1
|
Liu P, Quan X, Song Z, Li W, Wang Y, Gu H, Xie D, Yang W, Dresselhaus T, Zhong S, Qu LJ. A two-step self-pollination mechanism maximizes fertility in Brassicaceae. Cell 2025:S0092-8674(25)00294-6. [PMID: 40233737 DOI: 10.1016/j.cell.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/31/2024] [Accepted: 03/11/2025] [Indexed: 04/17/2025]
Abstract
Self-pollination in self-compatible plant species often occurs prior to flower opening. By tracking the temporal progress of pollination in Arabidopsis, we observed that pollen predominantly targets the lateral region of the stigma in unopened flowers. Notably, approximately 7 h after flower opening, flowers close, thereby pressing anthers toward the central region of the stigma for a second self-pollination. This two-step self-pollination results in a doubling of pollen deposition, which significantly increases the ovule-targeting ratio and improves fertility under pollen-limiting conditions, as evident in the anther-dehiscence-defective mutant myb108 and under environmental stress conditions. Analysis using gamete-interaction-defective mutants hap2/gcs1 and dmp8 dmp9 revealed that the timely separation of both pollination events promotes fertilization recovery efficiency. A similar two-step pollination was observed in two other self-pollinating but not in outcrossing Brassicaceae species. This mechanism represents a reproductive assurance strategy in predominantly self-pollinating annuals to maximize fertility under unfavorable conditions.
Collapse
Affiliation(s)
- Pu Liu
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xin Quan
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zihan Song
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Wenhao Li
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yuan Wang
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hongya Gu
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Daoxin Xie
- Ministry of Education Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Weicai Yang
- Yazhouwan National Laboratory, 8 Huanjing Road, Yacheng, Sanya, Hainan 572025, People's Republic of China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Sheng Zhong
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| | - Li-Jia Qu
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
2
|
Edger PP, Soltis DE, Yoshioka S, Vallejo‐Marin M, Shimizu‐Inatsugi R, Shimizu KK, Salmon A, Hiscock S, Ainouche M, Soltis PS. Natural neopolyploids: a stimulus for novel research. THE NEW PHYTOLOGIST 2025; 246:78-93. [PMID: 39953679 PMCID: PMC11883059 DOI: 10.1111/nph.20437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/02/2025] [Indexed: 02/17/2025]
Abstract
Recently formed allopolyploid species offer unprecedented insights into the early stages of polyploid evolution. This review examines seven well-studied neopolyploids (we use 'neopolyploid' to refer to very recently formed polyploids, i.e. during the past 300 years), spanning different angiosperm families, exploring commonalities and differences in their evolutionary trajectories. Each neopolyploid provides a unique case study, demonstrating both shared patterns, such as rapid genomic and phenotypic changes, and unique responses to hybridization and genome doubling. While previous studies of these neopolyploids have improved our understanding of polyploidy, significant knowledge gaps remain, highlighting the need for further research into the varied impacts of whole-genome duplication on gene expression, epigenetic modifications, and ecological interactions. Notably, all of these neopolyploids have spontaneously arisen due to human activity in natural environments, underscoring the profound consequences of polyploidization in a rapidly changing world. Understanding the immediate effects of polyploidy is crucial not only for evolutionary biology but also for applied practices, as polyploidy can lead to novel traits, as well as stress tolerance and increased crop yields. Future research directions include investigating the genetic and epigenetic mechanisms underlying polyploid evolution, as well as exploring the potential of neopolyploids for crop improvement and environmental adaptation.
Collapse
Affiliation(s)
- Patrick P. Edger
- Department of HorticultureMichigan State UniversityEast LansingMI48823USA
- Genetics and Genome SciencesMichigan State UniversityEast LansingMI48824USA
| | - Douglas E. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFL32611USA
- Department of BiologyUniversity of FloridaGainesvilleFL32611USA
| | - Shunsuke Yoshioka
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichCH‐8057Switzerland
- Graduate School of AgricultureKyoto UniversityKyoto244‐0813Japan
| | - Mario Vallejo‐Marin
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsala752 36Sweden
| | - Rie Shimizu‐Inatsugi
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichCH‐8057Switzerland
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichCH‐8057Switzerland
- Kihara Institute for Biological ResearchYokohama City UniversityYokohama641‐12Japan
| | - Armel Salmon
- UMR CNRS EcobioRennes UniversityRennes Cedex35042France
| | - Simon Hiscock
- Department of BiologyUniversity of OxfordOxfordOX1 3RBUK
| | | | | |
Collapse
|
3
|
Sato Y, Shimizu-Inatsugi R, Takeda K, Schmid B, Nagano AJ, Shimizu KK. Reducing herbivory in mixed planting by genomic prediction of neighbor effects in the field. Nat Commun 2024; 15:8467. [PMID: 39375389 PMCID: PMC11458863 DOI: 10.1038/s41467-024-52374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
Genetically diverse populations can increase plant resistance to natural enemies. Yet, beneficial genotype pairs remain elusive due to the occurrence of positive or negative effects of mixed planting on plant resistance, respectively called associational resistance or susceptibility. Here, we identify key genotype pairs responsible for associational resistance to herbivory using the genome-wide polymorphism data of the plant species Arabidopsis thaliana. To quantify neighbor interactions among 199 genotypes grown in a randomized block design, we employ a genome-wide association method named "Neighbor GWAS" and genomic prediction inspired by the Ising model of magnetics. These analyses predict that 823 of the 19,701 candidate pairs can reduce herbivory in mixed planting. We planted three pairs with the predicted effects in mixtures and monocultures, and detected 18-30% reductions in herbivore damage in the mixed planting treatment. Our study shows the power of genomic prediction to assemble genotype mixtures with positive biodiversity effects.
Collapse
Affiliation(s)
- Yasuhiro Sato
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, 520-2194, Otsu, Shiga, Japan.
- Faculty of Environmental Earth Science, Hokkaido University, N10W5 Kita-ku, 060-0810, Sapporo, Hokkaido, Japan.
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Kazuya Takeda
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, 520-2194, Otsu, Shiga, Japan
| | - Bernhard Schmid
- Department of Geography, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, 520-2194, Otsu, Shiga, Japan.
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihouji, 997-0017, Tsuruoka, Yamagata, Japan.
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- Kihara Institute for Biological Research, Yokohama City University, Maioka 641-12, Totsuka-ward, 244-0813, Yokohama, Japan.
| |
Collapse
|
4
|
Kofler XV, Grossniklaus U, Schiestl FP, Frachon L. Uncovering genes involved in pollinator-driven mating system shifts and selfing syndrome evolution in Brassica rapa. THE NEW PHYTOLOGIST 2024; 243:1220-1230. [PMID: 38853408 DOI: 10.1111/nph.19880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
Shifts in pollinator occurrence and their pollen transport effectiveness drive the evolution of mating systems in flowering plants. Understanding the genomic basis of these changes is essential for predicting the persistence of a species under environmental changes. We investigated the genomic changes in Brassica rapa over nine generations of pollination by hoverflies associated with rapid morphological evolution toward the selfing syndrome. We combined a genotyping-by-sequencing (GBS) approach with a genome-wide association study (GWAS) to identify candidate genes, and assessed their functional role in the observed morphological changes by studying mutations of orthologous genes in the model plant Arabidopsis thaliana. We found 31 candidate genes involved in a wide range of functions from DNA/RNA binding to transport. Our functional assessment of orthologous genes in A. thaliana revealed that two of the identified genes in B. rapa are involved in regulating the size of floral organs. We found a protein kinase superfamily protein involved in petal width, an important trait in plant attractiveness to pollinators. Moreover, we found a histone lysine methyltransferase (HKMT) associated with stamen length. Altogether, our study shows that hoverfly pollination leads to rapid evolution toward the selfing syndrome mediated by polygenic changes.
Collapse
Affiliation(s)
- Xeniya V Kofler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zürich, Switzerland
- Zurich-Basel Plant Science Center, University of Zurich, ETH Zurich, University of Basel, Tannenstrasse 1, 8092, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Ueli Grossniklaus
- Zurich-Basel Plant Science Center, University of Zurich, ETH Zurich, University of Basel, Tannenstrasse 1, 8092, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Florian P Schiestl
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zürich, Switzerland
- Zurich-Basel Plant Science Center, University of Zurich, ETH Zurich, University of Basel, Tannenstrasse 1, 8092, Zürich, Switzerland
| | - Léa Frachon
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zürich, Switzerland
- Zurich-Basel Plant Science Center, University of Zurich, ETH Zurich, University of Basel, Tannenstrasse 1, 8092, Zürich, Switzerland
| |
Collapse
|
5
|
Maple R, Zhu P, Hepworth J, Wang JW, Dean C. Flowering time: From physiology, through genetics to mechanism. PLANT PHYSIOLOGY 2024; 195:190-212. [PMID: 38417841 PMCID: PMC11060688 DOI: 10.1093/plphys/kiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
Plant species have evolved different requirements for environmental/endogenous cues to induce flowering. Originally, these varying requirements were thought to reflect the action of different molecular mechanisms. Thinking changed when genetic and molecular analysis in Arabidopsis thaliana revealed that a network of environmental and endogenous signaling input pathways converge to regulate a common set of "floral pathway integrators." Variation in the predominance of the different input pathways within a network can generate the diversity of requirements observed in different species. Many genes identified by flowering time mutants were found to encode general developmental and gene regulators, with their targets having a specific flowering function. Studies of natural variation in flowering were more successful at identifying genes acting as nodes in the network central to adaptation and domestication. Attention has now turned to mechanistic dissection of flowering time gene function and how that has changed during adaptation. This will inform breeding strategies for climate-proof crops and help define which genes act as critical flowering nodes in many other species.
Collapse
Affiliation(s)
- Robert Maple
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Pan Zhu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jo Hepworth
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
6
|
Zhang D, Li YY, Zhao X, Zhang C, Liu DK, Lan S, Yin W, Liu ZJ. Molecular insights into self-incompatibility systems: From evolution to breeding. PLANT COMMUNICATIONS 2024; 5:100719. [PMID: 37718509 PMCID: PMC10873884 DOI: 10.1016/j.xplc.2023.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Plants have evolved diverse self-incompatibility (SI) systems for outcrossing. Since Darwin's time, considerable progress has been made toward elucidating this unrivaled reproductive innovation. Recent advances in interdisciplinary studies and applications of biotechnology have given rise to major breakthroughs in understanding the molecular pathways that lead to SI, particularly the strikingly different SI mechanisms that operate in Solanaceae, Papaveraceae, Brassicaceae, and Primulaceae. These best-understood SI systems, together with discoveries in other "nonmodel" SI taxa such as Poaceae, suggest a complex evolutionary trajectory of SI, with multiple independent origins and frequent and irreversible losses. Extensive exploration of self-/nonself-discrimination signaling cascades has revealed a comprehensive catalog of male and female identity genes and modifier factors that control SI. These findings also enable the characterization, validation, and manipulation of SI-related factors for crop improvement, helping to address the challenges associated with development of inbred lines. Here, we review current knowledge about the evolution of SI systems, summarize key achievements in the molecular basis of pollen‒pistil interactions, discuss potential prospects for breeding of SI crops, and raise several unresolved questions that require further investigation.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weilun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Stockenhuber R, Akiyama R, Tissot N, Milosavljevic S, Yamazaki M, Wyler M, Arongaus AB, Podolec R, Sato Y, Widmer A, Ulm R, Shimizu KK. UV RESISTANCE LOCUS 8-Mediated UV-B Response Is Required Alongside CRYPTOCHROME 1 for Plant Survival in Sunlight under Field Conditions. PLANT & CELL PHYSIOLOGY 2024; 65:35-48. [PMID: 37757822 PMCID: PMC10799719 DOI: 10.1093/pcp/pcad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023]
Abstract
As sessile, photoautotrophic organisms, plants are subjected to fluctuating sunlight that includes potentially detrimental ultraviolet-B (UV-B) radiation. Experiments under controlled conditions have shown that the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) controls acclimation and tolerance to UV-B in Arabidopsis thaliana; however, its long-term impact on plant fitness under naturally fluctuating environments remain poorly understood. Here, we quantified the survival and reproduction of different Arabidopsis mutant genotypes under diverse field and laboratory conditions. We found that uvr8 mutants produced more fruits than wild type when grown in growth chambers under artificial low-UV-B conditions but not under natural field conditions, indicating a fitness cost in the absence of UV-B stress. Importantly, independent double mutants of UVR8 and the blue light photoreceptor gene CRYPTOCHROME 1 (CRY1) in two genetic backgrounds showed a drastic reduction in fitness in the field. Experiments with UV-B attenuation in the field and with supplemental UV-B in growth chambers demonstrated that UV-B caused the cry1 uvr8 conditional lethal phenotype. Using RNA-seq data of field-grown single and double mutants, we explicitly identified genes showing significant statistical interaction of UVR8 and CRY1 mutations in the presence of UV-B in the field. They were enriched in Gene Ontology categories related to oxidative stress, photoprotection and DNA damage repair in addition to UV-B response. Our study demonstrates the functional importance of the UVR8-mediated response across life stages in natura, which is partially redundant with that of cry1. Moreover, these data provide an integral picture of gene expression associated with plant responses under field conditions.
Collapse
Affiliation(s)
- Reinhold Stockenhuber
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Reiko Akiyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Nicolas Tissot
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 1211, Switzerland
| | - Stefan Milosavljevic
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Misako Yamazaki
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Michele Wyler
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich 8008, Switzerland
| | - Adriana B Arongaus
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 1211, Switzerland
| | - Roman Podolec
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 1211, Switzerland
| | - Yasuhiro Sato
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, Zurich 8092, Switzerland
| | - Roman Ulm
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 1211, Switzerland
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama 244-0813, Japan
| |
Collapse
|
8
|
Akiyama R, Goto T, Tameshige T, Sugisaka J, Kuroki K, Sun J, Akita J, Hatakeyama M, Kudoh H, Kenta T, Tonouchi A, Shimahara Y, Sese J, Kutsuna N, Shimizu-Inatsugi R, Shimizu KK. Seasonal pigment fluctuation in diploid and polyploid Arabidopsis revealed by machine learning-based phenotyping method PlantServation. Nat Commun 2023; 14:5792. [PMID: 37737204 PMCID: PMC10517152 DOI: 10.1038/s41467-023-41260-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
Long-term field monitoring of leaf pigment content is informative for understanding plant responses to environments distinct from regulated chambers but is impractical by conventional destructive measurements. We developed PlantServation, a method incorporating robust image-acquisition hardware and deep learning-based software that extracts leaf color by detecting plant individuals automatically. As a case study, we applied PlantServation to examine environmental and genotypic effects on the pigment anthocyanin content estimated from leaf color. We processed >4 million images of small individuals of four Arabidopsis species in the field, where the plant shape, color, and background vary over months. Past radiation, coldness, and precipitation significantly affected the anthocyanin content. The synthetic allopolyploid A. kamchatica recapitulated the fluctuations of natural polyploids by integrating diploid responses. The data support a long-standing hypothesis stating that allopolyploids can inherit and combine the traits of progenitors. PlantServation facilitates the study of plant responses to complex environments termed "in natura".
Collapse
Affiliation(s)
- Reiko Akiyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Takao Goto
- Research and Development Division, LPIXEL Inc., Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research (KIBR), Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-Cho, Ikoma, Nara, 630-0192, Japan
| | - Jiro Sugisaka
- Kihara Institute for Biological Research (KIBR), Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, 520-2113, Japan
| | - Ken Kuroki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jianqiang Sun
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan
| | - Junichi Akita
- Department of Electric and Computer Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Functional Genomics Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, 520-2113, Japan
| | - Tanaka Kenta
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294 Sugadaira-kogen, Ueda, 386-2204, Japan
| | - Aya Tonouchi
- Research and Development Division, LPIXEL Inc., Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Yuki Shimahara
- Research and Development Division, LPIXEL Inc., Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Jun Sese
- Artificial Intelligence Research Center, AIST, 2-3-26 Aomi, Koto-ku, Tokyo, 135-0064, Japan
- Humanome Lab, Inc., L-HUB 3F, 1-4, Shumomiyabi-cho, Shinjuku, Tokyo, 162-0822, Japan
- AIST-Tokyo Tech RWBC-OIL, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Natsumaro Kutsuna
- Research and Development Division, LPIXEL Inc., Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- Kihara Institute for Biological Research (KIBR), Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan.
| |
Collapse
|
9
|
Xu C, Sato Y, Yamazaki M, Brasser M, Barbour MA, Bascompte J, Shimizu KK. Genome-wide association study of aphid abundance highlights a locus affecting plant growth and flowering in Arabidopsis thaliana. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230399. [PMID: 37621664 PMCID: PMC10445015 DOI: 10.1098/rsos.230399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Plant life-history traits, such as size and flowering, contribute to shaping variation in herbivore abundance. Although plant genes involved in physical and chemical traits have been well studied, less is known about the loci linking plant life-history traits and herbivore abundance. Here, we conducted a genome-wide association study (GWAS) of aphid abundance in a field population of Arabidopsis thaliana. This GWAS of aphid abundance detected a relatively rare but significant variant on the third chromosome of A. thaliana, which was also suggestively but non-significantly associated with the presence or absence of inflorescence. Out of candidate genes near this significant variant, a mutant of a ribosomal gene (AT3G13882) exhibited slower growth and later flowering than a wild type under laboratory conditions. A no-choice assay with the turnip aphid, Lipaphis erysimi, found that aphids were unable to successfully establish on the mutant. Our GWAS of aphid abundance unexpectedly found a locus affecting plant growth and flowering.
Collapse
Affiliation(s)
- Chongmeng Xu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Yasuhiro Sato
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Misako Yamazaki
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Marcel Brasser
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthew A. Barbour
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Départemente de Biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Quebec, Canada J1K 2R1
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Maioka 641-12, Totsuka-ward, Yokohama 244-0813, Japan
| |
Collapse
|
10
|
Shimizu KK. Robustness and the generalist niche of polyploid species: Genome shock or gradual evolution? CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102292. [PMID: 36063635 DOI: 10.1016/j.pbi.2022.102292] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 05/26/2023]
Abstract
The prevalence of polyploidy in wild and crop species has stimulated debate over its evolutionary advantages and disadvantages. Previous studies have focused on changes occurring at the polyploidization events, including genome-wide changes termed "genome shock," as well as ancient polyploidy. Recent bioinformatics advances and empirical studies of Arabidopsis and wheat relatives are filling a research gap: the functional evolutionary study of polyploid species using RNA-seq, DNA polymorphism, and epigenomics. Polyploid species can become generalists in natura through environmental robustness by inheriting and merging parental stress responses. Their evolvability is enhanced by mutational robustness working on inherited standing variation. The identification of key genes responsible for gradual adaptive evolution will encourage synthetic biological approaches to transfer polyploid advantages to other species.
Collapse
Affiliation(s)
- Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zürich, Switzerland; Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, 244-0813 Totsuka-ward, Yokohama, Japan.
| |
Collapse
|
11
|
Obayashi T, Hibara H, Kagaya Y, Aoki Y, Kinoshita K. ATTED-II v11: A Plant Gene Coexpression Database Using a Sample Balancing Technique by Subagging of Principal Components. PLANT & CELL PHYSIOLOGY 2022; 63:869-881. [PMID: 35353884 DOI: 10.1093/pcp/pcac041] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/06/2022] [Accepted: 03/29/2022] [Indexed: 05/25/2023]
Abstract
ATTED-II (https://atted.jp) is a gene coexpression database for nine plant species based on publicly available RNAseq and microarray data. One of the challenges in constructing condition-independent coexpression data based on publicly available gene expression data is managing the inherent sampling bias. Here, we report ATTED-II version 11, wherein we adopted a coexpression calculation methodology to balance the samples using principal component analysis and ensemble calculation. This approach has two advantages. First, omitting principal components with low contribution rates reduces the main contributors of noise. Second, balancing large differences in contribution rates enables considering various sample conditions entirely. In addition, based on RNAseq- and microarray-based coexpression data, we provide species-representative, integrated coexpression information to enhance the efficiency of interspecies comparison of the coexpression data. These coexpression data are provided as a standardized z-score to facilitate integrated analysis with different data sources. We believe that with these improvements, ATTED-II is more valuable and powerful for supporting interspecies comparative studies and integrated analyses using heterogeneous data.
Collapse
Affiliation(s)
- Takeshi Obayashi
- Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8679 Japan
| | - Himiko Hibara
- Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8679 Japan
| | - Yuki Kagaya
- Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8679 Japan
| | - Yuichi Aoki
- Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8679 Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan
| | - Kengo Kinoshita
- Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8679 Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan
- Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| |
Collapse
|
12
|
Tokunaga H, Quynh DTN, Anh NH, Nhan PT, Matsui A, Takahashi S, Tanaka M, Anh NM, Van Dong N, Ham LH, Higo A, Hoa TM, Ishitani M, Minh NBN, Hy NH, Srean P, Thu VA, Tung NB, Vu NA, Yamaguchi K, Tsuji H, Utsumi Y, Seki M. Field transcriptome analysis reveals a molecular mechanism for cassava-flowering in a mountainous environment in Southeast Asia. PLANT MOLECULAR BIOLOGY 2022; 109:233-248. [PMID: 32902791 DOI: 10.1007/s11103-020-01057-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/17/2020] [Indexed: 05/12/2023]
Abstract
The field survey in this article showed in 'KU50', a popular variety and late-branching type of cassava in Southeast Asia, that flowering rarely occurs in normal-field conditions in Southeast Asia but is strongly induced in the dry season in the mountainous region. Flowering time is correlated with the expression patterns of MeFT1 and homologs of Arabidopsis GI, PHYA, and NF-Ys. Cassava (Manihot esculenta Crantz) is a tropical crop that is propagated vegetatively rather than sexually by seed. Flowering rarely occurs in the erect-type variety grown in Southeast Asia, but it is known that cassava produces flowers every year in mountainous regions. Data pertaining to the effect of environmental factors on flowering time and gene expression in cassava, however, is limited. The aim of the present study was to determine the kinds of environmental conditions that regulate flowering time in cassava and the underlying molecular mechanisms. The flowering status of KU50, a popular variety in Southeast Asia and late-branching type of cassava, was monitored in six fields in Vietnam and Cambodia. At non-flowering and flowering field locations in North Vietnam, the two FLOWERING LOCUS T (FT)-like genes, MeFT1 and MeFT2, were characterized by qPCR, and the pattern of expression of flowering-related genes and genes responsive to environmental signals were analyzed by using RNA sequencing data from time-series samples. Results indicate that cassava flowering was induced in the dry season in the mountain region, and that flowering time was correlated with the expression of MeFT1, and homologs of Arabidopsis GI, PHYA, and NF-Ys. Based upon these data, we hypothesize that floral induction in cassava is triggered by some conditions present in the mountain regions during the dry season.
Collapse
Affiliation(s)
- Hiroki Tokunaga
- Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan.
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam.
| | - Do Thi Nhu Quynh
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Nguyen Hai Anh
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Pham Thi Nhan
- Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam
| | - Akihiro Matsui
- Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan
| | | | - Maho Tanaka
- Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan
| | - Ngo Minh Anh
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- JICA Vietnam Office, Hanoi, Vietnam
| | - Nguyen Van Dong
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Le Huy Ham
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Asuka Higo
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
| | - Truong Minh Hoa
- Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam
| | - Manabu Ishitani
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Nguyen Huu Hy
- Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam
| | - Pao Srean
- University of Battambang (UBB), Battambang, Cambodia
| | - Vu Anh Thu
- Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Nguyen Ba Tung
- Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam
| | - Nguyen Anh Vu
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Kaho Yamaguchi
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
| | - Yoshinori Utsumi
- Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
| | - Motoaki Seki
- Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan.
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam.
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan.
- Cluster for Pioneering Research, RIKEN, Saitama, Japan.
| |
Collapse
|
13
|
Akiyama R, Sun J, Hatakeyama M, Lischer HEL, Briskine RV, Hay A, Gan X, Tsiantis M, Kudoh H, Kanaoka MM, Sese J, Shimizu KK, Shimizu‐Inatsugi R. Fine-scale empirical data on niche divergence and homeolog expression patterns in an allopolyploid and its diploid progenitor species. THE NEW PHYTOLOGIST 2021; 229:3587-3601. [PMID: 33222195 PMCID: PMC7986779 DOI: 10.1111/nph.17101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 11/09/2020] [Indexed: 05/09/2023]
Abstract
Polyploidization is pervasive in plants, but little is known about the niche divergence of wild allopolyploids (species that harbor polyploid genomes originating from different diploid species) relative to their diploid progenitor species and the gene expression patterns that may underlie such ecological divergence. We conducted a fine-scale empirical study on habitat and gene expression of an allopolyploid and its diploid progenitors. We quantified soil properties and light availability of habitats of an allotetraploid Cardamine flexuosa and its diploid progenitors Cardamine amara and Cardamine hirsuta in two seasons. We analyzed expression patterns of genes and homeologs (homeologous gene copies in allopolyploids) using RNA sequencing. We detected niche divergence between the allopolyploid and its diploid progenitors along water availability gradient at a fine scale: the diploids in opposite extremes and the allopolyploid in a broader range between diploids, with limited overlap with diploids at both ends. Most of the genes whose homeolog expression ratio changed among habitats in C. flexuosa varied spatially and temporally. These findings provide empirical evidence for niche divergence between an allopolyploid and its diploid progenitor species at a fine scale and suggest that divergent expression patterns of homeologs in an allopolyploid may underlie its persistence in diverse habitats.
Collapse
Affiliation(s)
- Reiko Akiyama
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
| | - Jianqiang Sun
- Research Center for Agricultural Information TechnologyNational Agriculture and Food Research Organization3‐1‐1 KannondaiTsukubaIbaraki305‐8517Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Functional Genomics Center ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Swiss Institute of BioinformaticsQuartier Sorge – Batiment GenopodeLausanneCH‐1015Switzerland
| | - Heidi E. L. Lischer
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Swiss Institute of BioinformaticsQuartier Sorge – Batiment GenopodeLausanneCH‐1015Switzerland
- Interfaculty Bioinformatics UnitUniversity of BernBaltzerstrasse 6BernCH‐3012Switzerland
| | - Roman V. Briskine
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Functional Genomics Center ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
| | - Angela Hay
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Köln50829Germany
| | - Xiangchao Gan
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Köln50829Germany
| | - Miltos Tsiantis
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Köln50829Germany
| | - Hiroshi Kudoh
- Center for Ecological ResearchKyoto UniversityHirano 2‐509‐3Otsu520‐2113Japan
| | - Masahiro M. Kanaoka
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8602Japan
| | - Jun Sese
- Humanome Lab, Inc.L‐HUB 3F1‐4, Shumomiyabi‐choShinjukuTokyo162‐0822Japan
- Artificial Intelligence Research CenterAIST2‐3‐26 AomiKoto‐kuTokyo135‐0064Japan
- AIST‐Tokyo Tech RWBC‐OIL2‐12‐1 OkayamaMeguro‐kuTokyo152‐8550Japan
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Kihara Institute for Biological Research (KIBR)Yokohama City University641‐12 MaiokaTotsuka‐wardYokohama244‐0813Japan
| | - Rie Shimizu‐Inatsugi
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
| |
Collapse
|
14
|
Paape T, Akiyama R, Cereghetti T, Onda Y, Hirao AS, Kenta T, Shimizu KK. Experimental and Field Data Support Range Expansion in an Allopolyploid Arabidopsis Owing to Parental Legacy of Heavy Metal Hyperaccumulation. Front Genet 2020; 11:565854. [PMID: 33193650 PMCID: PMC7554548 DOI: 10.3389/fgene.2020.565854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/04/2020] [Indexed: 01/31/2023] Open
Abstract
Empirical evidence is limited on whether allopolyploid species combine or merge parental adaptations to broaden habitats. The allopolyploid Arabidopsis kamchatica is a hybrid of the two diploid parents Arabidopsis halleri and Arabidopsis lyrata. A. halleri is a facultative heavy metal hyperaccumulator, and may be found in cadmium (Cd) and zinc (Zn) contaminated environments, as well as non-contaminated environments. A. lyrata is considered non-tolerant to these metals, but can be found in serpentine habitats. Therefore, the parents have adaptation to different environments. Here, we measured heavy metals in soils from native populations of A. kamchatica. We found that soil Zn concentration of nearly half of the sampled 40 sites was higher than the critical toxicity level. Many of the sites were near human construction, suggesting adaptation of A. kamchatica to artificially contaminated soils. Over half of the A. kamchatica populations had >1,000 μg g–1 Zn in leaf tissues. Using hydroponic treatments, most genotypes accumulated >3,000 μg g–1 Zn, with high variability among them, indicating substantial genetic variation in heavy metal accumulation. Genes involved in heavy metal hyperaccumulation showed an expression bias in the A. halleri-derived homeolog in widely distributed plant genotypes. We also found that two populations were found growing on serpentine soils. These data suggest that A. kamchatica can inhabit a range of both natural and artificial soil environments with high levels of ions that either of the parents specializes and that it can accumulate varying amount of heavy metals. Our field and experimental data provide a compelling example of combining genetic toolkits for soil adaptations to expand the habitat of an allopolyploid species.
Collapse
Affiliation(s)
- Timothy Paape
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Sugadaira Montane Research Center, University of Tsukuba, Tsukuba, Japan
| | - Reiko Akiyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Teo Cereghetti
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Yoshihiko Onda
- Sugadaira Montane Research Center, University of Tsukuba, Tsukuba, Japan
| | - Akira S Hirao
- Sugadaira Montane Research Center, University of Tsukuba, Tsukuba, Japan.,Faculty of Symbiotic Systems Science, Fukushima University, Fukushima, Japan
| | - Tanaka Kenta
- Sugadaira Montane Research Center, University of Tsukuba, Tsukuba, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
15
|
Hanya G, Tackmann J, Sawada A, Lee W, Pokharel SS, de Castro Maciel VG, Toge A, Kuroki K, Otsuka R, Mabuchi R, Liu J, Hatakeyama M, Yamasaki E, von Mering C, Shimizu-Inatsugi R, Hayakawa T, Shimizu KK, Ushida K. Fermentation Ability of Gut Microbiota of Wild Japanese Macaques in the Highland and Lowland Yakushima: In Vitro Fermentation Assay and Genetic Analyses. MICROBIAL ECOLOGY 2020; 80:459-474. [PMID: 32328670 DOI: 10.1007/s00248-020-01515-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Wild Japanese macaques (Macaca fuscata Blyth) living in the highland and lowland areas of Yakushima are known to have different diets, with highland individuals consuming more leaves. We aim to clarify whether and how these differences in diet are also reflected by gut microbial composition and fermentation ability. Therefore, we conduct an in vitro fermentation assay using fresh feces from macaques as inoculum and dry leaf powder of Eurya japonica Thunb. as a substrate. Fermentation activity was higher for feces collected in the highland, as evidenced by higher gas and butyric acid production and lower pH. Genetic analysis indicated separation of highland and lowland in terms of both community structure and function of the gut microbiota. Comparison of feces and suspension after fermentation indicated that the community structure changed during fermentation, and the change was larger for lowland samples. Analysis of the 16S rRNA V3-V4 barcoding region of the gut microbiota showed that community structure was clearly clustered between the two areas. Furthermore, metagenomic analysis indicated separation by gene and pathway abundance patterns. Two pathways (glycogen biosynthesis I and D-galacturonate degradation I) were enriched in lowland samples, possibly related to the fruit-eating lifestyle in the lowland. Overall, we demonstrated that the more leaf-eating highland Japanese macaques harbor gut microbiota with higher leaf fermentation ability compared with the more fruit-eating lowland ones. Broad, non-specific taxonomic and functional gut microbiome differences suggest that this pattern may be driven by a complex interplay between many taxa and pathways rather than single functional traits.
Collapse
Affiliation(s)
- Goro Hanya
- Primate Research Institute, Kyoto University, Inuyama, Japan.
| | - Janko Tackmann
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Akiko Sawada
- Primate Research Institute, Kyoto University, Inuyama, Japan
- Chubu University Academy of Emerging Sciences, Kasugai, Japan
| | - Wanyi Lee
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | | | | | - Akito Toge
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Kota Kuroki
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Ryoma Otsuka
- Graduate School of Asian and African Area Studies, Kyoto University, Kyoto, Japan
| | - Ryoma Mabuchi
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Jie Liu
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Eri Yamasaki
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Takashi Hayakawa
- Primate Research Institute, Kyoto University, Inuyama, Japan
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
- Japan Monkey Centre, Inuyama, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Kazunari Ushida
- Chubu University Academy of Emerging Sciences, Kasugai, Japan
| |
Collapse
|
16
|
Tsuchimatsu T, Kakui H, Yamazaki M, Marona C, Tsutsui H, Hedhly A, Meng D, Sato Y, Städler T, Grossniklaus U, Kanaoka MM, Lenhard M, Nordborg M, Shimizu KK. Adaptive reduction of male gamete number in the selfing plant Arabidopsis thaliana. Nat Commun 2020; 11:2885. [PMID: 32514036 PMCID: PMC7280297 DOI: 10.1038/s41467-020-16679-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/19/2020] [Indexed: 11/08/2022] Open
Abstract
The number of male gametes is critical for reproductive success and varies between and within species. The evolutionary reduction of the number of pollen grains encompassing the male gametes is widespread in selfing plants. Here, we employ genome-wide association study (GWAS) to identify underlying loci and to assess the molecular signatures of selection on pollen number-associated loci in the predominantly selfing plant Arabidopsis thaliana. Regions of strong association with pollen number are enriched for signatures of selection, indicating polygenic selection. We isolate the gene REDUCED POLLEN NUMBER1 (RDP1) at the locus with the strongest association. We validate its effect using a quantitative complementation test with CRISPR/Cas9-generated null mutants in nonstandard wild accessions. In contrast to pleiotropic null mutants, only pollen numbers are significantly affected by natural allelic variants. These data support theoretical predictions that reduced investment in male gametes is advantageous in predominantly selfing species.
Collapse
Affiliation(s)
- Takashi Tsuchimatsu
- Department of Evolutionary Biology and Environmental Studies & Zurich-Basel Plant Science Center, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008, Zurich, Switzerland
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, A-1030, Vienna, Austria
- Department of Biology, Chiba University, Chiba, 263-8522, Japan
- Department of Biological Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroyuki Kakui
- Department of Evolutionary Biology and Environmental Studies & Zurich-Basel Plant Science Center, University of Zurich, 8057, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan
- Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Misako Yamazaki
- Department of Evolutionary Biology and Environmental Studies & Zurich-Basel Plant Science Center, University of Zurich, 8057, Zurich, Switzerland
| | - Cindy Marona
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Hiroki Tsutsui
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008, Zurich, Switzerland
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
- JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Nagoya, 464-8602, Japan
| | - Afif Hedhly
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008, Zurich, Switzerland
| | - Dazhe Meng
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, A-1030, Vienna, Austria
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089-0371, USA
| | - Yutaka Sato
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Thomas Städler
- Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008, Zurich, Switzerland
| | | | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, A-1030, Vienna, Austria
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies & Zurich-Basel Plant Science Center, University of Zurich, 8057, Zurich, Switzerland.
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008, Zurich, Switzerland.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan.
| |
Collapse
|
17
|
Parallel evolution of dominant pistil-side self-incompatibility suppressors in Arabidopsis. Nat Commun 2020; 11:1404. [PMID: 32179752 PMCID: PMC7075917 DOI: 10.1038/s41467-020-15212-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/24/2020] [Indexed: 01/09/2023] Open
Abstract
Selfing is a frequent evolutionary trend in angiosperms, and is a suitable model for studying the recurrent patterns underlying adaptive evolution. Many plants avoid self-fertilization by physiological processes referred to as self-incompatibility (SI). In the Brassicaceae, direct and specific interactions between the male ligand SP11/SCR and the female receptor kinase SRK are required for the SI response. Although Arabidopsis thaliana acquired autogamy through loss of these genes, molecular evolution contributed to the spread of self-compatibility alleles requires further investigation. We show here that in this species, dominant SRK silencing genes have evolved at least twice. Different inverted repeat sequences were found in the relic SRK region of the Col-0 and C24 strains. Both types of inverted repeats suppress the functional SRK sequence in a dominant fashion with different target specificities. It is possible that these dominant suppressors of SI contributed to the rapid fixation of self-compatibility in A. thaliana. In Brassicaceae, interaction between the pollen-derived peptide ligand SP11 and the pistil-expressed receptor kinase SRK leads to self-incompatibility. Here the authors provide evidence that in Arabidopsis dominant self-compatibility inducers evolved at least twice via insertion of inverted repeats in the SRK locus.
Collapse
|
18
|
Sato Y, Tezuka A, Kashima M, Deguchi A, Shimizu-Inatsugi R, Yamazaki M, Shimizu KK, Nagano AJ. Transcriptional Variation in Glucosinolate Biosynthetic Genes and Inducible Responses to Aphid Herbivory on Field-Grown Arabidopsis thaliana. Front Genet 2019; 10:787. [PMID: 31572432 PMCID: PMC6749069 DOI: 10.3389/fgene.2019.00787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
Recently, increasing attempts have been made to understand how plant genes function in natura. In this context, transcriptional profiles represent plant physiological status in response to environmental stimuli. Herein, we combined high-throughput RNA-Seq with insect survey data on 19 accessions of Arabidopsis thaliana grown at a field site in Switzerland. We found that genes with the gene ontology (GO) annotations of "glucosinolate biosynthetic process" and "response to insects" were most significantly enriched, and the expression of these genes was highly variable among plant accessions. Nearly half of the total expression variation in the glucosinolate biosynthetic genes (AOPs, ESM1, ESP, and TGG1) was explained by among-accession variation. Of these genes, the expression level of AOP3 differed among Col-0 accession individuals depending on the abundance of the mustard aphid (Lipaphis erysimi). We also found that the expression of the major cis-jasmone activated gene CYP81D11 was positively correlated with the number of flea beetles (Phyllotreta striolata and Phyllotreta atra). Combined with the field RNA-Seq data, bioassays confirmed that AOP3 was up-regulated in response to attack by mustard aphids. The combined results from RNA-Seq and our ecological survey illustrate the feasibility of using field transcriptomics to detect an inducible defense, providing a first step towards an in natura understanding of biotic interactions involving phenotypic plasticity.
Collapse
Affiliation(s)
- Yasuhiro Sato
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Japan
| | - Ayumi Tezuka
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Japan
| | - Makoto Kashima
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Japan
| | - Ayumi Deguchi
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Misako Yamazaki
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Atsushi J. Nagano
- Department of Plant Life Sciences, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| |
Collapse
|
19
|
Ito T, Nishio H, Tarutani Y, Emura N, Honjo MN, Toyoda A, Fujiyama A, Kakutani T, Kudoh H. Seasonal Stability and Dynamics of DNA Methylation in Plants in a Natural Environment. Genes (Basel) 2019; 10:genes10070544. [PMID: 31319612 PMCID: PMC6679105 DOI: 10.3390/genes10070544] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
DNA methylation has been considered a stable epigenetic mark but may respond to fluctuating environments. However, it is unclear how they behave in natural environments. Here, we analyzed seasonal patterns of genome-wide DNA methylation in a single clone from a natural population of the perennial Arabidopsis halleri. The genome-wide pattern of DNA methylation was primarily stable, and most of the repetitive regions were methylated across the year. Although the proportion was small, we detected seasonally methylated cytosines (SeMCs) in the genome. SeMCs in the CHH context were detected predominantly at repetitive sequences in intergenic regions. In contrast, gene-body CG methylation (gbM) itself was generally stable across seasons, but the levels of gbM were positively associated with seasonal stability of RNA expression of the genes. These results suggest the existence of two distinct aspects of DNA methylation in natural environments: sources of epigenetic variation and epigenetic marks for stable gene expression.
Collapse
Affiliation(s)
- Tasuku Ito
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| | - Haruki Nishio
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| | - Yoshiaki Tarutani
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Naoko Emura
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
- Department of Environmental Sciences and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Mie N Honjo
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Tetsuji Kakutani
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan.
| |
Collapse
|
20
|
Fujii S, Tsuchimatsu T, Kimura Y, Ishida S, Tangpranomkorn S, Shimosato-Asano H, Iwano M, Furukawa S, Itoyama W, Wada Y, Shimizu KK, Takayama S. A stigmatic gene confers interspecies incompatibility in the Brassicaceae. NATURE PLANTS 2019; 5:731-741. [PMID: 31263241 DOI: 10.1038/s41477-019-0444-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Pre-zygotic interspecies incompatibility in angiosperms is a male-female relationship that inhibits the formation of hybrids between two species. Here, we report on the identification of STIGMATIC PRIVACY 1 (SPRI1), an interspecies barrier gene in Arabidopsis thaliana. We show that the rejection activity of this stigma-specific plasma membrane protein is effective against distantly related Brassicaceae pollen tubes and is independent of self-incompatibility. Point-mutation experiments and functional tests of synthesized hypothetical ancestral forms of SPRI1 suggest evolutionary decay of SPRI1-controlled interspecies incompatibility in self-compatible A. thaliana. Hetero-pollination experiments indicate that SPRI1 ensures intraspecific fertilization in the pistil when pollen from other species are present. Our study supports the idea that SPRI1 functions as a barrier mechanism that permits entrance of pollen with an intrinsic signal from self species.
Collapse
Affiliation(s)
- Sota Fujii
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan.
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Saitama, Japan.
| | - Takashi Tsuchimatsu
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Yuka Kimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shota Ishida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Hiroko Shimosato-Asano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shoko Furukawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Wakana Itoyama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Yuko Wada
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Seiji Takayama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan.
| |
Collapse
|
21
|
Sato Y, Shimizu-Inatsugi R, Yamazaki M, Shimizu KK, Nagano AJ. Plant trichomes and a single gene GLABRA1 contribute to insect community composition on field-grown Arabidopsis thaliana. BMC PLANT BIOLOGY 2019; 19:163. [PMID: 31029092 PMCID: PMC6486987 DOI: 10.1186/s12870-019-1705-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/11/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Genetic variation in plants alters insect abundance and community structure in the field; however, little is known about the importance of a single gene among diverse plant genotypes. In this context, Arabidopsis trichomes provide an excellent system to discern the roles of natural variation and a key gene, GLABRA1, in shaping insect communities. In this study, we transplanted two independent glabrous mutants (gl1-1 and gl1-2) and 17 natural accessions of Arabidopsis thaliana to two localities in Switzerland and Japan. RESULTS Fifteen insect species inhabited the plant accessions, with the insect community composition significantly attributed to variations among plant accessions. The total abundance of leaf-chewing herbivores was negatively correlated with trichome density at both field sites, while glucosinolates had variable effects on leaf chewers between the sites. Interestingly, there was a parallel tendency for the abundance of leaf chewers to be higher on gl1-1 and gl1-2 than on their different parental accessions, Ler-1 and Col-0, respectively. Furthermore, the loss of function in the GLABRA1 gene significantly decreased the resistance of plants to the two predominant chewers; flea beetles and turnip sawflies. CONCLUSIONS Overall, our results indicate that insect community composition significantly varies among A. thaliana accessions across two distant field sites, with GLABRA1 playing a key role in altering the abundance of leaf-chewing herbivores. Given that such a trichome variation is widely observed in Brassicaceae plants, the present study exemplifies the community-wide effect of a single plant gene on crucifer-feeding insects in the field.
Collapse
Affiliation(s)
- Yasuhiro Sato
- PRESTO, Japan Science and Technology Agency, Kawaguchi, 332-0012 Japan
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194 Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Misako Yamazaki
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, 244-0813 Totsuka-ward, Yokohama, Japan
| | - Atsushi J. Nagano
- Department of Plant Life Sciences, Faculty of Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194 Japan
| |
Collapse
|
22
|
Zaidem ML, Groen SC, Purugganan MD. Evolutionary and ecological functional genomics, from lab to the wild. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:40-55. [PMID: 30444573 DOI: 10.1111/tpj.14167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 05/12/2023]
Abstract
Plant phenotypes are the result of both genetic and environmental forces that act to modulate trait expression. Over the last few years, numerous approaches in functional genomics and systems biology have led to a greater understanding of plant phenotypic variation and plant responses to the environment. These approaches, and the questions that they can address, have been loosely termed evolutionary and ecological functional genomics (EEFG), and have been providing key insights on how plants adapt and evolve. In particular, by bringing these studies from the laboratory to the field, EEFG studies allow us to gain greater knowledge of how plants function in their natural contexts.
Collapse
Affiliation(s)
- Maricris L Zaidem
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
| | - Simon C Groen
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
- Center for Genomics and Systems Biology, NYU Abu Dhabi Research Institute, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
23
|
Abdusalam A, Li Q. Morphological plasticity and adaptation level of distylous Primula nivalis in a heterogeneous alpine environment. PLANT DIVERSITY 2018; 40:284-291. [PMID: 30740575 PMCID: PMC6317488 DOI: 10.1016/j.pld.2018.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Plant populations at high elevation face extreme climatic conditions and resource limitations. The existence of distylous species at different elevations can help us investigate their adaptation to high altitudes, the evolution of their morphological characteristics, as well as their responses to limited resources. Here, 17 populations of Primula nivalis at different elevations were evaluated regarding variations in plant morphological characteristics, biomass allocation, and morphological plasticity in a heterogeneous environment. Our results demonstrate that heterogeneous environments can affect plant morphological characteristics and resource allocation in each sexual morph of these plants. Moreover, environmental variations reduced morphological plasticity in the two plant morphs, and the plasticity of long style (LS) plants was greater than that of short style (SS) plants. There were significant negative correlations between morphological characteristics and elevation, rainfall, temperature, and sunshine, and these are the main variables that affect morphological characteristics and resource allocation of both morphs of P. nivalis plants in heterogeneous environments. The morphological characteristics of P. nivalis plants transplanted from high to lower elevations were not significantly different in either population. LS plants had greater morphological plasticity and adaptability in heterogeneous environments than SS plants. Elevational gradients and heterogeneous environments differentiated both morphs of P. nivalis plants with regards to morphology as well as adaptations. LS plants showed a higher level of adaptability than SS plants.
Collapse
Affiliation(s)
- Aysajan Abdusalam
- Key Laboratory of Ecology and Biological Resources in Yarkand Oasis, College of Life and Geography Sciences, Kashi University, Kashgar, 844006, PR China
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Town, Yunnan 666303, PR China
| | - Qingjun Li
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Town, Yunnan 666303, PR China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, Yunnan 650091, PR China
| |
Collapse
|
24
|
Song YH, Kubota A, Kwon MS, Covington MF, Lee N, Taagen ER, Laboy Cintrón D, Hwang DY, Akiyama R, Hodge SK, Huang H, Nguyen NH, Nusinow DA, Millar AJ, Shimizu KK, Imaizumi T. Molecular basis of flowering under natural long-day conditions in Arabidopsis. NATURE PLANTS 2018; 4:824-835. [PMID: 30250277 PMCID: PMC6195122 DOI: 10.1038/s41477-018-0253-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/16/2018] [Indexed: 05/18/2023]
Abstract
Plants sense light and temperature changes to regulate flowering time. Here, we show that expression of the Arabidopsis florigen gene, FLOWERING LOCUS T (FT), peaks in the morning during spring, a different pattern than we observe in the laboratory. Providing our laboratory growth conditions with a red/far-red light ratio similar to open-field conditions and daily temperature oscillation is sufficient to mimic the FT expression and flowering time in natural long days. Under the adjusted growth conditions, key light signalling components, such as phytochrome A and EARLY FLOWERING 3, play important roles in morning FT expression. These conditions stabilize CONSTANS protein, a major FT activator, in the morning, which is probably a critical mechanism for photoperiodic flowering in nature. Refining the parameters of our standard growth conditions to more precisely mimic plant responses in nature can provide a powerful method for improving our understanding of seasonal response.
Collapse
Affiliation(s)
- Young Hun Song
- Department of Biology, University of Washington, Seattle, WA, USA.
- Department of Life Sciences, Ajou University, Suwon, Korea.
| | - Akane Kubota
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Michael S Kwon
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Nayoung Lee
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Ella R Taagen
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Dae Yeon Hwang
- Department of Life Sciences, Ajou University, Suwon, Korea
| | - Reiko Akiyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Sarah K Hodge
- School of Biological Sciences and SynthSys, University of Edinburgh, Edinburgh, UK
| | - He Huang
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Nhu H Nguyen
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Andrew J Millar
- School of Biological Sciences and SynthSys, University of Edinburgh, Edinburgh, UK
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
25
|
Alvarez M, Ferreira de Carvalho J, Salmon A, Ainouche ML, Cavé-Radet A, El Amrani A, Foster TE, Moyer S, Richards CL. Transcriptome response of the foundation plant Spartina alterniflora to the Deepwater Horizon oil spill. Mol Ecol 2018; 27:2986-3000. [PMID: 29862597 DOI: 10.1111/mec.14736] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022]
Abstract
Despite the severe impacts of the Deepwater Horizon oil spill, the foundation plant species Spartina alterniflora proved resilient to heavy oiling, providing an opportunity to identify mechanisms of response to the anthropogenic stress of crude oil exposure. We assessed plants from oil-affected and unaffected populations using a custom DNA microarray to identify genomewide transcription patterns and gene expression networks that respond to crude oil exposure. In addition, we used T-DNA insertion lines of the model grass Brachypodium distachyon to assess the contribution of four novel candidate genes to crude oil response. Responses in S. alterniflora to hydrocarbon exposure across the transcriptome as well as xenobiotic specific response pathways had little overlap with those previously identified in the model plant Arabidopsis thaliana. Among T-DNA insertion lines of B. distachyon, we found additional support for two candidate genes, one (ATTPS21) involved in volatile production, and the other (SUVH5) involved in epigenetic regulation of gene expression, that may be important in the response to crude oil. The architecture of crude oil response in S. alterniflora is unique from that of the model species A. thaliana, suggesting that xenobiotic response may be highly variable across plant species. In addition, further investigations of regulatory networks may benefit from more information about epigenetic response pathways.
Collapse
Affiliation(s)
- Mariano Alvarez
- Department of Integrative Biology, University of South Florida, Tampa, Florida
| | | | - Armel Salmon
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Campus Scientifique de Beaulieu, Rennes, France
| | - Malika L Ainouche
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Campus Scientifique de Beaulieu, Rennes, France
| | - Armand Cavé-Radet
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Campus Scientifique de Beaulieu, Rennes, France
| | - Abdelhak El Amrani
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Campus Scientifique de Beaulieu, Rennes, France
| | - Tammy E Foster
- Kennedy Space Center Ecological Program, Titusville, Florida
| | - Sydney Moyer
- Department of Integrative Biology, University of South Florida, Tampa, Florida
| | | |
Collapse
|
26
|
Kudoh H, Honjo MN, Nishio H, Sugisaka J. The Long-Term "In Natura" Study Sites of Arabidopsis halleri for Plant Transcription and Epigenetic Modification Analyses in Natural Environments. Methods Mol Biol 2018; 1830:41-57. [PMID: 30043363 DOI: 10.1007/978-1-4939-8657-6_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The majority of organismal phenomena show functional significance in the context of natural environments. However, we know little about how dynamic gene expression is controlled under natural complex conditions. One of the most attractive challenges in current biology is to understand organismal functions in natural environments. We established and have developed long-term "in natura" study sites of Arabidopsis halleri to evaluate precise control of gene expression in natural environments. At the sites, we monitored meteorological factors, recorded plant growth and phenology, and collected RNA and chromatin samples to investigate dynamics of transcription and epigenetic modifications. Here, we introduce the in natura study sites, especially with the emphasis on methodologies for setting up study sites in natural plant populations and collecting samples used in transcriptomics and epigenetics in natural environments. Although the methods introduced here need to be modified depending on situations of one's study systems, our case can be a model for planning new in natura studies.
Collapse
Affiliation(s)
- Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan.
| | - Mie N Honjo
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Haruki Nishio
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Jiro Sugisaka
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| |
Collapse
|
27
|
Lischer HEL, Shimizu KK. Reference-guided de novo assembly approach improves genome reconstruction for related species. BMC Bioinformatics 2017; 18:474. [PMID: 29126390 PMCID: PMC5681816 DOI: 10.1186/s12859-017-1911-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022] Open
Abstract
Background The development of next-generation sequencing has made it possible to sequence whole genomes at a relatively low cost. However, de novo genome assemblies remain challenging due to short read length, missing data, repetitive regions, polymorphisms and sequencing errors. As more and more genomes are sequenced, reference-guided assembly approaches can be used to assist the assembly process. However, previous methods mostly focused on the assembly of other genotypes within the same species. We adapted and extended a reference-guided de novo assembly approach, which enables the usage of a related reference sequence to guide the genome assembly. In order to compare and evaluate de novo and our reference-guided de novo assembly approaches, we used a simulated data set of a repetitive and heterozygotic plant genome. Results The extended reference-guided de novo assembly approach almost always outperforms the corresponding de novo assembly program even when a reference of a different species is used. Similar improvements can be observed in high and low coverage situations. In addition, we show that a single evaluation metric, like the widely used N50 length, is not enough to properly rate assemblies as it not always points to the best assembly evaluated with other criteria. Therefore, we used the summed z-scores of 36 different statistics to evaluate the assemblies. Conclusions The combination of reference mapping and de novo assembly provides a powerful tool to improve genome reconstruction by integrating information of a related genome. Our extension of the reference-guided de novo assembly approach enables the application of this strategy not only within but also between related species. Finally, the evaluation of genome assemblies is often not straight forward, as the truth is not known. Thus one should always use a combination of evaluation metrics, which not only try to assess the continuity but also the accuracy of an assembly. Electronic supplementary material The online version of this article (10.1186/s12859-017-1911-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heidi E L Lischer
- Department of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Zurich, Switzerland. .,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Zurich, Switzerland.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan
| |
Collapse
|
28
|
Royer AM, Kremer C, George K, Pérez SG, Schemske DW, Conner JK. Incomplete loss of a conserved trait: function, latitudinal cline, and genetic constraints. Evolution 2016. [DOI: 10.1111/evo.13096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anne M. Royer
- Department of Plant Biology and Kellogg Biological Station Michigan State University 3700 E. Gull Lake Dr. Hickory Corners Michigan 49060
| | - Colin Kremer
- Department of Ecology and Evolutionary Biology Yale University P. O. Box 208106 New Haven Connecticut 06520–8106
- Atmospheric and Oceanic Sciences Program Princeton University 300 Forrestal Road, Sayre Hall Princeton New Jersey 08544
| | - Kola George
- Department of Plant Biology and Kellogg Biological Station Michigan State University 3700 E. Gull Lake Dr. Hickory Corners Michigan 49060
- College of Charleston School of Sciences and Mathematics 66 George St. Charleston South Carolina 29424
| | - Samuel G. Pérez
- Department of Plant Biology and Kellogg Biological Station Michigan State University 3700 E. Gull Lake Dr. Hickory Corners Michigan 49060
| | - D. W. Schemske
- Department of Plant Biology and Kellogg Biological Station Michigan State University 3700 E. Gull Lake Dr. Hickory Corners Michigan 49060
| | - Jeffrey K. Conner
- Department of Plant Biology and Kellogg Biological Station Michigan State University 3700 E. Gull Lake Dr. Hickory Corners Michigan 49060
| |
Collapse
|
29
|
Briskine RV, Paape T, Shimizu-Inatsugi R, Nishiyama T, Akama S, Sese J, Shimizu KK. Genome assembly and annotation ofArabidopsis halleri, a model for heavy metal hyperaccumulation and evolutionary ecology. Mol Ecol Resour 2016; 17:1025-1036. [DOI: 10.1111/1755-0998.12604] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/04/2016] [Accepted: 09/16/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Roman V. Briskine
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
| | - Timothy Paape
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
| | - Tomoaki Nishiyama
- Advanced Science Research Center; Kanazawa University; 13-1 Takara-machi Kanazawa 920-0934 Japan
| | - Satoru Akama
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); 2-4-7 Aomi Koto-ku Tokyo 135-0064 Japan
| | - Jun Sese
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); 2-4-7 Aomi Koto-ku Tokyo 135-0064 Japan
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
- Kihara Institute for Biological Research; Yokohama City University; 642-12 Maioka Totsuka-ward Yokohama 244-0813 Japan
| |
Collapse
|
30
|
Shimizu‐Inatsugi R, Terada A, Hirose K, Kudoh H, Sese J, Shimizu KK. Plant adaptive radiation mediated by polyploid plasticity in transcriptomes. Mol Ecol 2016; 26:193-207. [DOI: 10.1111/mec.13738] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Rie Shimizu‐Inatsugi
- Department of Evolutionary Biology and Environmental Studies and Department of Plant and Microbial Biology University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Aika Terada
- PRESTO Japan Science and Technology Agency 4‐1‐8 Honcho Kawaguchi Saitama 332‐0012 Japan
- Department of Computational Biology and Medical Science Graduate School of Frontier Sciences The University of Tokyo 5‐1‐5 Kashiwanoha Kashiwa Chiba 277‐8561 Japan
- Biotechnology Research Institute for Drug Discovery National Institute of Advanced Industrial Science and Technology (AIST) 2‐4‐7 Aomi Koto‐ku Tokyo 135‐0064 Japan
| | - Kyosuke Hirose
- Center for Ecological Research Kyoto University Hirano 2‐509‐3 Otsu 520‐2113 Japan
| | - Hiroshi Kudoh
- Center for Ecological Research Kyoto University Hirano 2‐509‐3 Otsu 520‐2113 Japan
| | - Jun Sese
- Biotechnology Research Institute for Drug Discovery National Institute of Advanced Industrial Science and Technology (AIST) 2‐4‐7 Aomi Koto‐ku Tokyo 135‐0064 Japan
- Artificial Intelligence Research Center AIST 2‐4‐7 Aomi Koto‐ku Tokyo 135‐0064 Japan
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies and Department of Plant and Microbial Biology University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
- Biotechnology Research Institute for Drug Discovery National Institute of Advanced Industrial Science and Technology (AIST) 2‐4‐7 Aomi Koto‐ku Tokyo 135‐0064 Japan
- Center for Ecological Research Kyoto University Hirano 2‐509‐3 Otsu 520‐2113 Japan
- Kihara Institute for Biological Research Yokohama City University 641‐12 Maioka, Totsuka‐ward Yokohama Kanagawa 244‐0813 Japan
| |
Collapse
|
31
|
Byers KJRP, Xu S, Schlüter PM. Molecular mechanisms of adaptation and speciation: why do we need an integrative approach? Mol Ecol 2016; 26:277-290. [DOI: 10.1111/mec.13678] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Kelsey J. R. P. Byers
- Department of Systematic and Evolutionary Botany; University of Zurich; Zollikerstrasse 107 CH-8008 Zurich Switzerland
| | - Shuqing Xu
- Max Planck Institute for Chemical Ecology; Hans-Knöll-Straße 8 D-07745 Jena Germany
| | - Philipp M. Schlüter
- Department of Systematic and Evolutionary Botany; University of Zurich; Zollikerstrasse 107 CH-8008 Zurich Switzerland
| |
Collapse
|
32
|
Kudoh H. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments. THE NEW PHYTOLOGIST 2016; 210:399-412. [PMID: 26523957 DOI: 10.1111/nph.13733] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/27/2015] [Indexed: 06/05/2023]
Abstract
Phenology refers to the study of seasonal schedules of organisms. Molecular phenology is defined here as the study of the seasonal patterns of organisms captured by molecular biology techniques. The history of molecular phenology is reviewed briefly in relation to advances in the quantification technology of gene expression. High-resolution molecular phenology (HMP) data have enabled us to study phenology with an approach of in natura systems biology. I review recent analyses of FLOWERING LOCUS C (FLC), a temperature-responsive repressor of flowering, along the six steps in the typical flow of in natura systems biology. The extensive studies of the regulation of FLC have made this example a successful case in which a comprehensive understanding of gene functions has been progressing. The FLC-mediated long-term memory of past temperatures creates time lags with other seasonal signals, such as photoperiod and short-term temperature. Major signals that control flowering time have a phase lag between them under natural conditions, and hypothetical phase lag calendars are proposed as mechanisms of season detection in plants. Transcriptomic HMP brings a novel strategy to the study of molecular phenology, because it provides a comprehensive representation of plant functions. I discuss future perspectives of molecular phenology from the standpoints of molecular biology, evolutionary biology and ecology.
Collapse
Affiliation(s)
- Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga, 520-2113, Japan
| |
Collapse
|
33
|
Shimizu KK, Tsuchimatsu T. Evolution of Selfing: Recurrent Patterns in Molecular Adaptation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-112414-054249] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Selfing has evolved in animals, fungi, and plants, and since Darwin's pioneering study, it is considered one of the most frequent evolutionary trends in flowering plants. Generally, the evolution of selfing is characterized by a loss of self-incompatibility, the selfing syndrome, and changes in genome-wide polymorphism patterns. Recent interdisciplinary studies involving molecular functional experiments, genome-wide data, experimental evolution, and evolutionary ecology using Arabidopsis thaliana, Caenorhabditis elegans, and other species show that the evolution of selfing is not merely a degradation of outcrossing traits but a model for studying the recurrent patterns underlying adaptive molecular evolution. For example, in wild Arabidopsis relatives, self-compatibility evolved from mutations in the male specificity gene, S-LOCUS CYSTEINE-RICH PROTEIN/S-LOCUS PROTEIN 11 (SCR/SP11), rather than the female specificity gene, S-LOCUS RECEPTOR KINASE (SRK), supporting the theoretical prediction of sexual asymmetry. Prevalence of dominant self-compatible mutations is consistent with Haldane's sieve, which acts against recessive adaptive mutations. Time estimates based on genome-wide polymorphisms and self-incompatibility genes generally support the recent origin of selfing.
Collapse
Affiliation(s)
- Kentaro K. Shimizu
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Takashi Tsuchimatsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
34
|
Gamisch A, Fischer GA, Comes HP. Multiple independent origins of auto-pollination in tropical orchids (Bulbophyllum) in light of the hypothesis of selfing as an evolutionary dead end. BMC Evol Biol 2015; 15:192. [PMID: 26376901 PMCID: PMC4574068 DOI: 10.1186/s12862-015-0471-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/28/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The transition from outcrossing to selfing has long been portrayed as an 'evolutionary dead end' because, first, reversals are unlikely and, second, selfing lineages suffer from higher rates of extinction owing to a reduced potential for adaptation and the accumulation of deleterious mutations. We tested these two predictions in a clade of Madagascan Bulbophyllum orchids (30 spp.), including eight species where auto-pollinating morphs (i.e., selfers, without a 'rostellum') co-exist with their pollinator-dependent conspecifics (i.e., outcrossers, possessing a rostellum). Specifically, we addressed this issue on the basis of a time-calibrated phylogeny by means of ancestral character reconstructions and within the state-dependent evolution framework of BiSSE (Binary State Speciation and Extinction), which allowed jointly estimating rates of transition, speciation, and extinction between outcrossing and selfing. RESULTS The eight species capable of selfing occurred in scattered positions across the phylogeny, with two likely originating in the Pliocene (ca. 4.4-3.1 Ma), one in the Early Pleistocene (ca. 2.4 Ma), and five since the mid-Pleistocene (ca. ≤ 1.3 Ma). We infer that this scattered phylogenetic distribution of selfing is best described by models including up to eight independent outcrossing-to-selfing transitions and very low rates of speciation (and either moderate or zero rates of extinction) associated with selfing. CONCLUSIONS The frequent and irreversible outcrossing-to-selfing transitions in Madagascan Bulbophyllum are clearly congruent with the first prediction of the dead end hypothesis. The inability of our study to conclusively reject or support the likewise predicted higher extinction rate in selfing lineages might be explained by a combination of methodological limitations (low statistical power of our BiSSE approach to reliably estimate extinction in small-sized trees) and evolutionary processes (insufficient time elapsed for selfers to go extinct). We suggest that, in these tropical orchids, a simple genetic basis of selfing (via loss of the 'rostellum') is needed to explain the strikingly recurrent transitions to selfing, perhaps reflecting rapid response to parallel and novel selective environments over Late Quaternary (≤ 1.3 Ma) time scales.
Collapse
Affiliation(s)
- Alexander Gamisch
- Department of Ecology and Evolution, University of Salzburg, A-5020, Salzburg, Austria.
| | | | - Hans Peter Comes
- Department of Ecology and Evolution, University of Salzburg, A-5020, Salzburg, Austria.
| |
Collapse
|
35
|
Jokela V, Trevaskis B, Seppänen MM. Genetic variation in the flowering and yield formation of timothy (Phleum pratense L.) accessions after different photoperiod and vernalization treatments. FRONTIERS IN PLANT SCIENCE 2015; 6:465. [PMID: 26175739 PMCID: PMC4485155 DOI: 10.3389/fpls.2015.00465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
Timothy is a perennial forage grass grown commonly in Boreal regions. This study explored the effect of vernalization and photoperiod (PP) on flowering and growth characteristics and how this related to changes in expression of three flowering related genes in accessions from different geographic origin. Large variation was found in accessions in their vernalization and PP responses. In southern accessions vernalization response or requirement was not observed, the heading date remained unchanged, and plants flowered without vernalization. On the contrary, northern types had obligatory requirement for vernalization and long PP, but the tiller elongation did not require vernalization at 16-h PP. Longer vernalization or PP treatments reduced the genotypical differences in flowering. Moreover, the vernalization saturation progressed stepwise from main tiller to lateral tillers, and this process was more synchronized in southern accessions. The expression of PpVRN1 was associated with vernalization while PpVRN3 accumulated at long PP. A crucial role for PpVRN3 in the transition to flowering was supported as in southern accession the transcript accumulated in non-vernalized plants after transfer to 16-h PP, and the apices transformed to generative stage. Differences in vernalization requirements were associated with variation in expression levels of PpVRN1 and PpVRN3, with higher expression levels in southern type. Most divergent transcript accumulation of PpMADS10 was found under different vernalization conditions. These differences between accessions can be translated into agronomic traits, such as the tiller composition of canopy, which affects the forage yield. The southern types, with minimal vernalization response, have fast re-growth ability and rapidly decreasing nutritive value, whereas northern types grow slowly and have better quality. This information can be utilized in breeding for new cultivars for longer growing seasons at high latitudes.
Collapse
Affiliation(s)
- Venla Jokela
- Department of Agricultural Sciences, University of Helsinki, HelsinkiFinland
| | - Ben Trevaskis
- Agriculture Flagship, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACTAustralia
| | - Mervi M. Seppänen
- Department of Agricultural Sciences, University of Helsinki, HelsinkiFinland
| |
Collapse
|
36
|
Tedder A, Carleial S, Gołębiewska M, Kappel C, Shimizu KK, Stift M. Evolution of the Selfing Syndrome in Arabis alpina (Brassicaceae). PLoS One 2015; 10:e0126618. [PMID: 26039362 PMCID: PMC4454584 DOI: 10.1371/journal.pone.0126618] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 04/04/2015] [Indexed: 12/03/2022] Open
Abstract
Introduction The transition from cross-fertilisation (outcrossing) to self-fertilisation (selfing) frequently coincides with changes towards a floral morphology that optimises self-pollination, the selfing syndrome. Population genetic studies have reported the existence of both outcrossing and selfing populations in Arabis alpina (Brassicaceae), which is an emerging model species for studying the molecular basis of perenniality and local adaptation. It is unknown whether its selfing populations have evolved a selfing syndrome. Methods Using macro-photography, microscopy and automated cell counting, we compared floral syndromes (size, herkogamy, pollen and ovule numbers) between three outcrossing populations from the Apuan Alps and three selfing populations from the Western and Central Alps (Maritime Alps and Dolomites). In addition, we genotyped the plants for 12 microsatellite loci to confirm previous measures of diversity and inbreeding coefficients based on allozymes, and performed Bayesian clustering. Results and Discussion Plants from the three selfing populations had markedly smaller flowers, less herkogamy and lower pollen production than plants from the three outcrossing populations, whereas pistil length and ovule number have remained constant. Compared to allozymes, microsatellite variation was higher, but revealed similar patterns of low diversity and high Fis in selfing populations. Bayesian clustering revealed two clusters. The first cluster contained the three outcrossing populations from the Apuan Alps, the second contained the three selfing populations from the Maritime Alps and Dolomites. Conclusion We conclude that in comparison to three outcrossing populations, three populations with high selfing rates are characterised by a flower morphology that is closer to the selfing syndrome. The presence of outcrossing and selfing floral syndromes within a single species will facilitate unravelling the genetic basis of the selfing syndrome, and addressing which selective forces drive its evolution.
Collapse
Affiliation(s)
- Andrew Tedder
- Institute of Evolutionary Biology and Environmental studies, University of Zurich, Zurich, Switzerland
| | - Samuel Carleial
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martyna Gołębiewska
- Institute of Evolutionary Biology and Environmental studies, University of Zurich, Zurich, Switzerland
| | - Christian Kappel
- Institut für Biochemie und Biologie, Universität Potsdam, Potsdam-Golm, Germany
| | - Kentaro K. Shimizu
- Institute of Evolutionary Biology and Environmental studies, University of Zurich, Zurich, Switzerland
- * E-mail: (KKS); (MS)
| | - Marc Stift
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
- * E-mail: (KKS); (MS)
| |
Collapse
|
37
|
Tedder A, Helling M, Pannell JR, Shimizu-Inatsugi R, Kawagoe T, van Campen J, Sese J, Shimizu KK. Female sterility associated with increased clonal propagation suggests a unique combination of androdioecy and asexual reproduction in populations of Cardamine amara (Brassicaceae). ANNALS OF BOTANY 2015; 115:763-76. [PMID: 25776435 PMCID: PMC4373288 DOI: 10.1093/aob/mcv006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/29/2014] [Accepted: 12/23/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The coexistence of hermaphrodites and female-sterile individuals, or androdioecy, has been documented in only a handful of plants and animals. This study reports its existence in the plant species Cardamine amara (Brassicaceae), in which female-sterile individuals have shorter pistils than seed-producing hermaphrodites. METHODS Morphological analysis, in situ manual pollination, microsatellite genotyping and differential gene expression analysis using Arabidopsis microarrays were used to delimit variation between female-sterile individuals and hermaphrodites. KEY RESULTS Female sterility in C. amara appears to be caused by disrupted ovule development. It was associated with a 2.4- to 2.9-fold increase in clonal propagation. This made the pollen number of female-sterile genets more than double that of hermaphrodite genets, which fulfils a condition of co-existence predicted by simple androdioecy theories. When female-sterile individuals were observed in wild androdioecious populations, their ramet frequencies ranged from 5 to 54 %; however, their genet frequencies ranged from 11 to 29 %, which is consistent with the theoretically predicted upper limit of 50 %. CONCLUSIONS The results suggest that a combination of sexual reproduction and increased asexual proliferation by female-sterile individuals probably explains the invasion and maintenance of female sterility in otherwise hermaphroditic populations. To our knowledge, this is the first report of the coexistence of female sterility and hermaphrodites in the Brassicaceae.
Collapse
Affiliation(s)
- Andrew Tedder
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Matthias Helling
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - John R Pannell
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Rie Shimizu-Inatsugi
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Tetsuhiro Kawagoe
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Julia van Campen
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Jun Sese
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Kentaro K Shimizu
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| |
Collapse
|
38
|
Alvarez M, Schrey AW, Richards CL. Ten years of transcriptomics in wild populations: what have we learned about their ecology and evolution? Mol Ecol 2015; 24:710-25. [PMID: 25604587 DOI: 10.1111/mec.13055] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 12/13/2022]
Abstract
Molecular ecology has moved beyond the use of a relatively small number of markers, often noncoding, and it is now possible to use whole-genome measures of gene expression with microarrays and RNAseq (i.e. transcriptomics) to capture molecular response to environmental challenges. While transcriptome studies are shedding light on the mechanistic basis of traits as complex as personality or physiological response to catastrophic events, these approaches are still challenging because of the required technical expertise, difficulties with analysis and cost. Still, we found that in the last 10 years, 575 studies used microarrays or RNAseq in ecology. These studies broadly address three questions that reflect the progression of the field: (i) How much variation in gene expression is there and how is it structured? (ii) How do environmental stimuli affect gene expression? (iii) How does gene expression affect phenotype? We discuss technical aspects of RNAseq and microarray technology, and a framework that leverages the advantages of both. Further, we highlight future directions of research, particularly related to moving beyond correlation and the development of additional annotation resources. Measuring gene expression across an array of taxa in ecological settings promises to enrich our understanding of ecology and genome function.
Collapse
Affiliation(s)
- Mariano Alvarez
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA
| | | | | |
Collapse
|
39
|
Kubo KI, Paape T, Hatakeyama M, Entani T, Takara A, Kajihara K, Tsukahara M, Shimizu-Inatsugi R, Shimizu KK, Takayama S. Gene duplication and genetic exchange drive the evolution of S-RNase-based self-incompatibility in Petunia. NATURE PLANTS 2015; 1:14005. [PMID: 27246052 DOI: 10.1038/nplants.2014.5] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/17/2014] [Indexed: 05/22/2023]
Abstract
Self-incompatibility (SI) systems in flowering plants distinguish self- and non-self pollen to prevent inbreeding. While other SI systems rely on the self-recognition between specific male- and female-determinants, the Solanaceae family has a non-self recognition system resulting in the detoxification of female-determinants of S-ribonucleases (S-RNases), expressed in pistils, by multiple male-determinants of S-locus F-box proteins (SLFs), expressed in pollen. It is not known how many SLF components of this non-self recognition system there are in Solanaceae species, or how they evolved. We identified 16-20 SLFs in each S-haplotype in SI Petunia, from a total of 168 SLF sequences using large-scale next-generation sequencing and genomic polymerase chain reaction (PCR) techniques. We predicted the target S-RNases of SLFs by assuming that a particular S-allele must not have a conserved SLF that recognizes its own S-RNase, and validated these predictions by transformation experiments. A simple mathematical model confirmed that 16-20 SLF sequences would be adequate to recognize the vast majority of target S-RNases. We found evidence of gene conversion events, which we suggest are essential to the constitution of a non-self recognition system and also contribute to self-compatible mutations.
Collapse
Affiliation(s)
- Ken-Ichi Kubo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Timothy Paape
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Masaomi Hatakeyama
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
- Functional Genomics Center Zurich, CH-8057 Zurich, Switzerland
| | - Tetsuyuki Entani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Akie Takara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kie Kajihara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Mai Tsukahara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Rie Shimizu-Inatsugi
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Kentaro K Shimizu
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| |
Collapse
|
40
|
Agren JÅ, Wang W, Koenig D, Neuffer B, Weigel D, Wright SI. Mating system shifts and transposable element evolution in the plant genus Capsella. BMC Genomics 2014; 15:602. [PMID: 25030755 PMCID: PMC4112209 DOI: 10.1186/1471-2164-15-602] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 07/10/2014] [Indexed: 11/11/2022] Open
Abstract
Background Despite having predominately deleterious fitness effects, transposable elements (TEs) are major constituents of eukaryote genomes in general and of plant genomes in particular. Although the proportion of the genome made up of TEs varies at least four-fold across plants, the relative importance of the evolutionary forces shaping variation in TE abundance and distributions across taxa remains unclear. Under several theoretical models, mating system plays an important role in governing the evolutionary dynamics of TEs. Here, we use the recently sequenced Capsella rubella reference genome and short-read whole genome sequencing of multiple individuals to quantify abundance, genome distributions, and population frequencies of TEs in three recently diverged species of differing mating system, two self-compatible species (C. rubella and C. orientalis) and their self-incompatible outcrossing relative, C. grandiflora. Results We detect different dynamics of TE evolution in our two self-compatible species; C. rubella shows a small increase in transposon copy number, while C. orientalis shows a substantial decrease relative to C. grandiflora. The direction of this change in copy number is genome wide and consistent across transposon classes. For insertions near genes, however, we detect the highest abundances in C. grandiflora. Finally, we also find differences in the population frequency distributions across the three species. Conclusion Overall, our results suggest that the evolution of selfing may have different effects on TE evolution on a short and on a long timescale. Moreover, cross-species comparisons of transposon abundance are sensitive to reference genome bias, and efforts to control for this bias are key when making comparisons across species. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-602) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Ågren Agren
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | | | | | | | | | | |
Collapse
|
41
|
Vekemans X, Poux C, Goubet PM, Castric V. The evolution of selfing from outcrossing ancestors in Brassicaceae: what have we learned from variation at the S-locus? J Evol Biol 2014; 27:1372-85. [PMID: 24725152 DOI: 10.1111/jeb.12372] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 12/01/2022]
Abstract
Evolutionary transitions between mating systems have occurred repetitively and independently in flowering plants. One of the most spectacular advances of the recent empirical literature in the field was the discovery of the underlying genetic machinery, which provides the opportunity to retrospectively document the scenario of the outcrossing to selfing transitions in a phylogenetic perspective. In this review, we explore the literature describing patterns of polymorphism and molecular evolution of the locus controlling self-incompatibility (S-locus) in selfing species of the Brassicaceae family in order to document the transition from outcrossing to selfing, a retrospective approach that we describe as the 'mating system genes approach'. The data point to strikingly contrasted scenarios of transition from outcrossing to selfing. We also perform original analyses of the fully sequenced genomes of four species showing self-compatibility, to compare the orthologous S-locus region with that of functional S-locus haplotypes. Phylogenetic analyses suggest that all species we investigated evolved independently towards loss of self-incompatibility, and in most cases almost intact sequences of either of the two S-locus genes suggest that these transitions occurred relatively recently. The S-locus region in Aethionema arabicum, representing the most basal lineage of Brassicaceae, showed unusual patterns so that our analysis could not determine whether self-incompatibility was lost secondarily, or evolved in the core Brassicaceae after the split with this basal lineage. Although the approach we detail can only be used when mating system genes have been identified in a clade, we suggest that its integration with phylogenetic and population genetic approaches should help determine the main routes of this predominant mating system shift in plants.
Collapse
Affiliation(s)
- X Vekemans
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université Lille 1, Villeneuve d'Ascq Cedex, France
| | | | | | | |
Collapse
|
42
|
Akama S, Shimizu-Inatsugi R, Shimizu KK, Sese J. Genome-wide quantification of homeolog expression ratio revealed nonstochastic gene regulation in synthetic allopolyploid Arabidopsis. Nucleic Acids Res 2014; 42:e46. [PMID: 24423873 PMCID: PMC3973336 DOI: 10.1093/nar/gkt1376] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 11/26/2013] [Accepted: 12/14/2013] [Indexed: 12/31/2022] Open
Abstract
Genome duplication with hybridization, or allopolyploidization, occurs commonly in plants, and is considered to be a strong force for generating new species. However, genome-wide quantification of homeolog expression ratios was technically hindered because of the high homology between homeologous gene pairs. To quantify the homeolog expression ratio using RNA-seq obtained from polyploids, a new method named HomeoRoq was developed, in which the genomic origin of sequencing reads was estimated using mismatches between the read and each parental genome. To verify this method, we first assembled the two diploid parental genomes of Arabidopsis halleri subsp. gemmifera and Arabidopsis lyrata subsp. petraea (Arabidopsis petraea subsp. umbrosa), then generated a synthetic allotetraploid, mimicking the natural allopolyploid Arabidopsis kamchatica. The quantified ratios corresponded well to those obtained by Pyrosequencing. We found that the ratios of homeologs before and after cold stress treatment were highly correlated (r = 0.870). This highlights the presence of nonstochastic polyploid gene regulation despite previous research identifying stochastic variation in expression. Moreover, our new statistical test incorporating overdispersion identified 226 homeologs (1.11% of 20 369 expressed homeologs) with significant ratio changes, many of which were related to stress responses. HomeoRoq would contribute to the study of the genes responsible for polyploid-specific environmental responses.
Collapse
Affiliation(s)
- Satoru Akama
- Department of Computer Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan and Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Computer Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan and Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Kentaro K. Shimizu
- Department of Computer Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan and Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jun Sese
- Department of Computer Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan and Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
43
|
Shinozuka H, Hand ML, Cogan NOI, Spangenberg GC, Forster JW. Nucleotide diversity of vernalization and flowering-time-related genes in a germplasm collection of meadow fescue (Festuca pratensis Huds. syn. Lolium pratense (Huds.) Darbysh.). Ecol Evol 2013; 3:4415-26. [PMID: 24340183 PMCID: PMC3856742 DOI: 10.1002/ece3.828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 11/28/2022] Open
Abstract
In plant species, control of flowering time is an important factor for adaptation to local natural environments. The Vrn1,CO,FT1 and CK2α genes are key components in the flowering-specific signaling pathway of grass species. Meadow fescue is an agronomically important forage grass species, which is naturally distributed across Europe and Western Asia. In this study, meadow fescue flowering-time-related genes were resequenced to assess nucleotide diversity in European and Western Asian subpopulations. Identified sequence polymorphisms were then converted into PCR-based molecular genetic markers, and a meadow fescue germplasm collection was genotyped to investigate global allelic variation. Lower nucleotide diversities were observed for the Vrn1 and CO orthologs, while relatively higher values were observed for the FT1 and casein kinase II α-subunit (CK2α) orthologs. The nucleotide diversity for FT1 orthologs in the Western Asian subpopulation was significantly higher than those of the European subpopulation. Similarly, significant differences in nucleotide diversity for the remaining genes were observed between several combinations of subpopulation. The global allele distribution pattern was consistent with observed level of nucleotide diversity. These results suggested that the degree of purifying selection acting on the genes differs according to geographical location. As previously shown for model plant species, functional specificities of flowering-time-related genes may also vary according to environmental conditions.
Collapse
Affiliation(s)
- Hiroshi Shinozuka
- Biosciences Research Division, Department of Environment and Primary Industries, AgriBio, The Centre for AgriBioscience 5 Ring Road, La Trobe University Research and Development Park, Bundoora, Victoria, 3083, Australia ; Dairy Futures Cooperative Research Centre Bundoora, Victoria, 3086, Australia
| | | | | | | | | |
Collapse
|
44
|
Rellstab C, Zoller S, Tedder A, Gugerli F, Fischer MC. Validation of SNP allele frequencies determined by pooled next-generation sequencing in natural populations of a non-model plant species. PLoS One 2013; 8:e80422. [PMID: 24244686 PMCID: PMC3820589 DOI: 10.1371/journal.pone.0080422] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/02/2013] [Indexed: 11/28/2022] Open
Abstract
Sequencing of pooled samples (Pool-Seq) using next-generation sequencing technologies has become increasingly popular, because it represents a rapid and cost-effective method to determine allele frequencies for single nucleotide polymorphisms (SNPs) in population pools. Validation of allele frequencies determined by Pool-Seq has been attempted using an individual genotyping approach, but these studies tend to use samples from existing model organism databases or DNA stores, and do not validate a realistic setup for sampling natural populations. Here we used pyrosequencing to validate allele frequencies determined by Pool-Seq in three natural populations of Arabidopsis halleri (Brassicaceae). The allele frequency estimates of the pooled population samples (consisting of 20 individual plant DNA samples) were determined after mapping Illumina reads to (i) the publicly available, high-quality reference genome of a closely related species (Arabidopsis thaliana) and (ii) our own de novo draft genome assembly of A. halleri. We then pyrosequenced nine selected SNPs using the same individuals from each population, resulting in a total of 540 samples. Our results show a highly significant and accurate relationship between pooled and individually determined allele frequencies, irrespective of the reference genome used. Allele frequencies differed on average by less than 4%. There was no tendency that either the Pool-Seq or the individual-based approach resulted in higher or lower estimates of allele frequencies. Moreover, the rather high coverage in the mapping to the two reference genomes, ranging from 55 to 284x, had no significant effect on the accuracy of the Pool-Seq. A resampling analysis showed that only very low coverage values (below 10-20x) would substantially reduce the precision of the method. We therefore conclude that a pooled re-sequencing approach is well suited for analyses of genetic variation in natural populations.
Collapse
Affiliation(s)
- Christian Rellstab
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Stefan Zoller
- Genetic Diversity Centre, ETH Zürich, Zürich, Switzerland
| | - Andrew Tedder
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zürich, Zürich, Switzerland
| | - Felix Gugerli
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | |
Collapse
|
45
|
Kobayashi MJ, Takeuchi Y, Kenta T, Kume T, Diway B, Shimizu KK. Mass flowering of the tropical tree Shorea beccariana was preceded by expression changes in flowering and drought-responsive genes. Mol Ecol 2013; 22:4767-82. [PMID: 23651119 PMCID: PMC3817532 DOI: 10.1111/mec.12344] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 04/02/2013] [Accepted: 04/05/2013] [Indexed: 12/01/2022]
Abstract
Community-level mass flowering, known as general flowering, which occurs in South-East Asia at supra-annual irregular intervals, is considered a particularly spectacular phenomenon in tropical ecology. Recent studies have proposed several proximate factors inducing general flowering, such as drought and falls in minimum temperature. However, limited empirical data on the developmental and physiological processes have been available to test the significance of such factors. To overcome this limitation and test the hypotheses that general flowering is triggered by the proposed factors, we conducted an 'ecological transcriptome' study of a mass flowering species, Shorea beccariana, comparing meteorological data with genome-wide expression patterns obtained using next-generation sequencing. Among the 98 flowering-related genes identified, the homologs of a floral pathway integrator, SbFT, and a floral repressor, SbSVP, showed dramatic transcriptional changes before flowering, and their flowering functions were confirmed using transgenic Arabidopsis thaliana. Expression in drought-responsive and sucrose-induced genes also changed before flowering. All these expression changes occurred when the flowering-inducing level of drought was reached, as estimated using data from the preceding 10 years. These genome-wide expression data support the hypothesis that drought is a trigger for general flowering.
Collapse
Affiliation(s)
- Masaki J Kobayashi
- Institute of Evolutionary Biology and Environmental Studies, Institute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
46
|
Tsuchimatsu T, Shimizu KK. Effects of pollen availability and the mutation bias on the fixation of mutations disabling the male specificity of self-incompatibility. J Evol Biol 2013; 26:2221-32. [PMID: 23980527 DOI: 10.1111/jeb.12219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 01/19/2023]
Abstract
The evolution of self-compatibility (SC) by the loss of self-incompatibility (SI) is regarded as one of the most frequent transitions in flowering plants. SI systems are generally characterized by specific interactions between the male and female specificity genes encoded at the S-locus. Recent empirical studies have revealed that the evolution of SC is often driven by male SC-conferring mutations at the S-locus rather than by female mutations. In this study, using a forward simulation model, we compared the fixation probabilities of male vs. female SC-conferring mutations at the S-locus. We explicitly considered the effects of pollen availability in the population and bias in the occurrence of SC-conferring mutations on the male and female specificity genes. We found that male SC-conferring mutations were indeed more likely to be fixed than were female SC-conferring mutations in a wide range of parameters. This pattern was particularly strong when pollen availability was relatively high. Under such a condition, even if the occurrence of mutations was biased strongly towards the female specificity gene, male SC-conferring mutations were much more often fixed. Our study demonstrates that fixation probabilities of those two types of mutation vary strongly depending on ecological and genetic conditions, although both types result in the same evolutionary consequence-the loss of SI.
Collapse
Affiliation(s)
- T Tsuchimatsu
- Institute of Evolutionary Biology and Environmental Studies, Institute of Plant Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland; Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
| | | |
Collapse
|
47
|
Koch MA, German DA. Taxonomy and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples. FRONTIERS IN PLANT SCIENCE 2013; 4:267. [PMID: 23914192 PMCID: PMC3728732 DOI: 10.3389/fpls.2013.00267] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/02/2013] [Indexed: 05/20/2023]
Abstract
Taxonomy and systematics provide the names and evolutionary framework for any biological study. Without these names there is no access to a biological context of the evolutionary processes which gave rise to a given taxon: close relatives and sister species (hybridization), more distantly related taxa (ancestral states), for example. This is not only true for the single species a research project is focusing on, but also for its relatives, which might be selected for comparative approaches and future research. Nevertheless, taxonomical and systematic knowledge is rarely fully explored and considered across biological disciplines. One would expect the situation to be more developed with model organisms such as Noccaea, Arabidopsis, Schrenkiella and Eutrema (Thellungiella). However, we show the reverse. Using Arabidopsis halleri and Noccaea caerulescens, two model species among metal accumulating taxa, we summarize and reflect past taxonomy and systematics of Arabidopsis and Noccaea and provide a modern synthesis of taxonomic, systematic and evolutionary perspectives. The same is presented for several species of Eutrema s. l. and Schrenkiella recently appeared as models for studying stress tolerance in plants and widely known under the name Thellungiella.
Collapse
Affiliation(s)
- Marcus A. Koch
- Department of Biodiversity and Plant Systematics, Center for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
| | - Dmitry A. German
- Department of Biodiversity and Plant Systematics, Center for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
- South-Siberian Botanical Garden, Altai State UniversityBarnaul, Russia
| |
Collapse
|
48
|
Tsuchimatsu T, Kaiser P, Yew CL, Bachelier JB, Shimizu KK. Recent loss of self-incompatibility by degradation of the male component in allotetraploid Arabidopsis kamchatica. PLoS Genet 2012; 8:e1002838. [PMID: 22844253 PMCID: PMC3405996 DOI: 10.1371/journal.pgen.1002838] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 06/04/2012] [Indexed: 01/01/2023] Open
Abstract
The evolutionary transition from outcrossing to self-fertilization (selfing) through the loss of self-incompatibility (SI) is one of the most prevalent events in flowering plants, and its genetic basis has been a major focus in evolutionary biology. In the Brassicaceae, the SI system consists of male and female specificity genes at the S-locus and of genes involved in the female downstream signaling pathway. During recent decades, much attention has been paid in particular to clarifying the genes responsible for the loss of SI. Here, we investigated the pattern of polymorphism and functionality of the female specificity gene, the S-locus receptor kinase (SRK), in allotetraploid Arabidopsis kamchatica. While its parental species, A. lyrata and A. halleri, are reported to be diploid and mainly self-incompatible, A. kamchatica is self-compatible. We identified five highly diverged SRK haplogroups, found their disomic inheritance and, for the first time in a wild allotetraploid species, surveyed the geographic distribution of SRK at the two homeologous S-loci across the species range. We found intact full-length SRK sequences in many accessions. Through interspecific crosses with the self-incompatible and diploid congener A. halleri, we found that the female components of the SI system, including SRK and the female downstream signaling pathway, are still functional in these accessions. Given the tight linkage and very rare recombination of the male and female components on the S-locus, this result suggests that the degradation of male components was responsible for the loss of SI in A. kamchatica. Recent extensive studies in multiple Brassicaceae species demonstrate that the loss of SI is often derived from mutations in the male component in wild populations, in contrast to cultivated populations. This is consistent with theoretical predictions that mutations disabling male specificity are expected to be more strongly selected than mutations disabling female specificity, or the female downstream signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | - Kentaro K. Shimizu
- Institute of Evolutionary Biology and Environmental Studies, Institute of Plant Biology, and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
de la Chaux N, Tsuchimatsu T, Shimizu KK, Wagner A. The predominantly selfing plant Arabidopsis thaliana experienced a recent reduction in transposable element abundance compared to its outcrossing relative Arabidopsis lyrata. Mob DNA 2012; 3:2. [PMID: 22313744 PMCID: PMC3292453 DOI: 10.1186/1759-8753-3-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 02/07/2012] [Indexed: 12/11/2022] Open
Abstract
Background Transposable elements (TEs) are major contributors to genome evolution. One factor that influences their evolutionary dynamics is whether their host reproduces through selfing or through outcrossing. According to the recombinational spreading hypothesis, for instance, TEs can spread more easily in outcrossing species through recombination, and should thus be less abundant in selfing species. We here studied the distribution and evolutionary dynamics of TE families in the predominantly selfing plant Arabidopsis thaliana and its close outcrossing relative Arabidopsis lyrata on a genome-wide scale. We characterized differences in TE abundance between them and asked which, if any, existing hypotheses about TE abundances may explain these differences. Results We identified 1,819 TE families representing all known classes of TEs in both species, and found three times more copies in the outcrossing A. lyrata than in the predominantly selfing A. thaliana, as well as ten times more TE families unique to A. lyrata. On average, elements in A. lyrata are younger than elements in A. thaliana. In particular, A. thaliana shows a marked decrease in element number that occurred during the most recent 10% of the time interval since A. thaliana split from A. lyrata. This most recent period in the evolution of A. thaliana started approximately 500,000 years ago, assuming a splitting time of 5 million years ago, and coincides with the time at which predominant selfing originated. Conclusions Our results indicate that the mating system may be important for determining TE copy number, and that selfing species are likely to have fewer TEs.
Collapse
Affiliation(s)
- Nicole de la Chaux
- Molecular Evolution and Evolutionary Systems Biology, Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
50
|
Karron JD, Ivey CT, Mitchell RJ, Whitehead MR, Peakall R, Case AL. New perspectives on the evolution of plant mating systems. ANNALS OF BOTANY 2012; 109:493-503. [PMID: 22210849 PMCID: PMC3278297 DOI: 10.1093/aob/mcr319] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND The remarkable diversity of mating patterns and sexual systems in flowering plants has fascinated evolutionary biologists for more than a century. Enduring questions about this topic include why sexual polymorphisms have evolved independently in over 100 plant families, and why proportions of self- and cross-fertilization often vary dramatically within and among populations. Important new insights concerning the evolutionary dynamics of plant mating systems have built upon a strong foundation of theoretical models and innovative field and laboratory experiments. However, as the pace of advancement in this field has accelerated, it has become increasingly difficult for researchers to follow developments outside their primary area of research expertise. SCOPE In this Viewpoint paper we highlight three important themes that span and integrate different subdisciplines: the changes in morphology, phenology, and physiology that accompany the transition to selfing; the evolutionary consequences of pollen pool diversity in flowering plants; and the evolutionary dynamics of sexual polymorphisms. We also highlight recent developments in molecular techniques that will facilitate more efficient and cost-effective study of mating patterns in large natural populations, research on the dynamics of pollen transport, and investigations on the genetic basis of sexual polymorphisms. This Viewpoint also serves as the introduction to a Special Issue on the Evolution of Plant Mating Systems. The 15 papers in this special issue provide inspiring examples of recent discoveries, and glimpses of exciting developments yet to come.
Collapse
Affiliation(s)
- Jeffrey D Karron
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.
| | | | | | | | | | | |
Collapse
|