1
|
Zhu X, Zou A, Liao R, Zhang J, Liu C, Wang C, Hao C, Cheng D, Chen L, Sun X. Dual actions of chloroinconazide on pepper blight in Capsicum annuum: disruption of Phytophthora capsici mycelium and activation of CaCNGC9-mediated SA signaling. PEST MANAGEMENT SCIENCE 2024; 80:6483-6492. [PMID: 39166737 DOI: 10.1002/ps.8383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Pepper blight, caused by Phytophthora capsici, is a devastating disease that seriously threatens pepper production worldwide. With the emergence of resistance in P. capsici against conventional fungicides, there is an urgent need to explore novel alternatives for pepper blight management. This study aims to assess the inhibitory effect of chloroinconazide (CHI), a compound synthesized from tryptophan, against pepper blight, and to explore its potential mechanisms of action. RESULTS The results demonstrated that CHI effectively targeted P. capsici, disrupting its growth and mycelial structure, which resulted in the release of dissolved intracellular substances. Additionally, CHI significantly inhibited the sporangium formation, zoospores release, and zoospores germination, thereby reducing the re-infection of P. capsici. In contrast, the commercial pesticide methylaxyl only inhibited mycelial growth and had limited effect on re-infection, while azoxystrobin inhibited re-infection but had a weak inhibitory effect on mycelial growth. Furthermore, CHI activated the salicylic acid (SA) signaling pathway-mediated immune response to inhibit P. capsici infection in pepper, with this activation being contingent upon cyclic nucleotide-gated ion channel CaCNGC9. CONCLUSION CHI exhibited potent dual inhibitory effects on P. capsici by disrupting mycelial structure and activating the CaCNGC9-mediated SA signaling pathway. These dual mechanisms of action suggested that CHI could serve as a promising alternative chemical fungicide for the effective management of pepper blight, offering a new approach to control this devastating disease. Our findings highlighted the potential of CHI as a sustainable and efficient solution to combat the increasing resistance of P. capsici to conventional fungicides, ensuring better crop protection and yield. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Zhu
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Aihong Zou
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Rui Liao
- Technology Center, China Tobacco Guizhou Industrial Co., Ltd, Guiyang, China
| | - Jianjian Zhang
- National Center for Enterprise Technology of Jingbo Agrochemicals Technology Co. Ltd, Binzhou, China
| | - Changyun Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Chuanxiang Wang
- National Center for Enterprise Technology of Jingbo Agrochemicals Technology Co. Ltd, Binzhou, China
| | - Chunyan Hao
- National Center for Enterprise Technology of Jingbo Agrochemicals Technology Co. Ltd, Binzhou, China
| | - Daoquan Cheng
- National Center for Enterprise Technology of Jingbo Agrochemicals Technology Co. Ltd, Binzhou, China
| | - Lunfei Chen
- Chongqing Company of China Tobacco Corporation, Chongqing, China
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Wang Y, Chi Q, Jia W, Zheng T, Li B, Li L, Li T, Gao R, Liu W, Ye S, Xu R, Zhang H. Genome Analysis of BnCNGC Gene Family and Function Exploration of BnCNGC57 in Brassica napus L. Int J Mol Sci 2024; 25:11359. [PMID: 39518912 PMCID: PMC11545589 DOI: 10.3390/ijms252111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
The cyclic nucleotide-gated ion channel (CNGC), as a non-selective cation channel, plays a pivotal role in plant growth and stress response. A systematic analysis and identification of the BnCNGC gene family in Brassica napus is crucial for uncovering its biological functions and potential applications in plant science. In this study, we identified 61 BnCNGC members in the B. napus genome, which are phylogenetically similar to Arabidopsis and can be classified into Groups I-IV (with Group IV further subdivided into IV-a and IV-b). Collinearity analysis with other species provided insights into the evolution of BnCNGC. By homology modeling, we predicted the three-dimensional structure of BnCNGC proteins and analyzed cis-acting elements in their promoters, revealing diverse roles in hormone regulation, growth, and stress response. Notably, overexpression of BnCNGC57 (BnaC09g42460D) significantly increased seed size, possibly through regulating cell proliferation via the MAPK signaling pathway. Our findings contribute to a better understanding of the BnCNGC gene family and highlight the potential regulatory role of BnCNGC57 in the seed development of B. napus.
Collapse
Affiliation(s)
- Yue Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Qing Chi
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjing Jia
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Tiantian Zheng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Binghua Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Lin Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Ting Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Rui Gao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenzhe Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shenglin Ye
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Ruqiang Xu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Hanfeng Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| |
Collapse
|
3
|
Zheng L, Yu Y, Zheng Y, Wang Y, Wu N, Jiang C, Zhao H, Niu D. Long small RNA76113 targets CYCLIC NUCLEOTIDE-GATED ION CHANNEL 5 to repress disease resistance in rice. PLANT PHYSIOLOGY 2024; 194:1889-1905. [PMID: 37949839 PMCID: PMC10904327 DOI: 10.1093/plphys/kiad599] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Small RNAs are widely involved in plant immune responses. However, the role of long small RNAs (25 to 40 nt) in monocot plant disease resistance is largely unknown. Here, we identified a long small RNA (lsiR76113) from rice (Oryza sativa) that is downregulated by Magnaporthe oryzae infection and targets a gene encoding CYCLIC NUCLEOTIDE-GATED CHANNEL 5 (CNGC5). The cngc5 mutant lines were more susceptible to M. oryzae than the wild type, while knocking down lsiR76113 in transgenic rice plants promoted pathogen resistance. A protoplast transient expression assay showed that OsCNGC5 promotes Ca2+ influx. These results demonstrate that OsCNGC5 enhances rice resistance to rice blast by increasing the cytosolic Ca2+ concentration. Importantly, exogenous Ca2+ application enhanced rice M. oryzae resistance by affecting reactive oxygen species (ROS) production. Moreover, cngc5 mutants attenuated the PAMP-triggered immunity response, including chitin-induced and flg22-induced ROS bursts and protein phosphorylation in the mitogen-activated protein kinase cascade, indicating that OsCNGC5 is essential for PAMP-induced calcium signaling in rice. Taken together, these results suggest that lsiR76113-mediated regulation of Ca2+ influx is important for PTI responses and disease resistance in rice.
Collapse
Affiliation(s)
- Liyu Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiyang Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaxin Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Na Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunhao Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongwei Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongdong Niu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Guo Y, Xu X, Lin J, Li H, Guo W, Wan S, Chen Z, Xu H, Lin F. The herbicide bensulfuron-methyl inhibits rice seedling development by blocking calcium ion flux in the OsCNGC12 channel. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1218-1233. [PMID: 37574927 DOI: 10.1111/tpj.16418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
Identification of translocator protein-related genes involved in bensulfuron-methyl (BSM) uptake and transport in rice could facilitate the development of herbicide-tolerant cultivars by inactivating them. This study found that the OsCNGC12 mutants not only reduced BSM uptake but also compromised the Ca2 ⁺ efflux caused by BSM in the roots, regulating dynamic equilibrium of Ca2 ⁺ inside the cell and conferring non-target-site tolerance to BSM.
Collapse
Affiliation(s)
- Yating Guo
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohui Xu
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Jinbei Lin
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Haiqing Li
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Weikang Guo
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Shuqing Wan
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zepeng Chen
- China National Tobacco Corporation Guangdong Branch, Guangzhou, 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Fei Lin
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
5
|
Jiang Z, Du L, Shen L, He J, Xia X, Zhang L, Yang X. Genome-Wide Exploration and Expression Analysis of the CNGC Gene Family in Eggplant ( Solanum melongena L.) under Cold Stress, with Functional Characterization of SmCNGC1a. Int J Mol Sci 2023; 24:13049. [PMID: 37685854 PMCID: PMC10487859 DOI: 10.3390/ijms241713049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Eggplant (Solanum melongena L.) is an important economic crop, and to date, there has been no genome-wide identification and analysis of the cyclic nucleotide-gated channel (CNGC) gene family in eggplant. In this study, we identified the CNGC gene family in eggplant, and the results showed that 29 SmCNGC genes were classified into five groups, unevenly distributed across the 12 chromosomes of eggplant. The gene structure and motif analysis indicated that the SmCNGC family proteins may exhibit apparent preferences during evolution. Furthermore, our study revealed the presence of numerous light-responsive elements, hormone-responsive elements, and transcription factor binding sites in the promoter regions of SmCNGC genes, suggesting their significant role in environmental adaptability regulation. Finally, we analyzed the expression patterns of all SmCNGC genes under cold stress and found that SmCNGC1a was significantly upregulated under cold stress. Subcellular localization experiments indicated that this gene is located on the plasma membrane. Subsequently, its importance in the low-temperature response of eggplant was validated through virus-induced gene silencing (VIGS), and its protein interactome was predicted. In summary, our study provides a comprehensive understanding of the function and regulatory mechanisms of the CNGC gene family in eggplant, laying an important foundation for further research on cold adaptation in eggplant.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xu Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Chen L, Wang W, He H, Yang P, Sun X, Zhang Z. Genome-Wide Identification, Characterization and Experimental Expression Analysis of CNGC Gene Family in Gossypium. Int J Mol Sci 2023; 24:ijms24054617. [PMID: 36902047 PMCID: PMC10003296 DOI: 10.3390/ijms24054617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
Cyclic nucleotide-gated ion channels (CNGCs) are channel proteins for calcium ions, and have been reported to play important roles in regulating survival and environmental response of various plants. However, little is known about how the CNGC family works in Gossypium. In this study, 173 CNGC genes, which were identified from two diploid and five tetraploid Gossypium species, were classified into four groups by phylogenetic analysis. The collinearity results demonstrated that CNGC genes are integrally conservative among Gossypium species, but four gene losses and three simple translocations were detected, which is beneficial to analyzing the evolution of CNGCs in Gossypium. The various cis-acting regulatory elements in the CNGCs' upstream sequences revealed their possible functions in responding to multiple stimuli such as hormonal changes and abiotic stresses. In addition, expression levels of 14 CNGC genes changed significantly after being treated with various hormones. The findings in this study will contribute to understanding the function of the CNGC family in cotton, and lay a foundation for unraveling the molecular mechanism of cotton plants' response to hormonal changes.
Collapse
|
7
|
Pantha P, Oh DH, Longstreth D, Dassanayake M. Living with high potassium: Balance between nutrient acquisition and K-induced salt stress signaling. PLANT PHYSIOLOGY 2023; 191:1102-1121. [PMID: 36493387 PMCID: PMC9922392 DOI: 10.1093/plphys/kiac564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 05/12/2023]
Abstract
High potassium (K) in the growth medium induces salinity stress in plants. However, the molecular mechanisms underlying plant responses to K-induced salt stress are virtually unknown. We examined Arabidopsis (Arabidopsis thaliana) and its extremophyte relative Schrenkiella parvula using a comparative multiomics approach to identify cellular processes affected by excess K and understand which deterministic regulatory pathways are active to avoid tissue damages while sustaining growth. Arabidopsis showed limited capacity to curb excess K accumulation and prevent nutrient depletion, contrasting to S. parvula which could limit excess K accumulation without restricting nutrient uptake. A targeted transcriptomic response in S. parvula promoted nitrogen uptake along with other key nutrients followed by uninterrupted N assimilation into primary metabolites during excess K-stress. This resulted in larger antioxidant and osmolyte pools and corresponded with sustained growth in S. parvula. Antithetically, Arabidopsis showed increased reactive oxygen species levels, reduced photosynthesis, and transcriptional responses indicative of a poor balance between stress signaling, subsequently leading to growth limitations. Our results indicate that the ability to regulate independent nutrient uptake and a coordinated transcriptomic response to avoid nonspecific stress signaling are two main deterministic steps toward building stress resilience to excess K+-induced salt stress.
Collapse
Affiliation(s)
- Pramod Pantha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - David Longstreth
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | |
Collapse
|
8
|
Bolaños L, Abreu I, Bonilla I, Camacho-Cristóbal JJ, Reguera M. What Can Boron Deficiency Symptoms Tell Us about Its Function and Regulation? PLANTS (BASEL, SWITZERLAND) 2023; 12:777. [PMID: 36840125 PMCID: PMC9963425 DOI: 10.3390/plants12040777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
On the eve of the 100th anniversary of Dr. Warington's discovery of boron (B) as a nutrient essential for higher plants, "boronists" have struggled to demonstrate a role beyond its structural function in cell walls dimerizing pectin molecules of rhamnogalacturonan II (RGII). In this regard, B deficiency has been associated with a plethora of symptoms in plants that include macroscopic symptoms like growth arrest and cell death and biochemical or molecular symptoms that include changes in cell wall pore size, apoplast acidification, or a steep ROS production that leads to an oxidative burst. Aiming to shed light on B functions in plant biology, we proposed here a unifying model integrating the current knowledge about B function(s) in plants to explain why B deficiency can cause such remarkable effects on plant growth and development, impacting crop productivity. In addition, based on recent experimental evidence that suggests the existence of different B ligands other than RGII in plant cells, namely glycolipids, and glycoproteins, we proposed an experimental pipeline to identify putative missing ligands and to determine how they would integrate into the above-mentioned model.
Collapse
Affiliation(s)
- Luis Bolaños
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Isidro Abreu
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Ildefonso Bonilla
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Juan J. Camacho-Cristóbal
- Departamento de Fisiología, Anatomía y Biología Celular, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - María Reguera
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
9
|
Jia B, Li Y, Sun X, Sun M. Structure, Function, and Applications of Soybean Calcium Transporters. Int J Mol Sci 2022; 23:ijms232214220. [PMID: 36430698 PMCID: PMC9693241 DOI: 10.3390/ijms232214220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Glycine max is a calcium-loving crop. The external application of calcium fertilizer is beneficial to the increase of soybean yield. Indeed, calcium is a vital nutrient in plant growth and development. As a core metal ion in signaling transduction, calcium content is maintained in dynamic balance under normal circumstances. Now, eight transporters were found to control the uptake and efflux of calcium. Though these calcium transporters have been identified through genome-wide analysis, only a few of them were functionally verified. Therefore, in this study, we summarized the current knowledge of soybean calcium transporters in structural features, expression characteristics, roles in stress response, and prospects. The above results will be helpful in understanding the function of cellular calcium transport and provide a theoretical basis for elevating soybean yield.
Collapse
|
10
|
Baloch AA, Kakar KU, Nawaz Z, Mushtaq M, Abro A, Khan S, Latif A. Comparative genomics and evolutionary analysis of plant CNGCs. Biol Methods Protoc 2022; 7:bpac018. [PMID: 36032330 PMCID: PMC9400807 DOI: 10.1093/biomethods/bpac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Comparative genomics and computational biology offer powerful research tools for studying evolutionary mechanisms of organisms, and the identification and characterization of conserved/distant genes and gene families. The plant CNGC gene family encodes evolutionary conserved ion channel proteins involved in important signaling pathways and biological functions. The fundamental ideas and standard procedures for genome-wide identification and evolutionary analysis of plant cyclic nucleotide-gated ion channels employing various software, tools, and online servers have been discussed. In particular, this developed method focused on practical procedures involving the comparative analysis of paralogs and orthologs of CNGC genes in different plant species at different levels including phylogenetic analysis, nomenclature and classification, gene structure, molecular protein evolution, and duplication events as mechanisms of gene family expansion and synteny.
Collapse
Affiliation(s)
- Akram Ali Baloch
- Department of Biotechnology, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Kaleem U Kakar
- Department of Microbiology, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Zarqa Nawaz
- Department of Botany, University of Central Punjab, Rawalpindi, Pakistan
| | - Muhammad Mushtaq
- Department of Biotechnology, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Asma Abro
- Department of Biotechnology, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Samiullah Khan
- Department of Biotechnology, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Abdul Latif
- Department of Microbiology, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| |
Collapse
|
11
|
Dynamic Expression, Differential Regulation and Functional Diversity of the CNGC Family Genes in Cotton. Int J Mol Sci 2022; 23:ijms23042041. [PMID: 35216157 PMCID: PMC8878070 DOI: 10.3390/ijms23042041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 01/16/2023] Open
Abstract
Cyclic nucleotide-gated channels (CNGCs) constitute a family of non-selective cation channels that are primarily permeable to Ca2+ and activated by the direct binding of cyclic nucleotides (i.e., cAMP and cGMP) to mediate cellular signaling, both in animals and plants. Until now, our understanding of CNGCs in cotton (Gossypium spp.) remains poorly addressed. In the present study, we have identified 40, 41, 20, 20, and 20 CNGC genes in G. hirsutum, G. barbadense, G. herbaceum, G. arboreum, and G. raimondii, respectively, and demonstrated characteristics of the phylogenetic relationships, gene structures, chromosomal localization, gene duplication, and synteny. Further investigation of CNGC genes in G. hirsutum, named GhCNGC1-40, indicated that they are not only extensively expressed in various tissues and at different developmental stages, but also display diverse expression patterns in response to hormones (abscisic acid, salicylic acid, methyl jasmonate, ethylene), abiotic (salt stress) and biotic (Verticillium dahlia infection) stimuli, which conform with a variety of cis-acting regulatory elements residing in the promoter regions; moreover, a set of GhCNGCs are responsive to cAMP signaling during cotton fiber development. Protein–protein interactions supported the functional aspects of GhCNGCs in plant growth, development, and stress responses. Accordingly, the silencing of the homoeologous gene pair GhCNGC1&18 and GhCNGC12&31 impaired plant growth and development; however, GhCNGC1&18-silenced plants enhanced Verticillium wilt resistance and salt tolerance, whereas GhCNGC12&31-silenced plants had opposite effects. Together, these results unveiled the dynamic expression, differential regulation, and functional diversity of the CNGC family genes in cotton. The present work has laid the foundation for further studies and the utilization of CNGCs in cotton genetic improvement.
Collapse
|
12
|
Abstract
Our knowledge of plant ion channels was significantly enhanced by the first application of the patch-clamp technique to isolated guard cell protoplasts over 35 years ago. Since then, research has demonstrated the importance of ion channels in the control of gas exchange in guard cells, their role in nutrient uptake in roots, and the participation of calcium-permeable cation channels in the regulation of cell signaling affected by the intracellular concentrations of this second messenger. In recent years, through the employment of reverse genetics, mutant proteins, and heterologous expression systems, research on ion channels has identified mechanisms that modify their activity through protein-protein interactions or that result in activation and/or deactivation of ion channels through posttranslational modifications. Additional and confirmatory information on ion channel functioning has been derived from the crystallization and molecular modeling of plant proteins that, together with functional analyses, have helped to increase our knowledge of the functioning of these important membrane proteins that may eventually help to improve crop yield. Here, an update on the advances obtained in plant ion channel function during the last few years is presented.
Collapse
Affiliation(s)
- Omar Pantoja
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México;
| |
Collapse
|
13
|
Johns S, Hagihara T, Toyota M, Gilroy S. The fast and the furious: rapid long-range signaling in plants. PLANT PHYSIOLOGY 2021; 185:694-706. [PMID: 33793939 PMCID: PMC8133610 DOI: 10.1093/plphys/kiaa098] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/08/2020] [Indexed: 05/04/2023]
Abstract
Plants possess a systemic signaling system whereby local stimuli can lead to rapid, plant-wide responses. In addition to the redistribution of chemical messengers that range from RNAs and peptides to hormones and metabolites, a communication system acting through the transmission of electrical, Ca2+, reactive oxygen species and potentially even hydraulic signals has also been discovered. This latter system can propagate signals across many cells each second and researchers are now beginning to uncover the molecular machineries behind this rapid communications network. Thus, elements such as the reactive oxygen species producing NAPDH oxidases and ion channels of the two pore channel, glutamate receptor-like and cyclic nucleotide gated families are all required for the rapid propagation of these signals. Upon arrival at their distant targets, these changes trigger responses ranging from the production of hormones, to changes in the levels of primary metabolites and shifts in patterns of gene expression. These systemic responses occur within seconds to minutes of perception of the initial, local signal, allowing for the rapid deployment of plant-wide responses. For example, an insect starting to chew on just a single leaf triggers preemptive antiherbivore defenses throughout the plant well before it has a chance to move on to the next leaf on its menu.
Collapse
Affiliation(s)
- Sarah Johns
- Department of Botany, University of Wisconsin–Madison, Birge Hall, 430 Lincoln Drive, Madison, WI 35706, USA
| | - Takuma Hagihara
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Simon Gilroy
- Department of Botany, University of Wisconsin–Madison, Birge Hall, 430 Lincoln Drive, Madison, WI 35706, USA
- Author for communication:
| |
Collapse
|
14
|
Jarratt-Barnham E, Wang L, Ning Y, Davies JM. The Complex Story of Plant Cyclic Nucleotide-Gated Channels. Int J Mol Sci 2021; 22:ijms22020874. [PMID: 33467208 PMCID: PMC7830781 DOI: 10.3390/ijms22020874] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Plant cyclic nucleotide-gated channels (CNGCs) are tetrameric cation channels which may be activated by the cyclic nucleotides (cNMPs) adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP). The genome of Arabidopsis thaliana encodes 20 CNGC subunits associated with aspects of development, stress response and immunity. Recently, it has been demonstrated that CNGC subunits form heterotetrameric complexes which behave differently from the homotetramers produced by their constituent subunits. These findings have widespread implications for future signalling research and may help explain how specificity can be achieved by CNGCs that are known to act in disparate pathways. Regulation of complex formation may involve cyclic nucleotide-gated channel-like proteins.
Collapse
|
15
|
Genome-wide identification of CNGC genes in Chinese jujube (Ziziphus jujuba Mill.) and ZjCNGC2 mediated signalling cascades in response to cold stress. BMC Genomics 2020; 21:191. [PMID: 32122304 PMCID: PMC7053155 DOI: 10.1186/s12864-020-6601-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUNDS Cyclic nucleotide gated channels (CNGCs) play multifaceted roles in plant physiological processes, especially with respect to signalling processes, plant development, and responses to environmental stresses. However, little information is known about the CNGC family in the large cosmopolitan family Rhamnaceae, which has strong tolerance to biotic and abiotic stresses. RESULTS In the current study, a total of 15 ZjCNGCs which located on 7 chromosomes were firstly identified in Chinese jujube (Ziziphus jujuba Mill.), the most important species of Rhamnaceae in terms of economic and ecological values. Phylogenetic analysis showed that these ZjCNGCs could be classified into four groups, ZjCNGC12 belonged to group IVA, and ZjCNGC13, 14, 15 belonged to group IVB. In addition, the paralogous and orthologous homology duplication of ZjCNGC15 occurred during the evolutionary process. The characteristics of ZjCNGCs regarding to exon-intron numbers and post-translational modifications showed diversified structures and functions. Motif composition and protein sequence analysis revealed that the phosphate-binding cassette and hinge regions were conserved among ZjCNGCs. Prediction of the cis-acting regulatory elements and expression profiles by real-time quantitative PCR analysis showed that some of the ZjCNGCs responded to environmental changes, especially ZjCNGC2, which was significantly downregulated in response to cold stress, and ZjCNGC4 was highly induced in response to cold, salt and alkaline stresses. ZjCNGC13 and 14 were highly induced in the phytoplasma-resistant cultivar and downregulated in the susceptible cultivar. Furthermore, ZjCNGC2 could be regulated by cAMP treatment, microtubule changes and interact with ZjMAPKK4, which suggested that cAMP and microtubule might play important roles in ZjCNGC2 mediated ZjMAPKK4 signalling transduction involved in cold stress. CONCLUSIONS The identification and classification analysis of ZjCNGCs were firstly reported, and some key individual ZjCNGCs might play essential roles in the response to biotic and abiotic stresses, especially ZjCNGC2 mediated ZjMAPKK4 signalling transduction involved in cold stress. This systematic analysis could provide important information for further functional characterization of ZjCNGCs with the aim of breeding stress-resistant cultivars.
Collapse
|
16
|
Duszyn M, Świeżawska B, Szmidt-Jaworska A, Jaworski K. Cyclic nucleotide gated channels (CNGCs) in plant signalling-Current knowledge and perspectives. JOURNAL OF PLANT PHYSIOLOGY 2019; 241:153035. [PMID: 31491601 DOI: 10.1016/j.jplph.2019.153035] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 05/22/2023]
Abstract
Cell signaling is an evolutionarily conserved mechanism that responds and adapts to various internal and external factors. Generally, a signal is mediated by various signaling molecules and is transferred to a cascade of effector proteins. To date, there is significant evidence that cyclic nucleotides (cNMPs), e.g., adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP), may represent important elements of many signaling pathways in plants. However, in contrast to the impressive progress made in understanding cyclic nucleotide signaling in mammalian hosts, only few studies have investigated this topic in plants. Existing evidence indicates that cNMPs participate in growth and developmental processes, as well as the response to various stresses. Once synthesized by adenylyl or guanylyl cyclases, these signals are transduced by acting through a number of cellular effectors. The regulatory effects of cNMPs in eukaryotes can be mediated via various downstream effector proteins, such as protein kinases, Exchange Protein directly Activated by cAMP (EPAC), and Cyclic Nucleotide-Gated ion Channels (CNGC). These proteins sense changes in intracellular cNMP levels and regulate numerous cellular responses. Moreover, the amplitude of cNMP levels and the duration of its signal in the cell is also governed by phosphodiesterases (PDEs), enzymes that are responsible for the breakdown of cNMPs. Data collected in recent years strongly suggest that cyclic nucleotide gated channels are the main cNMP effectors in plant cells. These channels are important cellular switches that transduce changes in intracellular concentrations of cyclic nucleotides into changes in membrane potential and ion concentrations. Structurally, these channels belong to the superfamily of pore-loop cation channels. In this review, we provide an overview of the molecular properties of CNGC structure, regulation and ion selectivity, and subcellular localization, as well as describing the signal transduction pathways in which these channels are involved. We will also summarize recent insights into the role of CNGC proteins in plant growth, development and response to stressors.
Collapse
Affiliation(s)
- Maria Duszyn
- Nicolaus Copernicus University, Faculty of Biology and Environmental Protection, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Brygida Świeżawska
- Nicolaus Copernicus University, Faculty of Biology and Environmental Protection, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Adriana Szmidt-Jaworska
- Nicolaus Copernicus University, Faculty of Biology and Environmental Protection, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Krzysztof Jaworski
- Nicolaus Copernicus University, Faculty of Biology and Environmental Protection, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| |
Collapse
|
17
|
Vigani G, Costa A. Harnessing the new emerging imaging technologies to uncover the role of Ca 2+ signalling in plant nutrient homeostasis. PLANT, CELL & ENVIRONMENT 2019; 42:2885-2901. [PMID: 31286524 DOI: 10.1111/pce.13611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 05/26/2023]
Abstract
Increasing crop yields by using ecofriendly practices is of high priority to tackle problems regarding food security and malnutrition worldwide. A sustainable crop production requires a limited use of fertilizer and the employment of plant varieties with improved ability to acquire nutrients from soil. To reach these goals, the scientific community aims to understand plant nutrients homeostasis by deciphering the nutrient sensing and signalling mechanisms of plants. Several lines of evidence about the involvement of Ca2+ as the signal of an impaired nutrient availability have been reported. Ca2+ signalling is a tightly regulated process that requires specific protein toolkits to perceive external stimuli and to induce the specific responses in the plant needed to survive. Here, we summarize both older and recent findings concerning the involvement of Ca2+ signalling in the homeostasis of nutrients. In this review, we present new emerging technologies, based on the use of genetically encoded Ca2+ sensors and advanced microscopy, which offer the chance to perform in planta analyses of Ca2+ dynamics at cellular resolution. The harnessing of these technologies with different genetic backgrounds and subjected to different nutritional stresses will provide important insights to the still little-known mechanisms of nutrient sensing in plants.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10135, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| |
Collapse
|
18
|
Boron Deficiency Increases Cytosolic Ca 2+ Levels Mainly via Ca 2+ Influx from the Apoplast in Arabidopsis thaliana Roots. Int J Mol Sci 2019; 20:ijms20092297. [PMID: 31075903 PMCID: PMC6540140 DOI: 10.3390/ijms20092297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 11/17/2022] Open
Abstract
Boron (B) is a micronutrient for plant development, and its deficiency alters many physiological processes. However, the current knowledge on how plants are able to sense the B-starvation signal is still very limited. Recently, it has been reported that B deprivation induces an increase in cytosolic calcium concentration ([Ca2+]cyt) in Arabidopsis thaliana roots. The aim of this work was to research in Arabidopsis whether [Ca2+]cyt is restored to initial levels when B is resupplied and elucidate whether apoplastic Ca2+ is the major source for B-deficiency-induced rise in [Ca2+]cyt. The use of chemical compounds affecting Ca2+ homeostasis showed that the rise in root [Ca2+]cyt induced by B deficiency was predominantly owed to Ca2+ influx from the apoplast through plasma membrane Ca2+ channels in an IP3-independent manner. Furthermore, B resupply restored the root [Ca2+]cyt. Interestingly, expression levels of genes encoding Ca2+ transporters (ACA10, plasma membrane PIIB-type Ca2+-ATPase; and CAX3, vacuolar cation/proton exchanger) were upregulated by ethylene glycol tetraacetic acid (EGTA) and abscisic acid (ABA). The results pointed out that ACA10, and especially CAX3, would play a major role in the restoration of Ca2+ homeostasis after 24 h of B deficiency.
Collapse
|
19
|
Li Q, Yang S, Ren J, Ye X, jiang X, Liu Z. Genome-wide identification and functional analysis of the cyclic nucleotide-gated channel gene family in Chinese cabbage. 3 Biotech 2019; 9:114. [PMID: 30863698 DOI: 10.1007/s13205-019-1647-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/21/2019] [Indexed: 10/27/2022] Open
Abstract
Cyclic nucleotide-gated channels (CNGCs) are a class of nonselective cationic channels that are widely found in animals and plants. Plant CNGCs participate in numerous biological functions that vary from development to stress tolerance. Most CNGC genes have been identified in plant genomes, but no such comprehensive study has yet been conducted on Chinese cabbage. In this study, thirty BrCNGC genes were identified, divided into five groups, and used for evolutionary analysis. We assigned names of all individual CNGC members on the basis of phylogenetic relationship with A. thaliana CNGCs. All BrCNGC genes were randomly distributed on chromosomes, and the A08 chromosome did not carry any CNGC gene. The CNGC genes of Chinese cabbage and A. thaliana from the same group displayed similar conserved motifs and gene structures. Especially the closer the homology, the higher the similarity. Quantitative expression analysis showed that most of the CNGC genes were expressed under four stresses, indicating that they play a key role in the stress response of Chinese cabbage. Expression patterns of 12 BrCNGC in the roots, stems, leaves, flowers, and siliques showed that BrCNGC8 and BrCNGC16 were specifically expressed only in flowers but not in other parts. This study lays a theoretical foundation for future research on the function of the CNGC gene family in Chinese cabbage.
Collapse
|
20
|
Nawaz Z, Kakar KU, Ullah R, Yu S, Zhang J, Shu QY, Ren XL. Genome-wide identification, evolution and expression analysis of cyclic nucleotide-gated channels in tobacco (Nicotiana tabacum L.). Genomics 2019; 111:142-158. [PMID: 29476784 DOI: 10.1016/j.ygeno.2018.01.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/31/2017] [Accepted: 01/17/2018] [Indexed: 12/30/2022]
Abstract
Tobacco (Nicotiana tabacum) serve as the top leading commercial, non-food, and model crop worldwide. Cyclic nucleotide-gated channels (CNGCs) are ligand-gated, calcium-permeable, divalent, cation-selective channels, involved in important biological functions. Here, we systematically characterized thirty-five CNGC genes in the genome of Nicotiana tabacum, and classified into four phylogenetic groups. Evolutionary analysis showed that NtabCNGC family of N. tabacum originated from the parental genome of N. sylvestris and N. tomentosiformis, and further expanded via tandem and segmental duplication events. Tissue-specific expression analysis showed that twenty-three NtabCNGC genes are involved in the development of various tobacco tissues. Subsequent RT-qPCR analyses indicated that these genes are sensitive towards external abiotic and biotic stresses. Notable performances were exhibited by group-I and IV CNGC genes against black shank, Cucumber mosaic virus, Potato virus Y, cold, drought, and cadmium stresses. Our analyses also suggested that NtabCNGCs can be regulated by phosphorylation and miRNAs, and multiple light, temperature, and pathogen-responsive cis-acting regulatory elements present in promotors. These results will be useful for elaborating the biological roles of NtabCNGCs in tobacco growth and development.
Collapse
Affiliation(s)
- Zarqa Nawaz
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China.
| | - Kaleem U Kakar
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China; State Key Laboratory of Rice Biology, Institution of Crop Science, Zhejiang University, Hangzhou 310058, China.
| | - Raqeeb Ullah
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shizou Yu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China; Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Zhang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Qing-Yao Shu
- State Key Laboratory of Rice Biology, Institution of Crop Science, Zhejiang University, Hangzhou 310058, China.
| | - Xue-Liang Ren
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China.
| |
Collapse
|
21
|
Moon JY, Belloeil C, Ianna ML, Shin R. Arabidopsis CNGC Family Members Contribute to Heavy Metal Ion Uptake in Plants. Int J Mol Sci 2019; 20:E413. [PMID: 30669376 PMCID: PMC6358908 DOI: 10.3390/ijms20020413] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/31/2022] Open
Abstract
Heavy metal ions, including toxic concentrations of essential ions, negatively affect diverse metabolic and cellular processes. Heavy metal ions are known to enter cells in a non-selective manner; however, few studies have examined the regulation of heavy metal ion transport. Plant cyclic nucleotide-gated channels (CNGCs), a type of Ca2+-permeable-channel, have been suggested to be involved in the uptake of both essential and toxic cations. To determine the candidates responsible for heavy metal ion transport, a series of Arabidopsis CNGC mutants were examined for their response to Pb2+ and Cd2+ ions. The primary focus was on root growth and the analysis of the concentration of heavy metals in plants. Results, based on the analysis of primary root length, indicated that AtCNGC1, AtCNGC10, AtCNGC13 and AtCNGC19 play roles in Pb2+ toxicity, while AtCNGC11, AtCNGC13, AtCNGC16 and AtCNGC20 function in Cd2+ toxicity in Arabidopsis. Ion content analysis verified that the mutations of AtCNGC1 and AtCNGC13 resulted in reduced Pb2+ accumulation, while the mutations of AtCNGC11, AtCNGC15 and AtCNGC19 resulted in less Pb2+ and Cd2+ accumulation in plants. These findings provide functional evidence which support the roles of these AtCNGCs in the uptake and transport of Pb2+ or Cd2+ ion in plants.
Collapse
Affiliation(s)
- Ju Yeon Moon
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Célestine Belloeil
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- Université Paris Diderot, 5 rue Thomas Mann, 75013 Paris, France.
| | - Madeline Louise Ianna
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- School of Science and Technology, UNE, Armidale, New South Wales 2351, Australia.
| | - Ryoung Shin
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
22
|
Hao L, Qiao X. Genome-wide identification and analysis of the CNGC gene family in maize. PeerJ 2018; 6:e5816. [PMID: 30356996 PMCID: PMC6195792 DOI: 10.7717/peerj.5816] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 09/21/2018] [Indexed: 01/09/2023] Open
Abstract
As one of the non-selective cation channel gene families, the cyclic nucleotide-gated channel (CNGC) gene family plays a vital role in plant physiological processes that are related to signal pathways, plant development, and environmental stresses. However, genome-wide identification and analysis of the CNGC gene family in maize has not yet been undertaken. In the present study, twelve ZmCNGC genes were identified in the maize genome, which were unevenly distributed on chromosomes 1, 2, 4, 5, 6, 7, and 8. They were classified into five major groups: Groups I, II, III, IVa, and IVb. Phylogenetic analysis showed that gramineous plant CNGC genes expanded unequally during evolution. Group IV CNGC genes emerged first, whereas Groups I and II appeared later. Prediction analysis of cis-acting regulatory elements showed that 137 putative cis-elements were related to hormone-response, abiotic stress, and organ development. Furthermore, 120 protein pairs were predicted to interact with the 12 ZmCNGC proteins and other maize proteins. The expression profiles of the ZmCNGC genes were expressed in tissue-specific patterns. These results provide important information that will increase our understanding of the CNGC gene family in maize and other plants.
Collapse
Affiliation(s)
- Lidong Hao
- College of Agriculture and Hydraulic Engineering, Suihua University, Suihua, HeiLongjiang province, China
| | - Xiuli Qiao
- College of Food and Pharmaceutical Engineering, Suihua University, Suihua, HeiLongjiang province, China
| |
Collapse
|
23
|
Guo J, Islam MA, Lin H, Ji C, Duan Y, Liu P, Zeng Q, Day B, Kang Z, Guo J. Genome-Wide Identification of Cyclic Nucleotide-Gated Ion Channel Gene Family in Wheat and Functional Analyses of TaCNGC14 and TaCNGC16. FRONTIERS IN PLANT SCIENCE 2018; 9:18. [PMID: 29403523 PMCID: PMC5786745 DOI: 10.3389/fpls.2018.00018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/04/2018] [Indexed: 05/18/2023]
Abstract
Cyclic nucleotide gated channels (CNGCs) play multifaceted roles in plants, particularly with respect to signaling processes associated with abiotic stress signaling and during host-pathogen interactions. Despite key roles during plant survival and response to environment, little is known about the activity and function of CNGC family in common wheat (Triticum aestivum L.), a key stable food around the globe. In this study, we performed a genome-wide identification of CNGC family in wheat and identified a total 47 TaCNGCs in wheat, classifying these genes into four major groups (I-IV) with two sub-groups (IVa and IVb). Sequence analysis revealed the presence of several conserved motifs, including a phosphate binding cassette (PBC) and a "hinge" region, both of which have been hypothesized to be critical for the function of wheat CNGCs. During wheat infection with Pst, the transcript levels of TaCNGC14 and TaCNGC16, both members of group IVb, showed significant induction during a compatible interaction, while a reduction in gene expression was observed in incompatible interactions. In addition, TaCNGC14 and TaCNGC16 mRNA accumulation was significantly influenced by exogenously applied hormones, including abscisic acid (ABA), methyl jasmonate (MeJA), and salicylic acid (SA), suggesting a role in hormone signaling and/or perception. Silencing of TaCNGC14 and TaCNGC16 limited Pst growth and increased wheat resistance against Pst. The results presented herein contribute to our understanding of the wheat CNGC gene family and the mechanism of TaCNGCs signaling during wheat-Pst interaction.
Collapse
Affiliation(s)
- Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Md Ashraful Islam
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Haocheng Lin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Changan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yinghui Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
24
|
Chiasson DM, Haage K, Sollweck K, Brachmann A, Dietrich P, Parniske M. A quantitative hypermorphic CNGC allele confers ectopic calcium flux and impairs cellular development. eLife 2017; 6:25012. [PMID: 28933692 PMCID: PMC5716663 DOI: 10.7554/elife.25012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
The coordinated control of Ca2+ signaling is essential for development in eukaryotes. Cyclic nucleotide-gated channel (CNGC) family members mediate Ca2+ influx from cellular stores in plants (Charpentier et al., 2016; Gao et al., 2016; Frietsch et al., 2007; Urquhart et al., 2007). Here, we report the unusual genetic behavior of a quantitative gain-of-function CNGC mutation (brush) in Lotus japonicus resulting in a leaky tetrameric channel. brush resides in a cluster of redundant CNGCs encoding subunits which resemble metazoan voltage-gated potassium (Kv1-Kv4) channels in assembly and gating properties. The recessive mongenic brush mutation impaired root development and infection by nitrogen-fixing rhizobia. The brush allele exhibited quantitative behavior since overexpression of the cluster subunits was required to suppress the brush phenotype. The results reveal a mechanism by which quantitative competition between channel subunits for tetramer assembly can impact the phenotype of the mutation carrier.
Collapse
Affiliation(s)
- David M Chiasson
- Faculty of Biology, Institute of Genetics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Kristina Haage
- Faculty of Biology, Institute of Genetics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Sollweck
- Faculty of Biology, Institute of Genetics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andreas Brachmann
- Faculty of Biology, Institute of Genetics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Petra Dietrich
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Parniske
- Faculty of Biology, Institute of Genetics, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
25
|
DeFalco TA, Moeder W, Yoshioka K. Opening the Gates: Insights into Cyclic Nucleotide-Gated Channel-Mediated Signaling. TRENDS IN PLANT SCIENCE 2016; 21:903-906. [PMID: 27623305 DOI: 10.1016/j.tplants.2016.08.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 05/09/2023]
Abstract
Recent work has expanded our understanding of the roles of cyclic nucleotide-gated channels (CNGCs) in plant signaling. In this spotlight article, we discuss advances and future perspectives in determining how CNGCs mediate calcium signaling in response to diverse stimuli.
Collapse
Affiliation(s)
- Thomas A DeFalco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3B2; Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, Toronto, ON, Canada M5S 3B2.
| |
Collapse
|
26
|
Charpentier M, Sun J, Vaz Martins T, Radhakrishnan GV, Findlay K, Soumpourou E, Thouin J, Véry AA, Sanders D, Morris RJ, Oldroyd GED. Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science 2016; 352:1102-5. [PMID: 27230377 DOI: 10.1126/science.aae0109] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/20/2016] [Indexed: 12/21/2022]
Abstract
Nuclear-associated Ca(2+) oscillations mediate plant responses to beneficial microbial partners--namely, nitrogen-fixing rhizobial bacteria that colonize roots of legumes and arbuscular mycorrhizal fungi that colonize roots of the majority of plant species. A potassium-permeable channel is known to be required for symbiotic Ca(2+) oscillations, but the calcium channels themselves have been unknown until now. We show that three cyclic nucleotide-gated channels in Medicago truncatula are required for nuclear Ca(2+) oscillations and subsequent symbiotic responses. These cyclic nucleotide-gated channels are located at the nuclear envelope and are permeable to Ca(2+) We demonstrate that the cyclic nucleotide-gated channels form a complex with the postassium-permeable channel, which modulates nuclear Ca(2+) release. These channels, like their counterparts in animal cells, might regulate multiple nuclear Ca(2+) responses to developmental and environmental conditions.
Collapse
Affiliation(s)
- Myriam Charpentier
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jongho Sun
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Teresa Vaz Martins
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Guru V Radhakrishnan
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Kim Findlay
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Eleni Soumpourou
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Julien Thouin
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS-386 INRA (French National Institute for Agricultural Research)-SupAgro-M-Université Montpellier, Campus SupAgro-INRA, 34060 Montpellier, France
| | - Anne-Aliénor Véry
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS-386 INRA (French National Institute for Agricultural Research)-SupAgro-M-Université Montpellier, Campus SupAgro-INRA, 34060 Montpellier, France
| | - Dale Sanders
- Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Giles E D Oldroyd
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
27
|
Bai Y, Dougherty L, Cheng L, Zhong GY, Xu K. Uncovering co-expression gene network modules regulating fruit acidity in diverse apples. BMC Genomics 2015; 16:612. [PMID: 26276125 PMCID: PMC4537561 DOI: 10.1186/s12864-015-1816-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 08/05/2015] [Indexed: 11/10/2022] Open
Abstract
Background Acidity is a major contributor to fruit quality. Several organic acids are present in apple fruit, but malic acid is predominant and determines fruit acidity. The trait is largely controlled by the Malic acid (Ma) locus, underpinning which Ma1 that putatively encodes a vacuolar aluminum-activated malate transporter1 (ALMT1)-like protein is a strong candidate gene. We hypothesize that fruit acidity is governed by a gene network in which Ma1 is key member. The goal of this study is to identify the gene network and the potential mechanisms through which the network operates. Results Guided by Ma1, we analyzed the transcriptomes of mature fruit of contrasting acidity from six apple accessions of genotype Ma_ (MaMa or Mama) and four of mama using RNA-seq and identified 1301 fruit acidity associated genes, among which 18 were most significant acidity genes (MSAGs). Network inferring using weighted gene co-expression network analysis (WGCNA) revealed five co-expression gene network modules of significant (P < 0.001) correlation with malate. Of these, the Ma1 containing module (Turquoise) of 336 genes showed the highest correlation (0.79). We also identified 12 intramodular hub genes from each of the five modules and 18 enriched gene ontology (GO) terms and MapMan sub-bines, including two GO terms (GO:0015979 and GO:0009765) and two MapMap sub-bins (1.3.4 and 1.1.1.1) related to photosynthesis in module Turquoise. Using Lemon-Tree algorithms, we identified 12 regulator genes of probabilistic scores 35.5–81.0, including MDP0000525602 (a LLR receptor kinase), MDP0000319170 (an IQD2-like CaM binding protein) and MDP0000190273 (an EIN3-like transcription factor) of greater interest for being one of the 18 MSAGs or one of the 12 intramodular hub genes in Turquoise, and/or a regulator to the cluster containing Ma1. Conclusions The most relevant finding of this study is the identification of the MSAGs, intramodular hub genes, enriched photosynthesis related processes, and regulator genes in a WGCNA module Turquoise that not only encompasses Ma1 but also shows the highest modular correlation with acidity. Overall, this study provides important insight into the Ma1-mediated gene network controlling acidity in mature apple fruit of diverse genetic background. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1816-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Bai
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA.
| | - Laura Dougherty
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA.
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Gan-Yuan Zhong
- USDA-ARS, Plant Genetic resource and Grape Genetic Research Units, Geneva, NY, 14456, USA.
| | - Kenong Xu
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA.
| |
Collapse
|
28
|
Genomic characterization, phylogenetic comparison and differential expression of the cyclic nucleotide-gated channels gene family in pear ( Pyrus bretchneideri Rehd.). Genomics 2015; 105:39-52. [DOI: 10.1016/j.ygeno.2014.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 11/20/2022]
|
29
|
Nawaz Z, Kakar KU, Saand MA, Shu QY. Cyclic nucleotide-gated ion channel gene family in rice, identification, characterization and experimental analysis of expression response to plant hormones, biotic and abiotic stresses. BMC Genomics 2014; 15:853. [PMID: 25280591 PMCID: PMC4197254 DOI: 10.1186/1471-2164-15-853] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 09/24/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cyclic nucleotide-gated channels (CNGCs) are Ca2+-permeable cation transport channels, which are present in both animal and plant systems. They have been implicated in the uptake of both essential and toxic cations, Ca2+ signaling, pathogen defense, and thermotolerance in plants. To date there has not been a genome-wide overview of the CNGC gene family in any economically important crop, including rice (Oryza sativa L.). There is an urgent need for a thorough genome-wide analysis and experimental verification of this gene family in rice. RESULTS In this study, a total of 16 full length rice CNGC genes distributed on chromosomes 1-6, 9 and 12, were identified by employing comprehensive bioinformatics analyses. Based on phylogeny, the family of OsCNGCs was classified into four major groups (I-IV) and two sub-groups (IV-A and IV- B). Likewise, the CNGCs from all plant lineages clustered into four groups (I-IV), where group II was conserved in all land plants. Gene duplication analysis revealed that both chromosomal segmentation (OsCNGC1 and 2, 10 and 11, 15 and 16) and tandem duplications (OsCNGC1 and 2) significantly contributed to the expansion of this gene family. Motif composition and protein sequence analysis revealed that the CNGC specific domain "cyclic nucleotide-binding domain (CNBD)" comprises a "phosphate binding cassette" (PBC) and a "hinge" region that is highly conserved among the OsCNGCs. In addition, OsCNGC proteins also contain various other functional motifs and post-translational modification sites. We successively built a stringent motif: (LI-X(2)-[GS]-X-[FV]-X-G-[1]-ELL-X-W-X(12,22)-SA-X(2)-T-X(7)-[EQ]-AF-X-L) that recognizes the rice CNGCs specifically. Prediction of cis-acting regulatory elements in 5' upstream sequences and expression analyses through quantitative qPCR demonstrated that OsCNGC genes were highly responsive to multiple stimuli including hormonal (abscisic acid, indoleacetic acid, kinetin and ethylene), biotic (Pseudomonas fuscovaginae and Xanthomonas oryzae pv. oryzae) and abiotic (cold) stress. CONCLUSIONS There are 16 CNGC genes in rice, which were probably expanded through chromosomal segmentation and tandem duplications and comprise a PBC and a "hinge" region in the CNBD domain, featured by a stringent motif. The various cis-acting regulatory elements in the upstream sequences may be responsible for responding to multiple stimuli, including hormonal, biotic and abiotic stresses.
Collapse
Affiliation(s)
- Zarqa Nawaz
- />State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, 310029 China
- />Institute of Biotechnology, Zhejiang University, Hangzhou, China
- />Institute of Crop Sciences, Zhejiang University, Hangzhou, 310029 China
| | | | - Mumtaz A Saand
- />Department of Botany, Shah Abdul Latif University, Khairpur mir’s, Sindh Pakistan
| | - Qing-Yao Shu
- />State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, 310029 China
- />Institute of Crop Sciences, Zhejiang University, Hangzhou, 310029 China
| |
Collapse
|
30
|
González-Fontes A, Navarro-Gochicoa MT, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, Quiles-Pando C, Rexach J. Is Ca2+ involved in the signal transduction pathway of boron deficiency? New hypotheses for sensing boron deprivation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 217-218:135-9. [PMID: 24467905 DOI: 10.1016/j.plantsci.2013.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 05/18/2023]
Abstract
Plants sense and transmit nutrient-deprivation signals to the nucleus. This increasingly interesting research field advances knowledge of signal transduction pathways for mineral deficiencies. The understanding of this topic for most micronutrients, especially boron (B), is more limited. Several hypotheses have been proposed to explain how a B deprivation signal would be conveyed to the nucleus, which are briefly summarized in this review. These hypotheses do not explain how so many metabolic and physiological processes quickly respond to B deficiency. Short-term B deficiency affects the cytosolic Ca(2+) levels as well as root expression of genes involved in Ca(2+) signaling. We propose and discuss that Ca(2+) and Ca(2+)-related proteins - channels/transporters, sensor relays, and sensor responders - might have major roles as intermediates in a transduction pathway triggered by B deprivation. This hypothesis may explain how plants sense and convey the B-deprivation signal to the nucleus and modulate physiological responses. The possible role of arabinogalactan-proteins in the B deficiency signaling pathway is also taken into account.
Collapse
Affiliation(s)
- Agustín González-Fontes
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain.
| | - M Teresa Navarro-Gochicoa
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | - Juan J Camacho-Cristóbal
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | - M Begoña Herrera-Rodríguez
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | - Carlos Quiles-Pando
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | - Jesús Rexach
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| |
Collapse
|
31
|
Schönknecht G. Calcium Signals from the Vacuole. PLANTS (BASEL, SWITZERLAND) 2013; 2:589-614. [PMID: 27137394 PMCID: PMC4844392 DOI: 10.3390/plants2040589] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/21/2013] [Accepted: 09/26/2013] [Indexed: 01/13/2023]
Abstract
The vacuole is by far the largest intracellular Ca(2+) store in most plant cells. Here, the current knowledge about the molecular mechanisms of vacuolar Ca(2+) release and Ca(2+) uptake is summarized, and how different vacuolar Ca(2+) channels and Ca(2+) pumps may contribute to Ca(2+) signaling in plant cells is discussed. To provide a phylogenetic perspective, the distribution of potential vacuolar Ca(2+) transporters is compared for different clades of photosynthetic eukaryotes. There are several candidates for vacuolar Ca(2+) channels that could elicit cytosolic [Ca(2+)] transients. Typical second messengers, such as InsP₃ and cADPR, seem to trigger vacuolar Ca(2+) release, but the molecular mechanism of this Ca(2+) release still awaits elucidation. Some vacuolar Ca(2+) channels have been identified on a molecular level, the voltage-dependent SV/TPC1 channel, and recently two cyclic-nucleotide-gated cation channels. However, their function in Ca(2+) signaling still has to be demonstrated. Ca(2+) pumps in addition to establishing long-term Ca(2+) homeostasis can shape cytosolic [Ca(2+)] transients by limiting their amplitude and duration, and may thus affect Ca(2+) signaling.
Collapse
Affiliation(s)
- Gerald Schönknecht
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
32
|
Swarbreck SM, Colaço R, Davies JM. Plant calcium-permeable channels. PLANT PHYSIOLOGY 2013; 163:514-22. [PMID: 23860348 PMCID: PMC3793033 DOI: 10.1104/pp.113.220855] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/14/2013] [Indexed: 05/19/2023]
Abstract
Experimental and modeling breakthroughs will help establish the genetic identities of plant calcium channels.
Collapse
|