1
|
Karina K, Biben JA, Ekaputri K, Krisandi G, Rosadi I, Sobariah S, Afini I, Widyastuti T, Zakiyah A, Ernanda D. Revisiting Fat Graft Harvesting and Processing Technique to Optimize Its Regenerative Potential. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2025; 13:e6420. [PMID: 39802276 PMCID: PMC11723667 DOI: 10.1097/gox.0000000000006420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/31/2024] [Indexed: 01/16/2025]
Abstract
Background The use of fat grafting has expanded to include cell and tissue regeneration, necessitating investigations to ensure the viability of stromal and adipose-derived mesenchymal stem cells (ASCs) within the transferred fat parcels. This study explored the impact of harvesting technique and centrifugation on the viability of stromal cells and ASCs in lipoaspirate. Methods Fat was harvested from patients undergoing fat grafting using 2 types of liposuction cannula: (A) a 3-mm blunt tip cannula with 3 smooth holes and (B) a 2.4-mm, sharp point port, multihole blunt tip cannula. Fat from cannula B underwent different processing methods: no centrifugation, 300g, 600g, and 900g centrifugation. Stromal cells were isolated, quantified, and evaluated for viability. ASCs were cultured from these samples to confirm survival. Results Lipoaspirates from 21 patients were analyzed. The mean stromal cell counts were 0.937 × 109 ± 0.346 × 109/mL for cannula A and 0.734 × 109 ± 0.266 × 109/mL for cannula B (P = 0.684), with viabilities of 98.79% and 98.22% (P = 0.631), respectively. ASCs isolated and after 2-passage culture were also higher for cannula A. Stromal cell quantification and viability were lowest in the noncentrifuged group (P < 0.05) and highest in the 600g centrifugation group. Conclusions Fat harvesting using cannulas A and B showed no significant difference in stromal cell yield or viability. Handheld syringe liposuction preserved stromal vascular fraction cell and ASC viability. Centrifugation at different speeds did not significantly affect stromal cell viability.
Collapse
Affiliation(s)
- Karina Karina
- From the Division of Plastic Surgery, Hayandra Clinic, Hayandra Peduli Foundation, Jakarta, Indonesia
- HayandraLab, Hayandra Peduli Foundation, Jakarta, Indonesia
- Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
- Research Center for Regenerative Medicine & Neuroscience, Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Johannes A. Biben
- From the Division of Plastic Surgery, Hayandra Clinic, Hayandra Peduli Foundation, Jakarta, Indonesia
| | - Krista Ekaputri
- From the Division of Plastic Surgery, Hayandra Clinic, Hayandra Peduli Foundation, Jakarta, Indonesia
| | - Grady Krisandi
- HayandraLab, Hayandra Peduli Foundation, Jakarta, Indonesia
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Imam Rosadi
- HayandraLab, Hayandra Peduli Foundation, Jakarta, Indonesia
- Department of Biology, Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda, Indonesia
| | - Siti Sobariah
- HayandraLab, Hayandra Peduli Foundation, Jakarta, Indonesia
| | - Irsyah Afini
- HayandraLab, Hayandra Peduli Foundation, Jakarta, Indonesia
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | | | - Alfida Zakiyah
- HayandraLab, Hayandra Peduli Foundation, Jakarta, Indonesia
| | - Difky Ernanda
- HayandraLab, Hayandra Peduli Foundation, Jakarta, Indonesia
| |
Collapse
|
2
|
Nosrati H, Fallah Tafti M, Aghamollaei H, Bonakdar S, Moosazadeh Moghaddam M. Directed Differentiation of Adipose-Derived Stem Cells Using Imprinted Cell-Like Topographies as a Growth Factor-Free Approach. Stem Cell Rev Rep 2024; 20:1752-1781. [PMID: 39066936 DOI: 10.1007/s12015-024-10767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
The influence of surface topography on stem cell behavior and differentiation has garnered significant attention in regenerative medicine and tissue engineering. The cell-imprinting method has been introduced as a promising approach to mimic the geometry and topography of cells. The cell-imprinted substrates are designed to replicate the topographies and dimensions of target cells, enabling tailored interactions that promote the differentiation of stem cells towards desired specialized cell types. In fact, by replicating the size and shape of cells, biomimetic substrates provide physical cues that profoundly impact stem cell differentiation. These cues play a pivotal role in directing cell morphology, cytoskeletal organization, and gene expression, ultimately influencing lineage commitment. The biomimetic substrates' ability to emulate the native cellular microenvironment supports the creation of platforms capable of steering stem cell fate with high precision. This review discusses the role of mechanical factors that impact stem cell fate. It also provides an overview of the design and fabrication principles of cell-imprinted substrates. Furthermore, the paper delves into the use of cell-imprinted polydimethylsiloxane (PDMS) substrates to direct adipose-derived stem cells (ADSCs) differentiation into a variety of specialized cells for tissue engineering and regenerative medicine applications. Additionally, the review discusses the limitations of cell-imprinted PDMS substrates and highlights the efforts made to overcome these limitations.
Collapse
Affiliation(s)
- Hamed Nosrati
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahsa Fallah Tafti
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mehrdad Moosazadeh Moghaddam
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran.
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
El Masri J, Fadlallah H, Al Sabsabi R, Afyouni A, Al-Sayegh M, Abou-Kheir W. Adipose-Derived Stem Cell Therapy in Spinal Cord Injury. Cells 2024; 13:1505. [PMID: 39273075 PMCID: PMC11394073 DOI: 10.3390/cells13171505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Spinal cord injury (SCI) is a serious condition accompanied by severe adverse events that affect several aspects of the patient's life, such as motor, sensory, and functional impairment. Despite its severe consequences, definitive treatment for these injuries is still missing. Therefore, researchers have focused on developing treatment strategies aimed at ensuring full recovery post-SCI. Accordingly, attention has been drawn toward cellular therapy using mesenchymal stem cells. Considering their wide availability, decreased immunogenicity, wide expansion capacity, and impressive effectiveness in many therapeutic approaches, adipose-derived stem cell (ADSC) injections in SCI cases have been investigated and showed promising results. In this review, SCI pathophysiology and ADSC transplantation benefits are discussed independently, together with SCI animal models and adipose stem cell preparation and application techniques. The mechanisms of healing in an SCI post-ADSC injection, the outcomes of this therapeutic approach, and current clinical trials are also deliberated, in addition to the challenges and future perspectives, aiming to encourage further research in this field.
Collapse
Affiliation(s)
- Jad El Masri
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon; (J.E.M.); (H.F.)
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon; (R.A.S.); (A.A.)
| | - Hiba Fadlallah
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon; (J.E.M.); (H.F.)
| | - Rahaf Al Sabsabi
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon; (R.A.S.); (A.A.)
| | - Ahmad Afyouni
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon; (R.A.S.); (A.A.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi 2460, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon; (J.E.M.); (H.F.)
| |
Collapse
|
4
|
Jeyaraman N, Shrivastava S, Ravi VR, Nallakumarasamy A, Pundkar A, Jeyaraman M. Understanding and controlling the variables for stromal vascular fraction therapy. World J Stem Cells 2024; 16:784-798. [PMID: 39219728 PMCID: PMC11362852 DOI: 10.4252/wjsc.v16.i8.784] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024] Open
Abstract
In regenerative medicine, the isolation of mesenchymal stromal cells (MSCs) from the adipose tissue's stromal vascular fraction (SVF) is a critical area of study. Our review meticulously examines the isolation process of MSCs, starting with the extraction of adipose tissue. The choice of liposuction technique, anatomical site, and immediate processing are essential to maintain cell functionality. We delve into the intricacies of enzymatic digestion, emphasizing the fine-tuning of enzyme concentrations to maximize cell yield while preventing harm. The review then outlines the filtration and centrifugation techniques necessary for isolating a purified SVF, alongside cell viability assessments like flow cytometry, which are vital for confirming the efficacy of the isolated MSCs. We discuss the advantages and drawbacks of using autologous vs allogeneic SVF sources, touching upon immunocompatibility and logistical considerations, as well as the variability inherent in donor-derived cells. Anesthesia choices, the selection between hypodermic needles vs liposuction cannulas, and the role of adipose tissue lysers in achieving cellular dissociation are evaluated for their impact on SVF isolation. Centrifugation protocols are also analyzed for their part in ensuring the integrity of the SVF. The necessity for standardized MSC isolation protocols is highlighted, promoting reproducibility and successful clinical application. We encourage ongoing research to deepen the understanding of MSC biology and therapeutic action, aiming to further the field of regenerative medicine. The review concludes with a call for rigorous research, interdisciplinary collaboration, and strict adherence to ethical and regulatory standards to safeguard patient safety and optimize treatment outcomes with MSCs.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Sandeep Shrivastava
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - V R Ravi
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Aditya Pundkar
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - Madhan Jeyaraman
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
5
|
Visconte C, Taiana MM, Colombini A, De Luca P, Ragni E, de Girolamo L. Donor Sites and Harvesting Techniques Affect miRNA Cargos of Extracellular Vesicles Released by Human Adipose-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2024; 25:6450. [PMID: 38928156 PMCID: PMC11203784 DOI: 10.3390/ijms25126450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disorder characterized by the progressive deterioration of articular cartilage driven and sustained by catabolic and inflammatory processes that lead to pain and functional impairment. Adipose-derived stem cells (ASCs) have emerged as a promising therapeutic strategy for OA due to their regenerative potential, which mainly relies on the adaptive release of paracrine molecules that are soluble or encapsulated in extracellular vesicles (EVs). The biological effects of EVs specifically depend on their cargo; in particular, microRNAs (miRNAs) can specifically modulate target cell function through gene expression regulation. This study aimed to investigate the impact of collection site (abdominal vs. peri-trochanteric adipose tissue) and collection method (surgical excision vs. lipoaspiration) on the miRNAs profile in ASC-derived EVs and their potential implications for OA therapy. EV-miRNA cargo profiles from ASCs of different origins were compared. An extensive bioinformatics search through experimentally validated and OA-related targets, pathways, and tissues was conducted. Several miRNAs involved in the restoration of cartilage homeostasis and in immunomodulation were identified in all ASC types. However, EV-miRNA expression profiles were affected by both the tissue-harvesting site and procedure, leading to peculiar characteristics for each type. Our results suggest that adipose-tissue-harvesting techniques and the anatomical site of origin influence the therapeutic efficacy of ASC-EVs for tissue-specific regenerative therapies in OA, which warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Via R Galeazzi 4, 20161 Milano, Italy; (C.V.); (M.M.T.); (A.C.); (P.D.L.); (L.d.G.)
| | | |
Collapse
|
6
|
Papadopoulos KS, Piperi C, Korkolopoulou P. Clinical Applications of Adipose-Derived Stem Cell (ADSC) Exosomes in Tissue Regeneration. Int J Mol Sci 2024; 25:5916. [PMID: 38892103 PMCID: PMC11172884 DOI: 10.3390/ijms25115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) are mesenchymal stem cells with a great potential for self-renewal and differentiation. Exosomes derived from ADSCs (ADSC-exos) can imitate their functions, carrying cargoes of bioactive molecules that may affect specific cellular targets and signaling processes. Recent evidence has shown that ADSC-exos can mediate tissue regeneration through the regulation of the inflammatory response, enhancement of cell proliferation, and induction of angiogenesis. At the same time, they may promote wound healing as well as the remodeling of the extracellular matrix. In combination with scaffolds, they present the future of cell-free therapies and promising adjuncts to reconstructive surgery with diverse tissue-specific functions and minimal adverse effects. In this review, we address the main characteristics and functional properties of ADSC-exos in tissue regeneration and explore their most recent clinical application in wound healing, musculoskeletal regeneration, dermatology, and plastic surgery as well as in tissue engineering.
Collapse
Affiliation(s)
- Konstantinos S. Papadopoulos
- Department of Plastic and Reconstructive Surgery, 401 General Military Hospital of Athens, 11525 Athens, Greece;
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
7
|
Elzainy A, El Sadik A, Altowayan WM. Comparison between the Regenerative and Therapeutic Impacts of Bone Marrow Mesenchymal Stem Cells and Adipose Mesenchymal Stem Cells Pre-Treated with Melatonin on Liver Fibrosis. Biomolecules 2024; 14:297. [PMID: 38540717 PMCID: PMC10968153 DOI: 10.3390/biom14030297] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND The distinctive feature of liver fibrosis is the progressive replacement of healthy hepatic cells by the extracellular matrix protein, which is abundant in collagen I and III, with impaired matrix remodeling. The activation of myofibroblastic cells enhances the fibrogenic response of complex interactions of hepatic stellate cells, fibroblasts, and inflammatory cells to produce the excessive deposition of the extracellular protein matrix. This process is activated by multiple fibrogenic mediators and cytokines, such as TNF-α and IL-1β, accompanied with a decrease in the anti-fibrogenic factor NF-κβ. Mesenchymal stem cells (MSCs) represent a promising therapy for liver fibrosis, allowing for a more advanced regenerative influence when cultured with extrinsic or intrinsic proliferative factors, cytokines, antioxidants, growth factors, and hormones such as melatonin (MT). However, previous studies showed conflicting findings concerning the therapeutic effects of adipose (AD) and bone marrow (BM) MSCs; therefore, the present work aimed to conduct a comparative and comprehensive study investigating the impact of MT pre-treatment on the immunomodulatory, anti-inflammatory, and anti-apoptotic effects of AD- and BM-MSCs and to critically analyze whether MT-pre-treated AD-MSCs and BM-MSCs reveal equal or different therapeutic and regenerative potentials in a CCl4-injured liver experimental rat model. MATERIALS AND METHODS Six groups of experimental rats were used, with ten rats in each group: group I (control group), group II (CCl4-treated group), group III (CCl4- and BM-MSC-treated group), group IV (CCl4 and MT-pre-treated BM-MSC group), group V (CCl4- and AD-MSC-treated group), and group VI (CCl4 and MT-pre-treated AD-MSC group). Liver function tests and the gene expression of inflammatory, fibrogenic, apoptotic, and proliferative factors were analyzed. Histological and immunohistochemical changes were assessed. RESULTS The present study compared the ability of AD- and BM-MSCs, with and without MT pre-treatment, to reduce hepatic fibrosis. Both types of MSCs improved hepatocyte function by reducing the serum levels of ALT, aspartate aminotransferase (AST), alkaline phosphatase (AKP), and total bilirubin (TBIL). In addition, the changes in the hepatocellular architecture, including the hepatocytes, liver sinusoids, central veins, portal veins, biliary ducts, and hepatic arteries, showed a decrease in hepatocyte injury and cholestasis with a reduction in inflammation, apoptosis, and necrosis of the hepatic cells, together with an inhibition of liver tissue fibrosis. These results were augmented by an analysis of the expression of the pro-inflammatory cytokines TNFα and IL-1β, the anti-fibrogenic factor NF-κβ, the apoptotic factor caspase-3, and the proliferative indicators antigen Ki-67 and proliferating cell nuclear antigen (PCNA). These findings were found to be statistically significant, with the restoration of normal parameters in the rats that received AD-MSCs pre-treated with MT, denoting optimal regenerative and therapeutic effects. CONCLUSIONS AD-MSCs pre-treated with MT are the preferred choice in improving hepatic fibrosis and promoting the therapeutic and regenerative ability of liver tissue. They represent a very significant tool for future stem cell use in the tissue regeneration strategy for the treatment of liver diseases.
Collapse
Affiliation(s)
- Ahmed Elzainy
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.E.); (A.E.S.)
- Department of Anatomy and Embryology, College of Medicine, Cairo University, Cairo 11956, Egypt
| | - Abir El Sadik
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.E.); (A.E.S.)
- Department of Anatomy and Embryology, College of Medicine, Cairo University, Cairo 11956, Egypt
| | - Waleed Mohammad Altowayan
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
8
|
Goulas P, Karakwta M, Zatagias A, Bakoutsi M, Zevgaridis A, Ioannidis A, Krokou D, Michalopoulos A, Zevgaridis V, Koliakos G. A Simple and Effective Mechanical Method for Adipose-Derived Stromal Vascular Fraction Isolation. Cureus 2024; 16:e57137. [PMID: 38681268 PMCID: PMC11055620 DOI: 10.7759/cureus.57137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Over the last decades, there has been ongoing and evolving research concerning regenerative medicine, specifically, stem cells. The most common source of adult mesenchymal stem cells (MSCs) remains the adipose tissue and the easiest way to obtain such tissue is lipoaspirate. The fatty tissue obtained can be processed either in an enzymatic way, which is time-consuming and expensive and carries several dangers for the viability of the stem cells included, or with mechanical means which are fast, inexpensive, yield enough viable cells, and can be readily used for autologous transplantation in one-stage procedures. Herein, we demonstrate our non-enzymatic method for obtaining adipose-derived stromal vascular fraction comprising MSCs. The stromal vascular fraction was isolated via centrifugation, and the characteristics and numbers of the cells isolated have been tested with flow cytometry assay, cell culture, and differentiation. Over 91% of viable MSCs were isolated using the mechanical method. The cells retained the ability to differentiate into osteocytes, adipocytes, and chondrocytes. The method presented is simple, requiring no special equipment, and yields a viable population of stem cells in large numbers. These cells can be readily used in several operations (orthopedic, dentistry, fistulas, etc.) making feasible "one-stage" procedures, thus proving their benefits for the patient and the health care system.
Collapse
Affiliation(s)
- Patroklos Goulas
- 1st Propedeutic Surgical Department, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Maria Karakwta
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Apostolos Zatagias
- 1st Propedeutic Surgical Department, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Maria Bakoutsi
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | - Aristeidis Ioannidis
- Department of Surgery, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Thessaloniki, GRC
| | - Despoina Krokou
- 1st Propedeutic Surgical Department, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Antonios Michalopoulos
- 1st Propedeutic Surgical Department, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Vasileios Zevgaridis
- 1st Surgical Department, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - George Koliakos
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, GRC
| |
Collapse
|
9
|
Biniazan F, Stoian A, Haykal S. Adipose-Derived Stem Cells: Angiogenetic Potential and Utility in Tissue Engineering. Int J Mol Sci 2024; 25:2356. [PMID: 38397032 PMCID: PMC10889096 DOI: 10.3390/ijms25042356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Adipose tissue (AT) is a large and important energy storage organ as well as an endocrine organ with a critical role in many processes. Additionally, AT is an enormous and easily accessible source of multipotent cell types used in our day for all types of tissue regeneration. The ability of adipose-derived stem cells (ADSCs) to differentiate into other types of cells, such as endothelial cells (ECs), vascular smooth muscle cells, or cardiomyocytes, is used in tissue engineering in order to promote/stimulate the process of angiogenesis. Being a key for future successful clinical applications, functional vascular networks in engineered tissue are targeted by numerous in vivo and ex vivo studies. The article reviews the angiogenic potential of ADSCs and explores their capacity in the field of tissue engineering (TE).
Collapse
Affiliation(s)
- Felor Biniazan
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street Suite 8N-869, Toronto, ON M5G2C4, Canada; (F.B.); (A.S.)
| | - Alina Stoian
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street Suite 8N-869, Toronto, ON M5G2C4, Canada; (F.B.); (A.S.)
| | - Siba Haykal
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street Suite 8N-869, Toronto, ON M5G2C4, Canada; (F.B.); (A.S.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Toronto, 200 Elizabeth Street Suite 8N-869, Toronto, ON M5G2C4, Canada
| |
Collapse
|
10
|
Hosono Y, Kuwasawa A, Toyoda E, Nihei K, Sato S, Watanabe M, Sato M. Multiple intra-articular injections with adipose-derived stem cells for knee osteoarthritis cause severe arthritis with anti-histone H2B antibody production. Regen Ther 2023; 24:147-153. [PMID: 37415681 PMCID: PMC10320024 DOI: 10.1016/j.reth.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Osteoarthritis (OA) is the most common form of arthritis. OA results from the breakdown of cartilage, which leads to deterioration of the entire joint and the connective tissue that holds the joint together, and gradually and irreversibly worsens over time. Adipose-derived stem/stromal cells (ADSCs) have been used in the treatment of knee OA. However, the safety and efficacy of ADSC treatment of OA remain unclear. In this study, we investigated the pathophysiology of severe knee arthritis that occurred after ADSC treatment by screening for autoantibodies in synovial fluid from patients who received ADSC treatment. Methods Adult Japanese patients with OA who received ADSC treatment at Saitama Cooperative Hospital between June 2018 and October 2021 were enrolled. Antibodies (Abs) were screened using immunoprecipitation (IPP) with [35S]-methionine-labeled HeLa cell extracts. The detected protein was identified by liquid chromatography coupled with time-of-flight mass spectrometry (MS) and ion trap MS, and the corresponding proteins were confirmed as autoantigens using immunoblotting. Ab titers were measured using an enzyme-linked immunosorbent assay. Results A total of 113 patients received ADSC treatment, and 75% (85/113) received ADSC injection at least twice with a 6-month interval between. No obvious abnormalities were observed in any patient after their first treatment; by contrast, 53% (45/85) of patients who received their second or third ADSC injection showed severe knee arthritis. IPP detected a common anti-15 kDa Ab in synovial fluid of 62% (8/13) of the samples analyzed from patients who showed severe arthritis. This Ab was not detected in synovial fluid obtained from the same joints before treatment. The corresponding autoantigen was identified as histone H2B. All available synovial samples from patients who tested positive for anti-histone H2B Ab were newly positive after the treatment; that is, none had been positive for anti-histone H2B Ab before treatment. Conclusions Multiple ADSC injections for OA induced severe arthritis in a high percentage of patients, particularly after the second injection. Synovial fluid from some patients with knee arthritis contained Ab to histone H2B that appeared only after ADSC treatment. These findings provide new insights into the pathogenesis of ADSC treatment-induced severe arthritis.
Collapse
Affiliation(s)
- Y. Hosono
- Division of Rheumatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya Isehara, Kanagawa, 259-1193 Japan
| | - A. Kuwasawa
- Saitama Cooperative Hospital, 1371 Kisoro, Kawaguchi, Saitama, 333-0831, Japan
| | - E. Toyoda
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193 Japan
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara, Kanagawa, 259-1193 Japan
| | - K. Nihei
- Saitama Cooperative Hospital, 1371 Kisoro, Kawaguchi, Saitama, 333-0831, Japan
| | - S. Sato
- Division of Rheumatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya Isehara, Kanagawa, 259-1193 Japan
| | - M. Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193 Japan
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara, Kanagawa, 259-1193 Japan
| | - M. Sato
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193 Japan
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara, Kanagawa, 259-1193 Japan
| |
Collapse
|
11
|
Jovic D, Preradovic L, Kremenovic M, Jovic F, Antonic M, Aleksic Z, Ljubojevic V. Effect of Donor Site Selection for Fat Grafting on the Yield and Viability of the Stromal Vascular Fraction. Aesthet Surg J 2023; 43:NP704-NP712. [PMID: 37289983 DOI: 10.1093/asj/sjad184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND The efficacy of stromal vascular fraction (SVF) treatment, or stem cell treatment, directly depends on the SVF cell count and the cells' viability. The SVF cell count and viability are in direct correlation with the adipose tissue harvesting site that yields SVF cells, making this research a contribution to developing tissue guidance. OBJECTIVES The aim of this study was to investigate the importance of harvesting subcutaneous adipose tissue-derived SVF cells on the concentration and viability of SVF. METHODS Adipose tissue was collected by vibration-assisted liposuction from the regions of the upper and lower abdomen, lumbar region, and inner thigh region. With the semiautomatic UNISTATION 2nd Version system, the obtained fat was chemically processed (with collagenase enzyme) and a concentrate of SVF cells was obtained by centrifugation. These samples were then analyzed with the Luna-Stem Counter device to measure the number and viability of SVF cells. RESULTS When comparing the regions of the upper abdomen, lower abdomen, lumbar region, and inner thigh, the highest concentration of SVF was found in the lumbar region, specifically at an average of 97,498.00 per 1.0 mL of concentrate. The lowest concentration was found in the upper abdominal region. When ranking the viability values, the highest cell viability of SVF was observed in the lumbar region, measuring 36.6200%. The lowest viability was found in the upper abdominal region, measuring 24.4967%. CONCLUSIONS By comparing the upper and lower abdominal, lumbar, and inner thigh regions, the authors have come to the conclusion that, on average, the largest number of cells with the highest viability was obtained from the lumbar region.
Collapse
|
12
|
Mayfield CK, Lechtholz-Zey E, Ayad M, Sugiyama O, Lieberman JR. Human Bone Marrow versus Adipose-Derived Stem Cells: Influence of Donor Characteristics on Expandability and Implications for Osteogenic Ex Vivo BMP-2 Regional Gene Therapy. J Tissue Eng Regen Med 2023; 2023:8061890. [PMID: 40226412 PMCID: PMC11919156 DOI: 10.1155/2023/8061890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 04/15/2025]
Abstract
Novel treatment strategies for segmental bone loss in orthopaedic surgery remain under investigation. Regional gene therapy that involves transduction of mesenchymal stem cells with a lentiviral vector that expresses BMP-2 has gained particular interest as this strategy provides osteogenic and osteoinductive factors for bone growth. In particular, transduced adipose-derived stems cells (ASCs) and bone marrow-derived stem cells (BMSCs) have emerged as the leading candidates for the treatment of segmental defects in preclinical models. The aim of the present study was to evaluate the influence of demographic information on in vitro growth characteristics and bone morphogenetic protein-2 production following lentiviral transduction in a large cohort of human donors. We further sought to assess the effects of ASC harvest site on cell yield and growth characteristics. We evaluated a total of 187 human donors (124 adipose harvests and 63 bone marrow aspirates) in our cohort. We found that across all donors, ASCs demonstrated favorable growth characteristics and could be cultured in vitro more reliably than BMSCs regardless of patient-related factors. Furthermore, we noted that following lentiviral transduction, ASCs produced significantly higher levels of BMP-2 compared to BMSCs. Lastly, despite higher initial cell yields from lipoaspirate, posttransduction BMP-2 production was less than that of infrapatellar fat pad samples. These results support the continued investigation of ASCs as a cellular delivery vehicle for regional gene therapy to deliver osteoinductive proteins to specific anatomic bone repair sites.
Collapse
Affiliation(s)
- Cory K. Mayfield
- Keck School of Medicine of USC, Department of Orthopaedic Surgery, Los Angeles, USA
| | | | - Mina Ayad
- Keck School of Medicine of USC, Department of Orthopaedic Surgery, Los Angeles, USA
| | - Osamu Sugiyama
- Keck School of Medicine of USC, Department of Orthopaedic Surgery, Los Angeles, USA
| | - Jay R. Lieberman
- Keck School of Medicine of USC, Department of Orthopaedic Surgery, Los Angeles, USA
| |
Collapse
|
13
|
Zhang Q, Chiu Y, Chen Y, Wu Y, Dunne LW, Largo RD, Chang EI, Adelman DM, Schaverien MV, Butler CE. Harnessing the synergy of perfusable muscle flap matrix and adipose-derived stem cells for prevascularization and macrophage polarization to reconstruct volumetric muscle loss. Bioact Mater 2023; 22:588-614. [PMID: 36382023 PMCID: PMC9646752 DOI: 10.1016/j.bioactmat.2022.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Muscle flaps must have a strong vascular network to support a large tissue volume and ensure successful engraftment. We developed porcine stomach musculofascial flap matrix (PDSF) comprising extracellular matrix (ECM) and intact vasculature. PDSF had a dominant vascular pedicle, microcirculatory vessels, a nerve network, well-retained 3-dimensional (3D) nanofibrous ECM structures, and no allo- or xenoantigenicity. In-depth proteomic analysis demonstrated that PDSF was composed of core matrisome proteins (e.g., collagens, glycoproteins, proteoglycans, and ECM regulators) that, as shown by Gene Ontology term enrichment analysis, are functionally related to musculofascial biological processes. Moreover, PDSF-human adipose-derived stem cell (hASC) synergy not only induced monocytes towards IL-10-producing M2 macrophage polarization through the enhancement of hASCs' paracrine effect but also promoted the proliferation and interconnection of both human skeletal muscle myoblasts (HSMMs) and human umbilical vein endothelial cells (HUVECs) in static triculture conditions. Furthermore, PDSF was successfully prevascularized through a dynamic perfusion coculture of hASCs and HUVECs, which integrated with PDSF and induced the maturation of vascular networks in vitro. In a xenotransplantation model, PDSF demonstrated myoconductive and immunomodulatory properties associated with the predominance of M2 macrophages and regulatory T cells. In a volumetric muscle loss (VML) model, prevascularized PDSF augmented neovascularization and constructive remodeling, which was characterized by the predominant infiltration of M2 macrophages and significant musculofascial tissue formation. These results indicate that hASCs' integration with PDSF enhances the cells' dual function in immunomodulation and angiogenesis. Owing in part to this PDSF-hASC synergy, our platform shows promise for vascularized muscle flap engineering for VML reconstruction.
Collapse
Affiliation(s)
- Qixu Zhang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yulun Chiu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Youbai Chen
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Plastic Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yewen Wu
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lina W. Dunne
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rene D. Largo
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Edward I. Chang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David M. Adelman
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark V. Schaverien
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Charles E. Butler
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
14
|
Everts PA, Panero AJ. Basic Science of Autologous Orthobiologics. Phys Med Rehabil Clin N Am 2023; 34:25-47. [DOI: 10.1016/j.pmr.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Shapira E, Plonski L, Menashe S, Ofek A, Rosenthal A, Brambilla M, Goldenberg G, Haimowitz S, Heller L. High-Quality Lipoaspirate Following 1470-nm Radial Emitting Laser-Assisted Liposuction. Ann Plast Surg 2022; 89:e60-e68. [PMID: 36416705 PMCID: PMC9704815 DOI: 10.1097/sap.0000000000003316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/29/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Laser-assisted liposuction (LAL) has been used to maximize viable adipocyte yields in lipoaspirates, although optimizing tissue processing methods is still a challenge. A high-quality lipoaspirate has been a key factor for extended graft longevity. OBJECTIVE To assess the viability and potency of stromal vascular fraction (SVF) cells and adipose-derived stem cells (ASCs) in fat samples from lipoaspirates harvested with a novel 1470-nm diode, radial emitting LAL platform. Two processing methods, enzymatic and nonenzymatic, were compared. METHODS Laser-assisted liposuction lipoaspirates harvested from 10 subjects were examined for cell viability after processing by enzymatic or nonenzymatic methods. Isolated SVF cells were cultured with an ASC-permissive medium to assess their viability and proliferation capacity by cell proliferation assay. Flow cytometric analysis with ASC-specific markers, gene expression levels, and immunofluorescence for ASC transcription factors were also conducted. RESULTS Lipoaspirates showed high SVF cell viability of 97% ± 0.02% and 98% ± 0.01%, averaged SVF cell count of 8.7 × 10 6 ± 3.9 × 10 6 and 9.4 × 10 6 ± 4.2 × 10 6 cells per mL, and averaged ASC count of 1 × 10 6 ± 2.2 × 10 5 and 1.2 × 10 6 ± 5 × 10 5 cells per mL in nonenzymatic and enzymatic methods, respectively. The ASC-specific markers, gene expression levels, and immunofluorescence for ASC transcription factors confirmed the adipose origin of the cells. CONCLUSIONS The laser lipoaspirates provide a high yield of viable and potent SVF cells and ASCs through both nonenzymatic and enzymatic processes. Improved purity of the harvested lipoaspirate and high ASC content are expected to result in extended graft longevity. Furthermore, eliminating enzymatic digestion may provide advantages, such as reducing process time, cost, and regulatory constraints.
Collapse
Affiliation(s)
- Eyal Shapira
- From the Department of Plastic Surgery, Shamir Medical Center, Zerifin, Israel
| | - Lori Plonski
- From the Department of Plastic Surgery, Shamir Medical Center, Zerifin, Israel
| | - Shaked Menashe
- From the Department of Plastic Surgery, Shamir Medical Center, Zerifin, Israel
| | - Andre Ofek
- From the Department of Plastic Surgery, Shamir Medical Center, Zerifin, Israel
| | - Adaya Rosenthal
- From the Department of Plastic Surgery, Shamir Medical Center, Zerifin, Israel
| | - Massimiliano Brambilla
- Department of the Health of the Woman, Child and Neonate, Fondazione IRCSS Ospedale Maggiore, Milan, Italy
| | - Gary Goldenberg
- Department of Dermatology, Icahn School of Medicine at Mount Sinai Hospital, Mount Sinai, NY
| | - Sahar Haimowitz
- Prostate Cancer Research Laboratory, Department of Urology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Heller
- From the Department of Plastic Surgery, Shamir Medical Center, Zerifin, Israel
| |
Collapse
|
16
|
Tay JQ, Tay JS. Re: Correlation between tissue-harvesting method and donor-site with the yield of spheroids from adipose-derived stem cells. J Plast Reconstr Aesthet Surg 2022; 75:3877-3903. [PMID: 36057504 DOI: 10.1016/j.bjps.2022.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Jing Qin Tay
- Plastic, Burns and Reconstructive Surgery Department, Salisbury District Hospital, Thames Valley/Wessex Deanery, United Kingdom.
| | - Jing Shin Tay
- Internal Medicine Department, Sultan Ismail Hospital, Johor Bahru, Malaysia
| |
Collapse
|
17
|
Micro-fragmented adipose tissue cellular composition varies by processing device and analytical method. Sci Rep 2022; 12:16107. [PMID: 36167761 PMCID: PMC9515206 DOI: 10.1038/s41598-022-20581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
Autologous adipose-derived biologics are of clinical interest based on accessibility of adipose tissue, a rich source of progenitor and immunomodulatory cells. Micro-fragmented adipose tissue (MFAT) preserves the cellular niche within intact extracellular matrix, potentially offering benefit over enzymatically-liberated stromal vascular fraction (SVF), however lack of standardized analyses complicate direct comparison of these products. In this study, MFAT from LipoGems® and AutoPose™ Restore systems, which utilize different washing and resizing methods, was analyzed for cellular content using different techniques. Flow cytometry was performed on SVF, with or without culture, and on the adherent cell population that naturally migrated from undigested MFAT. Cytokine release during culture was also assessed. SVF contained more diverse progenitor populations, while MFAT outgrowth contained lower cell concentrations of predominantly mesenchymal stromal cells (MSC). MSCs were significantly higher in MFAT from the AutoPose System for all analyses, with increased cytokine secretion characterized by high levels of anti-inflammatory and low to non-detectable inflammatory cytokines. These results demonstrate that cellularity depends on MFAT processing methods, and different techniques can be employed to evaluate graft cellularity. Comparisons of cell concentrations determined via these methods could be used to better interpret inter-study variability.
Collapse
|
18
|
Chen AWG, Chen CH, Lin TM, Chang ACH, Tsai TP, Chang SY. Office-Based Structural Autologous Fat Injection Laryngoplasty for Unilateral Vocal Fold Paralysis. J Clin Med 2022; 11:jcm11164806. [PMID: 36013042 PMCID: PMC9410197 DOI: 10.3390/jcm11164806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Unilateral vocal fold paralysis (UVFP) is a common cause of incomplete glottic closure, leading to significant somatic and social disabilities. Office-based autologous fat injection laryngoplasty (AFIL) has been proposed as an effective treatment for glottic insufficiency but has not been well-studied for UVFP. We enrolled 23 patients who underwent office-based structural AFIL due to unilateral vocal paralysis at our institution between February 2021 and January 2022. In the procedure, autologous fat was harvested and injected into the vocal fold under the guidance of flexible digital endoscopy for structural fat grafting. The voice handicap index-10 (VHI-10) score and perceptual voice measurements were collected before the operation, 2 weeks postoperatively, and 3 months postoperatively. Twenty-two patients were followed-up for at least 3 months. The VHI-10 score improved significantly from 29.65 ± 8.52 preoperatively to 11.74 ± 7.42 at 2 weeks (p < 0.0001) and 5.36 ± 6.67 at 3 months (p < 0.0001). Significant improvements in grades of dysphonia (p < 0.0001), breathiness (p < 0.0001), and asthenia (p = 0.004) were also noted at 3 months postoperatively when perceptual measurements were investigated. Office-based structural AFIL is an effective treatment for improving voice-related disability for UVFP patients.
Collapse
Affiliation(s)
- Andy Wei-Ge Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chih-Hua Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Tsai-Ming Lin
- Charming Institute of Aesthetic and Regenerative Surgery, Kaohsiung 807, Taiwan
- Department of Plastic Surgery, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Angela Chih-Hui Chang
- Voice Center, Department of Otolaryngology, Cheng Hsin General Hospital, Taipei 114, Taiwan
| | - Tzu-Pei Tsai
- Department of Speech, Language and Hearing Sciences, Indiana University Bloomington, Bloomington, IN 47408, USA
| | - Shyue-Yih Chang
- Voice Center, Department of Otolaryngology, Cheng Hsin General Hospital, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-28264400
| |
Collapse
|
19
|
Karadag Sari EC, Ovali E. Factors affecting cell viability and the yield of adipose-derived stromal vascular fraction. J Plast Surg Hand Surg 2022; 56:249-254. [PMID: 35819816 DOI: 10.1080/2000656x.2022.2097250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The stromal vascular fraction (SVF) is isolated from adipose tissue and has tremendous regenerative potential for proliferation and differentiation. This study aimed to investigate the factors affecting the cell yield and viability of the SVF to improve the outcomes of its clinical applications and enhance its clinical usage. We performed a retrospective analysis with 121 patients who underwent liposuction to harvest adipose-derived SVF. We recorded patient demographic and clinical characteristics, including age, sex, body mass index (BMI), blood type, medical comorbidities, and smoking and alcohol consumption. As for operative variables, we noted the amount of lipoaspirate and the donor areas, including the lower and entire abdomen. The viability and the cell count of SVF were documented. Sex was a statistically significant factor for viability rate (p < 0.015) and cell count (p < 0.009). Men had higher viability, while women had higher cell counts. We found a statistically significant difference in the presence of hypertension (p = 0.024) and alcohol consumption (p = 0.024). There was a statistically significant relationship between cell count and age (p < 0.001), BMI (p = 0.006), and amount of lipoaspirate (p < 0.001). Sex had significant associations with cell count and viability, while age, BMI, and lipoaspirate amount were significantly associated with cell count. Hypertension and alcohol consumption significantly affected cell count, which is the first such report of this association. Surgeons could apply this knowledge to patient selection for optimal treatment outcomes. Additionally, understanding these factors can help manage patient expectations.
Collapse
Affiliation(s)
- E Cigdem Karadag Sari
- Plastic, Reconstructive and Aesthetic Surgery, Acibadem University, School of Medicine, Acibadem Altunizade Hospital, Istanbul, Turkey
| | - Ercument Ovali
- Hematology, Acibadem University, School of Medicine, Acibadem Labcell Cellular Therapy Facility, Istanbul, Turkey
| |
Collapse
|
20
|
Hendawy H, Kaneda M, Yoshida T, Metwally E, Hambe L, Yoshida T, Shimada K, Tanaka R. Heterogeneity of Adipose Stromal Vascular Fraction Cells from the Different Harvesting Sites in Rats. Anat Rec (Hoboken) 2022; 305:3410-3421. [PMID: 35332993 DOI: 10.1002/ar.24915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
In both veterinary and human health, regenerative medicine offers a promising cure for various disorders. One of the rate-limiting challenges in regenerative medicine is the considerable time and technique required to expand and grow cells in culture. Therefore, the stromal vascular fraction (SVF) shows a significant promise for various cell therapy approaches. The present study aimed to define and investigate the optimal harvest site of freshly isolated SVF cells from various adipose tissue (AT) depot sites in the female Sprague-Dawley (S.D.) rat. First, Hematoxylin and eosin (H&E) were used to analyze the morphological variations in AT samples from peri-ovarian, peri-renal, mesenteric, and omental sites. The presence of putative stromal cells positive CD34 was detected using immunohistochemistry. Then, the isolated SVF cells were examined for cell viability and cellular yield differences. Finally, the expression of mesenchymal stem cells and hematopoietic markers in the SVF cells subpopulation was studied using flow cytometry. The pluripotent gene expression profile was also evaluated. CD34 staining of the omental AT was substantially higher than those of other anatomical sites. Despite having the least quantity of fat, omental AT has the highest SVF cell fraction and viable cells. Along with CD90 and CD44 higher expression, Oct4, Sox2, and Rex-1 genes levels were higher in SVF cells isolated from the omental AT. To conclude, omental fat is the best candidate for SVF cell isolation in female S.D. rats with the highest SVF cell fraction with higher MSCs phenotypes and pluripotency gene expression.
Collapse
Affiliation(s)
- Hanan Hendawy
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo183-8509, Japan.,Department of Veterinary Surgery, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tadashi Yoshida
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Elsayed Metwally
- Department of cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Lina Hambe
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo183-8509, Japan
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo183-8509, Japan
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo183-8509, Japan
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo183-8509, Japan
| |
Collapse
|
21
|
Çekiç D, Yılmaz ŞN, Bölgen N, Ünal S, Duce MN, Bayrak G, Demir D, Türkegün M, Sarı A, Demir Y, Ünal Ş. Impact of injectable chitosan cryogel microspherescaffolds on differentiation and proliferation of adiposederived mesenchymal stem cells into fat cells. J Biomater Appl 2021; 36:1335-1345. [PMID: 34965760 DOI: 10.1177/08853282211048284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Difficulty in the clinical practice of stem cell therapy is often experienced in achieving desired target tissue cell differentiation and migration of stem cells to other tissue compartments where they are destroyed or die. This study was performed to evaluate if mesenchymal stem cells (MSCs) may differentiate into desired cell types when injected after combined with an injectable cryogel scaffold and to investigate if this scaffold may help in preventing cells from passing into different tissue compartments. MSCs were obtained from fat tissue of the rabbits as autografts and nuclei and cytoplasms of these cells were labeled with BrdU and PKH26. In Group 1, only-scaffold; in Group 2, only-MSCs; and in Group 3, combined stem cell/scaffold were injected to the right malar area of the rabbits. At postoperative 3 weeks, volumes of the injected areas were calculated by computer-tomography scans and histopathological evaluation was performed. The increase in the volume of the right malar areas was more in Group 3. In histopathological evaluation, chitosan cryogel microspheres were observed microscopically within the tissue and the scaffold was only partially degraded. Normal tissue form was seen in Group 2. Cells differentiated morphologically into fat cells were detected in Groups 2 and 3. Injectable chitosan cryogel microspheres were used in vivo for the first time in this study. As it was demonstrated to be useful in carrying MSCs to the reconstructed area, help cell differentiation to desired cells and prevent migration to other tissue compartments, it may be used for reconstructive purposes in the future.
Collapse
Affiliation(s)
- Duran Çekiç
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| | | | - Nimet Bölgen
- Faculty of Engineering, Department of Chemical Engineering, Mersin University, Turkey
| | - Selma Ünal
- Faculty of Engineering, Department of Chemical Engineering, Mersin University, Turkey
| | - Meltem Nass Duce
- Faculty of Medicine, Department of Radiology, Mersin University, Turkey
| | - Gülsen Bayrak
- Faculty of Medicine, Department of Histology, Mersin University, Turkey
| | - Didem Demir
- Faculty of Engineering, Department of Chemical Engineering, Mersin University, Turkey
| | - Merve Türkegün
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, Mersin University, Turkey
| | - Alper Sarı
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| | - Yavuz Demir
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| | - Şakir Ünal
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| |
Collapse
|
22
|
Walters B, Turner PA, Rolauffs B, Hart ML, Stegemann JP. Controlled Growth Factor Delivery and Cyclic Stretch Induces a Smooth Muscle Cell-like Phenotype in Adipose-Derived Stem Cells. Cells 2021; 10:cells10113123. [PMID: 34831345 PMCID: PMC8624888 DOI: 10.3390/cells10113123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
Adipose-derived stem cells (ASCs) are an abundant and easily accessible multipotent stem cell source with potential application in smooth muscle regeneration strategies. In 3D collagen hydrogels, we investigated whether sustained release of growth factors (GF) PDGF-AB and TGF-β1 from GF-loaded microspheres could induce a smooth muscle cell (SMC) phenotype in ASCs, and if the addition of uniaxial cyclic stretch could enhance the differentiation level. This study demonstrated that the combination of cyclic stretch and GF release over time from loaded microspheres potentiated the differentiation of ASCs, as quantified by protein expression of early to late SMC differentiation markers (SMA, TGLN and smooth muscle MHC). The delivery of GFs via microspheres produced large ASCs with a spindle-shaped, elongated SMC-like morphology. Cyclic strain produced the largest, longest, and most spindle-shaped cells regardless of the presence or absence of growth factors or the growth factor delivery method. Protein expression and cell morphology data confirmed that the sustained release of GFs from GF-loaded microspheres can be used to promote the differentiation of ASCs into SMCs and that the addition of uniaxial cyclic stretch significantly enhances the differentiation level, as quantified by intermediate and late SMC markers and a SMC-like elongated cell morphology.
Collapse
Affiliation(s)
- Brandan Walters
- Department of Biomedical Engineering, University of Michigan, 1107 Carl A. Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA; (B.W.); (P.A.T.)
| | - Paul A. Turner
- Department of Biomedical Engineering, University of Michigan, 1107 Carl A. Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA; (B.W.); (P.A.T.)
| | - Bernd Rolauffs
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstraße 4, 79108 Freiburg, Germany;
| | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstraße 4, 79108 Freiburg, Germany;
- Correspondence: (M.L.H.); (J.P.S.); Tel.: +49-(761)-270-26102 (M.L.H.); +001-(734)-764-8313 (J.P.S.)
| | - Jan P. Stegemann
- Department of Biomedical Engineering, University of Michigan, 1107 Carl A. Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA; (B.W.); (P.A.T.)
- Correspondence: (M.L.H.); (J.P.S.); Tel.: +49-(761)-270-26102 (M.L.H.); +001-(734)-764-8313 (J.P.S.)
| |
Collapse
|
23
|
Shin DI, Kim M, Park DY, Min BH, Yun HW, Chung JY, Min KJ. Motorized Shaver Harvest Results in Similar Cell Yield and Characteristics Compared With Rongeur Biopsy During Arthroscopic Synovium-Derived Mesenchymal Stem Cell Harvest. Arthroscopy 2021; 37:2873-2882. [PMID: 33798652 DOI: 10.1016/j.arthro.2021.03.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To compare cell yield and character of synovium-derived mesenchymal stem cell (SDMSC) harvested by 2 different techniques using rongeur and motorized shaver during knee arthroscopy. METHODS This study was performed in 15 patients undergoing partial meniscectomy. Two different techniques were used to harvest SDMSCs in each patient from the synovial membrane at 2 different locations overlying the anterior fat pad, each within 1 minute of harvest time. Cell yield and proliferation rates were evaluated. Cell surface marker analysis was done after passage 2 (P2). Trilineage differentiation potential was evaluated by real-time quantitative polymerase chain reaction and histology. Statistical analysis between the 2 methods was done using the Mann-Whitney U test. RESULTS Wet weight of total harvested tissue was 69.93 (± 20.02) mg versus 378.91 (± 168.87) mg for the rongeur and shaver group, respectively (P < .0001). Mononucleated cell yield was 3.32 (± 0.89) versus 3.18 (± 0.97) × 103 cells/mg, respectively (P = .67). Fluorescence-activated cell sorting analysis revealed similar SDMSC-related cell surface marker expression levels in both groups, with positive expression for CD44, CD73, CD90, and CD105 and decreased expression for CD34 and CD45. Both groups showed similar trilineage differentiation potential in histology. Chondrogenic (SOX9, ACAN, COL2), adipogenic (LPL, PLIN1, PPAR-γ), and osteogenic (OCN, OSX, RUNX2) gene marker expression levels also were similar between both groups. CONCLUSIONS No difference was observed between rongeur biopsy and motorized shaver harvest methods regarding SDMSC yield and cell characteristics. CLINICAL RELEVANCE The current study shows that both rongeur and motorized shaver harvest are safe and effective methods for obtaining SDMSCs. Motorized shaver harvest results in higher volume of tissue acquisition per time, thereby leading to higher number of SDMSCs which may be useful during clinical application.
Collapse
Affiliation(s)
- Dong Il Shin
- Cell Therapy Center, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Mijin Kim
- Cell Therapy Center, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Do Young Park
- Cell Therapy Center, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Orthopedic Surgery, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea.
| | - Byoung-Hyun Min
- Cell Therapy Center, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Orthopedic Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hee-Woong Yun
- Cell Therapy Center, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jun Young Chung
- Department of Orthopedic Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kyung Jun Min
- Department of Orthopedic Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
24
|
Update on the Basic Science Concepts and Applications of Adipose-Derived Stem Cells in Hand and Craniofacial Surgery. Plast Reconstr Surg 2021; 148:475e-486e. [PMID: 34432707 DOI: 10.1097/prs.0000000000008279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SUMMARY Adipose-derived stem cell therapy offers plastic surgeons a novel treatment alternative for conditions with few therapeutic options. Adipose-derived stem cells are a promising treatment because of their broad differentiation potential, capacity for self-renewal, and ease of isolation. Over the past decade, plastic surgeons have attempted to harness adipose-derived stem cells' unique cellular characteristics to improve the survival of traditional fat grafting procedures, a process known as cell-assisted lipotransfer. However, the full implications of cell-assisted lipotransfer in clinical practice remain incompletely understood, stressing the urgent need to assess the scientific evidence supporting adipose-derived stem cell-based interventions. Furthermore, with the strict regulatory climate surrounding tissue explantation therapies, reviewing the safety and efficacy of these treatments will clarify their regulatory viability moving forward. In this report, the authors provide a comprehensive, up-to-date appraisal of best evidence-based practices supporting adipose-derived stem cell-derived therapies, highlighting the known mechanisms behind current clinical applications in tissue engineering and regenerative medicine specific to plastic and reconstructive surgery. The authors outline best practices for the harvest and isolation of adipose-derived stem cells and discuss why procedure standardization will elucidate the scientific bases for their broad use. Finally, the authors discuss challenges posed by U.S. Food and Drug Administration oversight of these cell-based therapies and examine the role of adipose-derived stem cell-based applications in the future of plastic surgery.
Collapse
|
25
|
Fan P, Fang M, Li J, Solari MG, Wu D, Tan W, Wang Y, Yang X, Lei S. A Novel Fat Making Strategy With Adipose-Derived Progenitor Cell-Enriched Fat Improves Fat Graft Survival. Aesthet Surg J 2021; 41:NP1228-NP1236. [PMID: 34387330 DOI: 10.1093/asj/sjab216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND A low survival rate is one of the main challenges in fat grafting. OBJECTIVES This study aimed to evaluate whether microfat obtained by a novel strategy promoted the survival and retention of fat grafts. METHODS A 5-mm-diameter blunt tip cannula with large side holes (~30 mm2/hole) was used to obtain macrofat. A novel strategy based on a newly invented extracorporeal cutting device was then used to cut the macrofat into microfat, which was named adipose-derived progenitor cell enrichment fat (AER fat); Coleman fat was used as the control. Aliquots (0.5 mL) of both types of fat were transplanted into 10 nude mice and analyzed 10 weeks later. Western blotting, flow cytometry, and immunofluorescence were performed to assess the AER fat characteristics and underlying mechanisms. RESULTS The retention rate of fat grafts in AER fat-treated animals was significantly higher than that in the Coleman group (mean [standard deviation] 54.6% [13%] vs 34.8% [9%]; P < 0.05) after 10 weeks. AER fat contained more dipeptidyl peptidase-4-expressing progenitor cells (3.3 [0.61] × 103 vs 2.0 [0.46] × 103 cells/mL; P < 0.05), adipose-derived plastic-adherent cells (6.0 [1.10] × 104 vs 2.6 [0.17] × 104 cells/mL; P < 0.001), and viable adipocytes than Coleman fat. Moreover, histologic analysis showed that AER fat grafts had better histologic structure and higher capillary density. CONCLUSIONS AER fat transplantation is a potential strategy to improve the survival and long-term retention of fat grafts. AER fat contained more dipeptidyl peptidase-4-expressing progenitor cells.
Collapse
Affiliation(s)
- Pengju Fan
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Man Fang
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Jingjing Li
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Mario G Solari
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Dingyu Wu
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Wuyuan Tan
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Yongjie Wang
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Xinghua Yang
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Shaorong Lei
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| |
Collapse
|
26
|
Measured Level of Human Adipose Tissue-Derived Stem Cells in Adipose Tissue is Strongly Dependent on Harvesting Method and Stem Cell Isolation Technique. Plast Reconstr Surg 2021; 147:346e-347e. [PMID: 33177461 DOI: 10.1097/prs.0000000000007554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Jin L, Lu N, Zhang W, Zhou Y. Altered properties of human adipose-derived mesenchymal stromal cell during continuous in vitro cultivation. Cytotechnology 2021; 73:657-667. [PMID: 34349354 DOI: 10.1007/s10616-021-00486-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
Adipose-derived stromal cells (ASCs) are now recognized as an accessible, abundant, and reliable stem cells for tissue engineering and regenerative medicine. However, ASCs should be expanded long term in order to harvest higher cell number for clinical application. In this study, ASCs isolated from human subcutaneous adipose tissue and senescence after long-term expansion was evaluated. The results showed that following in vitro expansion to the 15th passage, ASCs show changes in morphology (toward the "fried egg" morphology) and decrease in proliferation potential. Nonetheless, ASCs maintained differentiation potential toward osteoblasts, chondrocytes, and adipocytes. The senescent ASCs show impaired migration capacity under the same basal conditions. OXPHOS and glycolysis decreased slightly in culture from passage 5 to passage 15. ASCs also showed increased accumulation of beta-galactosidase in culture. Expression of senescence markers p53, p16, and p21 were also increased accompanied with the increase of passages. Experiment data showed that ASCs biological characteristics depended and changed with age. We recommend the use of early-passage cells, particularly those before passage 5, for efficacious therapeutic application of stem cells.
Collapse
Affiliation(s)
- Lianhua Jin
- Pediatric Cardiovascular Department, The First Hospital of Jilin University, Jilin, China
| | - Na Lu
- Pediatric Cardiovascular Department, The First Hospital of Jilin University, Jilin, China
| | - Wenxin Zhang
- School of Clinical Medicine, Jilin University, Jilin, China
| | - Yan Zhou
- Pediatric Cardiovascular Department, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
28
|
François P, Rusconi G, Arnaud L, Mariotta L, Giraudo L, Minonzio G, Veran J, Bertrand B, Dumoulin C, Grimaud F, Lyonnet L, Casanova D, Giverne C, Cras A, Magalon G, Dignat-George F, Sabatier F, Magalon J, Soldati G. Inter-center comparison of good manufacturing practices-compliant stromal vascular fraction and proposal for release acceptance criteria: a review of 364 productions. Stem Cell Res Ther 2021; 12:373. [PMID: 34210363 PMCID: PMC8252207 DOI: 10.1186/s13287-021-02445-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Even though the manufacturing processes of the stromal vascular fraction for clinical use are performed in compliance with the good manufacturing practices applying to advanced therapy medicinal products, specifications related to stromal vascular fraction quality remain poorly defined. We analyzed stromal vascular fraction clinical batches from two independent good manufacturing practices-compliant manufacturing facilities, the Swiss Stem Cell Foundation (SSCF) and Marseille University Hospitals (AP-HM), with the goal of defining appropriate and harmonized release acceptance criteria. Methods This retrospective analysis reviewed the biological characteristics of 364 batches of clinical-grade stromal vascular fraction. Collected data included cell viability, recovery yield, cell subset distribution of stromal vascular fraction, and microbiological quality. Results Stromal vascular fraction from SSCF cohort demonstrated a higher viability (89.33% ± 4.30%) and recovery yield (2.54 × 105 ± 1.22 × 105 viable nucleated cells (VNCs) per mL of adipose tissue) than stromal vascular fraction from AP-HM (84.20% ± 5.96% and 2.25 × 105 ± 1.11 × 105 VNCs per mL). AP-HM batches were significantly less contaminated (95.71% of sterile batches versus 74.15% for SSCF batches). The cell subset distribution was significantly different (higher proportion of endothelial cells and lower proportion of leukocytes and pericytes in SSCF cohort). Conclusions Both centers agreed that a good manufacturing practices-compliant stromal vascular fraction batch should exert a viability equal or superior to 80%, a minimum recovery yield of 1.50 × 105 VNCs per mL of adipose tissue, a proportion of adipose-derived stromal cells at least equal to 20%, and a proportion of leukocytes under 50%. In addition, a multiparameter gating strategy for stromal vascular fraction analysis is proposed. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02445-z.
Collapse
Affiliation(s)
- Pauline François
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France.,Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France
| | - Giulio Rusconi
- Swiss Stem Cell Foundation, Gentilino, Lugano, Switzerland.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Laurent Arnaud
- Vascular Biology Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Luca Mariotta
- Swiss Stem Cell Foundation, Gentilino, Lugano, Switzerland
| | - Laurent Giraudo
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France
| | - Greta Minonzio
- Swiss Stem Cell Foundation, Gentilino, Lugano, Switzerland
| | - Julie Veran
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France
| | - Baptiste Bertrand
- Plastic Surgery Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Chloé Dumoulin
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France
| | - Fanny Grimaud
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France
| | - Luc Lyonnet
- Vascular Biology Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Dominique Casanova
- Plastic Surgery Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Camille Giverne
- Normandie Univ, UNIROUEN, INSERM, U1234, Rouen University Hospital, Department of Immunology and Biotherapy, Rouen, France
| | - Audrey Cras
- Assistance Publique-Hôpitaux de Paris, Saint-Louis Hospital, Cell Therapy Unit, Cord blood Bank and CIC-BT501, Paris, France
| | | | - Françoise Dignat-George
- Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France.,Vascular Biology Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Florence Sabatier
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France.,Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France.,Remedex, Marseille, France
| | - Jeremy Magalon
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France. .,Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France. .,Remedex, Marseille, France.
| | - Gianni Soldati
- Swiss Stem Cell Foundation, Gentilino, Lugano, Switzerland
| |
Collapse
|
29
|
Mukherjee S, Yadav G, Kumar R. Recent trends in stem cell-based therapies and applications of artificial intelligence in regenerative medicine. World J Stem Cells 2021; 13:521-541. [PMID: 34249226 PMCID: PMC8246250 DOI: 10.4252/wjsc.v13.i6.521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cells are undifferentiated cells that can self-renew and differentiate into diverse types of mature and functional cells while maintaining their original identity. This profound potential of stem cells has been thoroughly investigated for its significance in regenerative medicine and has laid the foundation for cell-based therapies. Regenerative medicine is rapidly progressing in healthcare with the prospect of repair and restoration of specific organs or tissue injuries or chronic disease conditions where the body’s regenerative process is not sufficient to heal. In this review, the recent advances in stem cell-based therapies in regenerative medicine are discussed, emphasizing mesenchymal stem cell-based therapies as these cells have been extensively studied for clinical use. Recent applications of artificial intelligence algorithms in stem cell-based therapies, their limitation, and future prospects are highlighted.
Collapse
Affiliation(s)
- Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, Uttar Pradesh, India
| | - Garima Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, Uttar Pradesh, India
| |
Collapse
|
30
|
Ong WK, Chakraborty S, Sugii S. Adipose Tissue: Understanding the Heterogeneity of Stem Cells for Regenerative Medicine. Biomolecules 2021; 11:biom11070918. [PMID: 34206204 PMCID: PMC8301750 DOI: 10.3390/biom11070918] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ASCs) have been increasingly used as a versatile source of mesenchymal stem cells (MSCs) for diverse clinical investigations. However, their applications often become complicated due to heterogeneity arising from various factors. Cellular heterogeneity can occur due to: (i) nomenclature and criteria for definition; (ii) adipose tissue depots (e.g., subcutaneous fat, visceral fat) from which ASCs are isolated; (iii) donor and inter-subject variation (age, body mass index, gender, and disease state); (iv) species difference; and (v) study design (in vivo versus in vitro) and tools used (e.g., antibody isolation and culture conditions). There are also actual differences in resident cell types that exhibit ASC/MSC characteristics. Multilineage-differentiating stress-enduring (Muse) cells and dedifferentiated fat (DFAT) cells have been reported as an alternative or derivative source of ASCs for application in regenerative medicine. In this review, we discuss these factors that contribute to the heterogeneity of human ASCs in detail, and what should be taken into consideration for overcoming challenges associated with such heterogeneity in the clinical use of ASCs. Attempts to understand, define, and standardize cellular heterogeneity are important in supporting therapeutic strategies and regulatory considerations for the use of ASCs.
Collapse
Affiliation(s)
- Wee Kiat Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
- Correspondence: (W.K.O.); (S.S.)
| | - Smarajit Chakraborty
- Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way, Singapore 138669, Singapore;
| | - Shigeki Sugii
- Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way, Singapore 138669, Singapore;
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Correspondence: (W.K.O.); (S.S.)
| |
Collapse
|
31
|
Posada-González M, Villagrasa A, García-Arranz M, Vorwald P, Olivera R, Olmedillas-López S, Vega-Clemente L, Salcedo G, García-Olmo D. Comparative Analysis Between Mesenchymal Stem Cells From Subcutaneous Adipose Tissue and Omentum in Three Types of Patients: Cancer, Morbid Obese and Healthy Control. Surg Innov 2021; 29:9-21. [PMID: 33929270 DOI: 10.1177/15533506211013142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective. The aims of this study are to compare 2 origins of adipose-derived mesenchymal stem cells (MSCs) (omentum and subcutaneous) from 2 pathologies (morbid obesity and cancer) vs healthy donors. Adipose tissue has revealed to be the ideal MSC source. However, in developing adipose-derived stem cells (ASCs) for clinical use, it is important to consider the effects of different fat depots and also the effect of donor variability. Methods. We isolated and characterized the membrane markers and differentiation capacities of ASCs obtained from patients with these diseases and different origin. During the culture period, we further analysed the cells' proliferation capacity in an in vitro assay as well as their secretome. Results. Adipose-derived stem cells isolated from obese and cancer patients have mesenchymal phenotype and similar cell proliferation as ASCs derived from healthy donors, some higher in cells derived from subcutaneous fat. However, cells from these 2 types of patients do not have the same differentiation potential, especially in cancer patients from omentum, and exhibit distinct secretion of both pro-inflammatory and regulatory cytokines, which could explain the differences in use due to origin as well as pathology associated with the donor. Conclusion. Subcutaneous and omentum ASCs are slightly different; omentum generates fewer cells but with greater anti-inflammatory capacity. Adipose-derived stem cells from patients with either obesity or cancer are slightly altered, which limits their therapeutic properties.
Collapse
Affiliation(s)
- María Posada-González
- Department of Surgery, 16436University Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Alejandro Villagrasa
- New Therapies Laboratory, 218187Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Mariano García-Arranz
- New Therapies Laboratory, 218187Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain.,Department of Surgery, School of Medicine, 16722Universidad Autónoma de Madrid, Madrid, Spain
| | - Peter Vorwald
- Department of Surgery, 16436University Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Rocío Olivera
- New Therapies Laboratory, 218187Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Susana Olmedillas-López
- New Therapies Laboratory, 218187Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Luz Vega-Clemente
- New Therapies Laboratory, 218187Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Gabriel Salcedo
- Department of Surgery, 16436University Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Damián García-Olmo
- Department of Surgery, 16436University Hospital Fundación Jiménez Díaz, Madrid, Spain.,New Therapies Laboratory, 218187Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain.,Department of Surgery, School of Medicine, 16722Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
32
|
Da Silva D, Crous A, Abrahamse H. Photobiomodulation: An Effective Approach to Enhance Proliferation and Differentiation of Adipose-Derived Stem Cells into Osteoblasts. Stem Cells Int 2021; 2021:8843179. [PMID: 33833810 PMCID: PMC8012132 DOI: 10.1155/2021/8843179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 01/07/2023] Open
Abstract
Osteoporosis is regarded as the most common chronic metabolic bone condition in humans. In osteoporosis, bone mesenchymal stem cells (MSCs) have reduced cellular function. Regenerative medicine using adipose-derived stem cell (ADSC) transplantation can promote the growth and strength of new bones, improve bone stability, and reduce the risk of fractures. Various methods have been attempted to differentiate ADSCs to functioning specialized cells for prospective clinical application. However, commonly used therapies have resulted in damage to the donor site and morbidity, immune reactions, carcinogenic generation, and postoperative difficulties. Photobiomodulation (PBM) improves ADSC differentiation and proliferation along with reducing clinical difficulties such as treatment failures to common drug therapies and late initiation of treatment. PBM is a noninvasive, nonthermal treatment that encourages cells to produce more energy and to undergo self-repair by using visible green and red and invisible near-infrared (NIR) radiation. The use of PBM for ADSC proliferation and differentiation has been widely studied with multiple outcomes observed due to laser fluence and wavelength dependence. In this article, the potential for differentiating ADSCs into osteoblasts and the various methods used, including biological induction, chemical induction, and PBM, will be addressed. Likewise, the optimal laser parameters that could improve the proliferation and differentiation of ADSC, translating into clinical success, will be commented on.
Collapse
Affiliation(s)
- Daniella Da Silva
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| |
Collapse
|
33
|
Khazaei S, Keshavarz G, Bozorgi A, Nazari H, Khazaei M. Adipose tissue-derived stem cells: a comparative review on isolation, culture, and differentiation methods. Cell Tissue Bank 2021; 23:1-16. [PMID: 33616792 DOI: 10.1007/s10561-021-09905-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/01/2021] [Indexed: 01/14/2023]
Abstract
Adipose tissue-derived stem cells (ADSCs) are an available source of mesenchymal stem cells with the appropriate capacity to in vitro survive, propagate, and differentiate into cells from three lineages of ectoderm, mesoderm, and endoderm. The biological features of ADSCs depend on the donor physiology and health status, isolation procedure, culture conditions, and differentiation protocols used. Adipose tissue samples are provided by surgery and lipoaspiration-based methods and subjected to various mechanical and chemical digestion techniques to finally generate a heterogeneous mixture named stromal vascular fraction (SVF). ADSCs are purified through varied cell populations that exist within SVF and cultured under standard conditions to give rise to a highly rich resource of stem cells directly applied in the clinic or differentiated into a wide range of cells. The development and optimization of conventional isolation, expansion, and differentiation methods seem noteworthy to preserve the desirable biological functions of ADSCs in pre-clinical and clinical investigations.
Collapse
Affiliation(s)
- Saber Khazaei
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazal Keshavarz
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Nazari
- Department of Orofacial Surgery, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
34
|
Measured Levels of Human Adipose Tissue-Derived Stem Cells in Adipose Tissue Is Strongly Dependent on Harvesting Method and Stem Cell Isolation Technique. Plast Reconstr Surg 2020; 145:142-150. [PMID: 31881616 DOI: 10.1097/prs.0000000000006404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Adipose tissue-derived stem cells are of great interest because of their properties of immune modulation, tissue regeneration, and multipotent differentiation. To advance development of stem cell-based treatments, determination of the physiologic concentration of adipose tissue-derived stem cells in human adipose tissue is relevant for proper guidance of stem cell treatment dosage, oncologic safety, and evaluation of efficacy. METHODS A prospective comparative case-control study of 20 patients was conducted to determine the yield of adipose tissue-derived stem cells in periumbilical adipose tissue harvested by the widely used method of aspiration and in structurally intact adipose tissue harvested by excision. Stem cells were isolated using conventional enzymatic digestion and by a method combining enzymatic digestion with mechanical distortion. Stem cell yield was quantified by multicolor flow cytometry and colony-forming capacity. RESULTS When only the conventional enzymatic digestion was used, no significant difference in adipose tissue-derived stem cell yield was observed. However, when enzymatic digestion was combined with mechanical distortion, twice as many stem cells were isolated from excised adipose tissue compared to aspirated adipose tissue. Inclusion of mechanical distortion significantly increased yield 5-fold in excised adipose tissue and 2-fold in aspirated adipose tissue. Combining enzymatic digestion and mechanical distortion, measured levels of excised adipose tissue reached 140 × 10 (95 percent CI, 62 to 220 × 10) adipose tissue-derived stem cells per gram of adipose tissue that corresponded to 26 × 10 (95 percent CI, 18 to 33 × 10) colony-forming units per gram. CONCLUSIONS The study indicates that harvesting by aspiration halves the concentration of adipose tissue-derived stem cells in adipose tissue samples when compared to structural intact adipose tissue. Furthermore, the study presents stem cell yield higher than previously described in the current literature. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
|
35
|
Munteanu R, Onaciu A, Moldovan C, Zimta AA, Gulei D, Paradiso AV, Lazar V, Berindan-Neagoe I. Adipocyte-Based Cell Therapy in Oncology: The Role of Cancer-Associated Adipocytes and Their Reinterpretation as Delivery Platforms. Pharmaceutics 2020; 12:E402. [PMID: 32354024 PMCID: PMC7284545 DOI: 10.3390/pharmaceutics12050402] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-associated adipocytes have functional roles in tumor development through secreted adipocyte-derived factors and exosomes and also through metabolic symbiosis, where the malignant cells take up the lactate, fatty acids and glutamine produced by the neighboring adipocytes. Recent research has demonstrated the value of adipocytes as cell-based delivery platforms for drugs (or prodrugs), nucleic acids or loaded nanoparticles for cancer therapy. This strategy takes advantage of the biocompatibility of the delivery system, its ability to locate the tumor site and also the predisposition of cancer cells to come in functional contact with the adipocytes from the tumor microenvironment for metabolic sustenance. Also, their exosomal content can be used in the context of cancer stem cell reprogramming or as a delivery vehicle for different cargos, like non-coding nucleic acids. Moreover, the process of adipocytes isolation, processing and charging is quite straightforward, with minimal economical expenses. The present review comprehensively presents the role of adipocytes in cancer (in the context of obese and non-obese individuals), the main methods for isolation and characterization and also the current therapeutic applications of these cells as delivery platforms in the oncology sector.
Collapse
Affiliation(s)
- Raluca Munteanu
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Anca Onaciu
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Cristian Moldovan
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Angelo V. Paradiso
- Oncologia Sperimentale, Istituto Tumori G Paolo II, IRCCS, 70125 Bari, Italy
| | - Vladimir Lazar
- Worldwide Innovative Network for Personalized Cancer Therapy, 94800 Villejuif, France
| | - Ioana Berindan-Neagoe
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
36
|
The Influence of Negative Pressure and of the Harvesting Site on the Characteristics of Human Adipose Tissue-Derived Stromal Cells from Lipoaspirates. Stem Cells Int 2020; 2020:1016231. [PMID: 32104182 PMCID: PMC7035580 DOI: 10.1155/2020/1016231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/13/2020] [Indexed: 01/18/2023] Open
Abstract
Background Adipose tissue-derived stromal cells (ADSCs) have great potential for cell-based therapies, including tissue engineering. However, various factors can influence the characteristics of isolated ADSCs. Methods We studied the influence of the harvesting site, i.e., inner thigh (n = 3), outer thigh (n = 3), outer thigh (n = 3), outer thigh ( Results We revealed higher initial cell yields from the outer thigh region than from the abdomen region. Negative pressure did not influence the cell yields from the outer thigh region, whereas the yields from the abdomen region were higher under high negative pressure than under low negative pressure. In the subsequent passage, in general, no significant relationship was identified between the different negative pressure and ADSC characteristics. No significant difference was observed in the characteristics of thigh ADSCs and abdomen ADSCs. Only on day 1, the diameter was significantly bigger in outer thigh ADSCs than in abdomen ADSCs. Moreover, we noted a tendency of thigh ADSCs (i.e., inner thigh+outer thigh) to reach a higher cell number on day 7. Discussion. The harvesting site and negative pressure can potentially influence initial cell yields from lipoaspirates. However, for subsequent in vitro culturing and for use in tissue engineering, it seems that the harvesting site and the level of negative pressure do not have a crucial or limiting effect on basic ADSC characteristics.in vitro culturing and for use in tissue engineering, it seems that the harvesting site and the level of negative pressure do not have a crucial or limiting effect on basic ADSC characteristics.
Collapse
|
37
|
Born S, Dörfel MJ, Hartjen P, Haschemi Yekani SA, Luecke J, Meutsch JK, Westphal JK, Birkelbach M, Köhnke R, Smeets R, Krueger M. A short-term plastic adherence incubation of the stromal vascular fraction leads to a predictable GMP-compliant cell-product. ACTA ACUST UNITED AC 2019; 9:161-172. [PMID: 31508331 PMCID: PMC6726751 DOI: 10.15171/bi.2019.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/14/2022]
Abstract
![]()
Introduction:Mesenchymal stromal/stem cells (MSCs) derived from fat tissue are an encouraging tool for regenerative medicine. They share properties similar to the bone marrow-derived MSCs, but the amount of MSCs per gram of fat tissue is 500x higher. The fat tissue can easily be digested by collagenase, releasing a heterogeneous cell fraction called stromal vascular fraction (SVF) which contains a variable amount of stromal/stem cells. In Europe, cell products like the SVF derived from fat tissue are considered advanced therapy medicinal product (ATMPs). As a consequence, the manufacturing process has to be approved via GMP-compliant process validation. The problem of the process validation for SVF is the heterogeneity of this fraction.
Methods: Here, we modified existing purification strategies by adding an additional plastic adherence incubation of maximal 20 hours after SVF isolation. The resulting cell fraction was characterized and compared to SVF as well as cultivated adipose-derived stromal/stem cells (ASCs) with respect to viability and cell yield, the expression of surface markers, differentiation potential and cytokine expression.
Results: Short-term incubation significantly reduced the heterogeneity of the resulting cell fraction compared to SVF. The cells were able to differentiate into adipocytes, chondrocytes, and osteoblasts. More importantly, they expressed trophic proteins which have been previously associated with the beneficial effects of MSCs. Furthermore, GMP compliance of the production process described herein was acknowledged by the national regulatory agencies (DE_BB_01_GMP_2017_1018).
Conclusion: Addition of a short purification-step after the SVF isolation is a cheap and fast strategy to isolate a homogeneous uncultivated GMP-compliant cell fraction of ASCs.
Collapse
Affiliation(s)
| | | | - Philip Hartjen
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | - Moritz Birkelbach
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Köhnke
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Division, Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
38
|
Alstrup T, Eijken M, Bohn AB, Møller B, Damsgaard TE. Isolation of Adipose Tissue-Derived Stem Cells: Enzymatic Digestion in Combination with Mechanical Distortion to Increase Adipose Tissue-Derived Stem Cell Yield from Human Aspirated Fat. ACTA ACUST UNITED AC 2018; 48:e68. [PMID: 30365239 DOI: 10.1002/cpsc.68] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mesenchymal stem cells (MSCs) are of great interest due to their properties of immune modulation, tissue regeneration, and multipotent differentiation. Future developments of clinical applications, however, require a higher yield of MSCs, lower number of passages of cells in culture, and shorter time from harvest to use. Optimization and standardization of techniques for mesenchymal adipose tissue-derived stem cell isolation offers solutions to current bottlenecks as a larger amount of MSCs can be isolated. These improvements result in shorter expansion time, fewer passages, less donor material needed, and higher MSC yield. This paper describes an MSC isolation method combining enzymatic digestion with mechanic disruption. This protocol is a standardized and easy-to-implement method for reaching significantly higher MSC yields compared to conventional enzymatic isolation protocols. Based on the results presented, we hypothesize that the combined enzymatic and mechanical method increases the surface area of the adipose tissue, facilitating digestion by enzymes. This approach reduces the amount of adipose tissue and in vitro expansion time needed to reach sufficient amounts of MSCs for clinical purposes. Importantly, the method does not require increased amounts of collagenase, nor does it impair the viability or differentiability of the MSCs. Using this protocol increases MSC yield by a factor of three. As a consequence, these results indicate that the physiological concentration of MSCs in adipose tissue is higher than previously assumed. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Toke Alstrup
- Plastic Surgical Research Unit, Department of Plastic and Breast Surgery, Aarhus University, Denmark
| | - Marco Eijken
- Department of Clinical Immunology, Aarhus University Hospital, Denmark.,Department of Renal Medicine, Aarhus University Hospital, Denmark
| | | | - Bjarne Møller
- Department of Clinical Immunology, Aarhus University Hospital, Denmark
| | - Tine Engberg Damsgaard
- Plastic Surgical Research Unit, Department of Plastic and Breast Surgery, Aarhus University, Denmark
| |
Collapse
|
39
|
Dubey NK, Mishra VK, Dubey R, Deng YH, Tsai FC, Deng WP. Revisiting the Advances in Isolation, Characterization and Secretome of Adipose-Derived Stromal/Stem Cells. Int J Mol Sci 2018; 19:ijms19082200. [PMID: 30060511 PMCID: PMC6121360 DOI: 10.3390/ijms19082200] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/08/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stromal/stem cells (ASCs) seems to be a promising regenerative therapeutic agent due to the minimally invasive approach of their harvest and multi-lineage differentiation potential. The harvested adipose tissues are further digested to extract stromal vascular fraction (SVF), which is cultured, and the anchorage-dependent cells are isolated in order to characterize their stemness, surface markers, and multi-differentiation potential. The differentiation potential of ASCs is directed through manipulating culture medium composition with an introduction of growth factors to obtain the desired cell type. ASCs have been widely studied for its regenerative therapeutic solution to neurologic, skin, wound, muscle, bone, and other disorders. These therapeutic outcomes of ASCs are achieved possibly via autocrine and paracrine effects of their secretome comprising of cytokines, extracellular proteins and RNAs. Therefore, secretome-derivatives might offer huge advantages over cells through their synthesis and storage for long-term use. When considering the therapeutic significance and future prospects of ASCs, this review summarizes the recent developments made in harvesting, isolation, and characterization. Furthermore, this article also provides a deeper insight into secretome of ASCs mediating regenerative efficacy.
Collapse
Affiliation(s)
- Navneet Kumar Dubey
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Viraj Krishna Mishra
- Applied Biotech Engineering Centre (ABEC), Department of Biotechnology, Ambala College of Engineering and Applied Research, Ambala 133101, India.
| | - Rajni Dubey
- Graduate Institute Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Yue-Hua Deng
- Stem Cell Research Center, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Life Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Feng-Chou Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Win-Ping Deng
- Stem Cell Research Center, Taipei Medical University, Taipei 11031, Taiwan.
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Basic medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| |
Collapse
|
40
|
Mohamed-Ahmed S, Fristad I, Lie SA, Suliman S, Mustafa K, Vindenes H, Idris SB. Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res Ther 2018; 9:168. [PMID: 29921311 PMCID: PMC6008936 DOI: 10.1186/s13287-018-0914-1] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/12/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023] Open
Abstract
Background Adipose-derived stem cells (ASCs) have been introduced as an alternative to bone marrow mesenchymal stem cells (BMSCs) for cell-based therapy. However, different studies comparing ASCs and BMSCs have shown conflicting results. In fact, harvesting ASCs and BMSCs from different individuals might influence the results, making comparison difficult. Therefore, this study aimed to characterize donor-matched ASCs and BMSCs in order to investigate proliferation, differentiation potential and possible effects of donor variation on these mesenchymal stem cells (MSCs). Methods Human bone marrow and adipose tissue samples were obtained from nine donors aged 8–14. ASCs and BMSCs were isolated and characterized based on expression of surface markers using flow cytometry. The proliferation up to 21 days was investigated. Multi-lineage differentiation was induced using osteogenic, chondrogenic and adipogenic differentiation media. Alkaline phosphatase (ALP) activity was monitored and collagen type I formation was evaluated by immunofluorescence staining. In vitro multi-potency was studied using tissue-specific stains and lineage-specific gene expression. In addition, the osteogenic lineage was evaluated at protein level. Results Isolated ASCs and BMSCs from all donors demonstrated morphologic and immunophenotypic characteristics of MSCs, with expression of MSCs markers and negative expression of hematopoietic markers. Unlike BMSCs, ASCs showed high expression of CD49d and low expression of Stro-1. In general, ASCs showed significantly higher proliferation and adipogenic capacity with more lipid vesicle formation and expression of the adipogenesis-related genes than BMSCs. In contrast, BMSCs showed significantly higher osteogenic and chondrogenic capacity compared to ASCs. BMSCs had earlier and higher ALP activity, calcium deposition, and expression of the osteogenesis- and chondrogenesis-related genes and the osteogenesis-related protein osteopontin. Proliferation and differentiation capacity of ASCs and BMSCs varied significantly among the donors. Conclusions ASCs and BMSCs showed tissue-specific differentiation abilities, but with significant variation between donors. The similarities and differences in the properties of ASCs and BMSCs should be taken into consideration when planning stem cell-based therapy.
Collapse
Affiliation(s)
- Samih Mohamed-Ahmed
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Inge Fristad
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Stein Atle Lie
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Salwa Suliman
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Hallvard Vindenes
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department for Plastic, Hand and Reconstructive Surgery, National Fire Damage Center, Bergen, Norway
| | - Shaza B Idris
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
41
|
A Novel Porcine Model for Future Studies of Cell-enriched Fat Grafting. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2018; 6:e1735. [PMID: 29876178 PMCID: PMC5977937 DOI: 10.1097/gox.0000000000001735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Cell-enriched fat grafting has shown promising results for improving graft survival, although many questions remain unanswered. A large animal model is crucial for bridging the gap between rodent studies and human trials. We present a step-by-step approach in using the Göttingen minipig as a model for future studies of cell-enriched large volume fat grafting. Methods: Fat grafting was performed as bolus injections and structural fat grafting. Graft retention was assessed by magnetic resonance imaging after 120 days. The stromal vascular fraction (SVF) was isolated from excised fat and liposuctioned fat from different anatomical sites and analyzed. Porcine adipose-derived stem/stromal cells (ASCs) were cultured in different growth supplements, and population doubling time, maximum cell yield, expression of surface markers, and differentiation potential were investigated. Results: Structural fat grafting in the breast and subcutaneous bolus grafting in the abdomen revealed average graft retention of 53.55% and 15.28%, respectively, which are similar to human reports. Liposuction yielded fewer SVF cells than fat excision, and abdominal fat had the most SVF cells/g fat with SVF yields similar to humans. Additionally, we demonstrated that porcine ASCs can be readily isolated and expanded in culture in allogeneic porcine platelet lysate and fetal bovine serum and that the use of 10% porcine platelet lysate or 20% fetal bovine serum resulted in population doubling time, maximum cell yield, surface marker profile, and trilineage differentiation that were comparable with humans. Conclusions: The Göttingen minipig is a feasible and cost-effective, large animal model for future translational studies of cell-enriched fat grafting.
Collapse
|
42
|
Miana VV, González EAP. Adipose tissue stem cells in regenerative medicine. Ecancermedicalscience 2018; 12:822. [PMID: 29662535 PMCID: PMC5880231 DOI: 10.3332/ecancer.2018.822] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 12/26/2022] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) are mesenchymal cells with the capacity for self-renewal and multipotential differentiation. This multipotentiality allows them to become adipocytes, chondrocytes, myocytes, osteoblasts and neurocytes among other cell lineages. Stem cells and, in particular, adipose tissue-derived cells, play a key role in reconstructive or tissue engineering medicine as they have already proven effective in developing new treatments. The purpose of this work is to review the applications of ADSCs in various areas of regenerative medicine, as well as some of the risks associated with treatment with ADSCs in neoplastic disease.
Collapse
Affiliation(s)
- Vanesa Verónica Miana
- Centre for Advanced Studies in Humanities and Health Sciences, Interamerican Open University, Buenos Aires, Argentina
| | - Elio A Prieto González
- Centre for Advanced Studies in Humanities and Health Sciences, Interamerican Open University, Buenos Aires, Argentina
| |
Collapse
|
43
|
Usuelli FG, D'Ambrosi R, Maccario C, Indino C, Manzi L, Maffulli N. Adipose-derived stem cells in orthopaedic pathologies. Br Med Bull 2017; 124:31-54. [PMID: 29253149 DOI: 10.1093/bmb/ldx030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/22/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION To examine the current literature regarding the clinical application of adipose-derived stem cells (ADSCs) for the management of orthopaedic pathologies. SOURCES OF DATA MEDLINE,SCOPUS, CINAHL and EMBASE (1950 to April 14, 2017) were searched by two independent investigators for articles published in English. Reviews, meta-analyses, expert opinions, case reports, mini case series and editorials were excluded. Furthermore, we excluded animal studies, cadaveric studies and in vitro studies. AREAS OF AGREEMENT ADSCs seem to produce excellent clinical results. However, the length and modalities of follow-up in the different conditions are extremely variable. Nevertheless, it appears that the use of adipose-derived stem cells is associated with subjective and objective clinical improvements and minimal complication rates. AREAS OF CONTROVERSY None of the studies identified is a randomized double-blinded trial, and most of the selected studies present major limitations, and different methods, confounding the results of our review. GROWING POINTS It is necessary to conduct more and better studies to ascertain whether ADSCs really play a role in orthopaedic surgery with particular attention to ADSCs harvesting method, type of administration and the conditions treated. AREAS TIMELY FOR DEVELOPING RESEARCH The current literature regarding the use of ADSCs for orthopaedic pathologies is limited. At present, long-term safety is the biggest challenge of ADSCs based regenerative medicine. LEVEL OF EVIDENCE Level IV-Study of Level I, II, III, IV.
Collapse
Affiliation(s)
| | - Riccardo D'Ambrosi
- Foot and Ankle Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Italy
| | - Camilla Maccario
- Foot and Ankle Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Italy
| | - Cristian Indino
- Foot and Ankle Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Luigi Manzi
- Foot and Ankle Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Nicola Maffulli
- Department of Orthopaedics and Traumatology, Azienda Ospedaliera San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, London, UK
| |
Collapse
|
44
|
Hanke A, Prantl L, Wenzel C, Nerlich M, Brockhoff G, Loibl M, Gehmert S. Semi-automated extraction and characterization of Stromal Vascular Fraction using a new medical device. Clin Hemorheol Microcirc 2017; 64:403-412. [PMID: 27886006 DOI: 10.3233/ch-168124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The stem cell rich Stromal Vascular Fraction (SVF) can be harvested by processing lipo-aspirate or fat tissue with an enzymatic digestion followed by centrifugation. To date neither a standardised extraction method for SVF nor a generally admitted protocol for cell application in patients exists. A novel commercially available semi-automated device for the extraction of SVF promises sterility, consistent results and usability in the clinical routine. The aim of this work was to compare the quantity and quality of the SVF between the new system and an established manual laboratory method. MATERIAL AND METHODS SVF was extracted from lipo-aspirate both by a prototype of the semi-automated UNiStation™ (NeoGenesis, Seoul, Korea) and by hand preparation with common laboratory equipment. Cell composition of the SVF was characterized by multi-parametric flow-cytometry (FACSCanto-II, BD Biosciences). The total cell number (quantity) of the SVF was determined as well the percentage of cells expressing the stem cell marker CD34, the leucocyte marker CD45 and the marker CD271 for highly proliferative stem cells (quality). RESULTS Lipo-aspirate obtained from six patients was processed with both the novel device (d) and the hand preparation (h) which always resulted in a macroscopically visible SVF. However, there was a tendency of a fewer cell yield per gram of used lipo-aspirate with the device (d: 1.1×105±1.1×105 vs. h: 2.0×105±1.7×105; p = 0.06). Noteworthy, the percentage of CD34+ cells was significantly lower when using the device (d: 57.3% ±23.8% vs. h: 74.1% ±13.4%; p = 0.02) and CD45+ leukocyte counts tend to be higher when compared to the hand preparation (d: 20.7% ±15.8% vs. h: 9.8% ±7.1%; p = 0.07). The percentage of highly proliferative CD271+ cells was similar for both methods (d:12.9% ±9.6% vs. h: 13.4% ±11.6%; p = 0.74) and no differences were found for double positive cells of CD34+/CD45+ (d: 5.9% ±1.7% vs. h: 1.7% ±1.1%; p = 0.13), CD34+/CD271+ (d: 24.1% ±12.0% vs. h: 14.2% ±8.5%; p = 0.07). DISCUSSION The semi-automated closed system provides a considerable amount of sterile SVF with high reproducibility. Furthermore, the SVF extracted by both methods showed a similar cell composition which is in accordance with the data from literature. This semi-automated device offers an opportunity to take research and application of the SVF one step further to the clinic.
Collapse
Affiliation(s)
- Alexander Hanke
- Department of Plastic Surgery, University Medical Center Regensburg, Germany.,Applied Stem Cell Research Center, University Medical Center Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic Surgery, University Medical Center Regensburg, Germany.,Applied Stem Cell Research Center, University Medical Center Regensburg, Germany
| | - Carina Wenzel
- Department of Plastic Surgery, University Medical Center Regensburg, Germany.,Applied Stem Cell Research Center, University Medical Center Regensburg, Germany
| | - Michael Nerlich
- Department of Trauma Surgery, University Medical Center Regensburg, Germany
| | - Gero Brockhoff
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Regensburg, Germany
| | - Markus Loibl
- Applied Stem Cell Research Center, University Medical Center Regensburg, Germany.,Department of Trauma Surgery, University Medical Center Regensburg, Germany
| | - Sebastian Gehmert
- Applied Stem Cell Research Center, University Medical Center Regensburg, Germany.,Department of Orthopaedics and Trauma Surgery, University Hospital Basel, Switzerland
| |
Collapse
|
45
|
|
46
|
Guillaume-Jugnot P, Daumas A, Magalon J, Sautereau N, Veran J, Magalon G, Sabatier F, Granel B. State of the art. Autologous fat graft and adipose tissue-derived stromal vascular fraction injection for hand therapy in systemic sclerosis patients. Curr Res Transl Med 2016; 64:35-42. [PMID: 27140597 DOI: 10.1016/j.retram.2016.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 01/04/2016] [Indexed: 01/27/2023]
Abstract
Systemic sclerosis is an autoimmune disease characterized by sclerosis (hardening) of the skin and deep viscera associated with microvascular functional and structural alteration, which leads to chronic ischemia. In the hands of patients, ischemic and fibrotic damages lead to both pain and functional impairment. Hand disability creates a large burden in professional and daily activities, with social and psychological consequences. Currently, the proposed therapeutic options for hands rely mainly on hygienic measures, vasodilatator drugs and physiotherapy, but have many constraints and limited effects. Developing an innovative therapeutic approach is crucial to reduce symptoms and improve the quality of life. The discovery of adult stem cells from adipose tissue has increased the interest to use adipose tissue in plastic and regenerative surgery. Prepared as freshly isolated cells for immediate autologous transplantation, adipose tissue-derived stem cell therapy has emerged as a therapeutic alternative for the regeneration and repair of damaged tissues. We aim to update literature in the interest of autologous fat graft or adipose derived from stromal vascular fraction cell-based therapy for the hands of patients who suffer from systemic sclerosis.
Collapse
Affiliation(s)
- P Guillaume-Jugnot
- Service de médecine interne, hôpital Nord, Assistance publique-Hôpitaux de Marseille (AP-HM), 13915 Marseille cedex 05, France
| | - A Daumas
- Service de médecine interne, gériatrie et thérapeutique, hôpital de la Timone, AP-HM, 13385 Marseille cedex 05, France
| | - J Magalon
- Laboratoire de culture et thérapie cellulaire, Inserm CBT-1409, hôpital de la Conception, AP-HM, 13385 Marseille cedex 05, France
| | - N Sautereau
- Service de médecine interne, hôpital Nord, Assistance publique-Hôpitaux de Marseille (AP-HM), 13915 Marseille cedex 05, France
| | - J Veran
- Laboratoire de culture et thérapie cellulaire, Inserm CBT-1409, hôpital de la Conception, AP-HM, 13385 Marseille cedex 05, France
| | - G Magalon
- Service de chirurgie plastique et réparatrice, hôpital de la Conception, AP-HM, 13385 Marseille cedex 05, France
| | - F Sabatier
- Laboratoire de culture et thérapie cellulaire, Inserm CBT-1409, hôpital de la Conception, AP-HM, 13385 Marseille cedex 05, France; Inserm UMR 1076 Vascular Research Centre of Marseille, Aix-Marseille université, 13385 Marseille cedex 05, France
| | - B Granel
- Service de médecine interne, hôpital Nord, Assistance publique-Hôpitaux de Marseille (AP-HM), 13915 Marseille cedex 05, France; Inserm UMR 1076 Vascular Research Centre of Marseille, Aix-Marseille université, 13385 Marseille cedex 05, France.
| |
Collapse
|
47
|
Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications. Stem Cells Int 2016; 2016:6737345. [PMID: 27057174 PMCID: PMC4761677 DOI: 10.1155/2016/6737345] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/02/2016] [Accepted: 01/03/2016] [Indexed: 02/05/2023] Open
Abstract
Adipose-derived stem cells (ASCs) are a mesenchymal stem cell source with properties of self-renewal and multipotential differentiation. Compared to bone marrow-derived stem cells (BMSCs), ASCs can be derived from more sources and are harvested more easily. Three-dimensional (3D) tissue engineering scaffolds are better able to mimic the in vivo cellular microenvironment, which benefits the localization, attachment, proliferation, and differentiation of ASCs. Therefore, tissue-engineered ASCs are recognized as an attractive substitute for tissue and organ transplantation. In this paper, we review the characteristics of ASCs, as well as the biomaterials and tissue engineering methods used to proliferate and differentiate ASCs in a 3D environment. Clinical applications of tissue-engineered ASCs are also discussed to reveal the potential and feasibility of using tissue-engineered ASCs in regenerative medicine.
Collapse
|
48
|
Bony C, Cren M, Domergue S, Toupet K, Jorgensen C, Noël D. Adipose Mesenchymal Stem Cells Isolated after Manual or Water-jet-Assisted Liposuction Display Similar Properties. Front Immunol 2016; 6:655. [PMID: 26834736 PMCID: PMC4716140 DOI: 10.3389/fimmu.2015.00655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/21/2015] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSC) are under investigation in many clinical trials for their therapeutic potential in a variety of diseases, including autoimmune and inflammatory disorders. One of the main sources of MSCs is the adipose tissue, which is mainly obtained by manual liposuction using a cannula linked to a syringe. However, in the past years, a number of devices for fat liposuction intended for clinical use have been commercialized but few papers have compared these procedures in terms of stromal vascular fraction (SVF) or adipose mesenchymal stromal cells (ASC). The objective of the present study was to compare and qualify for clinical use the ASC obtained from fat isolated with the manual or the Bodyjet® water-jet-assisted procedure. Although the initial number of cells obtained after collagenase digestion was higher with the manual procedure, the percentage of dead cells, the number of colony forming unit-fibroblast and the phenotype of cells were identical in the SVF at isolation (day 0) and in the ASC populations at day 14. We also showed that the osteogenic and adipogenic differentiation potentials of ASCs were identical between preparations while a slight but significant higher in vitro immunosuppressive effect was observed with ASCs isolated from fat removed with a cannula. The difference in the immunomodulatory effect between ASC populations was, however, not observed in vivo using the delayed-type hypersensitivity (DTH) model. Our data, therefore, indicate that the procedure for fat liposuction does not impact the characteristics or the therapeutic function of ASCs.
Collapse
Affiliation(s)
- Claire Bony
- U1183, INSERM, Hôpital Saint-Eloi, Montpellier, France; UFR de Médecine, Montpellier University, Montpellier, France
| | - Mailys Cren
- U1183, INSERM, Hôpital Saint-Eloi, Montpellier, France; UFR de Médecine, Montpellier University, Montpellier, France
| | - Sophie Domergue
- U1183, INSERM, Hôpital Saint-Eloi, Montpellier, France; UFR de Médecine, Montpellier University, Montpellier, France; Chirurgie Plastique Reconstructrice et Esthétique, Hôpital Gui de Chauliac, Montpellier, France
| | - Karine Toupet
- U1183, INSERM, Hôpital Saint-Eloi, Montpellier, France; UFR de Médecine, Montpellier University, Montpellier, France
| | - Christian Jorgensen
- U1183, INSERM, Hôpital Saint-Eloi, Montpellier, France; UFR de Médecine, Montpellier University, Montpellier, France; Service d'Immuno-Rhumatologie Thérapeutique, Hôpital Lapeyronie, Montpellier, France
| | - Danièle Noël
- U1183, INSERM, Hôpital Saint-Eloi, Montpellier, France; UFR de Médecine, Montpellier University, Montpellier, France; Service d'Immuno-Rhumatologie Thérapeutique, Hôpital Lapeyronie, Montpellier, France
| |
Collapse
|
49
|
Tuin AJ, Domerchie PN, Schepers RH, Willemsen JC, Dijkstra PU, Spijkervet FK, Vissink A, Jansma J. What is the current optimal fat grafting processing technique? A systematic review. J Craniomaxillofac Surg 2016; 44:45-55. [DOI: 10.1016/j.jcms.2015.10.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/22/2015] [Accepted: 10/15/2015] [Indexed: 11/30/2022] Open
|