of these relationships are discussed.
Collapse
|
33
|
Agarwal G, Choudhary D, Singh VP, Arora A. Role of ethylene receptors during senescence and ripening in horticultural crops. PLANT SIGNALING & BEHAVIOR 2012; 7:827-46. [PMID: 22751331 PMCID: PMC3583974 DOI: 10.4161/psb.20321] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The past two decades have been rewarding in terms of deciphering the ethylene signal transduction and functional validation of the ethylene receptor and downstream genes involved in the cascade. Our knowledge of ethylene receptors and its signal transduction pathway provides us a robust platform where we can think of manipulating and regulating ethylene sensitivity by the use of genetic engineering and making transgenic. This review focuses on ethylene perception, receptor mediated regulation of ethylene biosynthesis, role of ethylene receptors in flower senescence, fruit ripening and other effects induced by ethylene. The expression behavior of the receptor and downstream molecules in climacteric and non climacteric crops is also elaborated upon. Possible strategies and recent advances in altering the ethylene sensitivity of plants using ethylene receptor genes in an attempt to modulate the regulation and sensitivity to ethylene have also been discussed. Not only will these transgenic plants be a boon to post-harvest physiology and crop improvement but, it will also help us in discovering the mechanism of regulation of ethylene sensitivity.
Collapse
Affiliation(s)
| | | | - Virendra P. Singh
- Division of Plant Physiology; Indian Agricultural Research Institute; PUSA Campus; New Delhi, India
| | - Ajay Arora
- Division of Plant Physiology; Indian Agricultural Research Institute; PUSA Campus; New Delhi, India
| |
Collapse
|
34
|
Gouws LM, Botes E, Wiese AJ, Trenkamp S, Torres-Jerez I, Tang Y, Hills PN, Usadel B, Lloyd JR, Fernie AR, Kossmann J, van der Merwe MJ. The plant growth promoting substance, lumichrome, mimics starch, and ethylene-associated symbiotic responses in lotus and tomato roots. FRONTIERS IN PLANT SCIENCE 2012; 3:120. [PMID: 22701462 PMCID: PMC3371600 DOI: 10.3389/fpls.2012.00120] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/18/2012] [Indexed: 05/08/2023]
Abstract
Symbiosis involves responses that maintain the plant host and symbiotic partner's genetic program; yet these cues are far from elucidated. Here we describe the effects of lumichrome, a flavin identified from Rhizobium spp., applied to lotus (Lotus japonicus) and tomato (Solanum lycopersicum). Combined transcriptional and metabolite analyses suggest that both species shared common pathways that were altered in response to this application under replete, sterile conditions. These included genes involved in symbiosis, as well as transcriptional and metabolic responses related to enhanced starch accumulation and altered ethylene metabolism. Lumichrome priming also resulted in altered colonization with either Mesorhizobium loti (for lotus) or Glomus intraradices/G. mossea (for tomato). It enhanced nodule number but not nodule formation in lotus; while leading to enhanced hyphae initiation and delayed arbuscule maturation in tomato.
Collapse
Affiliation(s)
- Liezel M. Gouws
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Eileen Botes
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Anna J. Wiese
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Sandra Trenkamp
- Max-Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | | | - Yuhong Tang
- The Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Paul N. Hills
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Björn Usadel
- Max-Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - James R. Lloyd
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | | | - Jens Kossmann
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Margaretha J. van der Merwe
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
- Max-Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| |
Collapse
|
35
|
Mortier V, Holsters M, Goormachtig S. Never too many? How legumes control nodule numbers. PLANT, CELL & ENVIRONMENT 2012; 35:245-58. [PMID: 21819415 DOI: 10.1111/j.1365-3040.2011.02406.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Restricted availability of nitrogen compounds in soils is often a major limiting factor for plant growth and productivity. Legumes circumvent this problem by establishing a symbiosis with soil-borne bacteria, called rhizobia that fix nitrogen for the plant. Nitrogen fixation and nutrient exchange take place in specialized root organs, the nodules, which are formed by a coordinated and controlled process that combines bacterial infection and organ formation. Because nodule formation and nitrogen fixation are energy-consuming processes, legumes develop the minimal number of nodules required to ensure optimal growth. To this end, several mechanisms have evolved that adapt nodule formation and nitrogen fixation to the plant's needs and environmental conditions, such as nitrate availability in the soil. In this review, we give an updated view on the mechanisms that control nodulation.
Collapse
Affiliation(s)
- Virginie Mortier
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | | | | |
Collapse
|
36
|
Foo E, Davies NW. Strigolactones promote nodulation in pea. PLANTA 2011. [PMID: 21927948 DOI: 10.1007/s00425-011-1516-1517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Strigolactones are recently defined plant hormones with roles in mycorrhizal symbiosis and shoot and root architecture. Their potential role in controlling nodulation, the related symbiosis between legumes and Rhizobium bacteria, was explored using the strigolactone-deficient rms1 mutant in pea (Pisum sativum L.). This work indicates that endogenous strigolactones are positive regulators of nodulation in pea, required for optimal nodule number but not for nodule formation per se. rms1 mutant root exudates and root tissue are almost completely deficient in strigolactones, and rms1 mutant plants have approximately 40% fewer nodules than wild-type plants. Treatment with the synthetic strigolactone GR24 elevated nodule number in wild-type pea plants and also elevated nodule number in rms1 mutant plants to a level similar to that seen in untreated wild-type plants. Grafting studies revealed that nodule number and strigolactone levels in root tissue of rms1 roots were unaffected by grafting to wild-type scions indicating that strigolactones in the root, but not shoot-derived factors, regulate nodule number and provide the first direct evidence that the shoot does not make a major contribution to root strigolactone levels.
Collapse
Affiliation(s)
- Eloise Foo
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.
| | | |
Collapse
|
37
|
Foo E, Davies NW. Strigolactones promote nodulation in pea. PLANTA 2011; 234:1073-81. [PMID: 21927948 DOI: 10.1007/s00425-011-1516-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/02/2011] [Indexed: 05/20/2023]
Abstract
Strigolactones are recently defined plant hormones with roles in mycorrhizal symbiosis and shoot and root architecture. Their potential role in controlling nodulation, the related symbiosis between legumes and Rhizobium bacteria, was explored using the strigolactone-deficient rms1 mutant in pea (Pisum sativum L.). This work indicates that endogenous strigolactones are positive regulators of nodulation in pea, required for optimal nodule number but not for nodule formation per se. rms1 mutant root exudates and root tissue are almost completely deficient in strigolactones, and rms1 mutant plants have approximately 40% fewer nodules than wild-type plants. Treatment with the synthetic strigolactone GR24 elevated nodule number in wild-type pea plants and also elevated nodule number in rms1 mutant plants to a level similar to that seen in untreated wild-type plants. Grafting studies revealed that nodule number and strigolactone levels in root tissue of rms1 roots were unaffected by grafting to wild-type scions indicating that strigolactones in the root, but not shoot-derived factors, regulate nodule number and provide the first direct evidence that the shoot does not make a major contribution to root strigolactone levels.
Collapse
Affiliation(s)
- Eloise Foo
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.
| | | |
Collapse
|
38
|
Reid DE, Ferguson BJ, Hayashi S, Lin YH, Gresshoff PM. Molecular mechanisms controlling legume autoregulation of nodulation. ANNALS OF BOTANY 2011; 108:789-95. [PMID: 21856632 PMCID: PMC3177682 DOI: 10.1093/aob/mcr205] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/17/2011] [Indexed: 05/21/2023]
Abstract
BACKGROUND High input costs and environmental pressures to reduce nitrogen use in agriculture have increased the competitive advantage of legume crops. The symbiotic relationship that legumes form with nitrogen-fixing soil bacteria in root nodules is central to this advantage. SCOPE Understanding how legume plants maintain control of nodulation to balance the nitrogen gains with their energy needs and developmental costs will assist in increasing their productivity and relative advantage. For this reason, the regulation of nodulation has been extensively studied since the first mutants exhibiting increased nodulation were isolated almost three decades ago. CONCLUSIONS Nodulation is regulated primarily via a systemic mechanism known as the autoregulation of nodulation (AON), which is controlled by a CLAVATA1-like receptor kinase. Multiple components sharing homology with the CLAVATA signalling pathway that maintains control of the shoot apical meristem in arabidopsis have now been identified in AON. This includes the recent identification of several CLE peptides capable of activating nodule inhibition responses, a low molecular weight shoot signal and a role for CLAVATA2 in AON. Efforts are now being focused on directly identifying the interactions of these components and to identify the form that long-distance transport molecules take.
Collapse
|
39
|
Desbrosses G, Stougaard J. Root Nodulation: A Paradigm for How Plant-Microbe Symbiosis Influences Host Developmental Pathways. Cell Host Microbe 2011; 10:348-58. [DOI: 10.1016/j.chom.2011.09.005] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Murray JD. Invasion by invitation: rhizobial infection in legumes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:631-9. [PMID: 21542766 DOI: 10.1094/mpmi-08-10-0181] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nodulation of legume roots typically begins with rhizobia attaching to the tip of a growing root-hair cell. The attached rhizobia secrete Nod factors (NF), which are perceived by the plant. This initiates a series of preinfection events that include cytoskeletal rearrangements, curling at the root-hair tip, and formation of radially aligned cytoplasmic bridges called preinfection threads (PIT) in outer cortical cells. Within the root-hair curl, an infection pocket filled with bacteria forms, from which originates a tubular invagination of cell wall and membrane called an infection thread (IT). IT formation is coordinated with nodule development in the underlying root cortex tissues. The IT extends from the infection pocket down through the root hair and into the root cortex, where it passes through PIT and eventually reaches the nascent nodule. As the IT grows, it is colonized by rhizobia that are eventually released into cells within the nodule, where they fix nitrogen. NF can also induce cortical root hairs that appear to originate from PIT and can become infected like normal root hairs. Several genes involved in NF signaling and some of the downstream transcription factors required for infection have been characterized. More recently, several genes with direct roles in infection have been identified, some with roles in actin rearrangement and others with possible roles in protein turnover and secretion. This article provides an overview of the infection process, including the roles of NF signaling, actin, and calcium and the influence of the hormones ethylene and cytokinin.
Collapse
|
41
|
Lin YH, Lin MH, Gresshoff PM, Ferguson BJ. An efficient petiole-feeding bioassay for introducing aqueous solutions into dicotyledonous plants. Nat Protoc 2011; 6:36-45. [PMID: 21212781 DOI: 10.1038/nprot.2010.171] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Introducing bioactive molecules into plants helps establish their roles in plant growth and development. Here we describe a simple and effective petiole-feeding protocol to introduce aqueous solutions into the vascular stream and apoplast of dicotyledonous plants. This 'intravenous feeding' procedure has wide applicability to plant physiology, specifically with regard to the analysis of source-sink allocations, long-distance signaling, hormone biology and overall plant development. In comparison with existing methods, this technique allows the continuous feeding of aqueous solutions into plants without the need for constant monitoring. Findings are provided from experiments using soybean plants fed with a range of aqueous solutions containing tracer dyes, small metabolites, radiolabeled chemicals and biologically active plant extracts controlling nodulation. Typically, feeding experiments consist of (i) generating samples to feed (extracts, solutions and so on); (ii) growing recipient plants; (iii) setting up the feeding apparatus; and (iv) feeding sample solutions into the recipient plants. When the plants are ready, the feeding procedure can take 1-3 h to set up depending on the size of experiment (not including preparation of materials). The petiole-feeding technique also works with other plant species, including tomato, chili pepper and cabbage plants, as demonstrated here.
Collapse
Affiliation(s)
- Yu-Hsiang Lin
- Australian Research Council Centre of Excellence for Integrative Legume Research, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
42
|
Leach J, Keyster M, Du Plessis M, Ludidi N. Nitric oxide synthase activity is required for development of functional nodules in soybean. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1584-91. [PMID: 20709426 DOI: 10.1016/j.jplph.2010.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 05/08/2023]
Abstract
The effects of a nitric oxide synthase inhibitor (N(ω)-nitro-L-arginine) on soybean growth parameters and nodule functioning were investigated, along with soybean nodule cell viability and cysteine endopeptidase activity. N(ω)-nitro-L-arginine reduced soybean growth parameters, inhibited nodule nitrogenase activity, and caused a decrease in nodule cell viability. The negative effects of N(ω)-nitro-L-arginine were reversed by the nitric oxide donor 2,2'-(hydroxynitrosohydrazono)bis-ethanimine. Cysteine endopeptidase activity was higher in plants treated with N(ω)-nitro-L-arginine than untreated plants (controls), but decreased to levels similar to the controls when plants were exposed to a combination of N(ω)-nitro-L-arginine and 2,2'-(hydroxynitrosohydrazono)bis-ethanimine. These results suggest that nitric oxide, resulting from nitric oxide synthase activity, is required for development of functional soybean nodules.
Collapse
Affiliation(s)
- Jacobus Leach
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, South Africa
| | | | | | | |
Collapse
|
43
|
Ferguson BJ, Indrasumunar A, Hayashi S, Lin MH, Lin YH, Reid DE, Gresshoff PM. Molecular analysis of legume nodule development and autoregulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:61-76. [PMID: 20074141 DOI: 10.1111/j.1744-7909.2010.00899.x] [Citation(s) in RCA: 338] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Legumes are highly important food, feed and biofuel crops. With few exceptions, they can enter into an intricate symbiotic relationship with specific soil bacteria called rhizobia. This interaction results in the formation of a new root organ called the nodule in which the rhizobia convert atmospheric nitrogen gas into forms of nitrogen that are useable by the plant. The plant tightly controls the number of nodules it forms, via a complex root-to-shoot-to-root signaling loop called autoregulation of nodulation (AON). This regulatory process involves peptide hormones, receptor kinases and small metabolites. Using modern genetic and genomic techniques, many of the components required for nodule formation and AON have now been isolated. This review addresses these recent findings, presents detailed models of the nodulation and AON processes, and identifies gaps in our understanding of these process that have yet to be fully explained.
Collapse
Affiliation(s)
- Brett J Ferguson
- ARC Centre of Excellence for Integrative Legume Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
44
|
Gresshoff PM, Lohar D, Chan PK, Biswas B, Jiang Q, Reid D, Ferguson B, Stacey G. Genetic analysis of ethylene regulation of legume nodulation. PLANT SIGNALING & BEHAVIOR 2009; 4:818-23. [PMID: 19847106 PMCID: PMC2802810 DOI: 10.4161/psb.4.9.9395] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 06/26/2009] [Indexed: 05/18/2023]
Abstract
The gaseous hormone ethylene has multiple roles in plant development and responses to external cues. Among these is the regulation of "Rhizobium"-induced nodulation in legumes. Extensive descriptive literature exists, but has been expanded to allow more mechanistic analysis through the application of genetics. Both mutants and transgenics displaying ethylene insensitivity have now been described, suggesting an intimate interplay of ethylene response, plant development and nodulation.
Collapse
Affiliation(s)
- Peter M Gresshoff
- Australian Research Council Centre of Excellence for Integrative Legume Research, The University of Queensland, St. Lucia, Brisbane, Australia.
| | | | | | | | | | | | | | | |
Collapse
|