1
|
Ji F, Dai E, Kang R, Klionsky DJ, Liu T, Hu Y, Tang D, Zhu K. Mammalian nucleophagy: process and function. Autophagy 2025:1-17. [PMID: 39827882 DOI: 10.1080/15548627.2025.2455158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
The nucleus is a highly specialized organelle that houses the cell's genetic material and regulates key cellular activities, including growth, metabolism, protein synthesis, and cell division. Its structure and function are tightly regulated by multiple mechanisms to ensure cellular integrity and genomic stability. Increasing evidence suggests that nucleophagy, a selective form of autophagy that targets nuclear components, plays a critical role in preserving nuclear integrity by clearing dysfunctional nuclear materials such as nuclear proteins (lamins, SIRT1, and histones), DNA-protein crosslinks, micronuclei, and chromatin fragments. Impaired nucleophagy has been implicated in aging and various pathological conditions, including cancer, neurodegeneration, autoimmune disorders, and neurological injury. In this review, we focus on nucleophagy in mammalian cells, discussing its mechanisms, regulation, and cargo selection, as well as evaluating its therapeutic potential in promoting human health and mitigating disease.Abbreviations: 5-FU: 5-fluorouracil; AMPK, AMP-activated protein kinase; ATG, autophagy related; CMA, chaperone-mediated autophagy; DRPLA: dentatorubral-pallidoluysian atrophy; ER, endoplasmic reticulum; ESCRT: endosomal sorting complex required for transport; HOPS, homotypic fusion and vacuole protein sorting; LIR: LC3-interacting region; MEFs: mouse embryonic fibroblasts; mRNA: messenger RNA; MTORC1: mechanistic target of rapamycin kinase complex 1; PCa: prostate cancer; PE: phosphatidylethanolamine; PI3K, phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; rRNA: ribosomal RNA; SCI: spinal cord injury; SCLC: small cell lung cancer; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SupraT: supraphysiological levels of testosterone; TOP1cc: TOP1 cleavage complexes.
Collapse
Affiliation(s)
- Fujian Ji
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enyong Dai
- 2nd ward of Oncology Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tong Liu
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yu Hu
- Department of Pathology, Chian-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kun Zhu
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Shaban HA, Gasser SM. Dynamic 3D genome reorganization during senescence: defining cell states through chromatin. Cell Death Differ 2025; 32:9-15. [PMID: 37596440 PMCID: PMC11748698 DOI: 10.1038/s41418-023-01197-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023] Open
Abstract
Cellular senescence, a cell state characterized by growth arrest and insensitivity to growth stimulatory hormones, is accompanied by a massive change in chromatin organization. Senescence can be induced by a range of physiological signals and pathological stresses and was originally thought to be an irreversible state, implicated in normal development, wound healing, tumor suppression and aging. Recently cellular senescence was shown to be reversible in some cases, with exit being triggered by the modulation of the cell's transcriptional program by the four Yamanaka factors, the suppression of p53 or H3K9me3, PDK1, and/or depletion of AP-1. Coincident with senescence reversal are changes in chromatin organization, most notably the loss of senescence-associated heterochromatin foci (SAHF) found in oncogene-induced senescence. In addition to fixed-cell imaging, chromatin conformation capture and multi-omics have been used to examine chromatin reorganization at different spatial resolutions during senescence. They identify determinants of SAHF formation and other key features that differentiate distinct types of senescence. Not surprisingly, multiple factors, including the time of induction, the type of stress experienced, and the type of cell involved, influence the global reorganization of chromatin in senescence. Here we discuss how changes in the three-dimensional organization of the genome contribute to the regulation of transcription at different stages of senescence. In particular, the distinct contributions of heterochromatin- and lamina-mediated interactions, changes in gene expression, and other cellular control mechanisms are discussed. We propose that high-resolution temporal and spatial analyses of the chromatin landscape during senescence will identify early markers of the different senescence states to help guide clinical diagnosis.
Collapse
Affiliation(s)
- Haitham A Shaban
- Precision Oncology Center, Department of Oncology, Lausanne University Hospital, 1005, Lausanne, Switzerland.
- Agora Cancer Research Center Lausanne, Rue du Bugnon 25A, 1005, Lausanne, Switzerland.
- Spectroscopy Department, Institute of Physics Research National Research Centre, Cairo, 33 El-Behouth St., Dokki, Giza, 12311, Egypt.
| | - Susan M Gasser
- Fondation ISREC, Rue du Bugnon 25A, 1005, Lausanne, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
3
|
Louka XP, Gumeni S, Trougakos IP. Studying Cellular Senescence Using the Model Organism Drosophila melanogaster. Methods Mol Biol 2025; 2906:281-299. [PMID: 40082363 DOI: 10.1007/978-1-0716-4426-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Cellular senescence, a complex biological process characterized by irreversible cell cycle arrest, contributes significantly to the development and progression of aging and of age-related diseases. Studying cellular senescence in vivo can be challenging due to the high heterogeneity and dynamic nature of senescent cells. Recently, Drosophila melanogaster has emerged as a powerful model organism for studying aging and cellular senescence due to its tractability and short lifespan, as well as due to the conservation of age-related genes and of key age-related pathways with mammals. Consequently, several research studies have utilized Drosophila to investigate the cellular mechanisms and pathways implicated in cellular senescence. Herein, we provide an overview of the assays that can be applied to study the different features of senescent cells in D. melanogaster tissues, highlighting the benefits of this model in aging research. We also emphasize the importance of selecting appropriate biomarkers for the identification of senescent cells, and the need for further understanding of the aging process including a more accurate identification and detection of senescent cells at the organismal level; a far more complex process as compared to single cells.
Collapse
Affiliation(s)
- Xanthippi P Louka
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
4
|
Lazarchuk P, Nguyen MM, Curca CM, Pavlova MN, Oshima J, Sidorova JM. Werner syndrome RECQ helicase participates in and directs maintenance of the protein complexes of constitutive heterochromatin in proliferating human cells. Aging (Albany NY) 2024; 16:12977-13011. [PMID: 39422615 PMCID: PMC11552638 DOI: 10.18632/aging.206132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Werner syndrome of premature aging is caused by mutations in the WRN RECQ helicase/exonuclease, which functions in DNA replication, repair, transcription, and telomere maintenance. How the loss of WRN accelerates aging is not understood in full. Here we show that WRN is necessary for optimal constitutive heterochromatin levels in proliferating human fibroblasts. Locally, WRN deficiency derepresses SATII pericentromeric satellite repeats but does not reduce replication fork progression on SATII repeats. Globally, WRN loss reduces a subset of protein-protein interactions responsible for the organization of constitutive heterochromatin in the nucleus, namely, the interactions involving Lamin B1 and Lamin B receptor, LBR. Both the mRNA level and subcellular distribution of LBR are affected by WRN deficiency, and unlike the former, the latter phenotype does not require WRN catalytic activities. The phenotypes of heterochromatin disruption seen in WRN-deficient proliferating fibroblasts are also observed in WRN-proficient fibroblasts undergoing replicative or oncogene-induced senescence. WRN interacts with histone deacetylase 2, HDAC2; WRN/HDAC2 association is mediated by heterochromatin protein alpha, HP1α, and WRN complexes with HP1α and HDAC2 are downregulated in senescing cells. The data suggest that the effect of WRN loss on heterochromatin is separable from senescence program, but mimics at least some of the heterochromatin changes associated with it.
Collapse
Affiliation(s)
- Pavlo Lazarchuk
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Matthew Manh Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Present address: Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Crina M. Curca
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Present address: Parse Biosciences, Seattle, WA 98109, USA
| | - Maria N. Pavlova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Junko Oshima
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Julia M. Sidorova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Huo S, Tang X, Chen W, Gan D, Guo H, Yao Q, Liao R, Huang T, Wu J, Yang J, Xiao G, Han X. Epigenetic regulations of cellular senescence in osteoporosis. Ageing Res Rev 2024; 99:102235. [PMID: 38367814 DOI: 10.1016/j.arr.2024.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Osteoporosis (OP) is a prevalent age-related disease that is characterized by a decrease in bone mineral density (BMD) and systemic bone microarchitectural disorders. With age, senescent cells accumulate and exhibit the senescence-associated secretory phenotype (SASP) in bone tissue, leading to the imbalance of bone homeostasis, osteopenia, changes in trabecular bone structure, and increased bone fragility. Cellular senescence in the bone microenvironment involves osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells (BMSCs), whose effects on bone homeostasis are regulated by epigenetics. Therefore, the epigenetic regulatory mechanisms of cellular senescence have received considerable attention as potential targets for preventing and treating osteoporosis. In this paper, we systematically review the mechanisms of aging-associated epigenetic regulation in osteoporosis, emphasizing the impact of epigenetics on cellular senescence, and summarize three current methods of targeting cellular senescence, which is helpful better to understand the pathogenic mechanisms of cellular senescence in osteoporosis and provides strategies for the development of epigenetic drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Shaochuan Huo
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China
| | - Xinzheng Tang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China
| | - Weijian Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Donghao Gan
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hai Guo
- Liuzhou Traditional Chinese Medicine Hospital (Liuzhou Zhuang Medical Hospital), Liuzhou 545001, China
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rongdong Liao
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tingting Huang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Junxian Wu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China
| | - Junxing Yang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xia Han
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China.
| |
Collapse
|
6
|
Zhang X, Xiao YL, Shi X, Shi HL, Dong ZX, Tang CD. The role of cellular senescence-related genes in Asthma: Insights from bioinformatics and animal experiments. Int Immunopharmacol 2024; 130:111770. [PMID: 38430806 DOI: 10.1016/j.intimp.2024.111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Asthma is a heterogeneous chronic respiratory disease, affecting about 10% of the global population. Cellular senescence is a multifaceted phenomenon defined as the irreversible halt of the cell cycle, commonly referred to as the senescence-associated secretory phenotype. Recent studies suggest that cellular senescence may play a role in asthma. This study aims to dissect the role and biological mechanisms of CSRGs in asthma, enhancing our understanding of the progression of asthma. METHODS The study utilized the GSE147878 dataset, employing methods like WGCNA, Differential analysis, Cibersort, GO, KEGG, unsupervised clustering, and GSVA to explore CSRGs functions and immune cell patterns in asthma. Machine learning identified key diagnostic genes, validated externally with the GSE165934 dataset and through qRT-PCR and WB experiments in animal models. RESULT From the GSE147878 dataset, 24 CSRGs were identified, highlighting their role in immune and inflammatory processes in asthma. Differences in CD4 naive T cells and activated dendritic cells between asthma and control groups underscored CSRGs' role in immune regulation. Cluster analysis revealed two distinct asthma patient groups with unique immune microenvironments. Machine learning identified five genes, leading to a TF-miRNA-mRNA network and singling out RHOA and RBM39 as key diagnostic genes, which were experimentally validated. Finally, a nomogram was created based on these genes. CONCLUSION This study, utilizing bioinformatics and animal experiments, identified RHOA and RBM39 as key diagnostic genes for asthma, providing new insights into the potential role and biological mechanisms of CSRGs in asthma.
Collapse
Affiliation(s)
- Xiang Zhang
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan International Joint Laboratory of Insect Biology and Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China; College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
| | - Ya-Li Xiao
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
| | - Xin Shi
- Department of College English Teaching and Studies, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Hong-Ling Shi
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan International Joint Laboratory of Insect Biology and Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China; College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
| | - Zi-Xing Dong
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan International Joint Laboratory of Insect Biology and Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China; College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
| | - Cun-Duo Tang
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan International Joint Laboratory of Insect Biology and Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China; College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China.
| |
Collapse
|
7
|
Bisht S, Mao Y, Easwaran H. Epigenetic dynamics of aging and cancer development: current concepts from studies mapping aging and cancer epigenomes. Curr Opin Oncol 2024; 36:82-92. [PMID: 38441107 PMCID: PMC10939788 DOI: 10.1097/cco.0000000000001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW This review emphasizes the role of epigenetic processes as incidental changes occurring during aging, which, in turn, promote the development of cancer. RECENT FINDINGS Aging is a complex biological process associated with the progressive deterioration of normal physiological functions, making age a significant risk factor for various disorders, including cancer. The increasing longevity of the population has made cancer a global burden, as the risk of developing most cancers increases with age due to the cumulative effect of exposure to environmental carcinogens and DNA replication errors. The classical 'somatic mutation theory' of cancer cause is being challenged by the observation that multiple normal cells harbor cancer driver mutations without resulting in cancer. In this review, we discuss the role of age-associated epigenetic alterations, including DNA methylation, which occur across all cell types and tissues with advancing age. There is an increasing body of evidence linking these changes with cancer risk and prognosis. SUMMARY A better understanding about the epigenetic changes acquired during aging is critical for comprehending the mechanisms leading to the age-associated increase in cancer and for developing novel therapeutic strategies for cancer treatment and prevention.
Collapse
Affiliation(s)
- Shilpa Bisht
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiqing Mao
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hariharan Easwaran
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Duran I, Pombo J, Sun B, Gallage S, Kudo H, McHugh D, Bousset L, Barragan Avila JE, Forlano R, Manousou P, Heikenwalder M, Withers DJ, Vernia S, Goldin RD, Gil J. Detection of senescence using machine learning algorithms based on nuclear features. Nat Commun 2024; 15:1041. [PMID: 38310113 PMCID: PMC10838307 DOI: 10.1038/s41467-024-45421-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Cellular senescence is a stress response with broad pathophysiological implications. Senotherapies can induce senescence to treat cancer or eliminate senescent cells to ameliorate ageing and age-related pathologies. However, the success of senotherapies is limited by the lack of reliable ways to identify senescence. Here, we use nuclear morphology features of senescent cells to devise machine-learning classifiers that accurately predict senescence induced by diverse stressors in different cell types and tissues. As a proof-of-principle, we use these senescence classifiers to characterise senolytics and to screen for drugs that selectively induce senescence in cancer cells but not normal cells. Moreover, a tissue senescence score served to assess the efficacy of senolytic drugs and identified senescence in mouse models of liver cancer initiation, ageing, and fibrosis, and in patients with fatty liver disease. Thus, senescence classifiers can help to detect pathophysiological senescence and to discover and validate potential senotherapies.
Collapse
Affiliation(s)
- Imanol Duran
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Joaquim Pombo
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Bin Sun
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Suchira Gallage
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- M3 Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine, University of Tuebingen, Otfried-Müller-Straße 37, 72076, Tübingen, Germany
| | - Hiromi Kudo
- Section for Pathology, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W2 1NY, UK
| | - Domhnall McHugh
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Laura Bousset
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Jose Efren Barragan Avila
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Roberta Forlano
- Liver Unit, Section of Hepatology and Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W2 1NY, UK
| | - Pinelopi Manousou
- Liver Unit, Section of Hepatology and Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W2 1NY, UK
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- M3 Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine, University of Tuebingen, Otfried-Müller-Straße 37, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180), Eberhard Karls University, Tübingen, Germany
| | - Dominic J Withers
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Santiago Vernia
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Robert D Goldin
- Section for Pathology, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W2 1NY, UK
| | - Jesús Gil
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
9
|
Mohallem R, Aryal UK. Nuclear Phosphoproteome Reveals Prolyl Isomerase PIN1 as a Modulator of Oncogene-Induced Senescence. Mol Cell Proteomics 2024; 23:100715. [PMID: 38216124 PMCID: PMC10864342 DOI: 10.1016/j.mcpro.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024] Open
Abstract
Mammalian cells possess intrinsic mechanisms to prevent tumorigenesis upon deleterious mutations, including oncogene-induced senescence (OIS). The molecular mechanisms underlying OIS are, however, complex and remain to be fully characterized. In this study, we analyzed the changes in the nuclear proteome and phosphoproteome of human lung fibroblast IMR90 cells during the progression of OIS induced by oncogenic RASG12V activation. We found that most of the differentially regulated phosphosites during OIS contained prolyl isomerase PIN1 target motifs, suggesting PIN1 is a key regulator of several promyelocytic leukemia nuclear body proteins, specifically regulating several proteins upon oncogenic Ras activation. We showed that PIN1 knockdown promotes cell proliferation, while diminishing the senescence phenotype and hallmarks of senescence, including p21, p16, and p53 with concomitant accumulation of the protein PML and the dysregulation of promyelocytic leukemia nuclear body formation. Collectively, our data demonstrate that PIN1 plays an important role as a tumor suppressor in response to oncogenic ER:RasG12V activation.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA.
| |
Collapse
|
10
|
Tang B, Wang X, He H, Chen R, Qiao G, Yang Y, Xu Z, Wang L, Dong Q, Yu J, Zhang MQ, Shi M, Wang J. Aging-disturbed FUS phase transition impairs hematopoietic stem cells by altering chromatin structure. Blood 2024; 143:124-138. [PMID: 37748139 DOI: 10.1182/blood.2023020539] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023] Open
Abstract
ABSTRACT Aged hematopoietic stem cells (HSCs) exhibit compromised reconstitution capacity. The molecular mechanisms behind this phenomenon are not fully understood. Here, we observed that the expression of FUS is increased in aged HSCs, and enforced FUS recapitulates the phenotype of aged HSCs through arginine-glycine-glycine-mediated aberrant FUS phase transition. By using Fus-gfp mice, we observed that FUShigh HSCs exhibit compromised FUS mobility and resemble aged HSCs both functionally and transcriptionally. The percentage of FUShigh HSCs is increased upon physiological aging and replication stress, and FUSlow HSCs of aged mice exhibit youthful function. Mechanistically, FUShigh HSCs exhibit a different global chromatin organization compared with FUSlow HSCs, which is observed in aged HSCs. Many topologically associating domains (TADs) are merged in aged HSCs because of the compromised binding of CCCTC-binding factor with chromatin, which is invoked by aberrant FUS condensates. It is notable that the transcriptional alteration between FUShigh and FUSlow HSCs originates from the merged TADs and is enriched in HSC aging-related genes. Collectively, this study reveals for the first time that aberrant FUS mobility promotes HSC aging by altering chromatin structure.
Collapse
Affiliation(s)
- Baixue Tang
- Department of Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xinming Wang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hanqing He
- Department of Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ruiqing Chen
- Department of Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Guofeng Qiao
- Department of Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yang Yang
- Department of Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Zihan Xu
- School of Life Sciences, Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Sciences, Peking University, Beijing, China
| | - Longteng Wang
- School of Life Sciences, Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Sciences, Peking University, Beijing, China
| | - Qiongye Dong
- Institute of Precision of Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Michael Q Zhang
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology, School of Medicine, Tsinghua University, Beijing, China
- Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson, TX
| | - Minglei Shi
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology, School of Medicine, Tsinghua University, Beijing, China
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Jianwei Wang
- Department of Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
11
|
Chin T, Lee XE, Ng PY, Lee Y, Dreesen O. The role of cellular senescence in skin aging and age-related skin pathologies. Front Physiol 2023; 14:1297637. [PMID: 38074322 PMCID: PMC10703490 DOI: 10.3389/fphys.2023.1297637] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2024] Open
Abstract
Aging is the result of a gradual functional decline at the cellular, and ultimately, organismal level, resulting in an increased risk of developing a variety of chronic illnesses, such as cardiovascular disease, stroke, cancer and diabetes. The skin is the largest organ of the human body, and the site where signs of aging are most visible. These signs include thin and dry skin, sagging, loss of elasticity, wrinkles, as well as aberrant pigmentation. The appearance of these features is accelerated by exposure to extrinsic factors such as ultraviolet (UV) radiation or pollution, as well as intrinsic factors including time, genetics, and hormonal changes. At the cellular level, aging is associated with impaired proteostasis and an accumulation of macromolecular damage, genomic instability, chromatin reorganization, telomere shortening, remodelling of the nuclear lamina, proliferation defects and premature senescence. Cellular senescence is a state of permanent growth arrest and a key hallmark of aging in many tissues. Due to their inability to proliferate, senescent cells no longer contribute to tissue repair or regeneration. Moreover, senescent cells impair tissue homeostasis, promote inflammation and extracellular matrix (ECM) degradation by secreting molecules collectively known as the "senescence-associated secretory phenotype" (SASP). Senescence can be triggered by a number of different stimuli such as telomere shortening, oncogene expression, or persistent activation of DNA damage checkpoints. As a result, these cells accumulate in aging tissues, including human skin. In this review, we focus on the role of cellular senescence during skin aging and the development of age-related skin pathologies, and discuss potential strategies to rejuvenate aged skin.
Collapse
Affiliation(s)
- Toby Chin
- Lee Kong Chiang School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xin Er Lee
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pei Yi Ng
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yaelim Lee
- Mechanobiology Institute, National University of Singapore, T-Lab, Singapore, Singapore
| | - Oliver Dreesen
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, T-Lab, Singapore, Singapore
| |
Collapse
|
12
|
Grun LK, Maurmann RM, Scholl JN, Fogaça ME, Schmitz CRR, Dias CK, Gasparotto J, Padoin AV, Mottin CC, Klamt F, Figueiró F, Jones MH, Filippi-Chiela EC, Guma FCR, Barbé-Tuana FM. Obesity drives adipose-derived stem cells into a senescent and dysfunctional phenotype associated with P38MAPK/NF-KB axis. Immun Ageing 2023; 20:51. [PMID: 37821967 PMCID: PMC10566105 DOI: 10.1186/s12979-023-00378-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Adipose-derived stem cells (ADSC) are multipotent cells implicated in tissue homeostasis. Obesity represents a chronic inflammatory disease associated with metabolic dysfunction and age-related mechanisms, with progressive accumulation of senescent cells and compromised ADSC function. In this study, we aimed to explore mechanisms associated with the inflammatory environment present in obesity in modulating ADSC to a senescent phenotype. We evaluated phenotypic and functional alterations through 18 days of treatment. ADSC were cultivated with a conditioned medium supplemented with a pool of plasma from eutrophic individuals (PE, n = 15) or with obesity (PO, n = 14), and compared to the control. RESULTS Our results showed that PO-treated ADSC exhibited decreased proliferative capacity with G2/M cycle arrest and CDKN1A (p21WAF1/Cip1) up-regulation. We also observed increased senescence-associated β-galactosidase (SA-β-gal) activity, which was positively correlated with TRF1 protein expression. After 18 days, ADSC treated with PO showed augmented CDKN2A (p16INK4A) expression, which was accompanied by a cumulative nuclear enlargement. After 10 days, ADSC treated with PO showed an increase in NF-κB phosphorylation, while PE and PO showed an increase in p38MAPK activation. PE and PO treatment also induced an increase in senescence-associated secretory phenotype (SASP) cytokines IL-6 and IL-8. PO-treated cells exhibited decreased metabolic activity, reduced oxygen consumption related to basal respiration, increased mitochondrial depolarization and biomass, and mitochondrial network remodeling, with no superoxide overproduction. Finally, we observed an accumulation of lipid droplets in PO-treated ADSC, implying an adaptive cellular mechanism induced by the obesogenic stimuli. CONCLUSIONS Taken together, our data suggest that the inflammatory environment observed in obesity induces a senescent phenotype associated with p38MAPK/NF-κB axis, which stimulates and amplifies the SASP and is associated with impaired mitochondrial homeostasis.
Collapse
Affiliation(s)
- L K Grun
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| | - R M Maurmann
- Graduate Program in Cellular and Molecular Biology, School of Health, Sciences, and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - J N Scholl
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - M E Fogaça
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - C R R Schmitz
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - C K Dias
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - J Gasparotto
- Institute of Biomedical Sciences, Federal University at Alfenas, Alfenas, Brazil
| | - A V Padoin
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - C C Mottin
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - F Klamt
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F Figueiró
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - M H Jones
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - E C Filippi-Chiela
- Institute of Basic Health Sciences, Department of Morphological Sciences, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Center for Biotechnology, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F C R Guma
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F M Barbé-Tuana
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Graduate Program in Cellular and Molecular Biology, School of Health, Sciences, and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
13
|
Takata H, Masuda Y, Ohmido N. CRISPR imaging reveals chromatin fluctuation at the centromere region related to cellular senescence. Sci Rep 2023; 13:14609. [PMID: 37670098 PMCID: PMC10480159 DOI: 10.1038/s41598-023-41770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
The human genome is spatially and temporally organized in the nucleus as chromatin, and the dynamic structure of chromatin is closely related to genome functions. Cellular senescence characterized by an irreversible arrest of proliferation is accompanied by chromatin reorganisation in the nucleus during senescence. However, chromatin dynamics in chromatin reorganisation is poorly understood. Here, we report chromatin dynamics at the centromere region during senescence in cultured human cell lines using live imaging based on the clustered regularly interspaced short palindromic repeat/dCas9 system. The repetitive sequence at the centromere region, alpha-satellite DNA, was predominantly detected on chromosomes 1, 12, and 19. Centromeric chromatin formed irregular-shaped domains with high fluctuation in cells undergoing 5'-aza-2'-deoxycytidine-induced senescence. Our findings suggest that the increased fluctuation of the chromatin structure facilitates centromere disorganisation during cellular senescence.
Collapse
Affiliation(s)
- Hideaki Takata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, 563-8577, Japan.
| | - Yumena Masuda
- Graduate School of Human Development and Environment, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| | - Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
14
|
Cha J, Aguayo-Mazzucato C, Thompson PJ. Pancreatic β-cell senescence in diabetes: mechanisms, markers and therapies. Front Endocrinol (Lausanne) 2023; 14:1212716. [PMID: 37720527 PMCID: PMC10501801 DOI: 10.3389/fendo.2023.1212716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Cellular senescence is a response to a wide variety of stressors, including DNA damage, oncogene activation and physiologic aging, and pathologically accelerated senescence contributes to human disease, including diabetes mellitus. Indeed, recent work in this field has demonstrated a role for pancreatic β-cell senescence in the pathogenesis of Type 1 Diabetes, Type 2 Diabetes and monogenic diabetes. Small molecule or genetic targeting of senescent β-cells has shown promise as a novel therapeutic approach for preventing and treating diabetes. Despite these advances, major questions remain around the molecular mechanisms driving senescence in the β-cell, identification of molecular markers that distinguish senescent from non-senescent β-cell subpopulations, and translation of proof-of-concept therapies into novel treatments for diabetes in humans. Here, we summarize the current state of the field of β-cell senescence, highlighting insights from mouse models as well as studies on human islets and β-cells. We identify markers that have been used to detect β-cell senescence to unify future research efforts in this field. We discuss emerging concepts of the natural history of senescence in β-cells, heterogeneity of senescent β-cells subpopulations, role of sex differences in senescent responses, and the consequences of senescence on integrated islet function and microenvironment. As a young and developing field, there remain many open research questions which need to be addressed to move senescence-targeted approaches towards clinical investigation.
Collapse
Affiliation(s)
- Jeeyeon Cha
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Peter J. Thompson
- Diabetes Research Envisioned and Accomplished in Manitoba Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
15
|
Gurkar AU, Gerencser AA, Mora AL, Nelson AC, Zhang AR, Lagnado AB, Enninful A, Benz C, Furman D, Beaulieu D, Jurk D, Thompson EL, Wu F, Rodriguez F, Barthel G, Chen H, Phatnani H, Heckenbach I, Chuang JH, Horrell J, Petrescu J, Alder JK, Lee JH, Niedernhofer LJ, Kumar M, Königshoff M, Bueno M, Sokka M, Scheibye-Knudsen M, Neretti N, Eickelberg O, Adams PD, Hu Q, Zhu Q, Porritt RA, Dong R, Peters S, Victorelli S, Pengo T, Khaliullin T, Suryadevara V, Fu X, Bar-Joseph Z, Ji Z, Passos JF. Spatial mapping of cellular senescence: emerging challenges and opportunities. NATURE AGING 2023; 3:776-790. [PMID: 37400722 PMCID: PMC10505496 DOI: 10.1038/s43587-023-00446-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Cellular senescence is a well-established driver of aging and age-related diseases. There are many challenges to mapping senescent cells in tissues such as the absence of specific markers and their relatively low abundance and vast heterogeneity. Single-cell technologies have allowed unprecedented characterization of senescence; however, many methodologies fail to provide spatial insights. The spatial component is essential, as senescent cells communicate with neighboring cells, impacting their function and the composition of extracellular space. The Cellular Senescence Network (SenNet), a National Institutes of Health (NIH) Common Fund initiative, aims to map senescent cells across the lifespan of humans and mice. Here, we provide a comprehensive review of the existing and emerging methodologies for spatial imaging and their application toward mapping senescent cells. Moreover, we discuss the limitations and challenges inherent to each technology. We argue that the development of spatially resolved methods is essential toward the goal of attaining an atlas of senescent cells.
Collapse
Affiliation(s)
- Aditi U Gurkar
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Ana L Mora
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, the Ohio State University, Columbus, OH, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Anru R Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine and Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Anthony B Lagnado
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
- Stanford 1000 Immunomes Project, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Pilar, Argentina
| | - Delphine Beaulieu
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth L Thompson
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Fei Wu
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Fernanda Rodriguez
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Grant Barthel
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Hao Chen
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hemali Phatnani
- Columbia University Irving Medical Center and New York Genome Center, Columbia University, New York, NY, USA
| | | | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jeremy Horrell
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Joana Petrescu
- Columbia University Irving Medical Center and New York Genome Center, Columbia University, New York, NY, USA
| | - Jonathan K Alder
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Laura J Niedernhofer
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Manoj Kumar
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Melanie Königshoff
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marta Bueno
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Miiko Sokka
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | | | - Nicola Neretti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Oliver Eickelberg
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Qianjiang Hu
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Quan Zhu
- University of California, San Diego, CA, USA
| | - Rebecca A Porritt
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Runze Dong
- Department of Biochemistry, Institute for Protein Design and Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Samuel Peters
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Stella Victorelli
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Thomas Pengo
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Timur Khaliullin
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, the Ohio State University, Columbus, OH, USA
| | - Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Xiaonan Fu
- Department of Biochemistry, Institute for Protein Design and Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhicheng Ji
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine and Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
Yuxiang W, Peretolchina TE, Romanova EV, Sherbakov DY. Comparison of the evolutionary patterns of DNA repeats in ancient and young invertebrate species flocks of Lake Baikal. Vavilovskii Zhurnal Genet Selektsii 2023; 27:349-356. [PMID: 37465187 PMCID: PMC10350863 DOI: 10.18699/vjgb-23-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 07/20/2023] Open
Abstract
DNA repeat composition of low coverage (0.1-0.5) genomic libraries of four amphipods species endemic to Lake Baikal (East Siberia) and four endemic gastropod species of the fam. Baicaliidae have been compared to each other. In order to do so, a neighbor joining tree was inferred for each quartet of species (amphipods and mollusks) based on the ratio of repeat classes shared in each pair of species. The topology of this tree was compared to the phylogenies inferred for the same species from the concatenated protein-coding mitochondrial nucleotide sequences. In all species analyzed, the fraction of DNA repeats involved circa half of the genome. In relatively more ancient amphipods (most recent common ancestor, MRCA, existed approximately sixty millions years ago), the most abundant were species-specific repeats, while in much younger Baicaliidae (MRCA equal to ca. three millions years) most of the DNA repeats were shared among all four species. If the presence/absence of a repeat is regarded as a separate independent trait, and the ratio of shared to total numbers of repeats in a species pair is used as the measure of distance, the topology of the NJ tree is the same as the quartet phylogeny inferred for the mitogenomes protein coding nucleotide sequences. Meanwhile, in each group of species, a substantial number of repeats were detected pointing to the possibility of non-neutral evolution or a horizontal transfer between species occupying the same biotope. These repeats were shared by non-sister groups while being absent in the sister genomes. On the other hand, in such cases some traits of ecological significance were also shared.
Collapse
Affiliation(s)
- Wang Yuxiang
- Limnological institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - T E Peretolchina
- Limnological institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - E V Romanova
- Limnological institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - D Y Sherbakov
- Limnological institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia Novosibirsk State University, Novosibirsk, RussiaIrkutsk State University, Irkutsk, Russia
| |
Collapse
|
17
|
Varghese SS, Dhawan S. Senescence: a double-edged sword in beta-cell health and failure? Front Endocrinol (Lausanne) 2023; 14:1196460. [PMID: 37229454 PMCID: PMC10203573 DOI: 10.3389/fendo.2023.1196460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Cellular senescence is a complex process marked by permanent cell-cycle arrest in response to a variety of stressors, and acts as a safeguard against the proliferation of damaged cells. Senescence is not only a key process underlying aging and development of many diseases, but has also been shown to play a vital role in embryogenesis as well as tissue regeneration and repair. In context of the pancreatic beta-cells, that are essential for maintaining glucose homeostasis, replicative senescence is responsible for the age-related decline in regenerative capacity. Stress induced premature senescence is also a key early event underlying beta-cell failure in both type 1 and type 2 diabetes. Targeting senescence has therefore emerged as a promising therapeutic avenue for diabetes. However, the molecular mechanisms that mediate the induction of beta-cell senescence in response to various stressors remain unclear. Nor do we know if senescence plays any role during beta-cell growth and development. In this perspective, we discuss the significance of senescence in beta-cell homeostasis and pathology and highlight emerging directions in this area that warrant our attention.
Collapse
Affiliation(s)
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, United States
| |
Collapse
|
18
|
Krishnan B, Sanidas I, Dyson NJ. Seeing is believing: the impact of RB on nuclear organization. Cell Cycle 2023; 22:1357-1366. [PMID: 37139582 DOI: 10.1080/15384101.2023.2206352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The retinoblastoma tumor suppressor (RB) prevents G1 to S cell cycle transition by inhibiting E2F activity. This function requires that RB remains un- or underphosphorylated (the so-called active forms of RB). Recently, we showed that active forms of RB cause widespread changes in nuclear architecture that are visible under a microscope. These phenotypes did not correlate with cell cycle arrest or repression of the E2F transcriptional program, but appeared later, and were associated with the appearance of autophagy or in IMR-90 cells with senescence markers. In this perspective, we describe the relative timing of these RB-induced events and discuss the mechanisms that may underlie RB-induced chromatin dispersion. We consider the relationship between RB-induced dispersion, autophagy, and senescence and the potential connection between dispersion and cell cycle exit.
Collapse
Affiliation(s)
- Badri Krishnan
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Ioannis Sanidas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
19
|
Aging Hallmarks and the Role of Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030651. [PMID: 36978899 PMCID: PMC10044767 DOI: 10.3390/antiox12030651] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Aging is a complex biological process accompanied by a progressive decline in the physical function of the organism and an increased risk of age-related chronic diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. Studies have established that there exist nine hallmarks of the aging process, including (i) telomere shortening, (ii) genomic instability, (iii) epigenetic modifications, (iv) mitochondrial dysfunction, (v) loss of proteostasis, (vi) dysregulated nutrient sensing, (vii) stem cell exhaustion, (viii) cellular senescence, and (ix) altered cellular communication. All these alterations have been linked to sustained systemic inflammation, and these mechanisms contribute to the aging process in timing not clearly determined yet. Nevertheless, mitochondrial dysfunction is one of the most important mechanisms contributing to the aging process. Mitochondria is the primary endogenous source of reactive oxygen species (ROS). During the aging process, there is a decline in ATP production and elevated ROS production together with a decline in the antioxidant defense. Elevated ROS levels can cause oxidative stress and severe damage to the cell, organelle membranes, DNA, lipids, and proteins. This damage contributes to the aging phenotype. In this review, we summarize recent advances in the mechanisms of aging with an emphasis on mitochondrial dysfunction and ROS production.
Collapse
|
20
|
Ayala-Guerrero L, Claudio-Galeana S, Furlan-Magaril M, Castro-Obregón S. Chromatin Structure from Development to Ageing. Subcell Biochem 2023; 102:7-51. [PMID: 36600128 DOI: 10.1007/978-3-031-21410-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nuclear structure influences genome architecture, which contributes to determine patterns of gene expression. Global changes in chromatin dynamics are essential during development and differentiation, and are one of the hallmarks of ageing. This chapter describes the molecular dynamics of chromatin structure that occur during development and ageing. In the first part, we introduce general information about the nuclear lamina, the chromatin structure, and the 3D organization of the genome. Next, we detail the molecular hallmarks found during development and ageing, including the role of DNA and histone modifications, 3D genome dynamics, and changes in the nuclear lamina. Within the chapter we discuss the implications that genome structure has on the mechanisms that drive development and ageing, and the physiological consequences when these mechanisms fail.
Collapse
Affiliation(s)
- Lorelei Ayala-Guerrero
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Sherlyn Claudio-Galeana
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Mayra Furlan-Magaril
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico.
| | - Susana Castro-Obregón
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico.
| |
Collapse
|
21
|
Balaji AK, Saha S, Deshpande S, Poola D, Sengupta K. Nuclear envelope, chromatin organizers, histones, and DNA: The many achilles heels exploited across cancers. Front Cell Dev Biol 2022; 10:1068347. [PMID: 36589746 PMCID: PMC9800887 DOI: 10.3389/fcell.2022.1068347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
In eukaryotic cells, the genome is organized in the form of chromatin composed of DNA and histones that organize and regulate gene expression. The dysregulation of chromatin remodeling, including the aberrant incorporation of histone variants and their consequent post-translational modifications, is prevalent across cancers. Additionally, nuclear envelope proteins are often deregulated in cancers, which impacts the 3D organization of the genome. Altered nuclear morphology, genome organization, and gene expression are defining features of cancers. With advances in single-cell sequencing, imaging technologies, and high-end data mining approaches, we are now at the forefront of designing appropriate small molecules to selectively inhibit the growth and proliferation of cancer cells in a genome- and epigenome-specific manner. Here, we review recent advances and the emerging significance of aberrations in nuclear envelope proteins, histone variants, and oncohistones in deregulating chromatin organization and gene expression in oncogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Kundan Sengupta
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research, Pune, Maharashtra, India
| |
Collapse
|
22
|
Bellanger A, Madsen-Østerbye J, Galigniana NM, Collas P. Restructuring of Lamina-Associated Domains in Senescence and Cancer. Cells 2022; 11:1846. [PMID: 35681541 PMCID: PMC9180887 DOI: 10.3390/cells11111846] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 01/01/2023] Open
Abstract
Induction of cellular senescence or cancer is associated with a reshaping of the nuclear envelope and a broad reorganization of heterochromatin. At the periphery of mammalian nuclei, heterochromatin is stabilized at the nuclear lamina via lamina-associated domains (LADs). Alterations in the composition of the nuclear lamina during senescence lead to a loss of peripheral heterochromatin, repositioning of LADs, and changes in epigenetic states of LADs. Cancer initiation and progression are also accompanied by a massive reprogramming of the epigenome, particularly in domains coinciding with LADs. Here, we review recent knowledge on alterations in chromatin organization and in the epigenome that affect LADs and related genomic domains in senescence and cancer.
Collapse
Affiliation(s)
- Aurélie Bellanger
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (A.B.); (J.M.-Ø.); (N.M.G.)
| | - Julia Madsen-Østerbye
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (A.B.); (J.M.-Ø.); (N.M.G.)
| | - Natalia M. Galigniana
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (A.B.); (J.M.-Ø.); (N.M.G.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (A.B.); (J.M.-Ø.); (N.M.G.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway
| |
Collapse
|
23
|
Delfarah A, Hartel NG, Zheng D, Yang J, Graham NA. Identification of a Proteomic Signature of Senescence in Primary Human Mammary Epithelial Cells. J Proteome Res 2021; 20:5169-5179. [PMID: 34637314 DOI: 10.1021/acs.jproteome.1c00659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Senescence is a permanent cell cycle arrest that occurs in response to cellular stress and promotes age-related disease. Because senescence differs greatly depending on cell type and senescence inducer, continued progress in the characterization of senescent cells is needed. Here, we analyzed primary human mammary epithelial cells (HMECs), a model system for aging and cancer, using mass spectrometry-based proteomics. By integrating data from replicative senescence, immortalization by telomerase reactivation, and quiescence, we identified a robust proteomic signature of HMEC senescence consisting of 34 upregulated and 10 downregulated proteins. This approach identified known senescence biomarkers including β-galactosidase (GLB1) as well as novel senescence biomarkers including catechol O-methyltransferase (COMT), synaptic vesicle membrane protein VAT-1 homolog (VAT1), and plastin-1/3 (PLS1/PLS3). Gene ontology enrichment analysis demonstrated that senescent HMECs upregulated lysosomal proteins and downregulated RNA metabolic processes. In addition, a classification model based on our proteomic signature successfully discriminated proliferating and senescent HMECs at the transcriptional level. Finally, we found that the HMEC senescence signature was positively and negatively correlated with proteomic alterations in HMEC aging and breast cancer, respectively. Taken together, our results demonstrate the power of proteomics to identify cell type-specific signatures of senescence and advance the understanding of senescence in HMECs.
Collapse
Affiliation(s)
- Alireza Delfarah
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Nicolas G Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - DongQing Zheng
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Jesse Yang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States.,Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|