1
|
Dos Santos EAV, de Arruda E, Leite AV, Almeida NM. Effects of Florivory on the Anatomy, Histochemistry and Resource Production of Flowers of Senna aversiflora (Herb.) H.S. Irwin and Barneby. Microsc Res Tech 2025. [PMID: 40423402 DOI: 10.1002/jemt.24779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/06/2024] [Accepted: 12/09/2024] [Indexed: 05/28/2025]
Abstract
Florivory directly affects floral structures, especially petals and anthers. The physical damage to these whorls can alter the characteristics of the flowers, compromise their functions, and consequently impact fertility and reduce the reproductive success of the species. We provide the floral anatomical description of Senna aversiflora (Herb.) H.S. Irwin and Barneby. We measured various anatomical traits of petals and quantified the levels of chemical compounds and the pollen produced by intact and damaged flowers in order to identify characters associated with the plant-florivore interaction. We found that the epidermis (adaxial and abaxial surfaces) and mesophyll of the petals of healthy flowers were thicker when compared to damaged flowers. We infer that the smaller thickness of traits associated with the absence of characters with deterrent effect on herbivores and greater production of attractive/nutritive chemical compounds in relation to defense compounds contribute to making the species highly susceptible to florivory. Pollen production in damaged flowers did not differ between the different stages of floral development. However, florivory has a negative effect on the amount of pollen produced. Damaged flowers had less pollen than healthy flowers. We conclude that florivory in S. aversiflora exerts significant pressure on petal anatomy and resource production by flowers.
Collapse
Affiliation(s)
| | - Emília de Arruda
- Federal University of Pernambuco-UFPE. Department of Botany, Graduate Program in Plant Biology, Recife, Brazil
| | - Ana Virgínia Leite
- Federal Rural University of Pernambuco-UFRPE. Department of Biology, Graduate Program in Biodiversity, Recife, Brazil
| | | |
Collapse
|
2
|
Valdés-Correcher E, Kadiri Y, Bourdin A, Mrazova A, Bălăcenoiu F, Branco M, Bogdziewicz M, Bjørn MC, Damestoy T, Dobrosavljević J, Faticov M, Gripenberg S, Gossner MM, de Groot M, Hagge J, Hoopen JT, Lövei GL, Milanović S, Musolin DL, Mäntylä E, Moreira X, Piotti A, Rodríguez VM, Saez-Asensio C, Sallé A, Sam K, Sobral M, Tack AJM, Varela Z, Castagneyrol B. Effects of climate on leaf phenolics, insect herbivory, and their relationship in pedunculate oak (Quercus robur) across its geographic range in Europe. Oecologia 2025; 207:61. [PMID: 40186748 PMCID: PMC11972190 DOI: 10.1007/s00442-025-05696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
An increase in biotic interactions towards lower latitudes is one of the most consistent patterns in ecology. Higher temperatures and more stable climatic conditions at low latitudes are thought to enhance biotic interactions, accelerating biological evolution and leading to stronger anti-herbivore defences in plants. However, some studies report contradictory findings, highlighting the need for further investigation into the underlying mechanisms. We used a combination of field observations and feeding trials in controlled environments to investigate the effect of climate on chemical defences and insect herbivory in pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe, while controlling for physical defences. The concentration of lignin, flavonoids, and total phenolics increased significantly with temperature, whereas both field herbivory and weight of spongy moth (Lymantria dispar L.) larvae were negatively influenced by temperature. Lignin concentration positively influenced the weight of spongy moth larvae whereas it had no effect on field herbivory. We found no evidence of strong positive relationships between insect herbivory and larvae growth with leaf defences. Our study underscores the complexity of plant-herbivore interactions along climatic gradients and highlights the need for further research to disentangle these intricate relationships.
Collapse
Affiliation(s)
- Elena Valdés-Correcher
- Integrative Ecology Group, Estación Biológica de Doñana, Seville, Spain.
- Univ. Bordeaux, INRAE, BIOGECO, Cestas, France.
| | - Yasmine Kadiri
- Univ. Bordeaux, INRAE, BIOGECO, Cestas, France
- INRAE UE Ferlus, 86000, Lusignan, France
| | | | - Anna Mrazova
- Univ. Bordeaux, INRAE, BIOGECO, Cestas, France
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05, České Budějovice, Czech Republic
| | - Flavius Bălăcenoiu
- National Institute for Research and Development in Forestry "Marin Drăcea", Voluntari, Romania
| | - Manuela Branco
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Michal Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Mona Chor Bjørn
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg, Denmark
| | - Thomas Damestoy
- UniLaSalle, AGHYLE, UP.2018.C101, FR-60026, Beauvais, France
| | - Jovan Dobrosavljević
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Maria Faticov
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sofia Gripenberg
- School of Biological Sciences, University of Reading, Reading, UK
| | - Martin M Gossner
- Forest Entomology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| | - Maarten de Groot
- Department of Forest Protection, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Jonas Hagge
- Northwest German Forest Research Institute, Forest Nature Conservation, Prof.-Oelkers-Str. 6, 34346, Hann. Münden, Germany
- University of Göttingen, Forest Nature Conservation, Büsgenweg 3, 37077, Göttingen, Germany
| | | | - Gabor L Lövei
- Department of Agroecology, Aarhus University, Flakkebjerg ResearchCentre, 4200, Slagelse, Denmark
- HUN-REN-DU Anthropocene Ecology Research Group, University of Debrecen, 4010, Debrecen, Hungary
| | - Slobodan Milanović
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00, Brno, Czech Republic
| | - Dmitrii L Musolin
- European and Mediterranean Plant Protection Organization (EPPO), 21 Boulevard Richard Lenoir, 75011, Paris, France
| | - Elina Mäntylä
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05, České Budějovice, Czech Republic
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Andrea Piotti
- Institute of Biosciences and BioResources, National Research Council of Italy, Sesto Fiorentino, Italy
| | - Víctor M Rodríguez
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Cristina Saez-Asensio
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | | | - Katerina Sam
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05, České Budějovice, Czech Republic
| | - Mar Sobral
- Department of Geography, University of Santiago de Compostela, Praza da Universidade, 1, 15703, Santiago de Compostela, Spain
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Zulema Varela
- CRETUS, Ecology Unit, Department Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | |
Collapse
|
3
|
Cao Y, Zhang S, Ma KM. Artificial light at night decreases leaf herbivory in typical urban areas. FRONTIERS IN PLANT SCIENCE 2024; 15:1392262. [PMID: 39161952 PMCID: PMC11330841 DOI: 10.3389/fpls.2024.1392262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/03/2024] [Indexed: 08/21/2024]
Abstract
Artificial light at night (ALAN) is exerting growing pressure on natural ecosystems, but its impact on biological interactions remains unclear. This study aimed to assess how ALAN influences leaf functional traits and herbivory in two prevalent street tree species (Styphnolobium japonicum (L.) Schott and Fraxinus pennsylvanica) through field surveys and paired experiments in the urban areas of Beijing, China. We found that ALAN led to increased leaf toughness and decreased levels of leaf herbivory. Additionally, ALAN showed species-specific effects on leaf nutrients, size as well as defense substances. The findings illustrate that ALAN can significantly alter some key functional traits and ecological processes (nutrient cycling, energy flow). In general, we suggest that high ALAN intensity will be detrimental to the energy flow from urban plants to higher trophic levels, posing a potential threat to the maintenance of biodiversity (e.g., arthropod diversity, bird diversity) in urban ecosystems.
Collapse
Affiliation(s)
- Yu Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuang Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ke-Ming Ma
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Tan JL, Trandem N, Hamborg Z, Sapkota B, Blystad DR, Fránová J, Zemek R. The species, density, and intra-plant distribution of mites on red raspberry (Rubus idaeus L.). EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:317-337. [PMID: 38937376 PMCID: PMC11269358 DOI: 10.1007/s10493-024-00930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/19/2024] [Indexed: 06/29/2024]
Abstract
The adoption of the European Green Deal will limit acaricide use in high value crops like raspberry, to be replaced by biological control and other alternative strategies. More basic knowledge on mites in such crops is then necessary, like species, density, and their role as vectors of plant diseases. This study had four aims, focusing on raspberry leaves at northern altitude: (1) identify mite species; (2) study mite population densities; (3) investigate mite intra-plant distribution; (4) investigate co-occurrence of phytophagous mites, raspberry leaf blotch disorder and raspberry leaf blotch virus (RLBV). Four sites in south-eastern Norway were sampled five times. Floricanes from different parts of the sites were collected, taking one leaf from each of the upper, middle, and bottom zones of the cane. Mites were extracted with a washing technique and processed for species identification and RLBV detection. Mites and leaves were tested for RLBV by reverse transcription polymerase chain reaction (RT-PCR) with virus-specific primers. Phytophagous mites, Phyllocoptes gracilis, Tetranychus urticae, and Neotetranychus rubi, and predatory mites, Anystis baccarum and Typhlodromus (Typhlodromus) pyri were identified. All phytophagous mites in cultivated raspberry preferred the upper zone of floricanes, while in non-cultivated raspberry, they preferred the middle zone. The presence of phytophagous mites did not lead to raspberry leaf blotch disorder during this study. RLBV was detected in 1.3% of the sampled plants, none of them with leaf blotch symptoms, and in 4.3% of P. gracilis samples, and in some spider mite samples, implying that Tetranychids could also be vectors of RLBV.
Collapse
Affiliation(s)
- Jiunn Luh Tan
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, 37005, Czech Republic.
- Institute of Entomology, Biology Centre CAS, České Budějovice, 37005, Czech Republic.
| | - Nina Trandem
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1433, Ås, Norway
| | - Zhibo Hamborg
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1433, Ås, Norway
| | - Bijaya Sapkota
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1433, Ås, Norway
| | - Dag-Ragnar Blystad
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1433, Ås, Norway
| | - Jana Fránová
- Institute of Plant Molecular Biology, Biology Centre CAS, České Budějovice, 37005, Czech Republic
| | - Rostislav Zemek
- Institute of Entomology, Biology Centre CAS, České Budějovice, 37005, Czech Republic
| |
Collapse
|
5
|
Liu F, Li B, Liu C, Liu Y, Liu X, Lu M. Oviposition by Plagiodera versicolora on Salix matsudana cv. 'Zhuliu' alters the leaf transcriptome and impairs larval performance. FRONTIERS IN PLANT SCIENCE 2023; 14:1226641. [PMID: 37538058 PMCID: PMC10394651 DOI: 10.3389/fpls.2023.1226641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
Insect egg deposition can induce plant defenses against their larvae. Previous studies have primarily focused on herbaceous plant defenses; however, little is known about how the Salicaceae respond to insect egg deposition and defend themselves against herbivores. By combining plant defense gene studies and bioassays, we investigated the effect of the coleoptera Plagiodera versicolora egg deposition on willow (Salix matsudana cv. 'Zhuliu') and examined the interactions at the plant resistance and transcriptome levels. RNA-seq data were utilized to analyze changes in the leaf transcriptome with and without oviposition, and also the changes in the leaf transcriptome of feeding-damaged leaves with and without prior oviposition. P. versicolora oviposition on willow leaves resulted in altered expression levels of transcripts associated with plant stress and metabolic responses. Compared with leaves with no oviposition, leaves with egg deposition showed a slight increase in phenylpropanoid biosynthesis and phytohormone signaling genes after larval feeding. The RNA-seq analysis revealed alterations in willow transcripts in response to leaf beetle infestations. Bioassays indicated that oviposition by P. versicolora on willows reduced subsequent larvae performance, suggesting that prior oviposition by P. versicolora could increase willows' resistance to larvae. This study advances our knowledge of how oviposition by coleoptera insects induces changes in the resistance of leaves to herbivory in the Salicaceae family.
Collapse
|
6
|
Duarte MA, Woo S, Hultine K, Blonder B, Aparecido LMT. Vein network redundancy and mechanical resistance mitigate gas exchange losses under simulated herbivory in desert plants. AOB PLANTS 2023; 15:plad002. [PMID: 36959913 PMCID: PMC10029807 DOI: 10.1093/aobpla/plad002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Herbivory can impact gas exchange, but the causes of interspecific variation in response remain poorly understood. We aimed to determine (1) what effects does experimental herbivory damage to leaf midveins have on leaf gas exchange and, (2) whether changes in leaf gas exchange after damage was predicted by leaf mechanical or venation traits. We hypothesized that herbivory-driven impacts on leaf gas exchange would be mediated by (1a/1b) venation networks, either by more vein resistance, or possibly trading off with other structural defenses; (2a/2b) or more reticulation (resilience, providing more alternate flow pathways after damage) or less reticulation (sectoriality, preventing spread of reduced functionality after damage). We simulated herbivory by damaging the midveins of four leaves from each of nine Sonoran Desert species. We then measured the percent change in photosynthesis (ΔAn%), transpiration (ΔEt%) and stomatal conductance (Δgsw%) between treated and control leaves. We assessed the relationship of each with leaf venation traits and other mechanical traits. ΔAn% varied between +10 % and -55%, similar to ΔEt% (+27%, -54%) and Δgsw% (+36%, -53%). There was no tradeoff between venation and other structural defenses. Increased damage resilience (reduced ΔAn%, ΔEt%, Δgsw%) was marginally associated with lower force-to-tear (P < 0.05), and higher minor vein density (P < 0.10) but not major vein density or reticulation. Leaf venation networks may thus partially mitigate the response of gas exchange to herbivory and other types of vein damage through either resistance or resilience.
Collapse
Affiliation(s)
- Miguel A Duarte
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | - Sabrina Woo
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | - Kevin Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, 1201 N. Galvin Parkway, Phoenix, AZ 85008, USA
| | - Benjamin Blonder
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
- Department of Environmental Science, Policy, and Management, University of California Berkeley, 120 Mulford Hall, Berkeley, CA 94720, USA
| | - Luiza Maria T Aparecido
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
- School of Earth and Space Exploration, Arizona State University, 781 Terrace Mall, Tempe, AZ 85287, USA
| |
Collapse
|
7
|
Chapuis M, Leménager N, Piou C, Roumet P, Marche H, Centanni J, Estienne C, Ecarnot M, Vasseur F, Violle C, Kazakou E. Domestication provides durum wheat with protection from locust herbivory. Ecol Evol 2023; 13:e9741. [PMID: 36694552 PMCID: PMC9843534 DOI: 10.1002/ece3.9741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/17/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Lower plant resistance to herbivores following domestication has been suggested as the main cause for higher feeding damage in crops than in wild progenitors. While herbivore compensatory feeding has also been proposed as a possible mechanism for raised damage in crops with low nutritional quality, predictions regarding the effects of plant domestication on nutritional quality for herbivores remain unclear. In particular, data on primary metabolites, even major macronutrients, measured in the organs consumed by herbivores, are scarce. In this study, we used a collection of 10 accessions of wild ancestors and 10 accessions of modern progenies of Triticum turgidum to examine whether feeding damage and selectivity by nymphs of Locusta migratoria primarily depended on five leaf traits related to structural resistance or nutrient profiles. Our results unexpectedly showed that locusts favored wild ancestors over domesticated accessions and that leaf toughness and nitrogen and soluble protein contents increased with the domestication process. Furthermore, the quantitative relationship between soluble protein and digestible carbohydrates was found to poorly meet the specific requirements of the herbivore, in all wheat accessions, both wild and modern. The increase in leaf structural resistance to herbivores in domesticated tetraploid wheat accessions suggested that resource allocation trade-offs between growth and herbivory resistance may have been disrupted by domestication in the vegetative organs of this species. Since domestication did not result in a loss of nutritional quality in the leaves of the tetraploid wheat, our results rather provides evidence for a role of the content of plants in nonnutritive nitrogenous secondary compounds, possibly deterrent or toxic, at least for grasshopper herbivores.
Collapse
Affiliation(s)
- Marie‐Pierre Chapuis
- CIRAD, CBGPMontpellierFrance
- CBGP, CIRAD, Montpellier SupAgro, INRA, IRD, Univ MontpellierMontpellierFrance
| | - Nicolas Leménager
- CIRAD, CBGPMontpellierFrance
- CBGP, CIRAD, Montpellier SupAgro, INRA, IRD, Univ MontpellierMontpellierFrance
| | - Cyril Piou
- CIRAD, CBGPMontpellierFrance
- CBGP, CIRAD, Montpellier SupAgro, INRA, IRD, Univ MontpellierMontpellierFrance
| | - Pierre Roumet
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut AgroMontpellierFrance
| | - Héloïse Marche
- CIRAD, CBGPMontpellierFrance
- CBGP, CIRAD, Montpellier SupAgro, INRA, IRD, Univ MontpellierMontpellierFrance
| | - Julia Centanni
- CEFE, Univ Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | - Christophe Estienne
- CIRAD, CBGPMontpellierFrance
- CBGP, CIRAD, Montpellier SupAgro, INRA, IRD, Univ MontpellierMontpellierFrance
| | - Martin Ecarnot
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut AgroMontpellierFrance
| | | | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | - Elena Kazakou
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Institut AgroMontpellierFrance
| |
Collapse
|
8
|
Obermeier C, Mason AS, Meiners T, Petschenka G, Rostás M, Will T, Wittkop B, Austel N. Perspectives for integrated insect pest protection in oilseed rape breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3917-3946. [PMID: 35294574 PMCID: PMC9729155 DOI: 10.1007/s00122-022-04074-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/01/2022] [Indexed: 05/02/2023]
Abstract
In the past, breeding for incorporation of insect pest resistance or tolerance into cultivars for use in integrated pest management schemes in oilseed rape/canola (Brassica napus) production has hardly ever been approached. This has been largely due to the broad availability of insecticides and the complexity of dealing with high-throughput phenotyping of insect performance and plant damage parameters. However, recent changes in the political framework in many countries demand future sustainable crop protection which makes breeding approaches for crop protection as a measure for pest insect control attractive again. At the same time, new camera-based tracking technologies, new knowledge-based genomic technologies and new scientific insights into the ecology of insect-Brassica interactions are becoming available. Here we discuss and prioritise promising breeding strategies and direct and indirect breeding targets, and their time-perspective for future realisation in integrated insect pest protection of oilseed rape. In conclusion, researchers and oilseed rape breeders can nowadays benefit from an array of new technologies which in combination will accelerate the development of improved oilseed rape cultivars with multiple insect pest resistances/tolerances in the near future.
Collapse
Affiliation(s)
- Christian Obermeier
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Torsten Meiners
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Koenigin-Luise-Str. 19, 14195, Berlin, Germany
| | - Georg Petschenka
- Department of Applied Entomology, University of Hohenheim, Otto-Sander-Straße 5, 70599, Stuttgart, Germany
| | - Michael Rostás
- Division of Agricultural Entomology, University of Göttingen, Grisebachstr. 6, 37077, Göttingen, Germany
| | - Torsten Will
- Insitute for Resistance Research and Stress Tolerance, Julius Kühn Insitute, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Benjamin Wittkop
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Nadine Austel
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Koenigin-Luise-Str. 19, 14195, Berlin, Germany
| |
Collapse
|
9
|
Farina A, Barbera AC, Leonardi G, Massimino Cocuzza GE, Suma P, Rapisarda C. Bemisia tabaci (Hemiptera: Aleyrodidae): What Relationships with and Morpho-Physiological Effects on the Plants It Develops on? INSECTS 2022; 13:351. [PMID: 35447793 PMCID: PMC9030232 DOI: 10.3390/insects13040351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023]
Abstract
Although many crops have developed several adaptation mechanisms that allow them to defend against limiting factors, some biotic and abiotic stresses may cause reversible or irreversible changes in plants. Among the biotic stresses, the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is probably one of the main important pests that negatively affect several vegetable crops that are grown in greenhouses. The present study evaluated its impact on the morphology and physiology of two solanaceous plants, i.e., tomato (Solanum lycopersicum L.) and eggplant (S. melongena L.), under laboratory conditions. The results showed that, for tomatoes, plant height, shoot dry weight, leaf area, and indirect chlorophyll content were strongly reduced in infested plants, compared to the uninfested control, by 39.36%, 32.37%, 61.01%, and 37.85%, respectively. The same has been shown for eggplant, although the reduction percentages of plant height, root dry weight, and indirect chlorophyll content were less marked (i.e., 16.15%, 31.65%, and 11.39%, respectively). These results could represent interesting information for a better understanding of the B. tabaci influence on plant growth, as well as for the development of management strategies to successfully control its infestations in a cropping system.
Collapse
Affiliation(s)
- Alessia Farina
- Applied Entomology Section, Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy; (G.E.M.C.); (P.S.); (C.R.)
| | - Antonio C. Barbera
- Agronomy and Field Crops Section, Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy; (A.C.B.); (G.L.)
| | - Giovanni Leonardi
- Agronomy and Field Crops Section, Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy; (A.C.B.); (G.L.)
| | - Giuseppe E. Massimino Cocuzza
- Applied Entomology Section, Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy; (G.E.M.C.); (P.S.); (C.R.)
| | - Pompeo Suma
- Applied Entomology Section, Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy; (G.E.M.C.); (P.S.); (C.R.)
| | - Carmelo Rapisarda
- Applied Entomology Section, Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy; (G.E.M.C.); (P.S.); (C.R.)
| |
Collapse
|
10
|
Johnson SN, Cibils-Stewart X, Waterman JM, Biru FN, Rowe RC, Hartley SE. Elevated atmospheric CO 2 changes defence allocation in wheat but herbivore resistance persists. Proc Biol Sci 2022; 289:20212536. [PMID: 35168395 PMCID: PMC8848237 DOI: 10.1098/rspb.2021.2536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 11/12/2022] Open
Abstract
Predicting how plants allocate to different anti-herbivore defences in response to elevated carbon dioxide (CO2) concentrations is important for understanding future patterns of crop susceptibility to herbivory. Theories of defence allocation, especially in the context of environmental change, largely overlook the role of silicon (Si), despite it being the major anti-herbivore defence in the Poaceae. We demonstrated that elevated levels of atmospheric CO2 (e[CO2]) promoted plant growth by 33% and caused wheat (Triticum aestivum) to switch from Si (-19%) to phenolic (+44%) defences. Despite the lower levels of Si under e[CO2], resistance to the global pest Helicoverpa armigera persisted; relative growth rates (RGRs) were reduced by at least 33% on Si-supplied plants, irrespective of CO2 levels. RGR was negatively correlated with leaf Si concentrations. Mandible wear was c. 30% higher when feeding on Si-supplemented plants compared to those feeding on plants with no Si supply. We conclude that higher carbon availability under e[CO2] reduces silicification and causes wheat to increase concentrations of phenolics. However, Si supply, at all levels, suppressed the growth of H. armigera under both CO2 regimes, suggesting that shifts in defence allocation under future climate change may not compromise herbivore resistance in wheat.
Collapse
Affiliation(s)
- Scott N. Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Ximena Cibils-Stewart
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- Instituto Nacional de Investigación Agropecuaria (INIA), La Estanzuela Research Station, Ruta 50, Km. 11, Colonia, Uruguay
| | - Jamie M. Waterman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Fikadu N. Biru
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- College of Agriculture and Veterinary Medicine, Jimma University, Jimma 307, Ethiopia
| | - Rhiannon C. Rowe
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Susan E. Hartley
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
11
|
Lunde LF, Birkemoe T, Kauserud H, Boddy L, Jacobsen RM, Morgado L, Sverdrup-Thygeson A, Maurice S. DNA metabarcoding reveals host-specific communities of arthropods residing in fungal fruit bodies. Proc Biol Sci 2022; 289:20212622. [PMID: 35105237 PMCID: PMC8808092 DOI: 10.1098/rspb.2021.2622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Biological communities within living organisms are structured by their host's traits. How host traits affect biodiversity and community composition is poorly explored for some associations, such as arthropods within fungal fruit bodies. Using DNA metabarcoding, we characterized the arthropod communities in living fruit bodies of 11 wood-decay fungi from boreal forests and investigated how they were affected by different fungal traits. Arthropod diversity was higher in fruit bodies with a larger surface area-to-volume ratio, suggesting that colonization is crucial to maintain arthropod populations. Diversity was not higher in long-lived fruit bodies, most likely because these fungi invest in physical or chemical defences against arthropods. Arthropod community composition was structured by all measured host traits, namely fruit body size, thickness, surface area, morphology and toughness. Notably, we identified a community gradient where soft and short-lived fruit bodies harboured more true flies, while tougher and long-lived fruit bodies had more oribatid mites and beetles, which might reflect different development times of the arthropods. Ultimately, close to 75% of the arthropods were specific to one or two fungal hosts. Besides revealing surprisingly diverse and host-specific arthropod communities within fungal fruit bodies, our study provided insight into how host traits structure communities.
Collapse
Affiliation(s)
- Lisa Fagerli Lunde
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Tone Birkemoe
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316 Oslo, Norway
| | | | - Rannveig M Jacobsen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.,The Norwegian Institute for Nature Research, Oslo, Norway
| | - Luis Morgado
- Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316 Oslo, Norway
| | - Anne Sverdrup-Thygeson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Sundy Maurice
- Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316 Oslo, Norway
| |
Collapse
|
12
|
Schott J, Fuchs B, Böttcher C, Hilker M. Responses to larval herbivory in the phenylpropanoid pathway of Ulmus minor are boosted by prior insect egg deposition. PLANTA 2021; 255:16. [PMID: 34878607 PMCID: PMC8654711 DOI: 10.1007/s00425-021-03803-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 06/10/2023]
Abstract
Elms, which have received insect eggs as a 'warning' of larval herbivory, enhance their anti-herbivore defences by accumulating salicylic acid and amplifying phenylpropanoid-related transcriptional and metabolic responses to hatching larvae. Plant responses to insect eggs can result in intensified defences against hatching larvae. In annual plants, this egg-mediated effect is known to be associated with changes in leaf phenylpropanoid levels. However, little is known about how trees-long-living, perennial plants-improve their egg-mediated, anti-herbivore defences. The role of phytohormones and the phenylpropanoid pathway in egg-primed anti-herbivore defences of a tree species has until now been left unexplored. Using targeted and untargeted metabolome analyses we studied how the phenylpropanoid pathway of Ulmus minor responds to egg-laying by the elm leaf beetle and subsequent larval feeding. We found that when compared to untreated leaves, kaempferol and quercetin concentrations increased in feeding-damaged leaves with prior egg deposition, but not in feeding-damaged leaves without eggs. PCR analyses revealed that prior insect egg deposition intensified feeding-induced expression of phenylalanine ammonia lyase (PAL), encoding the gateway enzyme of the phenylpropanoid pathway. Salicylic acid (SA) concentrations were higher in egg-treated, feeding-damaged leaves than in egg-free, feeding-damaged leaves, but SA levels did not increase in response to egg deposition alone-in contrast to observations made of Arabidopsis thaliana. Our results indicate that prior egg deposition induces a SA-mediated response in elms to feeding damage. Furthermore, egg deposition boosts phenylpropanoid biosynthesis in subsequently feeding-damaged leaves by enhanced PAL expression, which results in the accumulation of phenylpropanoid derivatives. As such, the elm tree shows similar, yet distinct, responses to insect eggs and larval feeding as the annual model plant A. thaliana.
Collapse
Affiliation(s)
- Johanna Schott
- Department of Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Benjamin Fuchs
- Department of Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
- Biodiversity Unit, University of Turku, 20014, Turku, Finland
| | - Christoph Böttcher
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Königin-Luise-Str. 19, 14195, Berlin, Germany
| | - Monika Hilker
- Department of Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.
| |
Collapse
|
13
|
Espitia Buitrago PA, Hernández LM, Burkart S, Palmer N, Cardoso Arango JA. Forage-Fed Insects as Food and Feed Source: Opportunities and Constraints of Edible Insects in the Tropics. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.724628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Farmed insects can provide an alternative protein source for humans, livestock, and fish, while supporting adaptation to climate change, generating income for smallholder farmers, and reducing the negative impacts of conventional food production, especially in the tropics. However, the quantity, nutritional quality and safety of insects greatly relies on their feed intake. Tropical forages (grasses and legumes) can provide a valuable and yet untapped source of feed for several farmed insect species. In this perspective paper, we provide a viewpoint of how tropical forages can support edible insect production. We also highlight the potential of tropical forage-based diets over those using organic agricultural or urban by-product substrates, due to their versatility, low cost, and lower risk of microbial and chemical hazards. The main bottlenecks relate to dependence on the small number of farmed insect species, and in public policy and market frameworks regarding the use of edible insects as food, feed and in industrial processes. This perspective will serve interested stakeholders in identifying urgent issues at the research, ethical, marketing and policy levels that can prevent the emergence of new, insect-based value chains and business models, and the nutritional, economic and environmental benefits they promise.
Collapse
|
14
|
Ruiz-Santiago RR, Ballina-Gómez HS, Ruiz-Sánchez E, Martínez-Castillo J, Garruña-Hernández R, Andueza-Noh RH. Determining relevant traits for selecting landrace accessions of Phaseolus lunatus L. for insect resistance. PeerJ 2021; 9:e12088. [PMID: 34616606 PMCID: PMC8450006 DOI: 10.7717/peerj.12088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/08/2021] [Indexed: 11/20/2022] Open
Abstract
Plant-insect interactions are a determining factor for sustainable crop production. Although plants can resist or tolerate herbivorous insects to varying degrees, even with the use of pesticides, insects can reduce plant net productivity by as much as 20%, so sustainable strategies for pest control with less dependence on chemicals are needed. Selecting plants with optimal resistance and photosynthetic traits can help minimize damage and maintain productivity. Here, 27 landrace accessions of lima beans, Phaseolus lunatus L., from the Yucatan Peninsula were evaluated in the field for morphological resistance traits, photosynthetic characteristics, insect damage and seed yield. Variation was found in physical leaf traits (number, area, and dry mass of leaves; trichome density, specific leaf thickness and hardness) and in physiological traits (photosynthetic rate, stomatal conductance, intercellular carbon, water-use efficiency, and transpiration). Five accessions (JMC1325, JMC1288, JMC1339, JMC1208 and JMC1264) had the lowest index for cumulative damage with the highest seed yield, although RDA analysis uncovered two accessions (JMC1339, JMC1288) with strong positive association of seed yield and the cumulative damage index with leaf production, specific leaf area (SLA) and total leaf area. Leaf traits, including SLA and total leaf area are important drivers for optimizing seed yield. This study identified 12 important morphological and physiological leaf traits for selecting landrace accessions of P. lunatus for high yields (regardless of damage level) to achieve sustainable, environmentally safe crop production.
Collapse
Affiliation(s)
- Roberto Rafael Ruiz-Santiago
- Division de Estudios de Posgrado e Investigacion, Tecnologico Nacional de México/Campus Conkal, Conkal, Yucatan, Mexico
| | - Horacio Salómon Ballina-Gómez
- Division de Estudios de Posgrado e Investigacion, Tecnologico Nacional de México/Campus Conkal, Conkal, Yucatan, Mexico
| | - Esau Ruiz-Sánchez
- Division de Estudios de Posgrado e Investigacion, Tecnologico Nacional de México/Campus Conkal, Conkal, Yucatan, Mexico
| | | | - René Garruña-Hernández
- Division de Estudios de Posgrado e Investigacion, Conacyt-Tecnológico Nacional de México/Campus Conkal, Conkal, Yucatan, Mexico
| | - Rubén Humberto Andueza-Noh
- Division de Estudios de Posgrado e Investigacion, Conacyt-Tecnológico Nacional de México/Campus Conkal, Conkal, Yucatan, Mexico
| |
Collapse
|
15
|
Falster D, Gallagher R, Wenk EH, Wright IJ, Indiarto D, Andrew SC, Baxter C, Lawson J, Allen S, Fuchs A, Monro A, Kar F, Adams MA, Ahrens CW, Alfonzetti M, Angevin T, Apgaua DMG, Arndt S, Atkin OK, Atkinson J, Auld T, Baker A, von Balthazar M, Bean A, Blackman CJ, Bloomfield K, Bowman DMJS, Bragg J, Brodribb TJ, Buckton G, Burrows G, Caldwell E, Camac J, Carpenter R, Catford JA, Cawthray GR, Cernusak LA, Chandler G, Chapman AR, Cheal D, Cheesman AW, Chen SC, Choat B, Clinton B, Clode PL, Coleman H, Cornwell WK, Cosgrove M, Crisp M, Cross E, Crous KY, Cunningham S, Curran T, Curtis E, Daws MI, DeGabriel JL, Denton MD, Dong N, Du P, Duan H, Duncan DH, Duncan RP, Duretto M, Dwyer JM, Edwards C, Esperon-Rodriguez M, Evans JR, Everingham SE, Farrell C, Firn J, Fonseca CR, French BJ, Frood D, Funk JL, Geange SR, Ghannoum O, Gleason SM, Gosper CR, Gray E, Groom PK, Grootemaat S, Gross C, Guerin G, Guja L, Hahs AK, Harrison MT, Hayes PE, Henery M, Hochuli D, Howell J, Huang G, Hughes L, Huisman J, Ilic J, Jagdish A, Jin D, Jordan G, Jurado E, Kanowski J, Kasel S, et alFalster D, Gallagher R, Wenk EH, Wright IJ, Indiarto D, Andrew SC, Baxter C, Lawson J, Allen S, Fuchs A, Monro A, Kar F, Adams MA, Ahrens CW, Alfonzetti M, Angevin T, Apgaua DMG, Arndt S, Atkin OK, Atkinson J, Auld T, Baker A, von Balthazar M, Bean A, Blackman CJ, Bloomfield K, Bowman DMJS, Bragg J, Brodribb TJ, Buckton G, Burrows G, Caldwell E, Camac J, Carpenter R, Catford JA, Cawthray GR, Cernusak LA, Chandler G, Chapman AR, Cheal D, Cheesman AW, Chen SC, Choat B, Clinton B, Clode PL, Coleman H, Cornwell WK, Cosgrove M, Crisp M, Cross E, Crous KY, Cunningham S, Curran T, Curtis E, Daws MI, DeGabriel JL, Denton MD, Dong N, Du P, Duan H, Duncan DH, Duncan RP, Duretto M, Dwyer JM, Edwards C, Esperon-Rodriguez M, Evans JR, Everingham SE, Farrell C, Firn J, Fonseca CR, French BJ, Frood D, Funk JL, Geange SR, Ghannoum O, Gleason SM, Gosper CR, Gray E, Groom PK, Grootemaat S, Gross C, Guerin G, Guja L, Hahs AK, Harrison MT, Hayes PE, Henery M, Hochuli D, Howell J, Huang G, Hughes L, Huisman J, Ilic J, Jagdish A, Jin D, Jordan G, Jurado E, Kanowski J, Kasel S, Kellermann J, Kenny B, Kohout M, Kooyman RM, Kotowska MM, Lai HR, Laliberté E, Lambers H, Lamont BB, Lanfear R, van Langevelde F, Laughlin DC, Laugier-Kitchener BA, Laurance S, Lehmann CER, Leigh A, Leishman MR, Lenz T, Lepschi B, Lewis JD, Lim F, Liu U, Lord J, Lusk CH, Macinnis-Ng C, McPherson H, Magallón S, Manea A, López-Martinez A, Mayfield M, McCarthy JK, Meers T, van der Merwe M, Metcalfe DJ, Milberg P, Mokany K, Moles AT, Moore BD, Moore N, Morgan JW, Morris W, Muir A, Munroe S, Nicholson Á, Nicolle D, Nicotra AB, Niinemets Ü, North T, O'Reilly-Nugent A, O'Sullivan OS, Oberle B, Onoda Y, Ooi MKJ, Osborne CP, Paczkowska G, Pekin B, Guilherme Pereira C, Pickering C, Pickup M, Pollock LJ, Poot P, Powell JR, Power SA, Prentice IC, Prior L, Prober SM, Read J, Reynolds V, Richards AE, Richardson B, Roderick ML, Rosell JA, Rossetto M, Rye B, Rymer PD, Sams MA, Sanson G, Sauquet H, Schmidt S, Schönenberger J, Schulze ED, Sendall K, Sinclair S, Smith B, Smith R, Soper F, Sparrow B, Standish RJ, Staples TL, Stephens R, Szota C, Taseski G, Tasker E, Thomas F, Tissue DT, Tjoelker MG, Tng DYP, de Tombeur F, Tomlinson K, Turner NC, Veneklaas EJ, Venn S, Vesk P, Vlasveld C, Vorontsova MS, Warren CA, Warwick N, Weerasinghe LK, Wells J, Westoby M, White M, Williams NSG, Wills J, Wilson PG, Yates C, Zanne AE, Zemunik G, Ziemińska K. AusTraits, a curated plant trait database for the Australian flora. Sci Data 2021; 8:254. [PMID: 34593819 PMCID: PMC8484355 DOI: 10.1038/s41597-021-01006-6] [Show More Authors] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/05/2021] [Indexed: 02/08/2023] Open
Abstract
We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
Collapse
Affiliation(s)
- Daniel Falster
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia.
| | - Rachael Gallagher
- Department of Biological Sciences, Macquarie University, Sydney, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Elizabeth H Wenk
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Dony Indiarto
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | | | - Caitlan Baxter
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - James Lawson
- NSW Department of Primary Industries, Orange, Australia
| | - Stuart Allen
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Anne Fuchs
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | - Anna Monro
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | - Fonti Kar
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - Mark A Adams
- Swinburne University of Technology, Hawthorn, Australia
| | - Collin W Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Matthew Alfonzetti
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | | | - Deborah M G Apgaua
- Centre for Rainforest Studies, School for Field Studies, Yungaburra, Queensland, 4872, Australia
| | | | - Owen K Atkin
- The Australian National University, Canberra, Australia
| | - Joe Atkinson
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - Tony Auld
- NSW Department of Planning Industry and Environment, Parramatta, Australia
| | | | - Maria von Balthazar
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | | | | | | | - Jason Bragg
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | | | | | | | | | - James Camac
- Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne, Melbourne, Australia
| | | | | | | | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| | | | - Alex R Chapman
- Western Australian Herbarium, Keiran McNamara Conservation Science Centre, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
| | - David Cheal
- Centre for Environmental Management, School of Health & Life Sciences, Federation University, Mount Helen, Australia
| | | | - Si-Chong Chen
- Royal Botanic Gardens, Richmond, Kew, United Kingdom
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Brook Clinton
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | - Peta L Clode
- University of Western Australia, Crawley, Australia
| | - Helen Coleman
- Western Australian Herbarium, Keiran McNamara Conservation Science Centre, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
| | - William K Cornwell
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | | | - Michael Crisp
- The Australian National University, Canberra, Australia
| | - Erika Cross
- Charles Sturt University, Bathurst, Australia
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Saul Cunningham
- Fenner School of Environment and Society, The Australian National University, Canberra, Australia
| | | | - Ellen Curtis
- University of Technology Sydney, Sydney, Australia
| | - Matthew I Daws
- Environment Department, Alcoa of Australia, Huntly, Western Australia, Australia
| | - Jane L DeGabriel
- School of Marine and Tropical Biology, James Cook University, Douglas, Australia
| | - Matthew D Denton
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Ning Dong
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | | | - Honglang Duan
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, China
| | | | - Richard P Duncan
- Institute for Applied Ecology, University of Canberra, ACT, 2617, Canberra, Australia
| | - Marco Duretto
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | - John M Dwyer
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | | | | | - John R Evans
- The Australian National University, Canberra, Australia
| | - Susan E Everingham
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | | | - Jennifer Firn
- Queensland University of Technology, Brisbane, Australia
| | - Carlos Roberto Fonseca
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Natal - RN, Brazil
| | | | - Doug Frood
- Pathways Bushland and Environment Consultancy, Sydney, Australia
| | - Jennifer L Funk
- Department of Plant Sciences, University of California, Davis, USA
| | | | - Oula Ghannoum
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | | | - Carl R Gosper
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
| | - Emma Gray
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | | | - Saskia Grootemaat
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | | | - Greg Guerin
- Terrestrial Ecosystem Research Network, The School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Lydia Guja
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | - Amy K Hahs
- School of Ecosystem and Forest Sciences, The University of Melbourne, Melbourne, Australia
| | | | | | - Martin Henery
- arks Australia, Department of Agriculture, Water and the Environment, Hobart, Australia
| | - Dieter Hochuli
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
| | | | - Guomin Huang
- Nanchang Institute of Technology, Nanchang, China
| | - Lesley Hughes
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - John Huisman
- Western Australian Herbarium, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | | | - Ashika Jagdish
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - Daniel Jin
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
| | | | - Enrique Jurado
- Universidad Autonoma de Nuevo Leon, San Nicolás de los Garza, Mexico
| | | | | | - Jürgen Kellermann
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Hackney Road, Adelaide, SA, 5000, Australia
| | | | - Michele Kohout
- Department of Environment, Land, Water and Planning, Victoria, Australia
| | - Robert M Kooyman
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Martyna M Kotowska
- Department of Plant Ecology and Ecosystems Research, University of Goettingen, Göttingen, Germany
| | - Hao Ran Lai
- University of Canterbury, Christchurch, New Zealand
| | - Etienne Laliberté
- Institut de recherche en biologie végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, Canada
| | - Hans Lambers
- University of Western Australia, Crawley, Australia
| | | | - Robert Lanfear
- Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Frank van Langevelde
- Wildlife Ecology & Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Daniel C Laughlin
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | | | | | | | - Andrea Leigh
- University of Technology Sydney, Sydney, Australia
| | | | - Tanja Lenz
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Brendan Lepschi
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | | | - Felix Lim
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France
| | | | | | - Christopher H Lusk
- Environmental Research Institute, University of Waikato, Hamilton, New Zealand
| | | | - Hannah McPherson
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | - Susana Magallón
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Anthony Manea
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Andrea López-Martinez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Margaret Mayfield
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | | | | | - Marlien van der Merwe
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | | | | | | | - Angela T Moles
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - Ben D Moore
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | | | | | | | - Annette Muir
- Department of Environment, Land, Water and Planning, Victoria, Australia
| | - Samantha Munroe
- Terrestrial Ecosystem Research Network, The School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | | | - Dean Nicolle
- Currency Creek Arboretum, Currency Creek, Australia
| | | | - Ülo Niinemets
- Estonian University of Life Sciences, Tartu, Estonia
| | - Tom North
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | | | | | - Brad Oberle
- Division of Natural Sciences, New College of Florida, Sarasota, USA
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mark K J Ooi
- Centre for Ecosystem Science, School of Biological, Earth, and Environmental Sciences, UNSW, Sydney, Australia
| | - Colin P Osborne
- University of Sheffield, Department of Animal and Plant Sciences, Sheffield, United Kingdom
| | - Grazyna Paczkowska
- Western Australian Herbarium, Keiran McNamara Conservation Science Centre, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
| | - Burak Pekin
- Istanbul Technical University, Eurasia Institute of Earth Sciences, Istanbul, Turkey
| | - Caio Guilherme Pereira
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | | | | | | | - Pieter Poot
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | | | | | | | - Jennifer Read
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Victoria Reynolds
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | | | - Ben Richardson
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
| | | | - Julieta A Rosell
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Maurizio Rossetto
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | - Barbara Rye
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Michael A Sams
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Gordon Sanson
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | - Susanne Schmidt
- School of Agriculture and Food Science, University of Queensland, St Lucia, Australia
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | - Kerrie Sendall
- Rider University, Lawrence Township, Lawrenceville, NJ, USA
| | - Steve Sinclair
- Department of Plant Ecology and Ecosystems Research, University of Goettingen, Göttingen, Germany
| | - Benjamin Smith
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Renee Smith
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | | | - Ben Sparrow
- Terrestrial Ecosystem Research Network, The School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Rachel J Standish
- Environmental and Conservation Sciences, Murdoch University, Murdoch, Australia
| | - Timothy L Staples
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Ruby Stephens
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | | | - Guy Taseski
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - Elizabeth Tasker
- NSW Department of Planning Industry and Environment, Parramatta, Australia
| | | | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - David Yue Phin Tng
- Centre for Rainforest Studies, School for Field Studies, Yungaburra, Queensland, 4872, Australia
| | - Félix de Tombeur
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | | | | | | | - Susanna Venn
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Australia
| | - Peter Vesk
- University of Melbourne, Melbourne, Australia
| | - Carolyn Vlasveld
- School of Biological Sciences, Monash University, Clayton, Australia
| | | | - Charles A Warren
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
| | | | | | - Jessie Wells
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Mark Westoby
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Matthew White
- Department of Environment, Land, Water and Planning, Victoria, Australia
| | | | - Jarrah Wills
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
| | - Peter G Wilson
- National Herbarium of NSW and Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | - Colin Yates
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
| | - Amy E Zanne
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
- Department of Biology, University of Miami, Coral Gables, Florida 33146 USA, George Washington University, Washington, DC, 20052, USA
| | | | - Kasia Ziemińska
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France
| |
Collapse
|
16
|
Norisada M, Izuta T, Watanabe M. Distributions of photosynthetic traits, shoot growth, and anti-herbivory defence within a canopy of Quercus serrata in different soil nutrient conditions. Sci Rep 2021; 11:14485. [PMID: 34262110 PMCID: PMC8280270 DOI: 10.1038/s41598-021-93910-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/01/2021] [Indexed: 12/03/2022] Open
Abstract
The hypothesis of the present study is that not only distributions of leaf photosynthetic traits and shoot growth along light gradient within a canopy of forest trees, but also that of leaf anti-herbivory defence capacities are influenced by soil nutrient condition. To test this hypothesis, we investigated the distributions of photosynthetic traits, shoot growth, anti-herbivory defence and leaf herbivory rate throughout the canopy of Quercus serrata grown in two sites with different soil nutrient conditions. In both sites, photosynthetic traits, shoot growth, and anti-herbivory defence were greater in the upper canopy. The overall defence and herbivory rate in the lower nutrient condition were higher and lower than those in the higher nutrient condition, respectively. Although differences in leaf traits between upper and lower canopies in the higher nutrient condition were smaller than those in the lower nutrient condition, no difference was found for anti-herbivory defence. These results suggest that soil nutrient condition does not affect the distributions of leaf anti herbivory defence along light gradient within a canopy of Q. serrata.
Collapse
Affiliation(s)
- Masanari Norisada
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Takeshi Izuta
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
17
|
Togashi A, Oikawa S. Leaf productivity and persistence have been improved during soybean (Glycine max) domestication and evolution. JOURNAL OF PLANT RESEARCH 2021; 134:223-233. [PMID: 33576933 DOI: 10.1007/s10265-021-01263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Artificial and natural selection improved the leaf photosynthetic rate of soybean (Glycine max (L.) Merr. subsp. max). This change may be accompanied by unconscious, undesired changes in other leaf traits, such as decreased leaf persistence, if a finite resource was shared by two or more leaf traits-i.e., if they were traded off. We investigated leaf traits related to productivity (leaf photosynthetic rate, leaf nitrogen content, and stomatal conductance) and those related to persistence (leaf lifespan, leaf mass per unit area, and leaf bulk density) in one wild soybean line and three domesticated soybean lines (a landrace, an old cultivar, and a modern cultivar) in a three year experiment. Some leaf trait values increased while others did not change significantly during domestication and evolution. These results indicate that productivity-related leaf traits and persistence-related leaf traits are not negatively correlated. It was also found that the changes in productivity-related leaf traits and persistence-related leaf traits occurred at different times. Our results indicate that the productivity-related leaf traits and the persistence-related leaf traits have been independently selected for in soybean, and that they were not traded off. Combination of high leaf productivity and high leaf persistence would lead to higher lifetime leaf carbon gain and increased soybean yield.
Collapse
Affiliation(s)
- Ayaka Togashi
- Graduate School of Science and Engineering, Ibaraki University, Mito, 310-0056, Japan
| | - Shimpei Oikawa
- Graduate School of Science and Engineering, Ibaraki University, Mito, 310-0056, Japan.
| |
Collapse
|
18
|
Hall CR, Dagg V, Waterman JM, Johnson SN. Silicon Alters Leaf Surface Morphology and Suppresses Insect Herbivory in a Model Grass Species. PLANTS (BASEL, SWITZERLAND) 2020; 9:E643. [PMID: 32438683 PMCID: PMC7285219 DOI: 10.3390/plants9050643] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/25/2022]
Abstract
Grasses accumulate large amounts of silicon (Si) which is deposited in trichomes, specialised silica cells and cell walls. This may increase leaf toughness and reduce cell rupture, palatability and digestion. Few studies have measured leaf mechanical traits in response to Si, thus the effect of Si on herbivores can be difficult to disentangle from Si-induced changes in leaf surface morphology. We assessed the effects of Si on Brachypodium distachyon mechanical traits (specific leaf area (SLA), thickness, leaf dry matter content (LDMC), relative electrolyte leakage (REL)) and leaf surface morphology (macrohairs, prickle, silica and epidermal cells) and determined the effects of Si on the growth of two generalist insect herbivores (Helicoverpa armigera and Acheta domesticus). Si had no effect on leaf mechanical traits; however, Si changed leaf surface morphology: silica and prickle cells were on average 127% and 36% larger in Si supplemented plants, respectively. Prickle cell density was significantly reduced by Si, while macrohair density remained unchanged. Caterpillars were more negatively affected by Si compared to crickets, possibly due to the latter having a thicker and thus more protective gut lining. Our data show that Si acts as a direct defence against leaf-chewing insects by changing the morphology of specialised defence structures without altering leaf mechanical traits.
Collapse
Affiliation(s)
- Casey R. Hall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia; (V.D.); (J.M.W.); (S.N.J.)
| | | | | | | |
Collapse
|
19
|
Zvereva EL, Paolucci LN, Kozlov MV. Top-down factors contribute to differences in insect herbivory between saplings and mature trees in boreal and tropical forests. Oecologia 2020; 193:167-176. [PMID: 32314043 PMCID: PMC7235072 DOI: 10.1007/s00442-020-04659-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/15/2020] [Indexed: 11/26/2022]
Abstract
Ontogenetic changes in herbivory are generally not consistent with ontogenetic changes in defensive traits of woody plants. This inconsistency suggests that other factors may affect ontogenetic trajectories in herbivory. We tested the hypothesis that top-down factors contribute to differences in foliar losses to insects between juvenile and mature trees in tropical and boreal forests. We used artificial caterpillars made of modelling clay to compare predation rates between saplings and mature trees of two common forest species, Siparuna guianensis in Brazil (tropical site) and Betula pubescens in Finland (boreal site). Leaf area losses to chewing insects in saplings were 2.5-fold higher than in mature trees in both species. Physical plant defences (measured as specific leaf area, SLA) did not differ between saplings and mature trees in the boreal forest, whereas in the tropical forest, SLA was greater in saplings than in mature trees. Attack rates on the model prey by birds were higher in the boreal forest, whereas attack rates by arthropod predators were higher in the tropical forest. Overall, predation rates on model prey were consistently higher on mature trees than on saplings at both sites, but in the boreal site, this pattern was primarily driven by birds, whereas in the tropical site, it was primarily driven by arthropod predators. We conclude that the effect of predation on herbivorous insects may considerably contribute to ontogenetic differences in herbivory, but the relative roles of different predatory groups and of top-down and bottom-up factors may vary between environments.
Collapse
Affiliation(s)
- Elena L Zvereva
- Department of Biology, University of Turku, 20014, Turku, Finland.
| | - Lucas N Paolucci
- Setor de Ecologia E Conservação, Departamento de Biologia, Universidade Federal de Lavras, Lavras, CEP: 37200-000, Brazil
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa, MG, CEP: 36570-900, Brazil
| | - Mikhail V Kozlov
- Department of Biology, University of Turku, 20014, Turku, Finland
| |
Collapse
|
20
|
Azevedo Schmidt LE, Dunn RE, Mercer J, Dechesne M, Currano ED. Plant and insect herbivore community variation across the Paleocene-Eocene boundary in the Hanna Basin, southeastern Wyoming. PeerJ 2019; 7:e7798. [PMID: 31637117 PMCID: PMC6798869 DOI: 10.7717/peerj.7798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/30/2019] [Indexed: 01/09/2023] Open
Abstract
Ecosystem function and stability are highly affected by internal and external stressors. Utilizing paleobotanical data gives insight into the evolutionary processes an ecosystem undergoes across long periods of time, allowing for a more complete understanding of how plant and insect herbivore communities are affected by ecosystem imbalance. To study how plant and insect herbivore communities change during times of disturbance, we quantified community turnover across the Paleocene--Eocene boundary in the Hanna Basin, southeastern Wyoming. This particular location is unlike other nearby Laramide basins because it has an abundance of late Paleocene and Eocene coal and carbonaceous shales and paucity of well-developed paleosols, suggesting perpetually high water availability. We sampled approximately 800 semi-intact dicot leaves from five stratigraphic levels, one of which occurs late in the Paleocene-Eocene thermal maximum (PETM). Field collections were supplemented with specimens at the Denver Museum of Nature & Science. Fossil leaves were classified into morphospecies and herbivore damage was documented for each leaf. We tested for changes in plant and insect herbivore damage diversity using rarefaction and community composition using non-metric multidimensional scaling ordinations. We also documented changes in depositional environment at each stratigraphic level to better contextualize the environment of the basin. Plant diversity was highest during the mid-late Paleocene and decreased into the Eocene, whereas damage diversity was highest at the sites with low plant diversity. Plant communities significantly changed during the late PETM and do not return to pre-PETM composition. Insect herbivore communities also changed during the PETM, but, unlike plant communities, rebound to their pre-PETM structure. These results suggest that insect herbivore communities responded more strongly to plant community composition than to the diversity of species present.
Collapse
Affiliation(s)
| | - Regan E Dunn
- Natural History Museums of Los Angeles County, La Brea Tar Pits, Los Angeles, CA, USA
| | | | - Marieke Dechesne
- U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO, USA
| | - Ellen D Currano
- Botany, University of Wyoming, Laramie, WY, USA.,Geology and Geophysics, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
21
|
Ciupak A, Dziwulska-Hunek A, Gładyszewska B, Kwaśniewska A. The relationship between physiological and mechanical properties of Acer platanoides L. and Tilia cordata Mill. leaves and their seasonal senescence. Sci Rep 2019; 9:4287. [PMID: 30862899 PMCID: PMC6414727 DOI: 10.1038/s41598-019-40645-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 02/19/2019] [Indexed: 11/08/2022] Open
Abstract
The seasonal senescence of leaves in the phenological cycle coincides with the change of their strength properties which determine resistance to environmental conditions and the efficiency of the photosynthesis process. That affects the development, growth and condition of the plant. Therefore, the aim of this paper was to observe and compare the results of strength tests performed on the leaves of two species of trees popular in Poland - lime and maple. As well as chlorophyll fluorescence and photosynthetic pigments content in the context of the changes occurring during the entire leaf life cycle. Obtained results showed that the strength properties of the tested leaves reached the minimum values in spring and the maximum in the summer similarly to the leaf greenness index. Whereas the fluorescence increased which the seasonal senescence in opposition to the photosynthesis efficiency of the leaves. Collected data revealed that strength parameters and photosynthetic pigment content were significantly higher for maple leaves than for lime leaves. Studies showed differences between physiological and mechanical properties of the leaves of two trees species, even if they grew under the same environmental conditions. It is concluded from the results that phenotype and physical parameters of leaves are related to seasonal senescence.
Collapse
Affiliation(s)
- Anna Ciupak
- Department of Physics, University of Life Sciences, Akademicka 13, 20-950, Lublin, Poland.
| | - Agata Dziwulska-Hunek
- Department of Physics, University of Life Sciences, Akademicka 13, 20-950, Lublin, Poland
| | - Bożena Gładyszewska
- Department of Physics, University of Life Sciences, Akademicka 13, 20-950, Lublin, Poland
| | - Anita Kwaśniewska
- Department of Applied Physics, Lublin University of Technology, Nadbystrzycka 38 D, 20-618, Lublin, Poland
| |
Collapse
|
22
|
Yoneyama A, Ichie T. Relationship between leaf flushing phenology and defensive traits of canopy trees of five dipterocarp species in a tropical rain forest. TROPICS 2019. [DOI: 10.3759/tropics.ms18-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Aogu Yoneyama
- The United Graduate School of Agriculture, Ehime University
| | | |
Collapse
|
23
|
Muiruri EW, Barantal S, Iason GR, Salminen J, Perez‐Fernandez E, Koricheva J. Forest diversity effects on insect herbivores: do leaf traits matter? THE NEW PHYTOLOGIST 2019; 221:2250-2260. [PMID: 30347456 PMCID: PMC6590441 DOI: 10.1111/nph.15558] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Insect herbivore damage and abundance are often reduced in diverse plant stands. However, few studies have explored whether this phenomenon is a result of plant diversity effects on host plant traits. We explored indirect effects of tree species diversity on herbivory via changes in leaf traits in a long-term forest diversity experiment in Finland. We measured 16 leaf traits and leaf damage by four insect guilds (chewers, gall formers, leaf miners and rollers) on silver birch (Betula pendula) trees growing in one-, two-, three- and five-species mixtures. A decline in the frequency of birch in mixed stands resulted in reduced leaf area. This, in turn, mediated the reduction in chewing damage in mixed stands. In contrast, associational resistance of birch to leaf miners was not trait-mediated but driven directly by concurrent declines in birch frequency as tree species richness increased. Our results show that leaf trait variation across the diversity gradient might promote associational resistance, but these patterns are driven by an increase in the relative abundance of heterospecifics rather than by tree species richness per se. Therefore, accounting for concurrent changes in stand structure and key foliar traits is important for the interpretation of plant diversity effects and predictions of associational patterns.
Collapse
Affiliation(s)
- Evalyne W. Muiruri
- School of Biological SciencesRoyal Holloway University of LondonEghamTW20 0EXUK
- CEFASPakefield RoadLowestoftNR33 0HTUK
| | - Sandra Barantal
- School of Biological SciencesRoyal Holloway University of LondonEghamTW20 0EXUK
| | | | | | | | - Julia Koricheva
- School of Biological SciencesRoyal Holloway University of LondonEghamTW20 0EXUK
| |
Collapse
|
24
|
Escobar-Bravo R, Ruijgrok J, Kim HK, Grosser K, Van Dam NM, Klinkhamer PGL, Leiss KA. Light Intensity-Mediated Induction of Trichome-Associated Allelochemicals Increases Resistance Against Thrips in Tomato. PLANT & CELL PHYSIOLOGY 2018; 59:2462-2475. [PMID: 30124946 PMCID: PMC6290487 DOI: 10.1093/pcp/pcy166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/10/2018] [Indexed: 05/20/2023]
Abstract
In cultivated tomato (Solanum lycopersicum), increases in photosynthetically active radiation (PAR) induce type VI leaf glandular trichomes, which are important defensive structures against arthropod herbivores. Yet, how PAR affects the type VI trichome-associated leaf chemistry and its biological significance with respect to other photomorphogenic responses in this agronomically important plant species is unknown. We used the type VI trichome-deficient tomato mutant odorless-2 (od-2) and its wild type to investigate the influence of PAR on trichome-associated chemical defenses against thrips (Frankliniella occidentalis). High PAR increased thrips resistance in wild-type plants, but not in od-2. Furthermore, under high PAR, thrips preferred od-2 over the wild type. Both genotypes increased type VI trichome densities under high PAR. Wild-type plants, however, produced more trichome-associated allelochemicals, i.e. terpenes and phenolics, these being undetectable or barely altered in od-2. High PAR increased leaf number and thickness, and induced profound but similar metabolomic changes in wild-type and od-2 leaves. Enhanced PAR also increased levels of ABA in wild-type and od-2 plants, and of auxin in od-2, while the salicylic acid and jasmonate concentrations were unaltered. However, in both genotypes, high PAR induced the expression of jasmonic acid-responsive defense-related genes. Taken together, our results demonstrate that high PAR-mediated induction of trichome-associated chemical defenses plays a prominent role in tomato-thrips interactions.
Collapse
Affiliation(s)
- Roc�o Escobar-Bravo
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Jasmijn Ruijgrok
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Hye Kyong Kim
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Katharina Grosser
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Halle-Gena-Leipzig, Deutscher Platz 5e, Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger-Str. 159, Jena, Germany
| | - Nicole M Van Dam
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Halle-Gena-Leipzig, Deutscher Platz 5e, Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger-Str. 159, Jena, Germany
| | - Peter G L Klinkhamer
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Kirsten A Leiss
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| |
Collapse
|
25
|
Moore BD, Johnson SN. Get Tough, Get Toxic, or Get a Bodyguard: Identifying Candidate Traits Conferring Belowground Resistance to Herbivores in Grasses. FRONTIERS IN PLANT SCIENCE 2017; 7:1925. [PMID: 28105030 PMCID: PMC5214545 DOI: 10.3389/fpls.2016.01925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/05/2016] [Indexed: 05/11/2023]
Abstract
Grasses (Poaceae) are the fifth-largest plant family by species and their uses for crops, forage, fiber, and fuel make them the most economically important. In grasslands, which broadly-defined cover 40% of the Earth's terrestrial surface outside of Greenland and Antarctica, 40-60% of net primary productivity and 70-98% of invertebrate biomass occurs belowground, providing extensive scope for interactions between roots and rhizosphere invertebrates. Grasses invest 50-70% of fixed carbon into root construction, which suggests roots are high value tissues that should be defended from herbivores, but we know relatively little about such defenses. In this article, we identify candidate grass root defenses, including physical (tough) and chemical (toxic) resistance traits, together with indirect defenses involving recruitment of root herbivores' natural enemies. We draw on relevant literature to establish whether these defenses are present in grasses, and specifically in grass roots, and which herbivores of grasses are affected by these defenses. Physical defenses could include structural macro-molecules such as lignin, cellulose, suberin, and callose in addition to silica and calcium oxalate. Root hairs and rhizosheaths, a structural adaptation unique to grasses, might also play defensive roles. To date, only lignin and silica have been shown to negatively affect root herbivores. In terms of chemical resistance traits, nitrate, oxalic acid, terpenoids, alkaloids, amino acids, cyanogenic glycosides, benzoxazinoids, phenolics, and proteinase inhibitors have the potential to negatively affect grass root herbivores. Several good examples demonstrate the existence of indirect defenses in grass roots, including maize, which can recruit entomopathogenic nematodes (EPNs) via emission of (E)-β-caryophyllene, and similar defenses are likely to be common. In producing this review, we aimed to equip researchers with candidate root defenses for further research.
Collapse
Affiliation(s)
- Ben D Moore
- Hawkesbury Institute for the Environment, Western Sydney University Richmond, NSW, Australia
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University Richmond, NSW, Australia
| |
Collapse
|
26
|
Abstract
Insects and mammals cut their food up into small pieces to facilitate ingestion and chemical digestion. Teeth and jaws act as cutting tools, but, unlike engineering tools designed for a specific purpose, must generally cope with substantial variation in food properties and work at many scales. Knowing how teeth and jaws work effectively requires an understanding of the cutting on the edges and the mechanisms that remove cut material. Variability and heterogeneity of diet properties are not well known, and, for example, may be higher and overlap more in the browsing and grazing categories of plant diets. A reinterpretation of tooth function in large mammal browsers and grazers is proposed.
Collapse
Affiliation(s)
- Gordon Sanson
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
27
|
Vermeij GJ. Plant defences on land and in water: why are they so different? ANNALS OF BOTANY 2016; 117:1099-109. [PMID: 27091505 PMCID: PMC4904178 DOI: 10.1093/aob/mcw061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Plants (attached photosynthesizing organisms) are eaten by a wide variety of herbivorous animals. Despite a vast literature on plant defence, contrasting patterns of antiherbivore adaptation among marine, freshwater and land plants have been little noticed, documented or understood. SCOPE Here I show how the surrounding medium (water or air) affects not only the plants themselves, but also the sensory and locomotor capacities of herbivores and their predators, and I discuss patterns of defence and host specialization of plants and herbivores on land and in water. I analysed the literature on herbivory with special reference to mechanical defences and sensory cues emitted by plants. Spines, hairs, asymmetrically oriented features on plant surfaces, and visual and olfactory signals that confuse or repel herbivores are common in land plants but rare or absent in water-dwelling plants. Small terrestrial herbivores are more often host-specific than their aquatic counterparts. I propose that patterns of selection on terrestrial herbivores and plants differ from those on aquatic species. Land plants must often attract animal dispersers and pollinators that, like their herbivorous counterparts, require sophisticated locomotor and sensory abilities. Plants counter their attractiveness to animal helpers by evolving effective contact defences and long-distance cues that mislead or warn herbivores. The locomotor and sensory world of small aquatic herbivores is more limited. These characteristics result from the lower viscosity and density of air compared with water as well as from limitations on plant physiology and signal transmission in water. Evolutionary innovations have not eliminated the contrasts in the conditions of life between water and land. CONCLUSION Plant defence can be understood fully when herbivores and their victims are considered in the broader context of other interactions among coexisting species and of the medium in which these interactions occur.
Collapse
Affiliation(s)
- Geerat J Vermeij
- University of California, Davis, Department of Earth and Planetary Sciences, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|