1
|
Lundin R, Melotti R, Barin L, Gögele M, Lombardo S, Fanolla A, Zuech P, Rainer J, Emmert D, Fuchsberger C, Mascalzoni D, De Grandi A, Domingues FS, Hicks AA, Pramstaller PP, Pattaro C. Cohort Profile: the Cooperative Health Research in South Tyrol study. Int J Epidemiol 2025; 54:dyaf064. [PMID: 40436620 PMCID: PMC12119133 DOI: 10.1093/ije/dyaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/07/2025] [Indexed: 06/01/2025] Open
Affiliation(s)
- Rebecca Lundin
- Eurac Research, Institute for Biomedicine, Bolzano, Italy
| | | | - Laura Barin
- Eurac Research, Institute for Biomedicine, Bolzano, Italy
- Centre for Medical Sciences, CISMed, University of Trento, Trento, Italy
| | - Martin Gögele
- Eurac Research, Institute for Biomedicine, Bolzano, Italy
| | - Stefano Lombardo
- Provincial Institute for Statistics of the Autonomous Province of Bolzano-South Tyrol (ASTAT), Bolzano, Italy
| | - Antonio Fanolla
- Observatory for Health—Autonomous Province of Bolzano-South Tyrol, Bolzano, Italy
| | - Paola Zuech
- Observatory for Health—Autonomous Province of Bolzano-South Tyrol, Bolzano, Italy
| | | | - David Emmert
- Eurac Research, Institute for Biomedicine, Bolzano, Italy
| | | | - Deborah Mascalzoni
- Eurac Research, Institute for Biomedicine, Bolzano, Italy
- Center for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| | | | | | - Andrew A Hicks
- Eurac Research, Institute for Biomedicine, Bolzano, Italy
| | | | | |
Collapse
|
2
|
Chekroun I, Shenbagam S, Almarri MA, Mokrab Y, Uddin M, Alkhnbashi OS, Zaki MS, Najmabadi H, Kahrizi K, Fakhro KA, Almontashiri NAM, Ali FR, Özbek U, Reversade B, Alkuraya FS, Alsheikh-Ali A, Abou Tayoun AN. Genomics of rare diseases in the Greater Middle East. Nat Genet 2025; 57:505-514. [PMID: 39901015 DOI: 10.1038/s41588-025-02075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/06/2025] [Indexed: 02/05/2025]
Abstract
The Greater Middle East (GME) represents a concentrated region of unparalleled genetic diversity, characterized by an abundance of distinct alleles, founder mutations and extensive autozygosity driven by high consanguinity rates. These genetic hallmarks present a unique, yet vastly untapped resource for genomic research on Mendelian diseases. Despite this immense potential, the GME continues to face substantial challenges in comprehensive data collection and analysis. This Perspective highlights the region's unique position as a natural laboratory for genetic discovery and explores the challenges that have stifled progress thus far. Importantly, we propose strategic solutions, advocating for an all-inclusive research approach. With targeted investment and focused efforts, the latent genetic wealth in the GME can be transformed into a global hub for genomic research that will redefine and advance our understanding of the human genome.
Collapse
Affiliation(s)
- Ikram Chekroun
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Shruti Shenbagam
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, UAE
| | - Mohamed A Almarri
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Younes Mokrab
- Research Branch, Sidra Medicine, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- College of Health Sciences, Qatar University, Doha, Qatar
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Center for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Omer S Alkhnbashi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Center for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, Iran
| | - Khalid A Fakhro
- Research Branch, Sidra Medicine, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Naif A M Almontashiri
- College of Applied Medical Sciences and Center for Genetics and Inherited Diseases, Taibah University, Madinah, Kingdom of Saudi Arabia
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Uğur Özbek
- Rare and Undiagnosed Disease Platform, IBG-Izmir Biomedicine and Genome Center, Izmir, Türkiye
| | - Bruno Reversade
- Laboratory of Human Genetics and Therapeutics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
- Lifera Omics, Riyadh, Kingdom of Saudi Arabia
| | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Dubai Health, Dubai, UAE
| | - Ahmad N Abou Tayoun
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE.
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, UAE.
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE.
| |
Collapse
|
3
|
Alsahlawi Z, Alhadi ZJ, Abdulla EA, Ebrahim SH, Alshehab MM, Sanad WR. Galactosialidosis: A Report of Three Cases Diagnosed With a Founder Genetic Mutation in the Bahraini Population. Cureus 2025; 17:e77750. [PMID: 39981487 PMCID: PMC11840274 DOI: 10.7759/cureus.77750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Galactosialidosis (GS, OMIM #256540) is a rare metabolic disorder resulting from mutations in the protective protein/cathepsin A (PPCA) or CTSA gene, which is characterized by malfunction of the lysosomal glycoprotein degradation and subsequent intra-lysosomal accumulation of sialyloligosaccharides and glycopeptides. It follows an autosomal recessive inheritance pattern. This systemic disease is characterized by typical clinical features such as short stature, coarse facial features, vertebral deformities, gastrointestinal manifestations, particularly hepatosplenomegaly, cardiac abnormalities, hearing loss, and macular cherry-red spots. GS is classified into three subtypes based on the age of onset and presenting symptoms. The three types include the early infantile (EI) form, which is the most severe; the late infantile form; and the juvenile/adult form. Here, we present three newly diagnosed cases of late-infantile GS in Bahraini patients, all sharing the same previously reported homozygous mutation in the CTSA gene (c.607C>A, p.Pro203Thr), confirmed by targeted mutation analysis. This mutation has been identified in nine Bahraini patients, reflecting a founder effect in the Bahraini population. All three patients presented with coarse facial features, short stature, and poor vision, alongside skeletal deformities. Patient 1 had significant bilateral hip osteoarthritis, while Patient 2. showed lumbar lordosis and extensive bilateral hip avascular necrosis. Patient 3 presented with thoracolumbar levoscoliosis and kyphoscoliosis. Additionally, in Patient 1 and Patient 2 cardiac manifestations were noted, including valvular heart disease. Patient 3 had mild left ventricular hypertrophy (LVH), aortic regurgitation, and mitral regurgitation, along with diffuse angiokeratomas. All patients are currently receiving supportive care and management. This case report highlights the importance of early diagnosis and multidisciplinary care of patients with GS.
Collapse
Affiliation(s)
- Zahra Alsahlawi
- Department of Pediatrics, Arabian Gulf University, Manama, BHR
- Department of Pediatrics, Salmaniya Medical Complex, Manama, BHR
| | - Zahraa J Alhadi
- Department of Pediatrics, Salmaniya Medical Complex, Manama, BHR
| | - Eman A Abdulla
- Department of Pediatrics, Salmaniya Medical Complex, Manama, BHR
| | - Sara H Ebrahim
- Department of Pediatrics, Salmaniya Medical Complex, Manama, BHR
| | - Manal M Alshehab
- Department of Pediatrics, Salmaniya Medical Complex, Manama, BHR
| | - Walaa R Sanad
- Department of Pediatrics, Salmaniya Medical Complex, Manama, BHR
| |
Collapse
|
4
|
Erdogan-Yildirim Z, Carlson JC, Krishnan M, Zhang JZ, Lambert-Messerlian G, Naseri T, Viali S, Hawley NL, McGarvey ST, Weeks DE, Minster RL. A genome-wide association study of anti-Müllerian hormone (AMH) levels in Samoan women. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.05.24318457. [PMID: 39677481 PMCID: PMC11643216 DOI: 10.1101/2024.12.05.24318457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Study question Can a genome-wide association study (GWAS) and transcriptome-wide association study (TWAS) help identify genetic variation or genes associated with circulating anti-Müllerian hormone (AMH) levels in Samoan women? Summary answer We identified eleven genome-wide suggestive loci (strongest association signal in ARID3A 19-946163-G-C [ p = 2.32 × 10⁻⁷]) and seven transcriptome-wide significant genes ( GINS2, SENP3, USP7, TUSC3, MAFA, METTL4, NDFIP1 [all with a p < 2.50 × 10⁻⁶]) associated with circulating AMH levels in Samoan women. What is known already Three prior GWASs of AMH levels identified eight loci in premenopausal women of European ancestry (AMH, MCM8, TEX41 , CHECK2, CDCA7 , EIF4EBP1, BMP4 and an uncharacterized non-coding RNA gene CTB-99A3.1 ), among which the MCM8 locus was shared among all three studies. Study design size duration We included a sample of 1,185 women from two independently recruited samples: a family study ( n = 212; [age: 18 to 40 years]) recruited in 2002-03 from Samoa and American Samoa; and the Soifua Manuia Study ( n = 973; age: 25 to 51 years), a crosssectional population-based study recruited in 2010 from Samoa. Participants/materials setting methods Serum AMH levels were measured using enzyme linked immunosorbent assays (ELISA). We performed GWASs in the two participant samples using a Cox mixed-effects model to account for AMH levels below detectable limits and adjusted for centered age, centered age², polity, and kinship via kinship matrix. The summary statistics were then meta-analyzed using a fixed-effect model. We annotated the variants with p < 1 × 10⁻⁵ and calculated posterior probability of causality for prioritization. We further annotated variants using FUMA and performed colocalization and transcriptome-wide association analysis. We also assessed whether any previously reported loci were replicated in our GWAS. Main results and the role of chance We identified eleven novel genome-wide suggestive loci ( p < 1 × 10⁻⁵) associated with AMH levels and replicated EIF4EBP1, a previously reported AMH locus, in the GWAS. The lead variant in ARID3A , 19-946163-G-C is in high linkage disequilibrium ( r ² = 0.79) with the known age-at-menopause variant 19-950694-G-A. Nearby KISS1R is a biologically plausibility causal gene in the region; kisspeptin regulates ovarian follicle development and has been linked to AMH levels. Further investigation of the ARID3A locus is warranted. Limitations reasons for caution The main limitations of our study are the small sample size for a GWAS and the use of the transcription model trained on mostly European samples from the Genotype Tissue Expression (GTEx) project, which may have led to reduced power to detect genotype-expression associations. Our findings need to be validated in larger Polynesian cohorts. Wider implications of the findings In addition to replicating one of the eight previously discovered AMH loci, we identified new suggestive associations. It is known that the inclusion of founder populations aids in the discovery of novel loci. These findings could enhance our understanding of AMH and AMH-related reproductive phenotypes (ovarian reserve, age at menopause, premature ovarian failure, and polycystic ovary syndrome) and help build a screening approach for women at risk for these phenotypes using genetically predicted AMH levels. Study funding/competing interests This work was funded by NIH grants R01-HL093093 (PI: S.T.M.), R01-HL133040 (PI: R.L.M.), and T90-DE030853 (PI: C.S. Sfeir). Molecular data for the Trans-Omics in Precision Medicine (TOPMed) Program was supported by the National Heart, Lung and Blood Institute (NHLBI). The content is solely the responsibility of the authors and does not represent the official views of the National Institutes of Health.
Collapse
|
5
|
Taylor CS, Lawson DJ. Heritability of complex traits in sub-populations experiencing bottlenecks and growth. J Hum Genet 2024; 69:329-335. [PMID: 38589509 PMCID: PMC11199143 DOI: 10.1038/s10038-024-01249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/10/2024]
Abstract
Populations that have experienced a bottleneck are regularly used in Genome Wide Association Studies (GWAS) to investigate variants associated with complex traits. It is generally understood that these isolated sub-populations may experience high frequency of otherwise rare variants with large effect size, and therefore provide a unique opportunity to study said trait. However, the demographic history of the population under investigation affects all SNPs that determine the complex trait genome-wide, changing its heritability and genetic architecture. We use a simulation based approach to identify the impact of the demographic processes of drift, expansion, and migration on the heritability of complex trait. We show that demography has considerable impact on complex traits. We then investigate the power to resolve heritability of complex traits in GWAS studies subjected to demographic effects. We find that demography is an important component for interpreting inference of complex traits and has a nuanced impact on the power of GWAS. We conclude that demographic histories need to be explicitly modelled to properly quantify the history of selection on a complex trait.
Collapse
Affiliation(s)
| | - Daniel J Lawson
- School of Mathematics, University of Bristol, Bristol, UK.
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
6
|
Djedovic R, Radojkovic D, Stanojevic D, Savic R, Vukasinovic N, Popovac M, Bogdanovic V, Radovic C, Gogic M, Gligovic N, Stojic P, Mitrovic I. Base Characteristics, Preservation Methods, and Assessment of the Genetic Diversity of Autochthonous Breeds of Cattle, Sheep and Pigs in Serbia: A Review. Animals (Basel) 2024; 14:1894. [PMID: 38998006 PMCID: PMC11240667 DOI: 10.3390/ani14131894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Preserving local autochthonous domestic animal populations and the products derived from them is a crucial aspect of managing human utilization of the biosphere. This management approach aims to ensure sustainable benefits for both present and future generations. The diversity of autochthonous domestic animal populations plays a vital role in the functionality and sustainability of the food production system. It encompasses both productive and non-productive aspects, contributing significantly to the overall health, nutrition, and food security of the landscape by providing a wide range of animal-derived food resources. Based on the data contained in the Draft Program of Rural Development, a significant presence of more than 44 autochthonous and local breeds of domestic animals has been noted in Serbia. In order to enable the sustainable preservation of local domestic animals, the competent Ministry of Agriculture of the Republic of Serbia has, through a number of projects, implemented models for the preservation of local breeds on farms (in situ), as well as provided technical assistance to small farms that keep animal collections. It also helps the local population to procure animals, conducts product quality research, and provides opportunities to integrate conservation programs through tourism. Given that molecular characterization is a key factor for the preservation of autochthonous breeds, in the Republic of Serbia, DNA markers are used for identification and to investigate the belonging to a specific breeds or strain. All the mentioned activities led to an immediate increase in the number of animals, which is especially true for the autochthonous breeds of cattle (Busha), sheep (Sjenicka, Svrljiska, and Vlach-vitohorn) and pigs (Mangalitsa, Moravka, and Resavka) that are discussed in this paper. In addition to the significant measures undertaken to preserve animal genetic resources (AnGR), it is necessary to continue to work primarily on ex situ conservation in order to prevent the loss of their gene pools. However, regardless of the evident effort that has been made to preserve autochthonous genetic resources in Serbia, we believe that there is still a lot of room for further improvement. This primarily refers to advanced technologies that have not been applied so far, mostly related to the identification of genomic regions associated with economic traits, resistance to diseases, and adaptability to emerging climate changes. In this way, the production capacity and functional characteristics of autochthonous species and breeds of domestic animals in Serbia will be improved.
Collapse
Affiliation(s)
- Radica Djedovic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Dragan Radojkovic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Dragan Stanojevic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Radomir Savic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Natasha Vukasinovic
- Zoetis Veterinary Medicine Research and Development (VMRD), Kalamazoo, MI 49001, USA;
| | - Mladen Popovac
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Vladan Bogdanovic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Cedomir Radovic
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (C.R.); (M.G.)
| | - Marija Gogic
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (C.R.); (M.G.)
| | - Nikolija Gligovic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| | - Petar Stojic
- Institute for Science Application in Agriculture, Bulevar Despota Stefana 68b, 11000 Belgrade, Serbia;
| | - Ivan Mitrovic
- Department of Animal Science, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.R.); (D.S.); (R.S.); (M.P.); (V.B.); (N.G.); (I.M.)
| |
Collapse
|
7
|
Puga M, Serrano JG, García EL, González Carracedo MA, Jiménez-Canino R, Pino-Yanes M, Karlsson R, Sullivan PF, Fregel R. El Hierro Genome Study: A Genomic and Health Study in an Isolated Canary Island Population. J Pers Med 2024; 14:626. [PMID: 38929847 PMCID: PMC11204744 DOI: 10.3390/jpm14060626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
El Hierro is the smallest and westernmost island of the Canary Islands, whose population derives from an admixture of different ancestral components and that has been subjected to genetic isolation. We established the "El Hierro Genome Study" to characterize the health status and the genetic composition of ~10% of the current population of the island, accounting for a total of 1054 participants. Detailed demographic and clinical data and a blood sample for DNA extraction were obtained from each participant. Genomic genotyping was performed with the Global Screening Array (Illumina). The genetic composition of El Hierro was analyzed in a subset of 416 unrelated individuals by characterizing the mitochondrial DNA (mtDNA) and Y-chromosome haplogroups and performing principal component analyses (PCAs). In order to explore signatures of isolation, runs of homozygosity (ROHs) were also estimated. Among the participants, high blood pressure, hypercholesterolemia, and diabetes were the most prevalent conditions. The most common mtDNA haplogroups observed were of North African indigenous origin, while the Y-chromosome ones were mainly European. The PCA showed that the El Hierro population clusters near 1000 Genomes' European population but with a shift toward African populations. Moreover, the ROH analysis revealed some individuals with an important portion of their genomes with ROHs exceeding 400 Mb. Overall, these results confirmed that the "El Hierro Genome" cohort offers an opportunity to study the genetic basis of several diseases in an unexplored isolated population.
Collapse
Affiliation(s)
- Marta Puga
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
| | - Javier G. Serrano
- Evolution, Paleogenomics and Population Genetics Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain;
| | - Elsa L. García
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
| | - Mario A. González Carracedo
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
- Genetics Laboratory, Institute of Tropical Diseases and Public Health of the Canary Islands (IUETSPC), Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Rubén Jiménez-Canino
- Genomics Service, Servicio General de Apoyo a la Investigación, Universidad de La Laguna (ULL), 38200 La Laguna, Spain;
| | - María Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.K.); (P.F.S.)
| | - Patrick F. Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.K.); (P.F.S.)
- Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rosa Fregel
- Evolution, Paleogenomics and Population Genetics Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain;
| |
Collapse
|
8
|
Marafi D. Founder mutations and rare disease in the Arab world. Dis Model Mech 2024; 17:dmm050715. [PMID: 38922202 PMCID: PMC11225585 DOI: 10.1242/dmm.050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Founder mutations are disease-causing variants that occur frequently in geographically or culturally isolated groups whose shared ancestor(s) carried the pathogenic variant. While some disease alleles may vanish from the genetic pool due to natural selection, variants with weaker effects may survive for a long time, thereby enhancing the prevalence of some rare diseases. These are predominantly autosomal recessive diseases but can also be autosomal dominant traits with late-onset or mild phenotypes. Cultural practices, such as endogamy and consanguinity, in these isolated groups lead to higher prevalence of such rare diseases compared to the rest of the population and worldwide. In this Perspective, we define population isolates and the underlying genetic mechanisms for accumulating founder mutations. We also discuss the current and potential scientific, clinical and public-health implications of studying founder mutations in population isolates around the world, with a particular focus on the Arab population.
Collapse
Affiliation(s)
- Dana Marafi
- Department of Pediatrics, College of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
- Section of Child Neurology, Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya 52700, Kuwait
- Kuwait Medical Genetics Centre, Ministry of Health, Sulaibikhat 80901, Kuwait
| |
Collapse
|
9
|
Pecori A, Luppieri V, Santin A, Spedicati B, Zampieri S, Cadenaro M, Girotto G, Concas MP. Clenching the Strings of Bruxism Etiopathogenesis: Association Analyses on Genetics and Environmental Risk Factors in a Deeply Characterized Italian Cohort. Biomedicines 2024; 12:304. [PMID: 38397906 PMCID: PMC10887134 DOI: 10.3390/biomedicines12020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Bruxism is a worldwide oral health problem. Although there is a consensus about its multifactorial nature, its precise etiopathogenetic mechanisms are unclear. This study, taking advantage of a deeply characterized cohort of 769 individuals (aged 6-89 years) coming from Northern Italy's genetically isolated populations, aims to epidemiologically describe environmental risk factors for bruxism development and identify genes potentially involved through a Genome-Wide Association Study (GWAS) approach. Logistic mixed models adjusted for age and sex were performed to evaluate associations between bruxism and possible risk factors, e.g., anxiety, smoking, and alcohol and caffeine intake. A case-control GWAS (135 cases, 523 controls), adjusted for age, sex, and anxiety, was conducted to identify new candidate genes. The GTEx data analysis was performed to evaluate the identified gene expression in human body tissues. Statistical analyses determined anxiety as a bruxism risk factor (OR = 2.54; 95% CI: 1.20-5.38; p-value = 0.015), and GWAS highlighted three novel genes potentially associated with bruxism: NLGN1 (topSNP = rs2046718; p-value = 2.63 × 10-7), RIMBP2 (topSNP = rs571497947; p-value = 4.68 × 10-7), and LHFP (topSNP = rs2324342; p-value = 7.47 × 10-6). The GTEx data analysis showed their expression in brain tissues. Overall, this work provided a deeper understanding of bruxism etiopathogenesis with the long-term perspective of developing personalized therapeutic approaches for improving affected individuals' quality of life.
Collapse
Affiliation(s)
- Alessandro Pecori
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, Via dell’Istria 65, 34137 Trieste, Italy; (A.P.); (V.L.); (B.S.); (S.Z.); (M.C.); (G.G.); (M.P.C.)
| | - Valentina Luppieri
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, Via dell’Istria 65, 34137 Trieste, Italy; (A.P.); (V.L.); (B.S.); (S.Z.); (M.C.); (G.G.); (M.P.C.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Aurora Santin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Beatrice Spedicati
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, Via dell’Istria 65, 34137 Trieste, Italy; (A.P.); (V.L.); (B.S.); (S.Z.); (M.C.); (G.G.); (M.P.C.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Stefania Zampieri
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, Via dell’Istria 65, 34137 Trieste, Italy; (A.P.); (V.L.); (B.S.); (S.Z.); (M.C.); (G.G.); (M.P.C.)
| | - Milena Cadenaro
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, Via dell’Istria 65, 34137 Trieste, Italy; (A.P.); (V.L.); (B.S.); (S.Z.); (M.C.); (G.G.); (M.P.C.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Giorgia Girotto
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, Via dell’Istria 65, 34137 Trieste, Italy; (A.P.); (V.L.); (B.S.); (S.Z.); (M.C.); (G.G.); (M.P.C.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, Via dell’Istria 65, 34137 Trieste, Italy; (A.P.); (V.L.); (B.S.); (S.Z.); (M.C.); (G.G.); (M.P.C.)
| |
Collapse
|
10
|
Moore A, Marks JA, Quach BC, Guo Y, Bierut LJ, Gaddis NC, Hancock DB, Page GP, Johnson EO. Evaluating 17 methods incorporating biological function with GWAS summary statistics to accelerate discovery demonstrates a tradeoff between high sensitivity and high positive predictive value. Commun Biol 2023; 6:1199. [PMID: 38001305 PMCID: PMC10673847 DOI: 10.1038/s42003-023-05413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
Where sufficiently large genome-wide association study (GWAS) samples are not currently available or feasible, methods that leverage increasing knowledge of the biological function of variants may illuminate discoveries without increasing sample size. We comprehensively evaluated 17 functional weighting methods for identifying novel associations. We assessed the performance of these methods using published results from multiple GWAS waves across each of five complex traits. Although no method achieved both high sensitivity and positive predictive value (PPV) for any trait, a subset of methods utilizing pleiotropy and expression quantitative trait loci nominated variants with high PPV (>75%) for multiple traits. Application of functionally weighting methods to enhance GWAS power for locus discovery is unlikely to circumvent the need for larger sample sizes in truly underpowered GWAS, but these results suggest that applying functional weighting to GWAS can accurately nominate additional novel loci from available samples for follow-up studies.
Collapse
Affiliation(s)
- Amy Moore
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, 27709, USA.
| | - Jesse A Marks
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, 27709, USA
| | - Bryan C Quach
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, 27709, USA
| | - Yuelong Guo
- GeneCentric Therapeutics, Inc., Cary, NC, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Nathan C Gaddis
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, 27709, USA
| | - Dana B Hancock
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, 27709, USA
| | - Grier P Page
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, 27709, USA
- Fellow Program, RTI International, Research Triangle Park, NC, 27709, USA
| | - Eric O Johnson
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, 27709, USA.
- Fellow Program, RTI International, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
11
|
Chung CY, Pan DJ, Paracchini S, Jiang W, So HC, McBride C, Maurer U, Zheng M, Choy KW. Dyslexia-related loci are significantly associated with language and literacy in Chinese-English bilingual Hong Kong Chinese twins. Hum Genet 2023; 142:1519-1529. [PMID: 37668838 DOI: 10.1007/s00439-023-02594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023]
Abstract
A recent genome-wide association study on dyslexia in 51,800 affected European adults and 1,087,070 controls detected 42 genome-wide significant single nucleotide variants (SNPs). The association between rs2624839 in SEMA3F and reading fluency was replicated in a Chinese cohort. This study explores the genetic overlap between Chinese and English word reading, vocabulary knowledge and spelling, and aims at replicating the association in a unique cohort of bilingual (Chinese-English) Hong Kong Chinese twins. Our result showed an almost complete genetic overlap in vocabulary knowledge (r2 = 0.995), and some genetic overlaps in word reading and spelling (r2 = 0.846, 0.687) across the languages. To investigate the region near rs2624839, we tested proxy SNPs (rs1005678, rs12632110 and rs12494414) at the population level (n = 305-308) and the within-twin level (n = 342-344 [171-172 twin pairs]). All the three SNPs showed significant associations with quantitative Chinese and English vocabulary knowledge (p < 0.05). The strongest association after multiple testing correction was between rs12494414 and English vocabulary knowledge at the within-twin level (p = 0.004). There was a trend of associations with word reading and spelling in English but not in Chinese. Our result suggested that the region near rs2624839 is one of the common genetic factors across English and Chinese vocabulary knowledge and unique factors of English word reading and English spelling in bilingual Chinese twins. A larger sample size is required to validate our findings. Further studies on the relationship between variable expression of SEMA3F, which is important to neurodevelopment, and language and literacy are encouraged.
Collapse
Affiliation(s)
- Cheuk Yan Chung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dora Jue Pan
- School of Humanities and Social Science, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | | | - Wenxuan Jiang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hon-Cheong So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology and The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of the Chinese Academy of Sciences Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Catherine McBride
- Department of Human Development and Family Science, Purdue University, West Lafayette, IN, USA
| | - Urs Maurer
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Developmental Psychology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mo Zheng
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China.
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Joint BCM-CUHK Center of Medical Genetics, Hong Kong SAR, China.
| |
Collapse
|
12
|
Liao WL, Huang YN, Chang YW, Liu TY, Lu HF, Tiao ZY, Su PH, Wang CH, Tsai FJ. Combining polygenic risk scores and human leukocyte antigen variants for personalized risk assessment of type 1 diabetes in the Taiwanese population. Diabetes Obes Metab 2023; 25:2928-2936. [PMID: 37455666 DOI: 10.1111/dom.15187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
AIMS To analyse the genome-wide association study (GWAS) data of patients with type 1 diabetes mellitus (T1D) in order to develop a risk score for the genetic effects on T1D risk and age at diagnosis in the Taiwanese population. MATERIALS AND METHODS We selected 610 patients with T1D and 2511 healthy individuals from an electronic medical record database of more than 300 000 individuals with genetic information, analysed their GWAS data, and developed a polygenic risk score (PRS). RESULTS The PRS, based on 149 selected single-nucleotide polymorphisms, could effectively predict T1D risk. A PRS increase was associated with increased T1D risk (odds ratio [OR] 2.09, 95% confidence interval [CI] 1.72-2.55). Moreover, a 1-unit increase in standardized T1D PRS decreased the age at diagnosis by 0.74 years. Combined PRS and human leukocyte antigen (HLA) DQA1*03:02-DQA1*05:01 genotypes could accurately predict T1D risk. In multivariable models, HLA variants and PRS were independent risk factors for T1D risk (OR 3.76 [95% CI 1.54-9.16] and 1.71 [95% CI 1.37-2.13] for HLA DQA1*03:02-DQA1*05:01 and PRS, respectively). In a limited study population of those aged ≤18 years, PRS remained significantly associated with T1D risk. The association between T1D PRS and age at diagnosis was more obvious among males and patients aged ≤18 years. CONCLUSIONS Polygenic risk score and HLA variations enable personalized risk estimates, enhance newborn screening efficiency for ketoacidosis prevention, and addresses the gap in data on T1D prediction in isolated Asian populations.
Collapse
Affiliation(s)
- Wen-Ling Liao
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Center for Personalized Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Nan Huang
- Division of Genetics and Metabolism, Children's Hospital of China Medical University, Taichung, Taiwan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ya-Wen Chang
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Center for Personalized Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Yuan Liu
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hsing-Fang Lu
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Zih-Yu Tiao
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Pen-Hua Su
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chung-Hsing Wang
- Division of Genetics and Metabolism, Children's Hospital of China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| |
Collapse
|
13
|
Mercadel AJ, Sanchez-Covarrubias AP, Medina HN, Pinheiro PS, Pinto A, George SHL, Schlumbrecht MP. Intra-racial disaggregation reveals associations between nativity and overall survival in women with endometrial cancer. Gynecol Oncol 2023; 176:98-105. [PMID: 37480810 DOI: 10.1016/j.ygyno.2023.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
OBJECTIVE Prior studies have demonstrated survival differences between Black women with endometrial cancer (EC) born in the US and Caribbean. Our objective was to determine if country of birth influences EC overall survival (OS) in disaggregated subpopulations of Black women. METHODS Using the Florida Cancer Data System, women with EC diagnosed from 1981 to 2017 were identified. Demographic and clinical information were abstracted. Women who self-identified as Black and born in the US (USB), Jamaica (JBB), or Haiti (HBB) were included. Statistical analyses were performed using chi-square, Cox proportional hazards models, and Kaplan-Meier methods with significance set at p < 0.05. RESULTS 3817 women met the inclusion criteria. Compared to USB, JBB and HBB had more high-grade histologies, more advanced stage disease, had a greater proportion of uninsured or Medicaid insured, and had a higher proportion of women who received chemotherapy (all p < 0.05). In multivariate analyses, age (HR 1.03 [1.02-1.05]), regional stage (HR 1.52 [1.22-1.89]), distant stage (HR 3.73 [2.84-4.89]), lymphovascular space invasion (HR 1.96 [1.61-2.39]), receipt of surgery (HR 0.47 [0.29-0.75]), and receipt of chemotherapy (HR 0.77 [0.62-0.95]) were independently associated with OS. Compared to USB, Haitian nativity was an independent negative predictor of OS when evaluating all histologies together (HR 1.54 [1.18-2.00]) and for endometrioid EC specifically (HR 1.77 [1.10-2.83]). Among women with serous EC, HBB had markedly worse median OS (18.5 months [13.4-46.5]) relative to USB (29.9 months [26.3-35.9]) and JBB (41.0 months, [34.1-82.6], p = 0.013). CONCLUSION Country of birth is associated with endometrial cancer survival in Black women, with HBB demonstrating worse outcomes.
Collapse
Affiliation(s)
- Alyssa J Mercadel
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, Leonard M. Miller School of Medicine, University of Miami, 1121 NW 14(th) Street, Suite 345C, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, 1475 NW 12(th) Avenue, Miami, FL 33136, USA
| | - Alex P Sanchez-Covarrubias
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, Leonard M. Miller School of Medicine, University of Miami, 1121 NW 14(th) Street, Suite 345C, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, 1475 NW 12(th) Avenue, Miami, FL 33136, USA
| | - Heidy N Medina
- Department of Public Health Sciences, University of Miami School of Medicine, 1120 NW 14(th) Street, CRB 919, Miami, FL 33136, USA
| | - Paulo S Pinheiro
- Sylvester Comprehensive Cancer Center, 1475 NW 12(th) Avenue, Miami, FL 33136, USA; Department of Public Health Sciences, University of Miami School of Medicine, 1120 NW 14(th) Street, CRB 919, Miami, FL 33136, USA
| | - Andre Pinto
- Department of Pathology, University of Miami Miller School of Medicine, 1611 NW 12(th) Avenue, Holtz 2145, Miami, FL 33136, USA
| | - Sophia H L George
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, Leonard M. Miller School of Medicine, University of Miami, 1121 NW 14(th) Street, Suite 345C, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, 1475 NW 12(th) Avenue, Miami, FL 33136, USA
| | - Matthew P Schlumbrecht
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, Leonard M. Miller School of Medicine, University of Miami, 1121 NW 14(th) Street, Suite 345C, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, 1475 NW 12(th) Avenue, Miami, FL 33136, USA.
| |
Collapse
|
14
|
O’Brien S, Lea RA, Jadhao S, Lee S, Sukhadia S, Arunachalam V, Roulis E, Flower RL, Griffiths L, Nagaraj SH. Genetic Characterization of Blood Group Antigens for Polynesian Heritage Norfolk Island Residents. Genes (Basel) 2023; 14:1740. [PMID: 37761880 PMCID: PMC10530796 DOI: 10.3390/genes14091740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Improvements in blood group genotyping methods have allowed large scale population-based blood group genetics studies, facilitating the discovery of rare blood group antigens. Norfolk Island, an external and isolated territory of Australia, is one example of an underrepresented segment of the broader Australian population. Our study utilized whole genome sequencing data to characterize 43 blood group systems in 108 Norfolk Island residents. Blood group genotypes and phenotypes across the 43 systems were predicted using RBCeq. Predicted frequencies were compared to data available from the 1000G project. Additional copy number variation analysis was performed, investigating deletions outside of RHCE, RHD, and MNS systems. Examination of the ABO blood group system predicted a higher distribution of group A1 (45.37%) compared to group O (35.19%) in residents of the Norfolk Island group, similar to the distribution within European populations (42.94% and 38.97%, respectively). Examination of the Kidd blood group system demonstrated an increased prevalence of variants encoding the weakened Kidd phenotype at a combined prevalence of 12.04%, which is higher than that of the European population (5.96%) but lower than other populations in 1000G. Copy number variation analysis showed deletions within the Chido/Rodgers and ABO blood group systems. This study is the first step towards understanding blood group genotype and antigen distribution on Norfolk Island.
Collapse
Affiliation(s)
- Stacie O’Brien
- Centre for Genomics and Personalized Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (S.O.); (R.A.L.); (S.J.); (S.L.); (S.S.); (V.A.); (L.G.)
| | - Rodney A. Lea
- Centre for Genomics and Personalized Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (S.O.); (R.A.L.); (S.J.); (S.L.); (S.S.); (V.A.); (L.G.)
| | - Sudhir Jadhao
- Centre for Genomics and Personalized Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (S.O.); (R.A.L.); (S.J.); (S.L.); (S.S.); (V.A.); (L.G.)
- Clinical Services and Research, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia; (E.R.); (R.L.F.)
| | - Simon Lee
- Centre for Genomics and Personalized Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (S.O.); (R.A.L.); (S.J.); (S.L.); (S.S.); (V.A.); (L.G.)
| | - Shrey Sukhadia
- Centre for Genomics and Personalized Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (S.O.); (R.A.L.); (S.J.); (S.L.); (S.S.); (V.A.); (L.G.)
| | - Vignesh Arunachalam
- Centre for Genomics and Personalized Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (S.O.); (R.A.L.); (S.J.); (S.L.); (S.S.); (V.A.); (L.G.)
| | - Eileen Roulis
- Clinical Services and Research, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia; (E.R.); (R.L.F.)
| | - Robert L. Flower
- Clinical Services and Research, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia; (E.R.); (R.L.F.)
| | - Lyn Griffiths
- Centre for Genomics and Personalized Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (S.O.); (R.A.L.); (S.J.); (S.L.); (S.S.); (V.A.); (L.G.)
| | - Shivashankar H. Nagaraj
- Centre for Genomics and Personalized Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; (S.O.); (R.A.L.); (S.J.); (S.L.); (S.S.); (V.A.); (L.G.)
| |
Collapse
|
15
|
Gilbert E, Zurel H, MacMillan ME, Demiriz S, Mirhendi S, Merrigan M, O'Reilly S, Molloy AM, Brody LC, Bodmer W, Leach RA, Scott REM, Mugford G, Randhawa R, Stephens JC, Symington AL, Cavalleri GL, Phillips MS. The Newfoundland and Labrador mosaic founder population descends from an Irish and British diaspora from 300 years ago. Commun Biol 2023; 6:469. [PMID: 37117635 PMCID: PMC10147672 DOI: 10.1038/s42003-023-04844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/28/2023] [Indexed: 04/30/2023] Open
Abstract
The founder population of Newfoundland and Labrador (NL) is a unique genetic resource, in part due to its geographic and cultural isolation, where historical records describe a migration of European settlers, primarily from Ireland and England, to NL in the 18th and 19th centuries. Whilst its historical isolation, and increased prevalence of certain monogenic disorders are well appreciated, details of the fine-scale genetic structure and ancestry of the population are lacking. Understanding the genetic origins and background of functional, disease causing, genetic variants would aid genetic mapping efforts in the Province. Here, we leverage dense genome-wide SNP data on 1,807 NL individuals to reveal fine-scale genetic structure in NL that is clustered around coastal communities and correlated with Christian denomination. We show that the majority of NL European ancestry can be traced back to the south-east and south-west of Ireland and England, respectively. We date a substantial population size bottleneck approximately 10-15 generations ago in NL, associated with increased haplotype sharing and autozygosity. Our results reveal insights into the population history of NL and demonstrate evidence of a population conducive to further genetic studies and biomarker discovery.
Collapse
Affiliation(s)
- Edmund Gilbert
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Heather Zurel
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | | | - Sedat Demiriz
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | - Sadra Mirhendi
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | | | | | - Anne M Molloy
- School of Medicine, Trinity College, Dublin, Ireland
| | - Lawrence C Brody
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Walter Bodmer
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Richard A Leach
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | - Roderick E M Scott
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | - Gerald Mugford
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | - Ranjit Randhawa
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | | | - Alison L Symington
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| | - Gianpiero L Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael S Phillips
- Sequence Bioinformatics, Inc., St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
16
|
Luppieri V, Pecori A, Spedicati B, Schito R, Pozzan L, Santin A, Girotto G, Cadenaro M, Concas MP. Odontostomatological Traits in North-Eastern Italy's Isolated Populations: An Epidemiological Cross-Sectional Study. J Clin Med 2023; 12:jcm12072746. [PMID: 37048829 PMCID: PMC10095173 DOI: 10.3390/jcm12072746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023] Open
Abstract
Malocclusions and temporomandibular disorders (TMDs) are oral health problems that are spread worldwide. To date, few studies focused on their prevalence and associated risk factors are available. This study aims to define the prevalence and distribution of odontostomatological traits and evaluate specific risk factors in isolated villages in north-eastern Italy, taking advantage of their environmental homogeneity. Nine hundred and forty-four participants aged six to eighty-nine years were enrolled. Thirty-one odontostomatological phenotypes, classified into five domains (airways, bad habits, extraoral and intraoral parameters, TMDs, and teeth), were evaluated. A descriptive statistical analysis was performed; mixed logistic models were used to test the relationships among the traits. According to the study's findings, Angle's class I was prevalent (65.3%) followed by class II malocclusion (24.3%); class III and reversed overjet were the least frequent malocclusions (10.4% and 1.8%, respectively). Temporomandibular joint (TMJ) click/noise was prevalent among TMDs (34.7%). The statistically significant (p-value < 0.05) risk factors were ankyloglossia for phonetic issues (OR 1.90) and bruxism for TMJ click/noise (OR 1.70) and pain (OR 2.20). Overall, this work provides a picture of the prevalence of malocclusions and TMDs in a large Italian sample and reveals risk factors to take into account in the development of preventive strategies and treatments.
Collapse
Affiliation(s)
- Valentina Luppieri
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo"-Trieste, Via dell'Istria 65, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Alessandro Pecori
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo"-Trieste, Via dell'Istria 65, 34137 Trieste, Italy
| | - Beatrice Spedicati
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo"-Trieste, Via dell'Istria 65, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Riccardo Schito
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Lucia Pozzan
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Aurora Santin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Giorgia Girotto
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo"-Trieste, Via dell'Istria 65, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Milena Cadenaro
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo"-Trieste, Via dell'Istria 65, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo"-Trieste, Via dell'Istria 65, 34137 Trieste, Italy
| |
Collapse
|
17
|
Osterman MD, Song YE, Adams LD, Laux RA, Caywood LJ, Prough MB, Clouse JE, Herington SD, Slifer SH, Lynn A, Fuzzell MD, Fuzzell SL, Hochstetler SD, Miskimen K, Main LR, Dorfsman DA, Ogrocki P, Lerner AJ, Ramos J, Vance JM, Cuccaro ML, Scott WK, Pericak-Vance MA, Haines JL. The genetic architecture of Alzheimer disease risk in the Ohio and Indiana Amish. HGG ADVANCES 2022; 3:100114. [PMID: 35599847 PMCID: PMC9114685 DOI: 10.1016/j.xhgg.2022.100114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/22/2022] [Indexed: 11/26/2022] Open
Abstract
Alzheimer disease (AD) is the most common type of dementia and is currently estimated to affect 6.2 million Americans. It ranks as the sixth leading cause of death in the United States, and the proportion of deaths due to AD has been increasing since 2000, while the proportion of many other leading causes of deaths have decreased or remained constant. The risk for AD is multifactorial, including genetic and environmental risk factors. Although APOE ε4 remains the largest genetic risk factor for AD, more than 26 other loci have been associated with AD risk. Here, we recruited Amish adults from Ohio and Indiana to investigate AD risk and protective genetic effects. As a founder population that typically practices endogamy, variants that are rare in the general population may be of a higher frequency in the Amish population. Since the Amish have a slightly lower incidence and later age of onset of disease, they represent an excellent and unique population for research on protective genetic variants. We compared AD risk in the Amish and to a non-Amish population through APOE genotype, a non-APOE genetic risk score of genome-wide significant variants, and a non-APOE polygenic risk score considering all of the variants. Our results highlight the lesser relative impact of APOE and differing genetic architecture of AD risk in the Amish compared to a non-Amish, general European ancestry population.
Collapse
Affiliation(s)
- Michael D. Osterman
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Yeunjoo E. Song
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Larry D. Adams
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Renee A. Laux
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Laura J. Caywood
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael B. Prough
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jason E. Clouse
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sharlene D. Herington
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susan H. Slifer
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Audrey Lynn
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - M. Denise Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sarada L. Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sherri D. Hochstetler
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kristy Miskimen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Leighanne R. Main
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Daniel A. Dorfsman
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paula Ogrocki
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alan J. Lerner
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jairo Ramos
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffery M. Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael L. Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William K. Scott
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonathan L. Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
18
|
Granot-Hershkovitz E, Sun Q, Argos M, Zhou H, Lin X, Browning SR, Sofer T. AFA: Ancestry-specific allele frequency estimation in admixed populations: The Hispanic Community Health Study/Study of Latinos. HGG ADVANCES 2022; 3:100096. [PMID: 35300209 PMCID: PMC8920934 DOI: 10.1016/j.xhgg.2022.100096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/18/2022] [Indexed: 11/22/2022] Open
Abstract
Allele frequency estimates in admixed populations, such as Hispanics and Latinos, rely on the sample's specific admixture composition and thus may differ between two seemingly similar populations. However, ancestry-specific allele frequencies, i.e., pertaining to the ancestral populations of an admixed group, may be particularly useful for prioritizing genetic variants for genetic discovery and personalized genomic health. We developed a method, ancestry-specific allele frequency estimation in admixed populations (AFA), to estimate the frequencies of biallelic variants in admixed populations with an unlimited number of ancestries. AFA uses maximum-likelihood estimation by modeling the conditional probability of having an allele given proportions of genetic ancestries. It can be applied using either local ancestry interval proportions encompassing the variant (local-ancestry-specific allele frequency estimations in admixed populations [LAFAs]) or global proportions of genetic ancestries (global-ancestry-specific allele frequency estimations in admixed populations [GAFAs]), which are easier to compute and are more widely available. Simulations and comparisons to existing software demonstrated the high accuracy of the method. We implemented AFA on high-quality imputed data of ∼9,000 Hispanics and Latinos from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), an understudied, admixed population with three predominant continental ancestries: Amerindian, European, and African. Comparison of the European and African estimated frequencies to the respective gnomAD frequencies demonstrated high correlations (Pearson R2 = 0.97-0.99). We provide a genome-wide dataset of the estimated ancestry-specific allele frequencies for available variants with allele frequency between 5% and 95% in at least one of the three ancestral populations. Association analysis of Amerindian-enriched variants with cardiometabolic traits identified five loci associated with lipid traits in Hispanics and Latinos, demonstrating the utility of ancestry-specific allele frequencies in admixed populations.
Collapse
Affiliation(s)
- Einat Granot-Hershkovitz
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maria Argos
- School of Public Health, The University of Illinois, Chicago, Chicago, IL 60612, USA
| | - Hufeng Zhou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sharon R. Browning
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
19
|
Gupta G, Deval R, Rai N, Nizamuddin S, Upadhyay S, Pasupuleti N, Ng HKT, Singh PK, Rao V. Genome-wide association study for suicide in high–risk isolated historical population from North East India. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022; 8:100327. [DOI: 10.1016/j.jadr.2022.100327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
20
|
Gupta G, Deval R, Rai N, Nizamuddin S, Upadhyay S, Pasupuleti N, Ng HKT, Singh PK, Rao V. Genome-wide association study for suicide in high–risk isolated historical population from North East India. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: https://doi.org/10.1016/j.jadr.2022.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
21
|
Gupta G, Deval R, Rai N, Nizamuddin S, Upadhyay S, Pasupuleti N, Ng HKT, Singh PK, Rao V. Genome-wide association study for suicide in high–risk isolated historical population from North East India. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: https:/doi.org/10.1016/j.jadr.2022.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
22
|
Insights into the genetic architecture of haematological traits from deep phenotyping and whole-genome sequencing for two Mediterranean isolated populations. Sci Rep 2022; 12:1131. [PMID: 35064169 PMCID: PMC8782863 DOI: 10.1038/s41598-021-04436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 12/06/2021] [Indexed: 11/08/2022] Open
Abstract
Haematological traits are linked to cardiovascular, metabolic, infectious and immune disorders, as well as cancer. Here, we examine the role of genetic variation in shaping haematological traits in two isolated Mediterranean populations. Using whole-genome sequencing data at 22× depth for 1457 individuals from Crete (MANOLIS) and 1617 from the Pomak villages in Greece, we carry out a genome-wide association scan for haematological traits using linear mixed models. We discover novel associations (p < 5 × 10–9) of five rare non-coding variants with alleles conferring effects of 1.44–2.63 units of standard deviation on red and white blood cell count, platelet and red cell distribution width. Moreover, 10.0% of individuals in the Pomak population and 6.8% in MANOLIS carry a pathogenic mutation in the Haemoglobin Subunit Beta (HBB) gene. The mutational spectrum is highly diverse (10 different mutations). The most frequent mutation in MANOLIS is the common Mediterranean variant IVS-I-110 (G>A) (rs35004220). In the Pomak population, c.364C>A (“HbO-Arab”, rs33946267) is most frequent (4.4% allele frequency). We demonstrate effects on haematological and other traits, including bilirubin, cholesterol, and, in MANOLIS, height and gestation age. We find less severe effects on red blood cell traits for HbS, HbO, and IVS-I-6 (T>C) compared to other b+ mutations. Overall, we uncover allelic diversity of HBB in Greek isolated populations and find an important role for additional rare variants outside of HBB.
Collapse
|
23
|
Barroso I. The importance of increasing population diversity in genetic studies of type 2 diabetes and related glycaemic traits. Diabetologia 2021; 64:2653-2664. [PMID: 34595549 PMCID: PMC8563561 DOI: 10.1007/s00125-021-05575-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes has a global prevalence, with epidemiological data suggesting that some populations have a higher risk of developing this disease. However, to date, most genetic studies of type 2 diabetes and related glycaemic traits have been performed in individuals of European ancestry. The same is true for most other complex diseases, largely due to use of 'convenience samples'. Rapid genotyping of large population cohorts and case-control studies from existing collections was performed when the genome-wide association study (GWAS) 'revolution' began, back in 2005. Although global representation has increased in the intervening 15 years, further expansion and inclusion of diverse populations in genetic and genomic studies is still needed. In this review, I discuss the progress made in incorporating multi-ancestry participants in genetic analyses of type 2 diabetes and related glycaemic traits, and associated opportunities and challenges. I also discuss how increased representation of global diversity in genetic and genomic studies is required to fulfil the promise of precision medicine for all.
Collapse
Affiliation(s)
- Inês Barroso
- Exeter Centre of Excellence for Diabetes research (EXCEED), University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
24
|
Apol KD, Lydersen LN, Mortensen Ó, Weihe P, Á Steig B, Andorsdóttir G, Gregersen NO. FarGen - participants in the genetic research infrastructure of the Faroe Islands. Scand J Public Health 2021; 50:980-987. [PMID: 34609256 PMCID: PMC9578100 DOI: 10.1177/14034948211046817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background: The demographic history of the Faroe Islands makes this isolated population – founded in the 9th century – interesting for genetic research. The goal of the FarGen project was to recruit individuals to the FarGen infrastructure to promote research into the genetic features of the Faroese people, and to develop a reference panel of population-specific variants. We aimed to recruit 1500 individuals. Participation was voluntary; participants had to donate a blood sample for whole-genome sequencing, and had to answer a questionnaire regarding sociodemographics, health, motivation and attitude towards participation in genetic research. Methods: A total of 1541 participants voluntarily joined the project, donated a blood sample and returned the questionnaire. Results: Answers from the questionnaire show that participants are, in general, European, have children, have a relatively high level of education, rate their health to be good, are willing to participate in future health-related research, and were motivated to sign up primarily to participate in research to help others and local research competency building. Conclusions: Overall, the initial cohort of the FarGen infrastructure comprises 3% of the Faroese population, and represents the general population well based on the collected sociodemographic data. However, there is an excess of women, and some geographic sub-regions and age groups are slightly underrepresented. We find the recruitment method with voluntary sign-up appropriate, and knowledge acquired through the first phase will aid the next phase of the project, with the aim of expanding the FarGen cohort with additional individuals, bio-specimens and body measurements in order to perform multifactorial analyses.
Collapse
Affiliation(s)
- Katrin D Apol
- FarGen, The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands
| | - Leivur N Lydersen
- FarGen, The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands
| | - Ólavur Mortensen
- FarGen, The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands
| | - Pál Weihe
- Department of Occupational Medicine and Public Health, Tórshavn, Faroe Islands
| | - Bjarni Á Steig
- General Medical Department, National Hospital of the Faroe Islands, Tórshavn, Faroe Islands
| | | | - Noomi O Gregersen
- FarGen, The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands
| |
Collapse
|
25
|
Tran NK, Lea RA, Holland S, Nguyen Q, Raghubar AM, Sutherland HG, Benton MC, Haupt LM, Blackburn NB, Curran JE, Blangero J, Mallett AJ, Griffiths LR. Multi-phenotype genome-wide association studies of the Norfolk Island isolate implicate pleiotropic loci involved in chronic kidney disease. Sci Rep 2021; 11:19425. [PMID: 34593906 PMCID: PMC8484585 DOI: 10.1038/s41598-021-98935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/14/2021] [Indexed: 11/14/2022] Open
Abstract
Chronic kidney disease (CKD) is a persistent impairment of kidney function. Genome-wide association studies (GWAS) have revealed multiple genetic loci associated with CKD susceptibility but the complete genetic basis is not yet clear. Since CKD shares risk factors with cardiovascular diseases and diabetes, there may be pleiotropic loci at play but may go undetected when using single phenotype GWAS. Here, we used multi-phenotype GWAS in the Norfolk Island isolate (n = 380) to identify new loci associated with CKD. We performed a principal components analysis on different combinations of 29 quantitative traits to extract principal components (PCs) representative of multiple correlated phenotypes. GWAS of a PC derived from glomerular filtration rate, serum creatinine, and serum urea identified a suggestive peak (pmin = 1.67 × 10-7) that mapped to KCNIP4. Inclusion of other secondary CKD measurements with these three kidney function traits identified the KCNIP4 locus with GWAS significance (pmin = 1.59 × 10-9). Finally, we identified a group of two SNPs with increased minor allele frequencies as potential functional variants. With the use of genetic isolate and the PCA-based multi-phenotype GWAS approach, we have revealed a potential pleotropic effect locus for CKD. Further studies are required to assess functional relevance of this locus.
Collapse
Affiliation(s)
- Ngan K Tran
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Rodney A Lea
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Samuel Holland
- Institute for Molecular Bioscience & Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience & Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Arti M Raghubar
- Institute for Molecular Bioscience & Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Heidi G Sutherland
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Miles C Benton
- Institute of Environmental Science and Research, Kenepuru, New Zealand
| | - Larisa M Haupt
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Nicholas B Blackburn
- School of Medicine, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, USA
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Joanne E Curran
- School of Medicine, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, USA
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - John Blangero
- School of Medicine, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, USA
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Andrew J Mallett
- Institute for Molecular Bioscience & Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Renal Medicine, Townsville University Hospital, Townsville, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Townsville, QLD, Australia
| | - Lyn R Griffiths
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia.
| |
Collapse
|
26
|
Passamonti MM, Somenzi E, Barbato M, Chillemi G, Colli L, Joost S, Milanesi M, Negrini R, Santini M, Vajana E, Williams JL, Ajmone-Marsan P. The Quest for Genes Involved in Adaptation to Climate Change in Ruminant Livestock. Animals (Basel) 2021; 11:2833. [PMID: 34679854 PMCID: PMC8532622 DOI: 10.3390/ani11102833] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
Livestock radiated out from domestication centres to most regions of the world, gradually adapting to diverse environments, from very hot to sub-zero temperatures and from wet and humid conditions to deserts. The climate is changing; generally global temperature is increasing, although there are also more extreme cold periods, storms, and higher solar radiation. These changes impact livestock welfare and productivity. This review describes advances in the methodology for studying livestock genomes and the impact of the environment on animal production, giving examples of discoveries made. Sequencing livestock genomes has facilitated genome-wide association studies to localize genes controlling many traits, and population genetics has identified genomic regions under selection or introgressed from one breed into another to improve production or facilitate adaptation. Landscape genomics, which combines global positioning and genomics, has identified genomic features that enable animals to adapt to local environments. Combining the advances in genomics and methods for predicting changes in climate is generating an explosion of data which calls for innovations in the way big data sets are treated. Artificial intelligence and machine learning are now being used to study the interactions between the genome and the environment to identify historic effects on the genome and to model future scenarios.
Collapse
Affiliation(s)
- Matilde Maria Passamonti
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
| | - Elisa Somenzi
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
| | - Mario Barbato
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-Food and Forest Systems–DIBAF, Università Della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy; (G.C.); (M.M.)
| | - Licia Colli
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
- Research Center on Biodiversity and Ancient DNA—BioDNA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (S.J.); (E.V.)
| | - Marco Milanesi
- Department for Innovation in Biological, Agro-Food and Forest Systems–DIBAF, Università Della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy; (G.C.); (M.M.)
| | - Riccardo Negrini
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
| | - Monia Santini
- Impacts on Agriculture, Forests and Ecosystem Services (IAFES) Division, Fondazione Centro Euro-Mediterraneo Sui Cambiamenti Climatici (CMCC), Viale Trieste 127, 01100 Viterbo, Italy;
| | - Elia Vajana
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (S.J.); (E.V.)
| | - John Lewis Williams
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
| | - Paolo Ajmone-Marsan
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
- Nutrigenomics and Proteomics Research Center—PRONUTRIGEN, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| |
Collapse
|
27
|
Sliz E, Shin J, Syme C, Patel Y, Parker N, Richer L, Gaudet D, Bennett S, Paus T, Pausova Z. A variant near DHCR24 associates with microstructural properties of white matter and peripheral lipid metabolism in adolescents. Mol Psychiatry 2021; 26:3795-3805. [PMID: 31900429 PMCID: PMC7332371 DOI: 10.1038/s41380-019-0640-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022]
Abstract
Visceral adiposity has been associated with altered microstructural properties of white matter in adolescents. Previous evidence suggests that circulating phospholipid PC(16:0/2:0) may mediate this association. To investigate the underlying biology, we performed a genome-wide association study (GWAS) of the shared variance of visceral fat, PC(16:0/2:0), and white matter microstructure in 872 adolescents from the Saguenay Youth Study. We further studied the metabolomic profile of the GWAS-lead variant in 931 adolescents. Visceral fat and white matter microstructure were assessed with magnetic resonance imaging. Circulating metabolites were quantified with serum lipidomics and metabolomics. We identified a genome-wide significant association near DHCR24 (Seladin-1) encoding a cholesterol-synthesizing enzyme (rs588709, p = 3.6 × 10-8); rs588709 was also associated nominally with each of the three traits (white matter microstructure: p = 2.1 × 10-6, PC(16:0/2:0): p = 0.005, visceral fat: p = 0.010). We found that the metabolic profile associated with rs588709 resembled that of a TM6SF2 variant impacting very low-density lipoprotein (VLDL) secretion and was only partially similar to that of a HMGCR variant. This suggests that the effect of rs588709 on VLDL lipids may arise due to altered phospholipid rather than cholesterol metabolism. The rs588709 was also nominally associated with circulating concentrations of omega-3 fatty acids in interaction with visceral fat and PC(16:0/2:0), and these fatty acid measures showed robust associations with white matter microstructure. Overall, the present study provides evidence that the DHCR24 locus may link peripheral metabolism to brain microstructure, an association with implications for cognitive impairment.
Collapse
Affiliation(s)
- Eeva Sliz
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
- Center for Life-Course Health Research and Computational Medicine, Faculty of Medicine, University of Oulu, and Biocenter Oulu, Oulu, Finland
| | - Jean Shin
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Catriona Syme
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Yash Patel
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Nadine Parker
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Louis Richer
- Department of Health Sciences, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Daniel Gaudet
- Clinical Lipidology and rare lipid disorders Unit, Community Genetic Medicine Center, Department of Medicine, Université de Montréal, ECOGENE-21, Chicoutimi, QC, Canada
| | - Steffany Bennett
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Curcio A, Malovini A, Mazzanti A, Memmi M, Gambelli P, La Rosa F, Bloise R, Indolfi C, Bellazzi R, Napolitano C. Identification of a SCN5A founder mutation causing sudden death, Brugada syndrome, and conduction blocks in Southern Italy. Heart Rhythm 2021; 18:1698-1706. [PMID: 34245912 DOI: 10.1016/j.hrthm.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The genetic architecture of Brugada syndrome (BrS) is emerging as an increasingly complex area of investigation. The identification of genetically homogeneous populations can provide mechanistic insights and improve genotype-phenotype correlation. OBJECTIVE To characterize and define the clinical implications of a novel BrS founder mutation. Using a haplotype-based approach we investigated whether 2 SCN5A genetic variants could derive from founder events. METHODS Single nucleotide polymorphisms were genotyped in 201 subjects, haplotypes reconstructed, and mutational age estimated. Clinical phenotypes and historical records were collected. RESULTS A SCN5A variant (c.3352C>T; p.Gln1118Ter) was identified in 3 probands with BrS originating from south Italy. The same mutation was identified in a proband from central Italy and in 1 U.S. resident subject with Italian ancestry. The 5 individuals carried a common core haplotype, whose frequency was extremely low in local noncarrier probands and in population controls (0%-6.06%). The clinical presentation included multigenerational dominant transmission of Brugada electrocardiographic pattern, high incidence of sudden cardiac death (SCD), and cardiac conduction defects (CCD). We reconstructed 7-generation pedigrees with common geographic origin. Variant's age estimates suggested that origin of the p.Gln1118Ter dates back 76 generations (95% confidence interval: 28-200). A second SCN5A variant (c.5350G>A; p.Glu1784Lys) identified in the region did not show similar founder signal. CONCLUSION p.Gln1118Ter is a novel BrS/CCD/SCD founder mutation. We illustrate how these findings provide insights on the inheritance patterns and phenotypes associated with SCN5A mutation.
Collapse
Affiliation(s)
- Antonio Curcio
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Alberto Malovini
- Laboratory of Informatics and Systems Engineering for Clinical Research, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Andrea Mazzanti
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Mirella Memmi
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Patrick Gambelli
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Francesca La Rosa
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Raffaella Bloise
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Mediterranea Cardiocentro, Naples, Italy
| | - Riccardo Bellazzi
- Laboratory of Informatics and Systems Engineering for Clinical Research, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy; Faculty of Engineering, University of Pavia, Pavia, Italy
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart).
| |
Collapse
|
29
|
Pseudoexfoliation and Cataract Syndrome Associated with Genetic and Epidemiological Factors in a Mayan Cohort of Guatemala. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147231. [PMID: 34299682 PMCID: PMC8303577 DOI: 10.3390/ijerph18147231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
The Mayan population of Guatemala is understudied within eye and vision research. Studying an observational homogenous, geographically isolated population of individuals seeking eye care may identify unique clinical, demographic, environmental and genetic risk factors for blinding eye disease that can inform targeted and effective screening strategies to achieve better and improved health care distribution. This study served to: (a) identify the ocular health needs within this population; and (b) identify any possible modifiable risk factors contributing to disease pathophysiology within this population. We conducted a cross-sectional study with 126 participants. Each participant completed a comprehensive eye examination, provided a blood sample for genetic analysis, and received a structured core baseline interview for a standardized epidemiological questionnaire at the Salama Lions Club Eye Hospital in Salama, Guatemala. Interpreters were available for translation to the patients’ native dialect, to assist participants during their visit. We performed a genome-wide association study for ocular disease association on the blood samples using Illumina’s HumanOmni2.5-8 chip to examine single nucleotide polymorphism SNPs in this population. After implementing quality control measures, we performed adjusted logistic regression analysis to determine which genetic and epidemiological factors were associated with eye disease. We found that the most prevalent eye conditions were cataracts (54.8%) followed by pseudoexfoliation syndrome (PXF) (24.6%). The population with both conditions was 22.2%. In our epidemiological analysis, we found that eye disease was significantly associated with advanced age. Cataracts were significantly more common among those living in the 10 districts with the least resources. Furthermore, having cataracts was associated with a greater likelihood of PXF after adjusting for both age and sex. In our genetic analysis, the SNP most nominally significantly associated with PXF lay within the gene KSR2 (p < 1 × 10−5). Several SNPs were associated with cataracts at genome-wide significance after adjusting for covariates (p < 5 × 10−8). About seventy five percent of the 33 cataract-associated SNPs lie within 13 genes, with the majority of genes having only one significant SNP (5 × 10−8). Using bioinformatic tools including PhenGenI, the Ensembl genome browser and literature review, these SNPs and genes have not previously been associated with PXF or cataracts, separately or in combination. This study can aid in understanding the prevalence of eye conditions in this population to better help inform public health planning and the delivery of quality, accessible, and relevant health and preventative care within Salama, Guatemala.
Collapse
|
30
|
Wang F, Song F, Song M, Li J, Xie M, Hou Y. Genetic reconstruction and phylogenetic analysis by 193 Y-SNPs and 27 Y-STRs in a Chinese Yi ethnic group. Electrophoresis 2021; 42:1480-1487. [PMID: 33909307 DOI: 10.1002/elps.202100003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/06/2023]
Abstract
Yi is the seventh-largest ethnic group in China and features mountainous regional characteristics. The Liangshan Yi Autonomous Prefecture is the largest Yi agglomeration with isolated geographical conditions, profoundly impeding genetic communication. Here, we investigated 427 unrelated males of Liangshan from 193 Y-chromosome single nucleotide polymorphisms (Y-SNPs) and 27 Y-chromosome short tandem repeats (Y-STRs) to reveal the genetic structure and paternal phylogeny of the group. The haplogroup diversity reached 0.9169 with 46 different subhaplogroups by 193 Y-SNPs, and the haplotype diversity reached 0.9999 by 27 Y-STR loci. Multidimensional scaling (MDS), N-J tree, and Network were constructed to decipher and visualize the genetic relations between Yi and worldwide groups. Our results revealed: (1) the Network by Y-STRs and Y-SNPs showed the haplogroup D1a1a-M15 in the Liangshan Yi population was a ramification of Tibetan groups' expansion from west to east on the plateau; (2) the haplogroup distribution and the mismatch mutation analysis indicated the haplogroup O2a2b1a1a1a4a2-Z25929 of Liangshan Yi derived from manifold Southeast Asian immigrants; (3) a high-resolution Y-SNPs panel is vital to depict accurate paternal derivations and build an integrated and refining genetic structure of ethnic groups.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, P. R. China
| | - Feng Song
- Institute of Forensic Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, P. R. China
| | - Mengyuan Song
- Institute of Forensic Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, P. R. China
| | - Jienan Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, P. R. China
| | - Mingkun Xie
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
31
|
Waksmunski AR, Song YE, Kinzy TG, Laux RA, Sewell J, Fuzzell D, Fuzzell S, Miller S, Wiggs JL, Pasquale LR, Skarie JM, Haines JL, Cooke Bailey JN. The GGLEAM Study: Understanding Glaucoma in the Ohio Amish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1551. [PMID: 33561996 PMCID: PMC7915874 DOI: 10.3390/ijerph18041551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022]
Abstract
Glaucoma leads to millions of cases of visual impairment and blindness around the world. Its susceptibility is shaped by both environmental and genetic risk factors. Although over 120 risk loci have been identified for glaucoma, a large portion of its heritability is still unexplained. Here we describe the foundation of the Genetics of GLaucoma Evaluation in the AMish (GGLEAM) study to investigate the genetic architecture of glaucoma in the Ohio Amish, which exhibits lower genetic and environmental heterogeneity compared to the general population. To date, we have enrolled 81 Amish individuals in our study from Holmes County, Ohio. As a part of our enrollment process, 62 GGLEAM study participants (42 glaucoma-affected and 20 unaffected individuals) received comprehensive eye examinations and glaucoma evaluations. Using the data from the Anabaptist Genealogy Database, we found that 80 of the GGLEAM study participants were related to one another through a large, multigenerational pedigree containing 1586 people. We plan to integrate the health and kinship data obtained for the GGLEAM study to interrogate glaucoma genetics and pathophysiology in this unique population.
Collapse
Affiliation(s)
- Andrea R. Waksmunski
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yeunjoo E. Song
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
| | - Tyler G. Kinzy
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
| | - Reneé A. Laux
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
| | - Jane Sewell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
| | - Denise Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
| | - Sarada Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
| | - Sherri Miller
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
| | - Janey L. Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA;
| | - Louis R. Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jonathan M. Skarie
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
- Ohio Eye Associates, Mansfield, OH 44906, USA
| | - Jonathan L. Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jessica N. Cooke Bailey
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
32
|
Sarno S, Petrilli R, Abondio P, De Giovanni A, Boattini A, Sazzini M, De Fanti S, Cilli E, Ciani G, Gentilini D, Pettener D, Romeo G, Giuliani C, Luiselli D. Genetic history of Calabrian Greeks reveals ancient events and long term isolation in the Aspromonte area of Southern Italy. Sci Rep 2021; 11:3045. [PMID: 33542324 PMCID: PMC7862261 DOI: 10.1038/s41598-021-82591-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/15/2021] [Indexed: 01/30/2023] Open
Abstract
Calabrian Greeks are an enigmatic population that have preserved and evolved a unique variety of language, Greco, survived in the isolated Aspromonte mountain area of Southern Italy. To understand their genetic ancestry and explore possible effects of geographic and cultural isolation, we genome-wide genotyped a large set of South Italian samples including both communities that still speak Greco nowadays and those that lost the use of this language earlier in time. Comparisons with modern and ancient populations highlighted ancient, long-lasting genetic links with Eastern Mediterranean and Caucasian/Near-Eastern groups as ancestral sources of Southern Italians. Our results suggest that the Aspromonte communities might be interpreted as genetically drifted remnants that departed from such ancient genetic background as a consequence of long-term isolation. Specific patterns of population structuring and higher levels of genetic drift were indeed observed in these populations, reflecting geographic isolation amplified by cultural differences in the groups that still conserve the Greco language. Isolation and drift also affected the current genetic differentiation at specific gene pathways, prompting for future genome-wide association studies aimed at exploring trait-related loci that have drifted up in frequency in these isolated groups.
Collapse
Affiliation(s)
- Stefania Sarno
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Rosalba Petrilli
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Paolo Abondio
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Andrea De Giovanni
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy ,grid.6292.f0000 0004 1757 1758Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Alessio Boattini
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Sazzini
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy ,grid.6292.f0000 0004 1757 1758Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Sara De Fanti
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy ,grid.6292.f0000 0004 1757 1758Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Elisabetta Cilli
- grid.6292.f0000 0004 1757 1758Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Graziella Ciani
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Davide Gentilini
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy ,Italian Auxologic Institute IRCCS, Cusano Milanino, Milan, Italy
| | - Davide Pettener
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Romeo
- grid.412311.4Medical Genetics Unit, Sant’Orsola-Malpighi University Hospital, Bologna, Italy ,European School of Genetic Medicine, Bologna, Italy
| | - Cristina Giuliani
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy ,grid.6292.f0000 0004 1757 1758Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Donata Luiselli
- grid.6292.f0000 0004 1757 1758Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| |
Collapse
|
33
|
Analysis of Italian BRCA1/2 Pathogenic Variants Identifies a Private Spectrum in the Population from the Bergamo Province in Northern Italy. Cancers (Basel) 2021; 13:cancers13030532. [PMID: 33573335 PMCID: PMC7866799 DOI: 10.3390/cancers13030532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The Italian population is characterized by a high genetic heterogeneity mostly due to its long history of migration and colonization and to its geographical conformation. Consistently, several BRCA1/2 pathogenic variants (PVs) have been reported to be recurrent or even founder in defined geographical areas including the Bergamo province in Northern Italy. In this study, we retrospectively analyzed the data from 1019 women affected with breast cancer with BRCA1/2 PVs. We compared the BRCA1/2 PVs spectrum found in the carrier individuals from the Bergamo province (BGP) with that of the general Italian population. We found that the majority of the BGP PVs had a local origin and remained confined to the BGP or to the surrounding Lombardy region. We also observed that the BGP BRCA1/2 PV spectrum is private and conserved comprising a smaller number of variants with an average higher frequency with respect to that of carrier individuals from the rest of Italy. Abstract Germline pathogenic variants (PVs) in the BRCA1 or BRCA2 genes cause high breast cancer risk. Recurrent or founder PVs have been described worldwide including some in the Bergamo province in Northern Italy. The aim of this study was to compare the BRCA1/2 PV spectra of the Bergamo and of the general Italian populations. We retrospectively identified at five Italian centers 1019 BRCA1/2 PVs carrier individuals affected with breast cancer and representative of the heterogeneous national population. Each individual was assigned to the Bergamo or non-Bergamo cohort based on self-reported birthplace. Our data indicate that the Bergamo BRCA1/2 PV spectrum shows less heterogeneity with fewer different variants and an average higher frequency compared to that of the rest of Italy. Consistently, four PVs explained about 60% of all carriers. The majority of the Bergamo PVs originated locally with only two PVs clearly imported. The Bergamo BRCA1/2 PV spectrum appears to be private. Hence, the Bergamo population would be ideal to study the disease risk associated with local PVs in breast cancer and other disease-causing genes. Finally, our data suggest that the Bergamo population is a genetic isolate and further analyses are warranted to prove this notion.
Collapse
|
34
|
Systemic Disease and Ocular Comorbidity Analysis of Geographically Isolated Federally Recognized American Indian Tribes of the Intermountain West. J Clin Med 2020; 9:jcm9113590. [PMID: 33171720 PMCID: PMC7694968 DOI: 10.3390/jcm9113590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The American Indian Navajo and Goshute peoples are underserved patient populations residing in the Four Corners area of the United States and Ibupah, Utah, respectively. METHODS We conducted a cross-sectional study of epidemiological factors and lipid biomarkers that may be associated with type II diabetes, hypertension and retinal manifestations in tribal and non-tribal members in the study areas (n = 146 participants). We performed multivariate analyses to determine which, if any, risk factors were unique at the tribal level. Fundus photos and epidemiological data through standardized questionnaires were collected. Blood samples were collected to analyze lipid biomarkers. Univariate analyses were conducted and statistically significant factors at p < 0.10 were entered into a multivariate regression. RESULTS Of 51 participants for whom phenotyping was available, from the Four Corners region, 31 had type II diabetes (DM), 26 had hypertension and 6 had diabetic retinopathy (DR). Of the 64 participants from Ibupah with phenotyping available, 20 had diabetes, 19 had hypertension and 6 had DR. Navajo participants were less likely to have any type of retinopathy as compared to Goshute participants (odds ratio (OR) = 0.059; 95% confidence interval (CI) = 0.016-0.223; p < 0.001). Associations were found between diabetes and hypertension in both populations. Older age was associated with hypertension in the Four Corners, and the Navajo that reside there on the reservation, but not within the Goshute and Ibupah populations. Combining both the Ibupah, Utah and Four Corners study populations, being American Indian (p = 0.022), residing in the Four Corners (p = 0.027) and having hypertension (p < 0.001) increased the risk of DM. DM (p < 0.001) and age (p = 0.002) were significantly associated with hypertension in both populations examined. When retinopathy was evaluated for both populations combined, hypertension (p = 0.037) and living in Ibupah (p < 0.001) were associated with greater risk of retinopathy. When combining both American Indian populations from the Four Corners and Ibupah, those with hypertension were more likely to have DM (p < 0.001). No lipid biomarkers were found to be significantly associated with any disease state. CONCLUSIONS We found different comorbid factors with retinal disease outcome between the two tribes that reside within the Intermountain West. This is indicated by the association of tribe and with the type of retinopathy outcome when we combined the populations of American Indians. Overall, the Navajo peoples and the Four Corners had a higher prevalence of chronic disease that included diabetes and hypertension than the Goshutes and Ibupah. To the best of our knowledge, this is the first study to conduct an analysis for disease outcomes exclusively including the Navajo and Goshute tribe of the Intermountain West.
Collapse
|
35
|
Gupta G, Deval R, Mishra A, Upadhyay S, Singh PK, Rao VR. Re-testing reported significant SNPs related to suicide in a historical high -risk isolated population from north east India. Hereditas 2020; 157:31. [PMID: 32680568 PMCID: PMC7368720 DOI: 10.1186/s41065-020-00144-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Genetic diathesis of suicide is supported by family and twin studies. Few candidate gene pathways are known, but does not explain fully the complexity of suicide genetic risk. Recent investigations opting for Genome-Wide Association Studies (GWAS) resulted in finding additional targets, but replication remained a challenge. In this respect small isolated population approach in several complex disease phenotypes is found encouraging. The present study is an attempt to re-test some of the reported significant SNPs for suicide among a small historical high- risk isolated population from Northeast India. METHODS Two hundred ten cases (inclusive of depressed, suicide attempter and depressed + suicide attempter) and 249 controls were considered in the present study which were evaluated for the psychiatric parameters. Sixteen reported significant SNPs for suicide behaviour were re-tested using association approach under various genetic models. Networking by GeneMANIA tool was used for function prediction of the associated genes. RESULTS Seven SNPs (of 6 genes) remained significant in different genetic models. On networking genes with significant SNPs IL7, RHEB, CTNN3, KCNIP4, ARFGEF3 are found in interaction with already known candidate gene pathways while SNP rs1109089 (RHEB) gained further support from earlier expression studies. NUGGC gene is in complete isolation. CONCLUSIONS Small population approach in replicating significant SNPs is useful in complex phenotypes like suicide. This study explored the region-specific demographics of India by identifying vulnerable population for suicide via genetic association analysis in bringing into academic and administrative forum, the importance of suicide as a disease and its biological basis.
Collapse
Affiliation(s)
- Gaurav Gupta
- Department of Biotechnology, Invertis University, Bareilly (U.P), India
- Department of Genetics, Osmania University, Hyderabad, 500007, India
| | - Ravi Deval
- Department of Biotechnology, Invertis University, Bareilly (U.P), India
| | - Anshuman Mishra
- VBRI Innovation Centre, New Delhi, India
- Institute of Advanced Materials (IAAM), 59053, Ulrika, Sweden
| | - Shashank Upadhyay
- Department of Biotechnology, Invertis University, Bareilly (U.P), India
| | - Piyoosh Kumar Singh
- Department of Anthropology, Delhi University, Delhi, India
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - V R Rao
- Department of Genetics, Osmania University, Hyderabad, 500007, India.
- Department of Anthropology, Delhi University, Delhi, India.
- Genome Foundation, Hyderabad, India.
| |
Collapse
|
36
|
Dumont CM, Sheridan LM, Besancon EK, Blattner M, Lopes F, Kassem L, McMahon FJ. Validity of the Mood Disorder Questionnaire (MDQ) as a screening tool for bipolar spectrum disorders in anabaptist populations. J Psychiatr Res 2020; 123:159-163. [PMID: 32065952 DOI: 10.1016/j.jpsychires.2020.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/23/2019] [Accepted: 01/24/2020] [Indexed: 11/17/2022]
Abstract
The Mood Disorder Questionnaire (MDQ) is an established screening tool for bipolar spectrum disorders (BSD), but has not been validated in diverse populations and the best scoring method remains uncertain. This study assessed diagnostic validity of the MDQ among Anabaptists, an underserved population frequently involved in genetic research. 161 participants completed the MDQ and were diagnosed by a best-estimate final diagnosis (BEFD). Diagnostic agreements between alternate MDQ scoring methods and the BEFD were quantified using Cohen's Kappa (κ), sensitivity (α), and specificity (β). Scoring criteria evaluated included >7 simultaneous symptoms and at least moderate impairment, >7 simultaneous symptoms, with at least mild impairment, >7 symptoms only, with no further requirement, and three novel scoring methods that require >5 symptoms or fewer. Diagnostic agreement varied. The original method proved most specific but had the lowest κ and sensitivity. κ increased with more liberal scoring criteria, reaching a maximum under the lower-threshold symptom methods, with little loss of specificity in the 5-symptom method. Decreasing the symptom threshold below 5 conferred little or no benefit. These results support the diagnostic validity of the MDQ among this Anabaptist sample and suggest that a 5-symptom scoring method may increase diagnostic sensitivity in populations at high risk for bipolar disorder.
Collapse
Affiliation(s)
- Cassandra M Dumont
- 10Center Drive R3D54, National Institute of Mental Health, Bethesda, MD, 20892, United States.
| | - Laura M Sheridan
- 10Center Drive R3D54, National Institute of Mental Health, Bethesda, MD, 20892, United States.
| | - Emily K Besancon
- 10Center Drive R3D54, National Institute of Mental Health, Bethesda, MD, 20892, United States
| | - Meghan Blattner
- 10Center Drive R3D54, National Institute of Mental Health, Bethesda, MD, 20892, United States
| | - Fabiana Lopes
- 10Center Drive R3D54, National Institute of Mental Health, Bethesda, MD, 20892, United States
| | - Layla Kassem
- 10Center Drive R3D54, National Institute of Mental Health, Bethesda, MD, 20892, United States
| | - Francis J McMahon
- 10Center Drive R3D54, National Institute of Mental Health, Bethesda, MD, 20892, United States.
| |
Collapse
|
37
|
Jasinska AJ. Resources for functional genomic studies of health and development in nonhuman primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171 Suppl 70:174-194. [PMID: 32221967 DOI: 10.1002/ajpa.24051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/22/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
Primates display a wide range of phenotypic variation underlaid by complex genetically regulated mechanisms. The links among DNA sequence, gene function, and phenotype have been of interest from an evolutionary perspective, to understand functional genome evolution and its phenotypic consequences, and from a biomedical perspective to understand the shared and human-specific roots of health and disease. Progress in methods for characterizing genetic, transcriptomic, and DNA methylation (DNAm) variation is driving the rapid development of extensive omics resources, which are now increasingly available from humans as well as a growing number of nonhuman primates (NHPs). The fast growth of large-scale genomic data is driving the emergence of integrated tools and databases, thus facilitating studies of gene functionality across primates. This review describes NHP genomic resources that can aid in exploration of how genes shape primate phenotypes. It focuses on the gene expression trajectories across development in different tissues, the identification of functional genetic variation (including variants deleterious for protein function and regulatory variants modulating gene expression), and DNAm profiles as an emerging tool to understand the process of aging. These resources enable comparative functional genomics approaches to identify species-specific and primate-shared gene functionalities associated with health and development.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Eye on Primates, Los Angeles, California, USA
| |
Collapse
|
38
|
Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet 2019; 20:467-484. [PMID: 31068683 DOI: 10.1038/s41576-019-0127-1] [Citation(s) in RCA: 1119] [Impact Index Per Article: 186.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genome-wide association studies (GWAS) involve testing genetic variants across the genomes of many individuals to identify genotype-phenotype associations. GWAS have revolutionized the field of complex disease genetics over the past decade, providing numerous compelling associations for human complex traits and diseases. Despite clear successes in identifying novel disease susceptibility genes and biological pathways and in translating these findings into clinical care, GWAS have not been without controversy. Prominent criticisms include concerns that GWAS will eventually implicate the entire genome in disease predisposition and that most association signals reflect variants and genes with no direct biological relevance to disease. In this Review, we comprehensively assess the benefits and limitations of GWAS in human populations and discuss the relevance of performing more GWAS.
Collapse
Affiliation(s)
- Vivian Tam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Nikunj Patel
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Michelle Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Québec City, Québec, Canada.,Department of Molecular Medicine, Laval University, Québec City, Quebec, Canada
| | - Guillaume Paré
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada. .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada. .,Inserm UMRS 954 N-GERE (Nutrition-Genetics-Environmental Risks), University of Lorraine, Faculty of Medicine, Nancy, France.
| |
Collapse
|
39
|
A bird's-eye view of Italian genomic variation through whole-genome sequencing. Eur J Hum Genet 2019; 28:435-444. [PMID: 31784700 PMCID: PMC7080768 DOI: 10.1038/s41431-019-0551-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/30/2019] [Accepted: 10/29/2019] [Indexed: 11/30/2022] Open
Abstract
The genomic variation of the Italian peninsula populations is currently under characterised: the only Italian whole-genome reference is represented by the Tuscans from the 1000 Genome Project. To address this issue, we sequenced a total of 947 Italian samples from three different geographical areas. First, we defined a new Italian Genome Reference Panel (IGRP1.0) for imputation, which improved imputation accuracy, especially for rare variants, and we tested it by GWAS analysis on red blood traits. Furthermore, we extended the catalogue of genetic variation investigating the level of population structure, the pattern of natural selection, the distribution of deleterious variants and occurrence of human knockouts (HKOs). Overall the results demonstrate a high level of genomic differentiation between cohorts, different signatures of natural selection and a distinctive distribution of deleterious variants and HKOs, confirming the necessity of distinct genome references for the Italian population.
Collapse
|
40
|
Venkataraman GR, Rivas MA. Rare and common variant discovery in complex disease: the IBD case study. Hum Mol Genet 2019; 28:R162-R169. [PMID: 31363759 PMCID: PMC6872431 DOI: 10.1093/hmg/ddz189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022] Open
Abstract
Complex diseases such as inflammatory bowel disease (IBD), which consists of ulcerative colitis and Crohn's disease, are a significant medical burden-70 000 new cases of IBD are diagnosed in the United States annually. In this review, we examine the history of genetic variant discovery in complex disease with a focus on IBD. We cover methods that have been applied to microsatellite, common variant, targeted resequencing and whole-exome and -genome data, specifically focusing on the progression of technologies towards rare-variant discovery. The inception of these methods combined with better availability of population level variation data has led to rapid discovery of IBD-causative and/or -associated variants at over 200 loci; over time, these methods have grown exponentially in both power and ascertainment to detect rare variation. We highlight rare-variant discoveries critical to the elucidation of the pathogenesis of IBD, including those in NOD2, IL23R, CARD9, RNF186 and ADCY7. We additionally identify the major areas of rare-variant discovery that will evolve in the coming years. A better understanding of the genetic basis of IBD and other complex diseases will lead to improved diagnosis, prognosis, treatment and surveillance.
Collapse
Affiliation(s)
- Guhan R Venkataraman
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
41
|
Halachev M, Meynert A, Taylor MS, Vitart V, Kerr SM, Klaric L, S. G. P. Consortium, Aitman TJ, Haley CS, Prendergast JG, Pugh C, Hume DA, Harris SE, Liewald DC, Deary IJ, Semple CA, Wilson JF. Increased ultra-rare variant load in an isolated Scottish population impacts exonic and regulatory regions. PLoS Genet 2019; 15:e1008480. [PMID: 31765389 PMCID: PMC6901239 DOI: 10.1371/journal.pgen.1008480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/09/2019] [Accepted: 10/15/2019] [Indexed: 01/03/2023] Open
Abstract
Human population isolates provide a snapshot of the impact of historical demographic processes on population genetics. Such data facilitate studies of the functional impact of rare sequence variants on biomedical phenotypes, as strong genetic drift can result in higher frequencies of variants that are otherwise rare. We present the first whole genome sequencing (WGS) study of the VIKING cohort, a representative collection of samples from the isolated Shetland population in northern Scotland, and explore how its genetic characteristics compare to a mainland Scottish population. Our analyses reveal the strong contributions played by the founder effect and genetic drift in shaping genomic variation in the VIKING cohort. About one tenth of all high-quality variants discovered are unique to the VIKING cohort or are seen at frequencies at least ten fold higher than in more cosmopolitan control populations. Multiple lines of evidence also suggest relaxation of purifying selection during the evolutionary history of the Shetland isolate. We demonstrate enrichment of ultra-rare VIKING variants in exonic regions and for the first time we also show that ultra-rare variants are enriched within regulatory regions, particularly promoters, suggesting that gene expression patterns may diverge relatively rapidly in human isolates.
Collapse
Affiliation(s)
- Mihail Halachev
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| | - Alison Meynert
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| | - Martin S. Taylor
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| | - Veronique Vitart
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| | - Shona M. Kerr
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| | - Lucija Klaric
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| | | | - Timothy J. Aitman
- Centre for Genomic and Experimental Medicine, MRC IGMM, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| | - Chris S. Haley
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - James G. Prendergast
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Carys Pugh
- Centre for Clinical Brain Sciences, Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - David A. Hume
- Mater Research Institute, University of Queensland, Woolloongabba, Australia
| | - Sarah E. Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, George Square, Edinburgh, United Kingdom
| | - David C. Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, George Square, Edinburgh, United Kingdom
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, George Square, Edinburgh, United Kingdom
| | - Colin A. Semple
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| | - James F. Wilson
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, United Kingdom
| |
Collapse
|
42
|
Inter-individual genomic heterogeneity within European population isolates. PLoS One 2019; 14:e0214564. [PMID: 31596857 PMCID: PMC6785074 DOI: 10.1371/journal.pone.0214564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
A number of studies carried out since the early ‘70s has investigated the effects of isolation on genetic variation within and among human populations in diverse geographical contexts. However, no extensive analysis has been carried out on the heterogeneity among genomes within isolated populations. This issue is worth exploring since events of recent admixture and/or subdivision could potentially disrupt the genetic homogeneity which is to be expected when isolation is prolonged and constant over time. Here, we analyze literature data relative to 87,815 autosomal single-nucleotide polymorphisms, which were obtained from a total of 28 European populations. Our results challenge the traditional paradigm of population isolates as structured as genetically (and genomically) uniform entities. In fact, focusing on the distribution of variance of intra-population diversity measures across individuals, we show that the inter-individual heterogeneity of isolated populations is at least comparable to the open ones. More in particular, three small and highly inbred isolates (Sappada, Sauris and Timau in Northeastern Italy) were found to be characterized by levels of inter-individual heterogeneity largely exceeding that of all other populations, possibly due to relatively recent events of genetic introgression. Finally, we propose a way to monitor the effects of inter-individual heterogeneity in disease-gene association studies.
Collapse
|
43
|
Abstract
Risk of disease is multifactorial and can be shaped by socio-economic, demographic, cultural, environmental and genetic factors. Our understanding of the genetic determinants of disease risk has greatly advanced with the advent of genome-wide association studies (GWAS), which detect associations between genetic variants and complex traits or diseases by comparing populations of cases and controls. However, much of this discovery has occurred through GWAS of individuals of European ancestry, with limited representation of other populations, including from Africa, The Americas, Asia and Oceania. Population demography, genetic drift and adaptation to environments over thousands of years have led globally to the diversification of populations. This global genomic diversity can provide new opportunities for discovery and translation into therapies, as well as a better understanding of population disease risk. Large-scale multi-ethnic and representative biobanks and population health resources provide unprecedented opportunities to understand the genetic determinants of disease on a global scale.
Collapse
|
44
|
Hicks PM, Melendez SAC, Vitale A, Self W, Hartnett ME, Bernstein P, Morgan DJ, Feehan M, Shakoor A, Kim I, Owen LA, DeAngelis MM. Genetic Epidemiologic Analysis of Hypertensive Retinopathy in an Underrepresented and Rare Federally Recognized Native American Population of the Intermountain West. JOURNAL OF COMMUNITY MEDICINE & PUBLIC HEALTH 2019; 3:152. [PMID: 31475247 PMCID: PMC6716530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding disease risk is challenging in multifactorial conditions as it can differ by environment, ethnicity and race. The Confederated Tribes of the Goshute Reservation are one of the most isolated populations in the United States. Retinal changes are a reliable indicator for systemic disease. We conducted a cross-sectional study to identify correlations between genetic data and epidemiological risk factors for blinding retinal disease in this tribe. As part of the "Supporting Prediction and Prevention Blindness Project (SPBPP)" in the Native American Population of the Intermountain West, we found that hypertensive retinopathy was the most prevalent retinal disease. We found that forty-two percent of the Goshute population was affected. Blood samples, fundus photos and intraocular pressure were obtained for all participants. In addition, a standardized questionnaire was administered. DNA and total cholesterol, HDL, LDL, VLDL, triglycerides and HbA1c were also evaluated. Our study interrogated genetic variants from the PAGE study (ARMS2 rs10490924, CFH rs800292, rs1061170) and additional studies that looked at previously associated genetic variants with retinal disease associated with cardiovascular disease. We conducted univariate and multivariate logistic regression in Stata v15.0. We found an association between hypertriglyceridemia and HTR (adjp = .05) within the Goshute population. To the best of our knowledge, this is the first study to demonstrate the prevalence of hypertensive retinopathy in a Native American population. Moreover, our study is the first to demonstrate an independently predictive relationship between hypertriglyceridemia and hypertensive retinopathy in an American Indian population. This study furthers our knowledge about prevalent blinding eye disease within the most geographically isolated federally recognized native United States American tribe, for which nothing has been published with respect to any disease. Although, this study furthers our understanding about the prevalence of genetic epidemiological risk factors within this population, it has greater implications for the screening of blinding diseases in underserved populations in general. This study can inform public health on planning and delivering of quality, accessible and relevant care to this population.
Collapse
Affiliation(s)
- Patrice M Hicks
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | | | - Albert Vitale
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - William Self
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Mary Elizabeth Hartnett
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Paul Bernstein
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Denise J Morgan
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Michael Feehan
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Akbar Shakoor
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Ivana Kim
- Retina Service, Harvard Medical School, Massachusetts Eye and Ear, Boston, MA, USA
| | - Leah A Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Margaret M DeAngelis
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
45
|
Samaha G, Beatty J, Wade CM, Haase B. The Burmese cat as a genetic model of type 2 diabetes in humans. Anim Genet 2019; 50:319-325. [PMID: 31179570 DOI: 10.1111/age.12799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2019] [Indexed: 12/16/2022]
Abstract
The recent extension of genetic tools to the domestic cat, together with the serendipitous consequences of selective breeding, have been essential to the study of the genetic diseases that affect them. Cats are increasingly presented for veterinary surveillance and share many of human's heritable diseases, allowing them to serve as natural models of these conditions. Feline diabetes mellitus is a common condition in domestic cats that bears close pathological and clinical resemblance to type 2 diabetes in humans, including pancreatic β-cell dysfunction and peripheral insulin resistance. In Australia, New Zealand and Europe, diabetes mellitus is almost four times more common in cats of the Burmese breed than in other breeds. This geographically based breed predisposition parallels familial and population clustering of type 2 diabetes in humans. As a genetically isolated population, the Australian Burmese breed provides a spontaneous, naturally occurring genetic model of type 2 diabetes. Genetically isolated populations typically exhibit extended linkage disequilibrium and increased opportunity for deleterious variants to reach high frequencies over many generations due to genetic drift. Studying complex diseases in such populations allows for tighter control of confounding factors including environmental heterogeneity, allelic frequencies and population stratification. The homogeneous genetic background of Australian Burmese cats may provide a unique opportunity to either refine genetic signals previously associated with type 2 diabetes or identify new risk factors for this disease.
Collapse
Affiliation(s)
- G Samaha
- Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, 2006, Australia
| | - J Beatty
- Sydney School of Veterinary Science, Valentine Charlton Cat Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - C M Wade
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - B Haase
- Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
46
|
Granot-Hershkovitz E, Karasik D, Friedlander Y, Rodriguez-Murillo L, Dorajoo R, Liu J, Sewda A, Peter I, Carmi S, Hochner H. A study of Kibbutzim in Israel reveals risk factors for cardiometabolic traits and subtle population structure. Eur J Hum Genet 2018; 26:1848-1858. [PMID: 30108283 PMCID: PMC6244281 DOI: 10.1038/s41431-018-0230-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/24/2018] [Accepted: 07/17/2018] [Indexed: 11/09/2022] Open
Abstract
Genetic studies in isolated populations often increase power for identifying loci associated with complex diseases and traits. We present here the Kibbutzim Family Study (KFS), aimed at investigating the genetic basis of cardiometabolic traits in extended Israeli families characterized by long-term social stability and a homogeneous environment. Extensive information on cardiometabolic traits, as well as genome-wide genotypes, were collected on 901 individuals. We observed that most KFS participants were of Ashkenazi Jewish (AJ) genetic origin, confirmed a recent severe bottleneck in the AJ recent history, and detected a subtle within-AJ population structure. Focusing on genetic variants relatively common in the KFS but very rare in Europeans, we observed that AJ-enriched variants appear in cancer-related pathways more than expected by chance. We conducted an association study of the AJ-enriched variants against 16 cardiometabolic traits, and found seven loci (24 variants) to be significantly associated. The strongest association, which we also replicated in an independent study, was between a variant upstream of MSRA (frequency ≈1% in the KFS and nearly absent in Europeans) and weight (P = 3.6∙10-8). In conclusion, the KFS is a valuable resource for the study of the population genetics of Israel as well as the genetics of cardiometabolic traits.
Collapse
Affiliation(s)
| | - David Karasik
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Yechiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Laura Rodriguez-Murillo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anshuman Sewda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shai Carmi
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Hagit Hochner
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
47
|
Škarić-Jurić T, Tomas Ž, Zajc Petranović M, Božina N, Smolej Narančić N, Janićijević B, Salihović MP. Characterization of ADME genes variation in Roma and 20 populations worldwide. PLoS One 2018; 13:e0207671. [PMID: 30452466 PMCID: PMC6242375 DOI: 10.1371/journal.pone.0207671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
The products of the polymorphic ADME genes are involved in Absorption, Distribution, Metabolism, and Excretion of drugs. The pharmacogenetic data have been studied extensively due to their clinical importance in the appropriate drug prescription, but such data from the isolated populations are rather scarce. We analyzed the distribution of 95 polymorphisms in 31 core ADME genes in 20 populations worldwide and in newly genotyped samples from the Roma (Gypsy) population living in Croatia. Global distribution of ADME core gene loci differentiated three major clusters; (1) African, (2) East Asian, and (3) joint European, South Asian and South American cluster. The SLCO1B3 (rs4149117) and CYP3A4 (rs2242480) genes differentiated at the highest level the African group of populations, while NAT2 gene loci (rs1208, rs1801280, and rs1799929) and VKORC1 (rs9923231) differentiated East Asian populations. The VKORC1 rs9923231 was among the investigated loci the one with the largest global minor allele frequency (MAF) range; its MAF ranged from 0.027 in Nigeria to 0.924 in Han Chinese. The distribution of the investigated gene loci positions Roma population within the joined European and South Asian clusters, suggesting that their ADME gene pool is a combination of ancestral (Indian) and more recent (European) surrounding, as it was already implied by other genetic markers. However, when compared to the populations worldwide, the Croatian Roma have extreme MAF values in 10 out of the 95 investigated ADME core gene loci. Among loci which have extraordinary MAFs in Roma population two have strong proof of clinical importance: rs1799853 (CYP2C9) for warfarin dosage, and rs12248560 (CYP2C19) for clopidogrel dosage, efficacy and toxicity. This finding confirms the importance of taking the Roma as well as the other isolated populations`genetic profiles into account in pharmaco-therapeutic practice.
Collapse
Affiliation(s)
| | - Željka Tomas
- Institute for Anthropological Research, Zagreb, Croatia
| | | | - Nada Božina
- Department for Pharmacogenomics and Therapy Individualization, University Hospital Center Zagreb, Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
| | | | | | | |
Collapse
|
48
|
Gilly A, Suveges D, Kuchenbaecker K, Pollard M, Southam L, Hatzikotoulas K, Farmaki AE, Bjornland T, Waples R, Appel EVR, Casalone E, Melloni G, Kilian B, Rayner NW, Ntalla I, Kundu K, Walter K, Danesh J, Butterworth A, Barroso I, Tsafantakis E, Dedoussis G, Moltke I, Zeggini E. Cohort-wide deep whole genome sequencing and the allelic architecture of complex traits. Nat Commun 2018; 9:4674. [PMID: 30405126 PMCID: PMC6220258 DOI: 10.1038/s41467-018-07070-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/08/2018] [Indexed: 11/08/2022] Open
Abstract
The role of rare variants in complex traits remains uncharted. Here, we conduct deep whole genome sequencing of 1457 individuals from an isolated population, and test for rare variant burdens across six cardiometabolic traits. We identify a role for rare regulatory variation, which has hitherto been missed. We find evidence of rare variant burdens that are independent of established common variant signals (ADIPOQ and adiponectin, P = 4.2 × 10-8; APOC3 and triglyceride levels, P = 1.5 × 10-26), and identify replicating evidence for a burden associated with triglyceride levels in FAM189B (P = 2.2 × 10-8), indicating a role for this gene in lipid metabolism.
Collapse
Affiliation(s)
- Arthur Gilly
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Daniel Suveges
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Karoline Kuchenbaecker
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- Division of Psychiatry, University College of London, London, W1T 7NF, United Kingdom
- UCL Genetics Institute, University College London, London, WC1E 6BT, United Kingdom
| | - Martin Pollard
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Lorraine Southam
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Konstantinos Hatzikotoulas
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, D-85764, Germany
| | - Aliki-Eleni Farmaki
- Department of Health Sciences, College of Life Sciences, University of Leicester, Leicester, LE1 6TP, United Kingdom
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, 176-71, Greece
| | - Thea Bjornland
- Department of Mathematical Sciences, Norwegian Institute of Science and Technology, Trondheim, 7491, Norway
| | - Ryan Waples
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Emil V R Appel
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | | | - Giorgio Melloni
- Department of Biomedical Informatics, Harvard Medical School, Boston, 02115, MA, USA
| | - Britt Kilian
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Nigel W Rayner
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Old Road, Headington, Oxford, OX3 7LE, United Kingdom
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Kousik Kundu
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- Department of Haematology, Cambridge Biomedical Campus, University of Cambridge, Long Road, Cambridge, CB2 0PT, United Kingdom
| | - Klaudia Walter
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - John Danesh
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, University of Cambridge, Cambridge, CB1 8RN, United Kingdom
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Wort's Causeway, University of Cambridge, Strangeways Research Laboratory, Cambridge, CB1 8RN, United Kingdom
| | - Adam Butterworth
- The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, University of Cambridge, Cambridge, CB1 8RN, United Kingdom
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Wort's Causeway, University of Cambridge, Strangeways Research Laboratory, Cambridge, CB1 8RN, United Kingdom
- British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Inês Barroso
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | | | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, 176-71, Greece
| | - Ida Moltke
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Eleftheria Zeggini
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom.
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, D-85764, Germany.
| |
Collapse
|
49
|
Amin N, de Vrij FMS, Baghdadi M, Brouwer RWW, van Rooij JGJ, Jovanova O, Uitterlinden AG, Hofman A, Janssen HLA, Darwish Murad S, Kraaij R, Stedehouder J, van den Hout MCGN, Kros JM, van IJcken WFJ, Tiemeier H, Kushner SA, van Duijn CM. A rare missense variant in RCL1 segregates with depression in extended families. Mol Psychiatry 2018; 23:1120-1126. [PMID: 28322274 PMCID: PMC5984098 DOI: 10.1038/mp.2017.49] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 02/07/2023]
Abstract
Depression is the most prevalent psychiatric disorder with a complex and elusive etiology that is moderately heritable. Identification of genes would greatly facilitate the elucidation of the biological mechanisms underlying depression, however, its complex etiology has proved to be a major bottleneck in the identification of its genetic risk factors, especially in genome-wide association-like studies. In this study, we exploit the properties of a genetic isolate and its family-based structure to explore whether relatively rare exonic variants influence the burden of depressive symptoms in families. Using a multistep approach involving linkage and haplotype analyses followed by exome sequencing in the Erasmus Rucphen Family (ERF) study, we identified a rare (minor allele frequency (MAF)=1%) missense c.1114C>T mutation (rs115482041) in the RCL1 gene segregating with depression across multiple generations. Rs115482041 showed significant association with depressive symptoms (N=2393, βT-allele=2.33, P-value=1 × 10-4) and explained 2.9% of the estimated genetic variance of depressive symptoms (22%) in ERF. Despite being twice as rare (MAF<0.5%), c.1114C>T showed similar effect and significant association with depressive symptoms in samples from the independent population-based Rotterdam study (N=1604, βT-allele=3.60, P-value=3 × 10-2). A comparison of RCL1 expression in human and mouse brain revealed a striking co-localization of RCL1 with the layer 1 interlaminar subclass of astrocytes found exclusively in higher-order primates. Our findings identify RCL1 as a novel candidate gene for depression and offer insights into mechanisms through which RCL1 may be relevant for depression.
Collapse
Affiliation(s)
- N Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - F M S de Vrij
- Department of Psychiatry, Erasmus MC, Rotterdam, The Netherlands
| | - M Baghdadi
- Department of Psychiatry, Erasmus MC, Rotterdam, The Netherlands
| | - R W W Brouwer
- Department of Cell Biology, Center for Biomics, Erasmus MC, Rotterdam, The Netherlands
| | - J G J van Rooij
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - O Jovanova
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - A G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - A Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - H L A Janssen
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
- Department of Hepatology, University Health Network Toronto Western & General Hospital, Toronto, ON, Canada
| | - S Darwish Murad
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | - R Kraaij
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - J Stedehouder
- Department of Psychiatry, Erasmus MC, Rotterdam, The Netherlands
| | - M C G N van den Hout
- Department of Cell Biology, Center for Biomics, Erasmus MC, Rotterdam, The Netherlands
| | - J M Kros
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - W F J van IJcken
- Department of Cell Biology, Center for Biomics, Erasmus MC, Rotterdam, The Netherlands
| | - H Tiemeier
- Department of Psychiatry, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - S A Kushner
- Department of Psychiatry, Erasmus MC, Rotterdam, The Netherlands
| | - C M van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
50
|
Saeed S, Arslan M, Froguel P. Genetics of Obesity in Consanguineous Populations: Toward Precision Medicine and the Discovery of Novel Obesity Genes. Obesity (Silver Spring) 2018; 26:474-484. [PMID: 29464904 DOI: 10.1002/oby.22064] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 09/05/2017] [Accepted: 09/30/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Consanguinity has been instrumental in the elucidation of many Mendelian genetic diseases. Here, the unique advantage of consanguineous populations was considered in the quest for genes causing obesity. METHODS PubMed was searched for articles relevant to consanguinity and obesity published between 1995 and 2016. Some earlier articles of interest were also consulted. RESULTS Although obesity is the most heritable disorder, even in outbred populations, only 2% to 5% of severe obesity cases have so far been proven to be caused by single gene mutations. In some highly consanguineous populations, a remarkably higher proportion of obesity cases because of known and novel monogenic variants has been identified (up to 30%). CONCLUSIONS Combining the power conferred by consanguinity with current large-capacity sequencing techniques should bring new genetic factors and molecular mechanisms to the fore, unveiling a large part of the yet-elusive neurohumoral circuitry involved in the regulation of energy homeostasis and appetite. Importantly, the undertaking of such initiatives is destined to unfold novel targets for the development of precision medicine relevant to different forms of obesity.
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Genomics of Common Disease, Imperial College London, London, UK
- CNRS, Pasteur Institute of Lille, University of Lille, Lille, France
| | - Muhammad Arslan
- Centre for Research in Molecular Medicine, The University of Lahore, Lahore, Pakistan
- Department of Biological Sciences, Forman Christian College, Lahore, Pakistan
| | - Philippe Froguel
- Department of Genomics of Common Disease, Imperial College London, London, UK
- CNRS, Pasteur Institute of Lille, University of Lille, Lille, France
| |
Collapse
|