1
|
Shahid, Hayat M, Raza A, Akbar S, Alghamdi W, Iqbal N, Zou Q. pACPs-DNN: Predicting anticancer peptides using novel peptide transformation into evolutionary and structure matrix-based images with self-attention deep learning model. Comput Biol Chem 2025; 117:108441. [PMID: 40168838 DOI: 10.1016/j.compbiolchem.2025.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 04/03/2025]
Abstract
Globally, cancer remains a major health challenge due to its high mortality rates. Traditional experimental approaches and therapies are resource-intensive and often cause significant side effects. Anticancer peptides (ACPs) have emerged as alternative therapeutic agents owing to their selectivity, safety, and potential to mitigate drug resistance. In this paper, we propose pACPs-DNN, a novel attention mechanism-based deep learning model developed for the accurate prediction of ACPs and non-ACPs. The pACPs-DNN model transforms input peptides into image representations using residue-wise energy contact matrix (RECM), substitution Matrix Representation (SMR), and Position Specific Scoring Matrix (PSSM) embeddings, followed by local binary pattern (LBP)-based decomposition to capture enhanced structural and local semantic features. These transformations generate novel feature sets, including RECM_LBP, LBP_SMR, and LBP_PSSM. Subsequently, a two-tier feature selection approach is employed to identify a high-ranking optimal feature set, which is then used to train an attention-based deep neural network. The proposed pACPs-DNN model achieves an impressive training accuracy of 96.91 % and an AUC of 0.98. To evaluate its generalization capability, the model was validated on independent datasets, demonstrating significant improvements of 5 % and 3.5 % in accuracy over existing models on the Ind-I and Ind-II datasets, respectively. The demonstrated efficacy and robustness of pACPs-DNN highlight its potential as a valuable tool for advancing drug discovery and academic research in cancer-related therapeutic development.
Collapse
Affiliation(s)
- Shahid
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan.
| | - Ali Raza
- Department of Computer Science, Bahria University, Islamabad 44220, Pakistan
| | - Shahid Akbar
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Wajdi Alghamdi
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nadeem Iqbal
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China.
| |
Collapse
|
2
|
Charoenkwan P, Chumnanpuen P, Schaduangrat N, Shoombuatong W. Stack-AVP: A Stacked Ensemble Predictor Based on Multi-view Information for Fast and Accurate Discovery of Antiviral Peptides. J Mol Biol 2025; 437:168853. [PMID: 39510347 DOI: 10.1016/j.jmb.2024.168853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
AVPs, or antiviral peptides, are short chains of amino acids capable of inhibiting viral replication, preventing viral entry, or disrupting viral membranes. They represent a promising area of research for developing new antiviral therapies due to their potential to target a broad spectrum of viruses, incorporating those resistant to traditional antiviral drugs. However, traditional experimental methods for identifying AVPs are often costly and labour-intensive. Thus far, multiple computational methods have been introduced for the in silico identification of AVPs, but these methods still have certain shortcomings. In this study, we propose a novel stacked ensemble learning framework, termed Stack-AVP, for fast and accurate AVP identification. In Stack-AVP, we investigated heterogeneous prediction models, which were trained with 12 commonly used machine learning algorithms coupled with a wide range of multiple feature encoding schemes. Subsequently, these prediction models were adopted to generate multi-view features providing class information and probability information. Finally, we applied our feature selection method to determine the best feature subset for the construction of the final stacked model. Comparative assessments on the independent test dataset revealed that Stack-AVP surpassed the performance of current state-of-the-art methods, with an accuracy of 0.930, MCC of 0.860, and AUC of 0.975. Furthermore, it was found that our multi-view features exhibited a crucial mechanism to improve the prediction performance of AVPs. To facilitate experimental scientists in performing high-throughput identification of AVPs, the prediction sever Stack-AVP is publicly accessible at https://pmlabqsar.pythonanywhere.com/Stack-AVP.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Kasetsart University International College (KUIC), Kasetsart University, Bangkok 10900, Thailand
| | - Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
3
|
Dong R, Liu R, Liu Z, Liu Y, Zhao G, Li H, Hou S, Ma X, Kang H, Liu J, Guo F, Zhao P, Wang J, Wang C, Wu X, Ye S, Zhu C. Exploring the repository of de novo-designed bifunctional antimicrobial peptides through deep learning. eLife 2025; 13:RP97330. [PMID: 40079572 PMCID: PMC11906162 DOI: 10.7554/elife.97330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Antimicrobial peptides (AMPs) are attractive candidates to combat antibiotic resistance for their capability to target biomembranes and restrict a wide range of pathogens. It is a daunting challenge to discover novel AMPs due to their sparse distributions in a vast peptide universe, especially for peptides that demonstrate potencies for both bacterial membranes and viral envelopes. Here, we establish a de novo AMP design framework by bridging a deep generative module and a graph-encoding activity regressor. The generative module learns hidden 'grammars' of AMP features and produces candidates sequentially pass antimicrobial predictor and antiviral classifiers. We discovered 16 bifunctional AMPs and experimentally validated their abilities to inhibit a spectrum of pathogens in vitro and in animal models. Notably, P076 is a highly potent bactericide with the minimal inhibitory concentration of 0.21 μM against multidrug-resistant Acinetobacter baumannii, while P002 broadly inhibits five enveloped viruses. Our study provides feasible means to uncover the sequences that simultaneously encode antimicrobial and antiviral activities, thus bolstering the function spectra of AMPs to combat a wide range of drug-resistant infections.
Collapse
Affiliation(s)
- Ruihan Dong
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin UniversityTianjinChina
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical UniversityShaanxiChina
| | - Ziyu Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical UniversityShaanxiChina
| | - Yangang Liu
- Department of Microbiology, Second Military Medical UniversityShanghaiChina
| | - Gaomei Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University)ChongqingChina
| | - Honglei Li
- Tianjin Cancer Hospital Airport HospitalTianjinChina
| | - Shiyuan Hou
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical UniversityShaanxiChina
| | - Xiaohan Ma
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical UniversityShaanxiChina
| | - Huarui Kang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical UniversityShaanxiChina
| | - Jing Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical UniversityShaanxiChina
| | - Fei Guo
- School of Computer Science and Engineering, Central South UniversityChangshaChina
| | - Ping Zhao
- Department of Microbiology, Second Military Medical UniversityShanghaiChina
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University)ChongqingChina
| | - Cheng Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University)ChongqingChina
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical UniversityShaanxiChina
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin UniversityTianjinChina
| | - Cheng Zhu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin UniversityTianjinChina
| |
Collapse
|
4
|
Koul M, Kaushik S, Singh K, Sharma D. VITALdb: to select the best viroinformatics tools for a desired virus or application. Brief Bioinform 2025; 26:bbaf084. [PMID: 40063348 PMCID: PMC11892104 DOI: 10.1093/bib/bbaf084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/14/2025] [Accepted: 02/17/2025] [Indexed: 05/13/2025] Open
Abstract
The recent pandemics of viral diseases, COVID-19/mpox (humans) and lumpy skin disease (cattle), have kept us glued to viral research. These pandemics along with the recent human metapneumovirus outbreak have exposed the urgency for early diagnosis of viral infections, vaccine development, and discovery of novel antiviral drugs and therapeutics. To support this, there is an armamentarium of virus-specific computational tools that are currently available. VITALdb (VIroinformatics Tools and ALgorithms database) is a resource of ~360 viroinformatics tools encompassing all major viruses (SARS-CoV-2, influenza virus, human immunodeficiency virus, papillomavirus, herpes simplex virus, hepatitis virus, dengue virus, Ebola virus, Zika virus, etc.) and several diverse applications [structural and functional annotation, antiviral peptides development, subspecies characterization, recognition of viral recombination, inhibitors identification, phylogenetic analysis, virus-host prediction, viral metagenomics, detection of mutation(s), primer designing, etc.]. Resources, tools, and other utilities mentioned in this article will not only facilitate further developments in the realm of viroinformatics but also provide tremendous fillip to translate fundamental knowledge into applied research. Most importantly, VITALdb is an inevitable tool for selecting the best tool(s) to carry out a desired task and hence will prove to be a vital database (VITALdb) for the scientific community. Database URL: https://compbio.iitr.ac.in/vitaldb.
Collapse
Affiliation(s)
- Mira Koul
- Computational Biology and Translational Bioinformatics (CBTB) Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Shalini Kaushik
- Computational Biology and Translational Bioinformatics (CBTB) Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kavya Singh
- Computational Biology and Translational Bioinformatics (CBTB) Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Deepak Sharma
- Computational Biology and Translational Bioinformatics (CBTB) Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
5
|
Chen R, You Y, Liu Y, Sun X, Ma T, Lao X, Zheng H. Deep-Learning-Based Approaches for Rational Design of Stapled Peptides With High Antimicrobial Activity and Stability. Microb Biotechnol 2025; 18:e70121. [PMID: 40042163 PMCID: PMC11881016 DOI: 10.1111/1751-7915.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 05/12/2025] Open
Abstract
Antimicrobial peptides (AMPs) face stability and toxicity challenges in clinical use. Stapled modification enhances their stability and effectiveness, but its application in peptide design is rarely reported. This study built ten prediction models for stapled AMPs using deep and machine learning, tested their accuracy with an independent data set and wet lab experiments, and characterised stapled loop structures using structural, sequence and amino acid descriptors. AlphaFold improved stapled peptide structure prediction. The support vector machine model performed best, while two deep learning models achieved the highest accuracy of 1.0 on an external test set. Designed cysteine- and lysine-stapled peptides inhibited various bacteria with low concentrations and showed good serum stability and low haemolytic activity. This study highlights the potential of the deep learning method in peptide modification and design.
Collapse
Affiliation(s)
- Ruole Chen
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Yuhao You
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Yanchao Liu
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Xin Sun
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Tianyue Ma
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Xingzhen Lao
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Heng Zheng
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| |
Collapse
|
6
|
Liang Y, Ma X, Li J, Zhang S. iACVP-MR: Accurate Identification of Anti-coronavirus Peptide based on Multiple Features Information and Recurrent Neural Network. Curr Med Chem 2025; 32:2055-2067. [PMID: 38549527 DOI: 10.2174/0109298673277663240101111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 05/14/2024]
Abstract
BACKGROUND Over the years, viruses have caused human illness and threatened human health. Therefore, it is pressing to develop anti-coronavirus infection drugs with clear function, low cost, and high safety. Anti-coronavirus peptide (ACVP) is a key therapeutic agent against coronavirus. Traditional methods for finding ACVP need a great deal of money and man power. Hence, it is a significant task to establish intelligent computational tools to able rapid, efficient and accurate identification of ACVP. METHODS In this paper, we construct an excellent model named iACVP-MR to identify ACVP based on multiple features and recurrent neural networks. Multiple features are extracted by using reduced amino acid component and dipeptide component, compositions of k-spaced amino acid pairs, BLOSUM62 encoder according to the N5C5 sequence, as well as second-order moving average approach based on 16 physicochemical properties. Then, two recurrent neural networks named long-short term memory (LSTM) and bidirectional gated recurrent unit (BiGRU) combined attention mechanism are used for feature fusion and classification, respectively. RESULTS The accuracies of ENNAVIA-C and ENNAVIA-D datasets under the 10-fold cross-validation are 99.15% and 98.92%, respectively, and other evaluation indexes have also obtained satisfactory results. The experimental results show that our model is superior to other existing models. CONCLUSION The iACVP-MR model can be viewed as a powerful and intelligent tool for the accurate identification of ACVP. The datasets and source codes for iACVP-MR are freely downloaded at https://github.com/yunyunliang88/iACVP-MR.
Collapse
Affiliation(s)
- Yunyun Liang
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P.R. China
| | - Xinyan Ma
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P.R. China
| | - Jin Li
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P.R. China
| | - Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, P.R. China
| |
Collapse
|
7
|
Zhang S, Jing Y, Liang Y. EACVP: An ESM-2 LM Framework Combined CNN and CBAM Attention to Predict Anti-coronavirus Peptides. Curr Med Chem 2025; 32:2040-2054. [PMID: 38494930 DOI: 10.2174/0109298673287899240303164403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/13/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The novel coronavirus pneumonia (COVID-19) outbreak in late 2019 killed millions worldwide. Coronaviruses cause diseases such as severe acute respiratory syndrome (SARS-CoV) and SARS-CoV-2. Many peptides in the host defense system have antiviral activity. How to establish a set of efficient models to identify anti-coronavirus peptides is a meaningful study. METHODS Given this, a new prediction model EACVP is proposed. This model uses the evolutionary scale language model (ESM-2 LM) to characterize peptide sequence information. The ESM model is a natural language processing model trained by machine learning technology. It is trained on a highly diverse and dense dataset (UR50/D 2021_04) and uses the pre-trained language model to obtain peptide sequence features with 320 dimensions. Compared with traditional feature extraction methods, the information represented by ESM-2 LM is more comprehensive and stable. Then, the features are input into the convolutional neural network (CNN), and the convolutional block attention module (CBAM) lightweight attention module is used to perform attention operations on CNN in space dimension and channel dimension. To verify the rationality of the model structure, we performed ablation experiments on the benchmark and independent test datasets. We compared the EACVP with existing methods on the independent test dataset. RESULTS Experimental results show that ACC, F1-score, and MCC are 3.95%, 35.65% and 0.0725 higher than the most advanced methods, respectively. At the same time, we tested EACVP on ENNAVIA-C and ENNAVIA-D data sets, and the results showed that EACVP has good migration and is a powerful tool for predicting anti-coronavirus peptides. CONCLUSION The results prove that this model EACVP could fully characterize the peptide information and achieve high prediction accuracy. It can be generalized to different data sets. The data and code of the article have been uploaded to https://github.- com/JYY625/EACVP.git.
Collapse
Affiliation(s)
- Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, P.R. China
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, 571158, P.R. China
| | - Yuanyuan Jing
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, P.R. China
| | - Yunyun Liang
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P.R. China
| |
Collapse
|
8
|
Debnath S, Seth D, Pramanik S, Adhikari S, Mondal P, Sherpa D, Sen D, Mukherjee D, Mukerjee N. A comprehensive review and meta-analysis of recent advances in biotechnology for plant virus research and significant accomplishments in human health and the pharmaceutical industry. Biotechnol Genet Eng Rev 2024; 40:3193-3225. [PMID: 36063068 DOI: 10.1080/02648725.2022.2116309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
Secondary metabolites made by plants and used through their metabolic routes are today's most reliable and cost-effective way to make pharmaceuticals and improve health. The concept of genetic engineering is used for molecular pharming. As more people use plants as sources of nanotechnology systems, they are adding to this. These systems are made up of viruses-like particles (VLPs) and virus nanoparticles (VNPs). Due to their superior ability to be used as plant virus expression vectors, plant viruses are becoming more popular in pharmaceuticals. This has opened the door for them to be used in research, such as the production of medicinal peptides, antibodies, and other heterologous protein complexes. This is because biotechnological approaches have been linked with new bioinformatics tools. Because of the rise of high-throughput sequencing (HTS) and next-generation sequencing (NGS) techniques, it has become easier to use metagenomic studies to look for plant virus genomes that could be used in pharmaceutical research. A look at how bioinformatics can be used in pharmaceutical research is also covered in this article. It also talks about plant viruses and how new biotechnological tools and procedures have made progress in the field.
Collapse
Affiliation(s)
- Sandip Debnath
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Dibyendu Seth
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Sourish Pramanik
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Sanchari Adhikari
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Parimita Mondal
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Dechen Sherpa
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Deepjyoti Sen
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | | | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebarsham, Australia
| |
Collapse
|
9
|
Li M, Wu Y, Li B, Lu C, Jian G, Shang X, Chen H, Huang J, He B. ACVPICPred: Inhibitory activity prediction of anti-coronavirus peptides based on artificial neural network. Comput Struct Biotechnol J 2024; 23:3625-3633. [PMID: 39469670 PMCID: PMC11513478 DOI: 10.1016/j.csbj.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
Peptides, as small molecular compounds, exhibit prominent advantages in the inhibition of coronaviruses due to their safety, efficacy, and specificity, holding great promise as drugs against coronaviruses. The rapid and efficient determination of the activity of anti-coronavirus peptides (ACovPs) can greatly accelerate the development of drugs for treating coronavirus-related diseases. Hence, we present ACVPICPred, a computational model designed to predict the inhibitory activity of ACovPs based on their sequences and structural information. By leveraging bioinformatics tools AlphaFold3 for structural predictions and several feature extraction methods, the model integrates both sequence and structural features to enhance prediction accuracy. To address the limitations of existing datasets, we employed data augmentation techniques, including the introduction of noise and the SMOGN, to improve the model robustness. The model's performance was evaluated through five-fold cross-validation, achieving a Pearson correlation coefficient of 0.7668 (p < 0.05) and an R² of 0.5880 on the training dataset. Overall, in our study, compared to models that only use sequence features, models that combine structural features have achieved more robust results in various evaluation metrics. ACVPICPred is freely accessible at the following URL: http://i.uestc.edu.cn/acvpICPred/main/Main.php.
Collapse
Affiliation(s)
- Min Li
- Medical College, Guizhou University, Huaxi District, Guiyang 550025, Guizhou, China
| | - Yifei Wu
- Medical College, Guizhou University, Huaxi District, Guiyang 550025, Guizhou, China
| | - Bowen Li
- Medical College, Guizhou University, Huaxi District, Guiyang 550025, Guizhou, China
| | - Chunying Lu
- Medical College, Guizhou University, Huaxi District, Guiyang 550025, Guizhou, China
| | - Guifen Jian
- Medical College, Guizhou University, Huaxi District, Guiyang 550025, Guizhou, China
| | - Xing Shang
- Medical College, Guizhou University, Huaxi District, Guiyang 550025, Guizhou, China
| | - Heng Chen
- Medical College, Guizhou University, Huaxi District, Guiyang 550025, Guizhou, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi‑Tech Zone, Chengdu 6173001, Sichuan, China
| | - Bifang He
- Medical College, Guizhou University, Huaxi District, Guiyang 550025, Guizhou, China
- State Key Laboratory of Public Big Data, Guizhou University, Huaxi District, Guiyang 550025, Guizhou, China
| |
Collapse
|
10
|
Maleš M, Juretić D, Zoranić L. Role of Peptide Associations in Enhancing the Antimicrobial Activity of Adepantins: Comparative Molecular Dynamics Simulations and Design Assessments. Int J Mol Sci 2024; 25:12009. [PMID: 39596078 PMCID: PMC11593906 DOI: 10.3390/ijms252212009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Adepantins are peptides designed to optimize antimicrobial biological activity through the choice of specific amino acid residues, resulting in helical and amphipathic structures. This paper focuses on revealing the atomistic details of the mechanism of action of Adepantins and aligning design concepts with peptide behavior through simulation results. Notably, Adepantin-1a exhibits a broad spectrum of activity against both Gram-positive and Gram-negative bacteria, while Adepantin-1 has a narrow spectrum of activity against Gram-negative bacteria. The simulation results showed that one of the main differences is the extent of aggregation. Both peptides exhibit a strong tendency to cluster due to the amphipathicity embedded during design process. However, the more potent Adepantin-1a forms smaller aggregates than Adepantin-1, confirming the idea that the optimal aggregations, not the strongest aggregations, favor activity. Additionally, we show that incorporation of the cell penetration region affects the mechanisms of action of Adepantin-1a and promotes stronger binding to anionic and neutral membranes.
Collapse
Affiliation(s)
- Matko Maleš
- Faculty of Maritime Studies, University of Split, 21000 Split, Croatia;
| | - Davor Juretić
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia;
| | - Larisa Zoranić
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia;
| |
Collapse
|
11
|
Kumar A, Singh D. Generative Adversarial Network-Based Augmentation With Noval 2-Step Authentication for Anti-Coronavirus Peptide Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1942-1954. [PMID: 39037884 DOI: 10.1109/tcbb.2024.3431688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The virus poses a longstanding and enduring danger to various forms of life. Despite the ongoing endeavors to combat viral diseases, there exists a necessity to explore and develop novel therapeutic options. Antiviral peptides are bioactive molecules with a favorable toxicity profile, making them promising alternatives for viral infection treatment. Therefore, this article employed a generative adversarial network for antiviral peptide augmentation and a novel two-step authentication process for augmented synthetic peptides to enhance antiviral activity prediction. Additionally, five widely utilized deep learning models were employed for classification purposes. Initially, a GAN was used to augment the antiviral peptide. In a two-step authentication process, the NCBI-BLAST was utilized to identify the antiviral activity resemblance between the synthetic and real peptide. Subsequently, the hydrophobicity, hydrophilicity, hydroxylic nature, positive charge, and negative charge of synthetic and authentic antiviral peptides were compared before their utilization. Later, to examine the impact of authenticated peptide augmentation in the prediction of antiviral peptides, a comparison is conducted with the outcomes of non-peptide augmented prediction. The study demonstrates that the 1-D convolution neural network with augmented peptide exhibits superior performance compared to other employed classifiers and state-of-the-art models. The network attains a mean classification accuracy of 95.41%, an AUC value of 0.95, and an MCC value of 0.90 on the benchmark antiviral and anti-corona peptides dataset. Thus, the performance of the proposed model indicates its efficacy in predicting the antiviral activity of peptides.
Collapse
|
12
|
Rončević T, Gerdol M, Pacor S, Cvitanović A, Begić A, Weber I, Krce L, Caporale A, Mardirossian M, Tossi A, Zoranić L. Antimicrobial Peptide with a Bent Helix Motif Identified in Parasitic Flatworm Mesocestoides corti. Int J Mol Sci 2024; 25:11690. [PMID: 39519242 PMCID: PMC11546468 DOI: 10.3390/ijms252111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
The urgent need for antibiotic alternatives has driven the search for antimicrobial peptides (AMPs) from many different sources, yet parasite-derived AMPs remain underexplored. In this study, three novel potential AMP precursors (mesco-1, -2 and -3) were identified in the parasitic flatworm Mesocestoides corti, via a genome-wide mining approach, and the most promising one, mesco-2, was synthesized and comprehensively characterized. It showed potent broad-spectrum antibacterial activity at submicromolar range against E. coli and K. pneumoniae and low micromolar activity against A. baumannii, P. aeruginosa and S. aureus. Mechanistic studies indicated a membrane-related mechanism of action, and circular dichroism spectroscopy confirmed that mesco-2 is unstructured in water but forms stable helical structures on contact with anionic model membranes, indicating strong interactions and helix stacking. It is, however, unaffected by neutral membranes, suggesting selective antimicrobial activity. Structure prediction combined with molecular dynamics simulations suggested that mesco-2 adopts an unusual bent helix conformation with the N-terminal sequence, when bound to anionic membranes, driven by a central GRGIGRG motif. This study highlights mesco-2 as a promising antibacterial agent and emphasizes the importance of structural motifs in modulating AMP function.
Collapse
Affiliation(s)
- Tomislav Rončević
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia;
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.G.); (S.P.); (M.M.); (A.T.)
| | - Sabrina Pacor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.G.); (S.P.); (M.M.); (A.T.)
| | - Ana Cvitanović
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Anamarija Begić
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia; (A.B.); (I.W.); (L.K.)
| | - Ivana Weber
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia; (A.B.); (I.W.); (L.K.)
| | - Lucija Krce
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia; (A.B.); (I.W.); (L.K.)
| | - Andrea Caporale
- Institute of Crystallography, CNR, Basovizza, 34149 Trieste, Italy;
| | - Mario Mardirossian
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.G.); (S.P.); (M.M.); (A.T.)
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.G.); (S.P.); (M.M.); (A.T.)
| | - Larisa Zoranić
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia; (A.B.); (I.W.); (L.K.)
| |
Collapse
|
13
|
Pritam M, Dutta S, Medicherla KM, Kumar R, Singh SP. Computational analysis of spike protein of SARS-CoV-2 (Omicron variant) for development of peptide-based therapeutics and diagnostics. J Biomol Struct Dyn 2024; 42:7321-7339. [PMID: 37498146 DOI: 10.1080/07391102.2023.2239932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
In the last few years, the worldwide population has suffered from the SARS-CoV-2 pandemic. The WHO dashboard indicated that around 504,079,039 people were infected and 6,204,155 died from COVID-19 caused by different variants of SARS-CoV-2. Recently, a new variant of SARS-CoV-2 (B.1.1.529) was reported by South Africa known as Omicron. The high transmissibility rate and resistance towards available anti-SARS-CoV-2 drugs/vaccines/monoclonal antibodies, make Omicron a variant of concern. Because of various mutations in spike protein, available diagnostic and therapeutic treatments are not reliable. Therefore, the present study explored the development of some therapeutic peptides that can inhibit the SARS-CoV-2 virus interaction with host ACE2 receptors and can also be used for diagnostic purposes. The screened linear B cell epitopes derived from receptor-binding domain of spike protein of Omicron variant were evaluated as peptide inhibitor/vaccine candidates through different bioinformatics tools including molecular docking and simulation to analyze the interaction between Omicron peptide and human ACE2 receptor. Overall, in-silico studies revealed that Omicron peptides OP1-P12, OP14, OP20, OP23, OP24, OP25, OP26, OP27, OP28, OP29, and OP30 have the potential to inhibit Omicron interaction with ACE2 receptor. Moreover, Omicron peptides OP20, OP22, OP23, OP24, OP25, OP26, OP27, and OP30 have shown potential antigenic and immunogenic properties that can be used in design and development vaccines against Omicron. Although the in-silico validation was performed by comparative analysis with the control peptide inhibitor, further validation through wet lab experimentation is required before its use as therapeutic peptides.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manisha Pritam
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Somenath Dutta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Department of Bioinformatics, Pondicherry Central University, Puducherry, India
| | - Krishna Mohan Medicherla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
14
|
Ge R, Xia Y, Jiang M, Jia G, Jing X, Li Y, Cai Y. HybAVPnet: A Novel Hybrid Network Architecture for Antiviral Peptides Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1358-1365. [PMID: 38587961 DOI: 10.1109/tcbb.2024.3385635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Viruses pose a great threat to human production and life, thus the research and development of antiviral drugs is urgently needed. Antiviral peptides play an important role in drug design and development. Compared with the time-consuming and laborious wet chemical experiment methods, it is critical to use computational methods to predict antiviral peptides accurately and rapidly. However, due to limited data, accurate prediction of antiviral peptides is still challenging and extracting effective feature representations from sequences is crucial for creating accurate models. This study introduces a novel two-step approach, named HybAVPnet, to predict antiviral peptides with a hybrid network architecture based on neural networks and traditional machine learning methods. We adopted a stacking-like structure to capture both the long-term dependencies and local evolution information to achieve a comprehensive and diverse prediction using the predicted labels and probabilities. Using an ensemble technique with the different kinds of features can reduce the variance without increasing the bias. The experimental result shows HybAVPnet can achieve better and more robust performance compared with the state-of-the-art methods, which makes it useful for the research and development of antiviral drugs. Meanwhile, it can also be extended to other peptide recognition problems because of its generalization ability.
Collapse
|
15
|
Medina-Ortiz D, Contreras S, Fernández D, Soto-García N, Moya I, Cabas-Mora G, Olivera-Nappa Á. Protein Language Models and Machine Learning Facilitate the Identification of Antimicrobial Peptides. Int J Mol Sci 2024; 25:8851. [PMID: 39201537 PMCID: PMC11487388 DOI: 10.3390/ijms25168851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Peptides are bioactive molecules whose functional versatility in living organisms has led to successful applications in diverse fields. In recent years, the amount of data describing peptide sequences and function collected in open repositories has substantially increased, allowing the application of more complex computational models to study the relations between the peptide composition and function. This work introduces AMP-Detector, a sequence-based classification model for the detection of peptides' functional biological activity, focusing on accelerating the discovery and de novo design of potential antimicrobial peptides (AMPs). AMP-Detector introduces a novel sequence-based pipeline to train binary classification models, integrating protein language models and machine learning algorithms. This pipeline produced 21 models targeting antimicrobial, antiviral, and antibacterial activity, achieving average precision exceeding 83%. Benchmark analyses revealed that our models outperformed existing methods for AMPs and delivered comparable results for other biological activity types. Utilizing the Peptide Atlas, we applied AMP-Detector to discover over 190,000 potential AMPs and demonstrated that it is an integrative approach with generative learning to aid in de novo design, resulting in over 500 novel AMPs. The combination of our methodology, robust models, and a generative design strategy offers a significant advancement in peptide-based drug discovery and represents a pivotal tool for therapeutic applications.
Collapse
Affiliation(s)
- David Medina-Ortiz
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Santiago 8370456, Chile
| | - Seba Contreras
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Diego Fernández
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
| | - Nicole Soto-García
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
| | - Iván Moya
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
- Departamento de Ingeniería Química, Universidad de Magallanes, Punta Arenas 6210005, Chile
| | - Gabriel Cabas-Mora
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
| | - Álvaro Olivera-Nappa
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Santiago 8370456, Chile
- Departamento de Ingeniería Química, Biotecnología y Materiales, Universidad de Chile, Santiago 8370456, Chile
| |
Collapse
|
16
|
de Llano García D, Marrero-Ponce Y, Agüero-Chapin G, Ferri FJ, Antunes A, Martinez-Rios F, Rodríguez H. Innovative Alignment-Based Method for Antiviral Peptide Prediction. Antibiotics (Basel) 2024; 13:768. [PMID: 39200068 PMCID: PMC11350826 DOI: 10.3390/antibiotics13080768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Antiviral peptides (AVPs) represent a promising strategy for addressing the global challenges of viral infections and their growing resistances to traditional drugs. Lab-based AVP discovery methods are resource-intensive, highlighting the need for efficient computational alternatives. In this study, we developed five non-trained but supervised multi-query similarity search models (MQSSMs) integrated into the StarPep toolbox. Rigorous testing and validation across diverse AVP datasets confirmed the models' robustness and reliability. The top-performing model, M13+, demonstrated impressive results, with an accuracy of 0.969 and a Matthew's correlation coefficient of 0.71. To assess their competitiveness, the top five models were benchmarked against 14 publicly available machine-learning and deep-learning AVP predictors. The MQSSMs outperformed these predictors, highlighting their efficiency in terms of resource demand and public accessibility. Another significant achievement of this study is the creation of the most comprehensive dataset of antiviral sequences to date. In general, these results suggest that MQSSMs are promissory tools to develop good alignment-based models that can be successfully applied in the screening of large datasets for new AVP discovery.
Collapse
Affiliation(s)
- Daniela de Llano García
- School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Imbabura, Ecuador; (D.d.L.G.); (H.R.)
| | - Yovani Marrero-Ponce
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Pichincha, Ecuador
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Benito Juárez 03920, Ciudad de México, Mexico;
- Computer Science Department, Universitat de València, 46100 Valencia, Burjassot, Spain;
| | - Guillermin Agüero-Chapin
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Francesc J. Ferri
- Computer Science Department, Universitat de València, 46100 Valencia, Burjassot, Spain;
| | - Agostinho Antunes
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Felix Martinez-Rios
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Benito Juárez 03920, Ciudad de México, Mexico;
| | - Hortensia Rodríguez
- School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Imbabura, Ecuador; (D.d.L.G.); (H.R.)
| |
Collapse
|
17
|
Lefin N, Herrera-Belén L, Farias JG, Beltrán JF. Review and perspective on bioinformatics tools using machine learning and deep learning for predicting antiviral peptides. Mol Divers 2024; 28:2365-2374. [PMID: 37626205 DOI: 10.1007/s11030-023-10718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Viruses constitute a constant threat to global health and have caused millions of human and animal deaths throughout human history. Despite advances in the discovery of antiviral compounds that help fight these pathogens, finding a solution to this problem continues to be a task that consumes time and financial resources. Currently, artificial intelligence (AI) has revolutionized many areas of the biological sciences, making it possible to decipher patterns in amino acid sequences that encode different functions and activities. Within the field of AI, machine learning, and deep learning algorithms have been used to discover antimicrobial peptides. Due to their effectiveness and specificity, antimicrobial peptides (AMPs) hold excellent promise for treating various infections caused by pathogens. Antiviral peptides (AVPs) are a specific type of AMPs that have activity against certain viruses. Unlike the research focused on the development of tools and methods for the prediction of antimicrobial peptides, those related to the prediction of AVPs are still scarce. Given the significance of AVPs as potential pharmaceutical options for human and animal health and the ongoing AI revolution, we have reviewed and summarized the current machine learning and deep learning-based tools and methods available for predicting these types of peptides.
Collapse
Affiliation(s)
- Nicolás Lefin
- Department of Chemical Engineering, Faculty of Engineering and Science, University of La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Lisandra Herrera-Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Temuco, Chile
| | - Jorge G Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, University of La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, University of La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
| |
Collapse
|
18
|
Arif M, Musleh S, Fida H, Alam T. PLMACPred prediction of anticancer peptides based on protein language model and wavelet denoising transformation. Sci Rep 2024; 14:16992. [PMID: 39043738 PMCID: PMC11266708 DOI: 10.1038/s41598-024-67433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
Anticancer peptides (ACPs) perform a promising role in discovering anti-cancer drugs. The growing research on ACPs as therapeutic agent is increasing due to its minimal side effects. However, identifying novel ACPs using wet-lab experiments are generally time-consuming, labor-intensive, and expensive. Leveraging computational methods for fast and accurate prediction of ACPs would harness the drug discovery process. Herein, a machine learning-based predictor, called PLMACPred, is developed for identifying ACPs from peptide sequence only. PLMACPred adopted a set of encoding schemes representing evolutionary-property, composition-property, and protein language model (PLM), i.e., evolutionary scale modeling (ESM-2)- and ProtT5-based embedding to encode peptides. Then, two-dimensional (2D) wavelet denoising (WD) was employed to remove the noise from extracted features. Finally, ensemble-based cascade deep forest (CDF) model was developed to identify ACP. PLMACPred model attained superior performance on all three benchmark datasets, namely, ACPmain, ACPAlter, and ACP740 over tenfold cross validation and independent dataset. PLMACPred outperformed the existing models and improved the prediction accuracy by 18.53%, 2.4%, 7.59% on ACPmain, ACPalter, ACP740 dataset, respectively. We showed that embedding from ProtT5 and ESM-2 was capable of capturing better contextual information from the entire sequence than the other encoding schemes for ACP prediction. For the explainability of proposed model, SHAP (SHapley Additive exPlanations) method was used to analyze the feature effect on the ACP prediction. A list of novel sequence motifs was proposed from the ACP sequence using MEME suites. We believe, PLMACPred will support in accelerating the discovery of novel ACPs as well as other activities of microbial peptides.
Collapse
Affiliation(s)
- Muhammad Arif
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Saleh Musleh
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Huma Fida
- Department of Microbiology, Abdul Wali Khan University, Mardan, KPK, Pakistan
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
19
|
Aslan A, Ari Yuka S. Therapeutic peptides for coronary artery diseases: in silico methods and current perspectives. Amino Acids 2024; 56:37. [PMID: 38822212 PMCID: PMC11143054 DOI: 10.1007/s00726-024-03397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Many drug formulations containing small active molecules are used for the treatment of coronary artery disease, which affects a significant part of the world's population. However, the inadequate profile of these molecules in terms of therapeutic efficacy has led to the therapeutic use of protein and peptide-based biomolecules with superior properties, such as target-specific affinity and low immunogenicity, in critical diseases. Protein‒protein interactions, as a consequence of advances in molecular techniques with strategies involving the combined use of in silico methods, have enabled the design of therapeutic peptides to reach an advanced dimension. In particular, with the advantages provided by protein/peptide structural modeling, molecular docking for the study of their interactions, molecular dynamics simulations for their interactions under physiological conditions and machine learning techniques that can work in combination with all these, significant progress has been made in approaches to developing therapeutic peptides that can modulate the development and progression of coronary artery diseases. In this scope, this review discusses in silico methods for the development of peptide therapeutics for the treatment of coronary artery disease and strategies for identifying the molecular mechanisms that can be modulated by these designs and provides a comprehensive perspective for future studies.
Collapse
Affiliation(s)
- Ayca Aslan
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul, Turkey
| | - Selcen Ari Yuka
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul, Turkey.
| |
Collapse
|
20
|
Goles M, Daza A, Cabas-Mora G, Sarmiento-Varón L, Sepúlveda-Yañez J, Anvari-Kazemabad H, Davari MD, Uribe-Paredes R, Olivera-Nappa Á, Navarrete MA, Medina-Ortiz D. Peptide-based drug discovery through artificial intelligence: towards an autonomous design of therapeutic peptides. Brief Bioinform 2024; 25:bbae275. [PMID: 38856172 PMCID: PMC11163380 DOI: 10.1093/bib/bbae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/23/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
With their diverse biological activities, peptides are promising candidates for therapeutic applications, showing antimicrobial, antitumour and hormonal signalling capabilities. Despite their advantages, therapeutic peptides face challenges such as short half-life, limited oral bioavailability and susceptibility to plasma degradation. The rise of computational tools and artificial intelligence (AI) in peptide research has spurred the development of advanced methodologies and databases that are pivotal in the exploration of these complex macromolecules. This perspective delves into integrating AI in peptide development, encompassing classifier methods, predictive systems and the avant-garde design facilitated by deep-generative models like generative adversarial networks and variational autoencoders. There are still challenges, such as the need for processing optimization and careful validation of predictive models. This work outlines traditional strategies for machine learning model construction and training techniques and proposes a comprehensive AI-assisted peptide design and validation pipeline. The evolving landscape of peptide design using AI is emphasized, showcasing the practicality of these methods in expediting the development and discovery of novel peptides within the context of peptide-based drug discovery.
Collapse
Affiliation(s)
- Montserrat Goles
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
- Departamento de Ingeniería Química, Biotecnología y Materiales, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| | - Anamaría Daza
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| | - Gabriel Cabas-Mora
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Lindybeth Sarmiento-Varón
- Centro Asistencial de Docencia e Investigación, CADI, Universidad de Magallanes, Av. Los Flamencos 01364, 6210005, Punta Arenas, Chile
| | - Julieta Sepúlveda-Yañez
- Facultad de Ciencias de la Salud, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Hoda Anvari-Kazemabad
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany
| | - Roberto Uribe-Paredes
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Álvaro Olivera-Nappa
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| | - Marcelo A Navarrete
- Centro Asistencial de Docencia e Investigación, CADI, Universidad de Magallanes, Av. Los Flamencos 01364, 6210005, Punta Arenas, Chile
- Escuela de Medicina, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - David Medina-Ortiz
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| |
Collapse
|
21
|
Asseri AH, Islam MR, Alghamdi RM, Altayb HN. Identification of natural antimicrobial peptides mimetic to inhibit Ca 2+ influx DDX3X activity for blocking dengue viral infectivity. J Bioenerg Biomembr 2024; 56:125-139. [PMID: 38095733 DOI: 10.1007/s10863-023-09996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/16/2023] [Indexed: 04/06/2024]
Abstract
Viruses are microscopic biological entities that can quickly invade and multiply in a living organism. Each year, over 36,000 people die and nearly 400 million are infected with the dengue virus (DENV). Despite dengue being an endemic disease, no targeted and effective antiviral peptide resource is available against the dengue species. Antiviral peptides (AVPs) have shown tremendous ability to fight against different viruses. Accelerating antiviral drug discovery is crucial, particularly for RNA viruses. DDX3X, a vital cell component, supports viral translation and interacts with TRPV4, regulating viral RNA metabolism and infectivity. Its diverse signaling pathway makes it a potential therapeutic target. Our study focuses on inhibiting viral RNA translation by blocking the activity of the target gene and the TRPV4-mediated Ca2+ cation channel. Six major proteins from camel milk were first extracted and split with the enzyme pepsin. The antiviral properties were then analyzed using online bioinformatics programs, including AVPpred, Meta-iAVP, AMPfun, and ENNAVIA. The stability of the complex was assessed using MD simulation, MM/GBSA, and principal component analysis. Cytotoxicity evaluations were conducted using COPid and ToxinPred. The top ten AVPs, determined by optimal scores, were selected and saved for docking studies with the GalaxyPepDock tools. Bioinformatics analyses revealed that the peptides had very short hydrogen bond distances (1.8 to 3.6 Å) near the active site of the target protein. Approximately 76% of the peptide residues were 5-11 amino acids long. Additionally, the identified peptide candidates exhibited desirable properties for potential therapeutic agents, including a net positive charge, moderate toxicity, hydrophilicity, and selectivity. In conclusion, this computational study provides promising insights for discovering peptide-based therapeutic agents against DENV.
Collapse
Affiliation(s)
- Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Md Rashedul Islam
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Advanced Biological Invention Centre (Bioinventics), Rajshahi, 6204, Bangladesh
| | - Reem M Alghamdi
- Department of Radiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hisham N Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
22
|
Liu M, Wu T, Li X, Zhu Y, Chen S, Huang J, Zhou F, Liu H. ACPPfel: Explainable deep ensemble learning for anticancer peptides prediction based on feature optimization. Front Genet 2024; 15:1352504. [PMID: 38487252 PMCID: PMC10937565 DOI: 10.3389/fgene.2024.1352504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Background: Cancer is a significant global health problem that continues to cause a high number of deaths worldwide. Traditional cancer treatments often come with risks that can compromise the functionality of vital organs. As a potential alternative to these conventional therapies, Anticancer peptides (ACPs) have garnered attention for their small size, high specificity, and reduced toxicity, making them as a promising option for cancer treatments. Methods: However, the process of identifying effective ACPs through wet-lab screening experiments is time-consuming and requires a lot of labor. To overcome this challenge, a deep ensemble learning method is constructed to predict anticancer peptides (ACPs) in this study. To evaluate the reliability of the framework, four different datasets are used in this study for training and testing. During the training process of the model, integration of feature selection methods, feature dimensionality reduction measures, and optimization of the deep ensemble model are carried out. Finally, we explored the interpretability of features that affected the final prediction results and built a web server platform to facilitate anticancer peptides prediction, which can be used by all researchers for further studies. This web server can be accessed at http://lmylab.online:5001/. Results: The result of this study achieves an accuracy rate of 98.53% and an AUC (Area under Curve) value of 0.9972 on the ACPfel dataset, it has improvements on other datasets as well.
Collapse
Affiliation(s)
- Mingyou Liu
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Tao Wu
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang, China
| | - Xue Li
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yingxue Zhu
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Sen Chen
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology, Chengdu, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Fengfeng Zhou
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang, China
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Hongmei Liu
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Guizhou Medical University, Guiyang, China
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
23
|
Iwaniak A, Minkiewicz P, Darewicz M. Bioinformatics and bioactive peptides from foods: Do they work together? ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 108:35-111. [PMID: 38461003 DOI: 10.1016/bs.afnr.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
We live in the Big Data Era which affects many aspects of science, including research on bioactive peptides derived from foods, which during the last few decades have been a focus of interest for scientists. These two issues, i.e., the development of computer technologies and progress in the discovery of novel peptides with health-beneficial properties, are closely interrelated. This Chapter presents the example applications of bioinformatics for studying biopeptides, focusing on main aspects of peptide analysis as the starting point, including: (i) the role of peptide databases; (ii) aspects of bioactivity prediction; (iii) simulation of peptide release from proteins. Bioinformatics can also be used for predicting other features of peptides, including ADMET, QSAR, structure, and taste. To answer the question asked "bioinformatics and bioactive peptides from foods: do they work together?", currently it is almost impossible to find examples of peptide research with no bioinformatics involved. However, theoretical predictions are not equivalent to experimental work and always require critical scrutiny. The aspects of compatibility of in silico and in vitro results are also summarized herein.
Collapse
Affiliation(s)
- Anna Iwaniak
- Chair of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland.
| | - Piotr Minkiewicz
- Chair of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Małgorzata Darewicz
- Chair of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| |
Collapse
|
24
|
Vincenzi M, Mercurio FA, Leone M. Virtual Screening of Peptide Libraries: The Search for Peptide-Based Therapeutics Using Computational Tools. Int J Mol Sci 2024; 25:1798. [PMID: 38339078 PMCID: PMC10855943 DOI: 10.3390/ijms25031798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Over the last few decades, we have witnessed growing interest from both academic and industrial laboratories in peptides as possible therapeutics. Bioactive peptides have a high potential to treat various diseases with specificity and biological safety. Compared to small molecules, peptides represent better candidates as inhibitors (or general modulators) of key protein-protein interactions. In fact, undruggable proteins containing large and smooth surfaces can be more easily targeted with the conformational plasticity of peptides. The discovery of bioactive peptides, working against disease-relevant protein targets, generally requires the high-throughput screening of large libraries, and in silico approaches are highly exploited for their low-cost incidence and efficiency. The present review reports on the potential challenges linked to the employment of peptides as therapeutics and describes computational approaches, mainly structure-based virtual screening (SBVS), to support the identification of novel peptides for therapeutic implementations. Cutting-edge SBVS strategies are reviewed along with examples of applications focused on diverse classes of bioactive peptides (i.e., anticancer, antimicrobial/antiviral peptides, peptides blocking amyloid fiber formation).
Collapse
Affiliation(s)
| | | | - Marilisa Leone
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy; (M.V.); (F.A.M.)
| |
Collapse
|
25
|
Jiang J, Pei H, Li J, Li M, Zou Q, Lv Z. FEOpti-ACVP: identification of novel anti-coronavirus peptide sequences based on feature engineering and optimization. Brief Bioinform 2024; 25:bbae037. [PMID: 38366802 PMCID: PMC10939380 DOI: 10.1093/bib/bbae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
Anti-coronavirus peptides (ACVPs) represent a relatively novel approach of inhibiting the adsorption and fusion of the virus with human cells. Several peptide-based inhibitors showed promise as potential therapeutic drug candidates. However, identifying such peptides in laboratory experiments is both costly and time consuming. Therefore, there is growing interest in using computational methods to predict ACVPs. Here, we describe a model for the prediction of ACVPs that is based on the combination of feature engineering (FE) optimization and deep representation learning. FEOpti-ACVP was pre-trained using two feature extraction frameworks. At the next step, several machine learning approaches were tested in to construct the final algorithm. The final version of FEOpti-ACVP outperformed existing methods used for ACVPs prediction and it has the potential to become a valuable tool in ACVP drug design. A user-friendly webserver of FEOpti-ACVP can be accessed at http://servers.aibiochem.net/soft/FEOpti-ACVP/.
Collapse
Affiliation(s)
- Jici Jiang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Hongdi Pei
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiayu Li
- College of Life Science, Sichuan University, Chengdu 610065, China
| | - Mingxin Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Zhibin Lv
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
26
|
Ma X, Liang Y, Zhang S. iAVPs-ResBi: Identifying antiviral peptides by using deep residual network and bidirectional gated recurrent unit. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:21563-21587. [PMID: 38124610 DOI: 10.3934/mbe.2023954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Human history is also the history of the fight against viral diseases. From the eradication of viruses to coexistence, advances in biomedicine have led to a more objective understanding of viruses and a corresponding increase in the tools and methods to combat them. More recently, antiviral peptides (AVPs) have been discovered, which due to their superior advantages, have achieved great impact as antiviral drugs. Therefore, it is very necessary to develop a prediction model to accurately identify AVPs. In this paper, we develop the iAVPs-ResBi model using k-spaced amino acid pairs (KSAAP), encoding based on grouped weight (EBGW), enhanced grouped amino acid composition (EGAAC) based on the N5C5 sequence, composition, transition and distribution (CTD) based on physicochemical properties for multi-feature extraction. Then we adopt bidirectional long short-term memory (BiLSTM) to fuse features for obtaining the most differentiated information from multiple original feature sets. Finally, the deep model is built by combining improved residual network and bidirectional gated recurrent unit (BiGRU) to perform classification. The results obtained are better than those of the existing methods, and the accuracies are 95.07, 98.07, 94.29 and 97.50% on the four datasets, which show that iAVPs-ResBi can be used as an effective tool for the identification of antiviral peptides. The datasets and codes are freely available at https://github.com/yunyunliang88/iAVPs-ResBi.
Collapse
Affiliation(s)
- Xinyan Ma
- School of Science, Xi'an Polytechnic University, Xi'an 710048, China
| | - Yunyun Liang
- School of Science, Xi'an Polytechnic University, Xi'an 710048, China
| | - Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, China
| |
Collapse
|
27
|
Nath A. Physicochemical and sequence determinants of antiviral peptides. Biol Futur 2023; 74:489-506. [PMID: 37889451 DOI: 10.1007/s42977-023-00188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Antiviral peptides (AVPs) open new possibilities as an effective antiviral therapeutic in the current scenario of evolving drug-resistant viruses. Knowledge about the sequence and structure activity relationship in AVPs is still largely unknown. AVPs and antimicrobial peptides (AMPs) share several common features but as they target different life forms (living organisms and viruses), exploring the differential sequence features may facilitate in designing specific AVPs. The current work developed accurate prediction models for discriminating (a) AVPs from AMPs, (b) Coronaviridae AVPs from other virus family specific AVPs and (c) highly active AVPs (HAA) from lowly active AVPs (LAA). Further explainable machine learning methods (using model agnostic global interpretable methods) are utilized for exploring and interpreting the physicochemical spaces of AVPs, Coronaviridae AVPs and highly active AVPs. To further understand the association of physicochemical space distribution with pIC50 values, regression models were developed and analyzed using accumulated local effects and interaction strength analysis. An independent sample t-test is used to filter out the significant compositional differences between the smaller length HAA and longer length HAA groups. AVPs prefer lower charge/length ratio and basic residues in comparison with AMPs. Coronaviridae family-specific AVPs have lower propensities for basic amino acids, charge and preference for aspartic acid. Further there is prevalence for basic residues in lowly active AVPs as compared to highly active AVPs. Sequence order effects captured in terms of average amino acid pair distances proved to be more constructive in deciphering the sequences of AVPs.
Collapse
Affiliation(s)
- Abhigyan Nath
- Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, 492001, India.
| |
Collapse
|
28
|
Beltrán JF, Belén LH, Farias JG, Zamorano M, Lefin N, Miranda J, Parraguez-Contreras F. VirusHound-I: prediction of viral proteins involved in the evasion of host adaptive immune response using the random forest algorithm and generative adversarial network for data augmentation. Brief Bioinform 2023; 25:bbad434. [PMID: 38033292 PMCID: PMC10753651 DOI: 10.1093/bib/bbad434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/18/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Throughout evolution, pathogenic viruses have developed different strategies to evade the response of the adaptive immune system. To carry out successful replication, some pathogenic viruses encode different proteins that manipulate the molecular mechanisms of host cells. Currently, there are different bioinformatics tools for virus research; however, none of them focus on predicting viral proteins that evade the adaptive system. In this work, we have developed a novel tool based on machine and deep learning for predicting this type of viral protein named VirusHound-I. This tool is based on a model developed with the multilayer perceptron algorithm using the dipeptide composition molecular descriptor. In this study, we have also demonstrated the robustness of our strategy for data augmentation of the positive dataset based on generative antagonistic networks. During the 10-fold cross-validation step in the training dataset, the predictive model showed 0.947 accuracy, 0.994 precision, 0.943 F1 score, 0.995 specificity, 0.896 sensitivity, 0.894 kappa, 0.898 Matthew's correlation coefficient and 0.989 AUC. On the other hand, during the testing step, the model showed 0.964 accuracy, 1.0 precision, 0.967 F1 score, 1.0 specificity, 0.936 sensitivity, 0.929 kappa, 0.931 Matthew's correlation coefficient and 1.0 AUC. Taking this model into account, we have developed a tool called VirusHound-I that makes it possible to predict viral proteins that evade the host's adaptive immune system. We believe that VirusHound-I can be very useful in accelerating studies on the molecular mechanisms of evasion of pathogenic viruses, as well as in the discovery of therapeutic targets.
Collapse
Affiliation(s)
- Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | | | - Jorge G Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Mauricio Zamorano
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Nicolás Lefin
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Javiera Miranda
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Fernanda Parraguez-Contreras
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| |
Collapse
|
29
|
Mwangi J, Kamau PM, Thuku RC, Lai R. Design methods for antimicrobial peptides with improved performance. Zool Res 2023; 44:1095-1114. [PMID: 37914524 PMCID: PMC10802102 DOI: 10.24272/j.issn.2095-8137.2023.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023] Open
Abstract
The recalcitrance of pathogens to traditional antibiotics has made treating and eradicating bacterial infections more difficult. In this regard, developing new antimicrobial agents to combat antibiotic-resistant strains has become a top priority. Antimicrobial peptides (AMPs), a ubiquitous class of naturally occurring compounds with broad-spectrum antipathogenic activity, hold significant promise as an effective solution to the current antimicrobial resistance (AMR) crisis. Several AMPs have been identified and evaluated for their therapeutic application, with many already in the drug development pipeline. Their distinct properties, such as high target specificity, potency, and ability to bypass microbial resistance mechanisms, make AMPs a promising alternative to traditional antibiotics. Nonetheless, several challenges, such as high toxicity, lability to proteolytic degradation, low stability, poor pharmacokinetics, and high production costs, continue to hamper their clinical applicability. Therefore, recent research has focused on optimizing the properties of AMPs to improve their performance. By understanding the physicochemical properties of AMPs that correspond to their activity, such as amphipathicity, hydrophobicity, structural conformation, amino acid distribution, and composition, researchers can design AMPs with desired and improved performance. In this review, we highlight some of the key strategies used to optimize the performance of AMPs, including rational design and de novo synthesis. We also discuss the growing role of predictive computational tools, utilizing artificial intelligence and machine learning, in the design and synthesis of highly efficacious lead drug candidates.
Collapse
Affiliation(s)
- James Mwangi
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Peter Muiruri Kamau
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rebecca Caroline Thuku
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Centre for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China. E-mail:
| |
Collapse
|
30
|
Cao R, Hu W, Wei P, Ding Y, Bin Y, Zheng C. FFMAVP: a new classifier based on feature fusion and multitask learning for identifying antiviral peptides and their subclasses. Brief Bioinform 2023; 24:bbad353. [PMID: 37861174 DOI: 10.1093/bib/bbad353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023] Open
Abstract
Antiviral peptides (AVPs) are widely found in animals and plants, with high specificity and strong sensitivity to drug-resistant viruses. However, due to the great heterogeneity of different viruses, most of the AVPs have specific antiviral activities. Therefore, it is necessary to identify the specific activities of AVPs on virus types. Most existing studies only identify AVPs, with only a few studies identifying subclasses by training multiple binary classifiers. We develop a two-stage prediction tool named FFMAVP that can simultaneously predict AVPs and their subclasses. In the first stage, we identify whether a peptide is AVP or not. In the second stage, we predict the six virus families and eight species specifically targeted by AVPs based on two multiclass tasks. Specifically, the feature extraction module in the two-stage task of FFMAVP adopts the same neural network structure, in which one branch extracts features based on amino acid feature descriptors and the other branch extracts sequence features. Then, the two types of features are fused for the following task. Considering the correlation between the two tasks of the second stage, a multitask learning model is constructed to improve the effectiveness of the two multiclass tasks. In addition, to improve the effectiveness of the second stage, the network parameters trained through the first-stage data are used to initialize the network parameters in the second stage. As a demonstration, the cross-validation results, independent test results and visualization results show that FFMAVP achieves great advantages in both stages.
Collapse
Affiliation(s)
- Ruifen Cao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Computer Science and Technology, Anhui University
| | - Weiling Hu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Computer Science and Technology, Anhui University
| | - Pijing Wei
- Institutes of Physical Science and Information Technology, Anhui University
| | - Yun Ding
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University
| | - Yannan Bin
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University
| | - Chunhou Zheng
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University
| |
Collapse
|
31
|
Liu M, Liu H, Wu T, Zhu Y, Zhou Y, Huang Z, Xiang C, Huang J. ACP-Dnnel: anti-coronavirus peptides' prediction based on deep neural network ensemble learning. Amino Acids 2023; 55:1121-1136. [PMID: 37402073 DOI: 10.1007/s00726-023-03300-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
The ongoing COVID-19 pandemic has caused dramatic loss of human life. There is an urgent need for safe and efficient anti-coronavirus infection drugs. Anti-coronavirus peptides (ACovPs) can inhibit coronavirus infection. With high-efficiency, low-toxicity, and broad-spectrum inhibitory effects on coronaviruses, they are promising candidates to be developed into a new type of anti-coronavirus drug. Experiment is the traditional way of ACovPs' identification, which is less efficient and more expensive. With the accumulation of experimental data on ACovPs, computational prediction provides a cheaper and faster way to find anti-coronavirus peptides' candidates. In this study, we ensemble several state-of-the-art machine learning methodologies to build nine classification models for the prediction of ACovPs. These models were pre-trained using deep neural networks, and the performance of our ensemble model, ACP-Dnnel, was evaluated across three datasets and independent dataset. We followed Chou's 5-step rules. (1) we constructed the benchmark datasets data1, data2, and data3 for training and testing, and introduced the independent validation dataset ACVP-M; (2) we analyzed the peptides sequence composition feature of the benchmark dataset; (3) we constructed the ACP-Dnnel model with deep convolutional neural network (DCNN) merged the bi-directional long short-term memory (BiLSTM) as the base model for pre-training to extract the features embedded in the benchmark dataset, and then, nine classification algorithms were introduced to ensemble together for classification prediction and voting together; (4) tenfold cross-validation was introduced during the training process, and the final model performance was evaluated; (5) finally, we constructed a user-friendly web server accessible to the public at http://150.158.148.228:5000/ . The highest accuracy (ACC) of ACP-Dnnel reaches 97%, and the Matthew's correlation coefficient (MCC) value exceeds 0.9. On three different datasets, its average accuracy is 96.0%. After the latest independent dataset validation, ACP-Dnnel improved at MCC, SP, and ACC values 6.2%, 7.5% and 6.3% greater, respectively. It is suggested that ACP-Dnnel can be helpful for the laboratory identification of ACovPs, speeding up the anti-coronavirus peptide drug discovery and development. We constructed the web server of anti-coronavirus peptides' prediction and it is available at http://150.158.148.228:5000/ .
Collapse
Affiliation(s)
- Mingyou Liu
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Life Science and Technology, University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Hongmei Liu
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tao Wu
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yingxue Zhu
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuwei Zhou
- School of Life Science and Technology, University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Ziru Huang
- School of Life Science and Technology, University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Changcheng Xiang
- School of Computer Science and Technology, Aba Teachers University, Aba, Sichuan, China.
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology, Chengdu, Sichuan, China.
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan, China.
| |
Collapse
|
32
|
Chen S, Liao Y, Zhao J, Bin Y, Zheng C. PACVP: Prediction of Anti-Coronavirus Peptides Using a Stacking Learning Strategy With Effective Feature Representation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3106-3116. [PMID: 37022025 DOI: 10.1109/tcbb.2023.3238370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Due to the global outbreak of COVID-19 and its variants, antiviral peptides with anti-coronavirus activity (ACVPs) represent a promising new drug candidate for the treatment of coronavirus infection. At present, several computational tools have been developed to identify ACVPs, but the overall prediction performance is still not enough to meet the actual therapeutic application. In this study, we constructed an efficient and reliable prediction model PACVP (Prediction of Anti-CoronaVirus Peptides) for identifying ACVPs based on effective feature representation and a two-layer stacking learning framework. In the first layer, we use nine feature encoding methods with different feature representation angles to characterize the rich sequence information and fuse them into a feature matrix. Secondly, data normalization and unbalanced data processing are carried out. Next, 12 baseline models are constructed by combining three feature selection methods and four machine learning classification algorithms. In the second layer, we input the optimal probability features into the logistic regression algorithm (LR) to train the final model PACVP. The experiments show that PACVP achieves favorable prediction performance on independent test dataset, with ACC of 0.9208 and AUC of 0.9465. We hope that PACVP will become a useful method for identifying, annotating and characterizing novel ACVPs.
Collapse
|
33
|
Singh V, Singh SK. A separable temporal convolutional networks based deep learning technique for discovering antiviral medicines. Sci Rep 2023; 13:13722. [PMID: 37608092 PMCID: PMC10444765 DOI: 10.1038/s41598-023-40922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023] Open
Abstract
An alarming number of fatalities caused by the COVID-19 pandemic has forced the scientific community to accelerate the process of therapeutic drug discovery. In this regard, the collaboration between biomedical scientists and experts in artificial intelligence (AI) has led to a number of in silico tools being developed for the initial screening of therapeutic molecules. All living organisms produce antiviral peptides (AVPs) as a part of their first line of defense against invading viruses. The Deep-AVPiden model proposed in this paper and its corresponding web app, deployed at https://deep-avpiden.anvil.app , is an effort toward discovering novel AVPs in proteomes of living organisms. Apart from Deep-AVPiden, a computationally efficient model called Deep-AVPiden (DS) has also been developed using the same underlying network but with point-wise separable convolutions. The Deep-AVPiden and Deep-AVPiden (DS) models show an accuracy of 90% and 88%, respectively, and both have a precision of 90%. Also, the proposed models were statistically compared using the Student's t-test. On comparing the proposed models with the state-of-the-art classifiers, it was found that they are much better than them. To test the proposed model, we identified some AVPs in the natural defense proteins of plants, mammals, and fishes and found them to have appreciable sequence similarity with some experimentally validated antimicrobial peptides. These AVPs can be chemically synthesized and tested for their antiviral activity.
Collapse
Affiliation(s)
- Vishakha Singh
- Department of Computer Science and Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India.
| | - Sanjay Kumar Singh
- Department of Computer Science and Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
34
|
Cesaro A, Bagheri M, Torres MDT, Wan F, de la Fuente-Nunez C. Deep learning tools to accelerate antibiotic discovery. Expert Opin Drug Discov 2023; 18:1245-1257. [PMID: 37794737 PMCID: PMC10790350 DOI: 10.1080/17460441.2023.2250721] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/18/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION As machine learning (ML) and artificial intelligence (AI) expand to many segments of our society, they are increasingly being used for drug discovery. Recent deep learning models offer an efficient way to explore high-dimensional data and design compounds with desired properties, including those with antibacterial activity. AREAS COVERED This review covers key frameworks in antibiotic discovery, highlighting physicochemical features and addressing dataset limitations. The deep learning approaches here described include discriminative models such as convolutional neural networks, recurrent neural networks, graph neural networks, and generative models like neural language models, variational autoencoders, generative adversarial networks, normalizing flow, and diffusion models. As the integration of these approaches in drug discovery continues to evolve, this review aims to provide insights into promising prospects and challenges that lie ahead in harnessing such technologies for the development of antibiotics. EXPERT OPINION Accurate antimicrobial prediction using deep learning faces challenges such as imbalanced data, limited datasets, experimental validation, target strains, and structure. The integration of deep generative models with bioinformatics, molecular dynamics, and data augmentation holds the potential to overcome these challenges, enhance model performance, and utlimately accelerate antimicrobial discovery.
Collapse
Affiliation(s)
- Angela Cesaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mojtaba Bagheri
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Fangping Wan
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
35
|
Lobo F, González MS, Boto A, Pérez de la Lastra JM. Prediction of Antifungal Activity of Antimicrobial Peptides by Transfer Learning from Protein Pretrained Models. Int J Mol Sci 2023; 24:10270. [PMID: 37373415 DOI: 10.3390/ijms241210270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Peptides with antifungal activity have gained significant attention due to their potential therapeutic applications. In this study, we explore the use of pretrained protein models as feature extractors to develop predictive models for antifungal peptide activity. Various machine learning classifiers were trained and evaluated. Our AFP predictor achieved comparable performance to current state-of-the-art methods. Overall, our study demonstrates the effectiveness of pretrained models for peptide analysis and provides a valuable tool for predicting antifungal peptide activity and potentially other peptide properties.
Collapse
Affiliation(s)
- Fernando Lobo
- Programa Agustín de Betancourt, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - Maily Selena González
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Tenerife, Spain
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Tenerife, Spain
| | - José Manuel Pérez de la Lastra
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
36
|
Andrianov AM, Shuldau MA, Furs KV, Yushkevich AM, Tuzikov AV. AI-Driven De Novo Design and Molecular Modeling for Discovery of Small-Molecule Compounds as Potential Drug Candidates Targeting SARS-CoV-2 Main Protease. Int J Mol Sci 2023; 24:ijms24098083. [PMID: 37175788 PMCID: PMC10178971 DOI: 10.3390/ijms24098083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Over the past three years, significant progress has been made in the development of novel promising drug candidates against COVID-19. However, SARS-CoV-2 mutations resulting in the emergence of new viral strains that can be resistant to the drugs used currently in the clinic necessitate the development of novel potent and broad therapeutic agents targeting different vulnerable spots of the viral proteins. In this study, two deep learning generative models were developed and used in combination with molecular modeling tools for de novo design of small molecule compounds that can inhibit the catalytic activity of SARS-CoV-2 main protease (Mpro), an enzyme critically important for mediating viral replication and transcription. As a result, the seven best scoring compounds that exhibited low values of binding free energy comparable with those calculated for two potent inhibitors of Mpro, via the same computational protocol, were selected as the most probable inhibitors of the enzyme catalytic site. In light of the data obtained, the identified compounds are assumed to present promising scaffolds for the development of new potent and broad-spectrum drugs inhibiting SARS-CoV-2 Mpro, an attractive therapeutic target for anti-COVID-19 agents.
Collapse
Affiliation(s)
- Alexander M Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus
| | - Mikita A Shuldau
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Belarus
| | - Konstantin V Furs
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Belarus
| | - Artsemi M Yushkevich
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Belarus
| | - Alexander V Tuzikov
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Belarus
| |
Collapse
|
37
|
Prasertsuk K, Prongfa K, Suttiwanich P, Harnkit N, Sangkhawasi M, Promta P, Chumnanpuen P. Computer-Aided Screening for Potential Coronavirus 3-Chymotrypsin-like Protease (3CLpro) Inhibitory Peptides from Putative Hemp Seed Trypsinized Peptidome. Molecules 2022; 28:50. [PMID: 36615263 PMCID: PMC9822321 DOI: 10.3390/molecules28010050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
To control the COVID-19 pandemic, antivirals that specifically target the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently required. The 3-chymotrypsin-like protease (3CLpro) is a promising drug target since it functions as a catalytic dyad in hydrolyzing polyprotein during the viral life cycle. Bioactive peptides, especially food-derived peptides, have a variety of functional activities, including antiviral activity, and also have a potential therapeutic effect against COVID-19. In this study, the hemp seed trypsinized peptidome was subjected to computer-aided screening against the 3CLpro of SARS-CoV-2. Using predictive trypsinized products of the five major proteins in hemp seed (i.e., edestin 1, edestin 2, edestin 3, albumin, and vicilin), the putative hydrolyzed peptidome was established and used as the input dataset. To select the Cannabis sativa antiviral peptides (csAVPs), a predictive bioinformatic analysis was performed by three webserver screening programs: iAMPpred, AVPpred, and Meta-iAVP. The amino acid composition profile comparison was performed by COPid to screen for the non-toxic and non-allergenic candidates, ToxinPred and AllerTOP and AllergenFP, respectively. GalaxyPepDock and HPEPDOCK were employed to perform the molecular docking of all selected csAVPs to the 3CLpro of SARS-CoV-2. Only the top docking-scored candidate (csAVP4) was further analyzed by molecular dynamics simulation for 150 nanoseconds. Molecular docking and molecular dynamics revealed the potential ability and stability of csAVP4 to inhibit the 3CLpro catalytic domain with hydrogen bond formation in domain 2 with short bonding distances. In addition, these top ten candidate bioactive peptides contained hydrophilic amino acid residues and exhibited a positive net charge. We hope that our results may guide the future development of alternative therapeutics against COVID-19.
Collapse
Affiliation(s)
- Kansate Prasertsuk
- Pibulwitthayalai School, 777 Naraimaharach, Talaychoopsorn, Lopburi District, Lopburi 15000, Thailand
| | - Kasidit Prongfa
- Pibulwitthayalai School, 777 Naraimaharach, Talaychoopsorn, Lopburi District, Lopburi 15000, Thailand
| | - Piyapach Suttiwanich
- Pibulwitthayalai School, 777 Naraimaharach, Talaychoopsorn, Lopburi District, Lopburi 15000, Thailand
| | - Nathaphat Harnkit
- Medicinal Plant Research Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Mattanun Sangkhawasi
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pongsakorn Promta
- Pibulwitthayalai School, 777 Naraimaharach, Talaychoopsorn, Lopburi District, Lopburi 15000, Thailand
| | - Pramote Chumnanpuen
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
38
|
Diakou I, Papakonstantinou E, Papageorgiou L, Pierouli K, Dragoumani K, Spandidos DA, Bacopoulou F, Chrousos GP, Eliopoulos E, Vlachakis D. Novel computational pipelines in antiviral structure‑based drug design (Review). Biomed Rep 2022; 17:97. [PMID: 36382260 PMCID: PMC9634337 DOI: 10.3892/br.2022.1580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Viral infections constitute a fundamental and continuous challenge for the global scientific and medical community, as highlighted by the ongoing COVID-19 pandemic. In combination with prophylactic vaccines, the development of safe and effective antiviral drugs remains a pressing need for the effective management of rare and common pathogenic viruses. The design of potent antivirals can be informed by the study of the three-dimensional structure of viral protein targets. Structure-based design of antivirals in silico provides a solution to the arduous and costly process of conventional drug development pipelines. Furthermore, rapid advances in high-throughput computing, along with the growth of available biomolecular and biochemical data, enable the development of novel computational pipelines in the hunt of antivirals. The incorporation of modern methods, such as deep-learning and artificial intelligence, has the potential to revolutionize the structure-based design and repurposing of antiviral compounds, with minimal side effects and high efficacy. The present review aims to provide an outline of both traditional computational drug design and emerging, high-level computing strategies.
Collapse
Affiliation(s)
- Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Louis Papageorgiou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of The Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
39
|
Huang KY, Kao HJ, Weng TH, Chen CH, Weng SL. iDVIP: identification and characterization of viral integrase inhibitory peptides. Brief Bioinform 2022; 23:6754756. [PMID: 36215051 DOI: 10.1093/bib/bbac406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022] Open
Abstract
Antiretroviral peptides are a kind of bioactive peptides that present inhibitory activity against retroviruses through various mechanisms. Among them, viral integrase inhibitory peptides (VINIPs) are a class of antiretroviral peptides that have the ability to block the action of integrase proteins, which is essential for retroviral replication. As the number of experimentally verified bioactive peptides has increased significantly, the lack of in silico machine learning approaches can effectively predict the peptides with the integrase inhibitory activity. Here, we have developed the first prediction model for identifying the novel VINIPs using the sequence characteristics, and the hybrid feature set was considered to improve the predictive ability. The performance was evaluated by 5-fold cross-validation based on the training dataset, and the result indicates the proposed model is capable of predicting the VINIPs, with a sensitivity of 85.82%, a specificity of 88.81%, an accuracy of 88.37%, a balanced accuracy of 87.32% and a Matthews correlation coefficient value of 0.64. Most importantly, the model also consistently provides effective performance in independent testing. To sum up, we propose the first computational approach for identifying and characterizing the VINIPs, which can be considered novel antiretroviral therapy agents. Ultimately, to facilitate further research and development, iDVIP, an automatic computational tool that predicts the VINIPs has been developed, which is now freely available at http://mer.hc.mmh.org.tw/iDVIP/.
Collapse
Affiliation(s)
- Kai-Yao Huang
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu city 300, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Hui-Ju Kao
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu city 300, Taiwan
| | - Tzu-Hsiang Weng
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei city 104, Taiwan
| | - Chia-Hung Chen
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu city 300, Taiwan
| | - Shun-Long Weng
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan.,Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu city 300, Taiwan.,MacKay Junior College of Medicine, Nursing and Management, Taipei 112, Taiwan
| |
Collapse
|
40
|
Lin TT, Sun YY, Wang CT, Cheng WC, Lu IH, Lin CY, Chen SH. AI4AVP: an antiviral peptides predictor in deep learning approach with generative adversarial network data augmentation. BIOINFORMATICS ADVANCES 2022; 2:vbac080. [PMID: 36699402 PMCID: PMC9710571 DOI: 10.1093/bioadv/vbac080] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/14/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Motivation Antiviral peptides (AVPs) from various sources suggest the possibility of developing peptide drugs for treating viral diseases. Because of the increasing number of identified AVPs and the advances in deep learning theory, it is reasonable to experiment with peptide drug design using in silico methods. Results We collected the most up-to-date AVPs and used deep learning to construct a sequence-based binary classifier. A generative adversarial network was employed to augment the number of AVPs in the positive training dataset and enable our deep learning convolutional neural network (CNN) model to learn from the negative dataset. Our classifier outperformed other state-of-the-art classifiers when using the testing dataset. We have placed the trained classifiers on a user-friendly web server, AI4AVP, for the research community. Availability and implementation AI4AVP is freely accessible at http://axp.iis.sinica.edu.tw/AI4AVP/; codes and datasets for the peptide GAN and the AVP predictor CNN are available at https://github.com/lsbnb/amp_gan and https://github.com/LinTzuTang/AI4AVP_predictor. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Tzu-Tang Lin
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Yih-Yun Sun
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106, Taiwan
| | - Ching-Tien Wang
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Chih Cheng
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - I-Hsuan Lu
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan.,Institute of Fisheries Science, National Taiwan University, Taipei 106, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Hwa Chen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
41
|
Yan J, Cai J, Zhang B, Wang Y, Wong DF, Siu SWI. Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning. Antibiotics (Basel) 2022; 11:1451. [PMID: 36290108 PMCID: PMC9598685 DOI: 10.3390/antibiotics11101451] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance has become a critical global health problem due to the abuse of conventional antibiotics and the rise of multi-drug-resistant microbes. Antimicrobial peptides (AMPs) are a group of natural peptides that show promise as next-generation antibiotics due to their low toxicity to the host, broad spectrum of biological activity, including antibacterial, antifungal, antiviral, and anti-parasitic activities, and great therapeutic potential, such as anticancer, anti-inflammatory, etc. Most importantly, AMPs kill bacteria by damaging cell membranes using multiple mechanisms of action rather than targeting a single molecule or pathway, making it difficult for bacterial drug resistance to develop. However, experimental approaches used to discover and design new AMPs are very expensive and time-consuming. In recent years, there has been considerable interest in using in silico methods, including traditional machine learning (ML) and deep learning (DL) approaches, to drug discovery. While there are a few papers summarizing computational AMP prediction methods, none of them focused on DL methods. In this review, we aim to survey the latest AMP prediction methods achieved by DL approaches. First, the biology background of AMP is introduced, then various feature encoding methods used to represent the features of peptide sequences are presented. We explain the most popular DL techniques and highlight the recent works based on them to classify AMPs and design novel peptide sequences. Finally, we discuss the limitations and challenges of AMP prediction.
Collapse
Affiliation(s)
- Jielu Yan
- PAMI Research Group, Department of Computer and Information Science, University of Macau, Taipa, Macau, China
| | - Jianxiu Cai
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
- Institute of Science and Environment, University of Saint Joseph, Estr. Marginal da Ilha Verde, Macau, China
| | - Bob Zhang
- PAMI Research Group, Department of Computer and Information Science, University of Macau, Taipa, Macau, China
| | - Yapeng Wang
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Derek F. Wong
- NLP2CT Lab, Department of Computer and Information Science, University of Macau, Taipa, Macau, China
| | - Shirley W. I. Siu
- Institute of Science and Environment, University of Saint Joseph, Estr. Marginal da Ilha Verde, Macau, China
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| |
Collapse
|
42
|
Harnkit N, Khongsonthi T, Masuwan N, Prasartkul P, Noikaew T, Chumnanpuen P. Virtual Screening for SARS-CoV-2 Main Protease Inhibitory Peptides from the Putative Hydrolyzed Peptidome of Rice Bran. Antibiotics (Basel) 2022; 11:antibiotics11101318. [PMID: 36289976 PMCID: PMC9598432 DOI: 10.3390/antibiotics11101318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the loss of life and has affected the life quality, economy, and lifestyle. The SARS-CoV-2 main protease (Mpro), which hydrolyzes the polyprotein, is an interesting antiviral target to inhibit the spreading mechanism of COVID-19. Through predictive digestion, the peptidomes of the four major proteins in rice bran, albumin, glutelin, globulin, and prolamin, with three protease enzymes (pepsin, trypsin, and chymotrypsin), the putative hydrolyzed peptidome was established and used as the input dataset. Then, the prediction of the antiviral peptides (AVPs) was performed by online bioinformatics tools, i.e., AVPpred, Meta-iAVP, AMPfun, and ENNAVIA programs. The amino acid composition and cytotoxicity of candidate AVPs were analyzed by COPid and ToxinPred, respectively. The ten top-ranked antiviral peptides were selected and docked to the SARS-CoV-2 main protease using GalaxyPepDock. Only the top docking scored candidate (AVP4) was further analyzed by molecular dynamics simulation for one nanosecond. According to the bioinformatic analysis results, the candidate SARS-CoV-2 main protease inhibitory peptides were 7–33 amino acid residues and formed hydrogen bonds at Thr22–24, Glu154, and Thr178 in domain 2 with short bonding distances. In addition, these top-ten candidate bioactive peptides contain hydrophilic amino acid residues and have a positive net charge. We hope that this study will provide a potential starting point for peptide-based therapeutic agents against COVID-19.
Collapse
Affiliation(s)
- Nathaphat Harnkit
- Medicinal Plant Research Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Thanakamol Khongsonthi
- Mahidol Wittayanusorn School, 364 Salaya, Phuttamonthon District, Nakhon Prathom 73170, Thailand
| | - Noprada Masuwan
- Mahidol Wittayanusorn School, 364 Salaya, Phuttamonthon District, Nakhon Prathom 73170, Thailand
| | - Pornpinit Prasartkul
- Mahidol Wittayanusorn School, 364 Salaya, Phuttamonthon District, Nakhon Prathom 73170, Thailand
| | - Tipanart Noikaew
- Department of Biology and Health Science, Mahidol Wittayanusorn School, 364 Salaya, Phuttamonthon District, Nakhon Prathom 73170, Thailand
| | - Pramote Chumnanpuen
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Correspondence:
| |
Collapse
|
43
|
Juretić D. Designed Multifunctional Peptides for Intracellular Targets. Antibiotics (Basel) 2022; 11:antibiotics11091196. [PMID: 36139975 PMCID: PMC9495127 DOI: 10.3390/antibiotics11091196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Nature’s way for bioactive peptides is to provide them with several related functions and the ability to cooperate in performing their job. Natural cell-penetrating peptides (CPP), such as penetratins, inspired the design of multifunctional constructs with CPP ability. This review focuses on known and novel peptides that can easily reach intracellular targets with little or no toxicity to mammalian cells. All peptide candidates were evaluated and ranked according to the predictions of low toxicity to mammalian cells and broad-spectrum activity. The final set of the 20 best peptide candidates contains the peptides optimized for cell-penetrating, antimicrobial, anticancer, antiviral, antifungal, and anti-inflammatory activity. Their predicted features are intrinsic disorder and the ability to acquire an amphipathic structure upon contact with membranes or nucleic acids. In conclusion, the review argues for exploring wide-spectrum multifunctionality for novel nontoxic hybrids with cell-penetrating peptides.
Collapse
Affiliation(s)
- Davor Juretić
- Mediterranean Institute for Life Sciences, 21000 Split, Croatia;
- Faculty of Science, University of Split, 21000 Split, Croatia;
| |
Collapse
|
44
|
Kurata H, Tsukiyama S, Manavalan B. iACVP: markedly enhanced identification of anti-coronavirus peptides using a dataset-specific word2vec model. Brief Bioinform 2022; 23:6623727. [PMID: 35772910 DOI: 10.1093/bib/bbac265] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 01/22/2023] Open
Abstract
The COVID-19 pandemic caused several million deaths worldwide. Development of anti-coronavirus drugs is thus urgent. Unlike conventional non-peptide drugs, antiviral peptide drugs are highly specific, easy to synthesize and modify, and not highly susceptible to drug resistance. To reduce the time and expense involved in screening thousands of peptides and assaying their antiviral activity, computational predictors for identifying anti-coronavirus peptides (ACVPs) are needed. However, few experimentally verified ACVP samples are available, even though a relatively large number of antiviral peptides (AVPs) have been discovered. In this study, we attempted to predict ACVPs using an AVP dataset and a small collection of ACVPs. Using conventional features, a binary profile and a word-embedding word2vec (W2V), we systematically explored five different machine learning methods: Transformer, Convolutional Neural Network, bidirectional Long Short-Term Memory, Random Forest (RF) and Support Vector Machine. Via exhaustive searches, we found that the RF classifier with W2V consistently achieved better performance on different datasets. The two main controlling factors were: (i) the dataset-specific W2V dictionary was generated from the training and independent test datasets instead of the widely used general UniProt proteome and (ii) a systematic search was conducted and determined the optimal k-mer value in W2V, which provides greater discrimination between positive and negative samples. Therefore, our proposed method, named iACVP, consistently provides better prediction performance compared with existing state-of-the-art methods. To assist experimentalists in identifying putative ACVPs, we implemented our model as a web server accessible via the following link: http://kurata35.bio.kyutech.ac.jp/iACVP.
Collapse
Affiliation(s)
- Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Sho Tsukiyama
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| |
Collapse
|
45
|
Chang CC, Hsu HJ, Wu TY, Liou JW. Computer-aided discovery, design, and investigation of COVID-19 therapeutics. Tzu Chi Med J 2022; 34:276-286. [PMID: 35912059 PMCID: PMC9333103 DOI: 10.4103/tcmj.tcmj_318_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic is currently the most serious public health threat faced by mankind. Thus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, is being intensively investigated. Several vaccines are now available for clinical use. However, owing to the highly mutated nature of RNA viruses, the SARS-CoV-2 is changing at a rapid speed. Breakthrough infections by SARS-CoV-2 variants have been seen in vaccinated individuals. As a result, effective therapeutics for treating COVID-19 patients is urgently required. With the advance of computer technology, computational methods have become increasingly powerful in the biomedical research and pharmaceutical drug discovery. The applications of these techniques have largely reduced the costs and simplified processes of pharmaceutical drug developments. Intensive and extensive studies on SARS-CoV-2 proteins have been carried out and three-dimensional structures of the major SARS-CoV-2 proteins have been resolved and deposited in the Protein Data Bank. These structures provide the foundations for drug discovery and design using the structure-based computations, such as molecular docking and molecular dynamics simulations. In this review, introduction to the applications of computational methods in the discovery and design of novel drugs and repurposing of existing drugs for the treatments of COVID-19 is given. The examples of computer-aided investigations and screening of COVID-19 effective therapeutic compounds, functional peptides, as well as effective molecules from the herb medicines are discussed.
Collapse
Affiliation(s)
- Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Tien-Yuan Wu
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Je-Wen Liou
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
46
|
Manavalan B, Basith S, Lee G. Comparative analysis of machine learning-based approaches for identifying therapeutic peptides targeting SARS-CoV-2. Brief Bioinform 2022; 23:bbab412. [PMID: 34595489 PMCID: PMC8500067 DOI: 10.1093/bib/bbab412] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has impacted public health as well as societal and economic well-being. In the last two decades, various prediction algorithms and tools have been developed for predicting antiviral peptides (AVPs). The current COVID-19 pandemic has underscored the need to develop more efficient and accurate machine learning (ML)-based prediction algorithms for the rapid identification of therapeutic peptides against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Several peptide-based ML approaches, including anti-coronavirus peptides (ACVPs), IL-6 inducing epitopes and other epitopes targeting SARS-CoV-2, have been implemented in COVID-19 therapeutics. Owing to the growing interest in the COVID-19 field, it is crucial to systematically compare the existing ML algorithms based on their performances. Accordingly, we comprehensively evaluated the state-of-the-art IL-6 and AVP predictors against coronaviruses in terms of core algorithms, feature encoding schemes, performance evaluation metrics and software usability. A comprehensive performance assessment was then conducted to evaluate the robustness and scalability of the existing predictors using well-constructed independent validation datasets. Additionally, we discussed the advantages and disadvantages of the existing methods, providing useful insights into the development of novel computational tools for characterizing and identifying epitopes or ACVPs. The insights gained from this review are anticipated to provide critical guidance to the scientific community in the rapid design and development of accurate and efficient next-generation in silico tools against SARS-CoV-2.
Collapse
Affiliation(s)
| | - Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
47
|
Timmons PB, Hewage CM. Conformation and membrane interaction studies of the potent antimicrobial and anticancer peptide palustrin-Ca. Sci Rep 2021; 11:22468. [PMID: 34789753 PMCID: PMC8599514 DOI: 10.1038/s41598-021-01769-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/03/2021] [Indexed: 01/13/2023] Open
Abstract
Palustrin-Ca (GFLDIIKDTGKEFAVKILNNLKCKLAGGCPP) is a host defence peptide with potent antimicrobial and anticancer activities, first isolated from the skin of the American bullfrog Lithobates catesbeianus. The peptide is 31 amino acid residues long, cationic and amphipathic. Two-dimensional NMR spectroscopy was employed to characterise its three-dimensional structure in a 50/50% water/2,2,2-trifluoroethanol-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d_{3}$$\end{document}d3 mixture. The structure is defined by an \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α-helix that spans between Ile\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{6}$$\end{document}6-Ala\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{26}$$\end{document}26, and a cyclic disulfide-bridged domain at the C-terminal end of the peptide sequence, between residues 23 and 29. A molecular dynamics simulation was employed to model the peptide’s interactions with sodium dodecyl sulfate micelles, a widely used bacterial membrane-mimicking environment. Throughout the simulation, the peptide was found to maintain its \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α-helical conformation between residues Ile\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{6}$$\end{document}6-Ala\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{26}$$\end{document}26, while adopting a position parallel to the surface to micelle, which is energetically-favourable due to many hydrophobic and electrostatic contacts with the micelle.
Collapse
Affiliation(s)
- Patrick B Timmons
- UCD School of Biomolecular and Biomedical Science, UCD Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| | - Chandralal M Hewage
- UCD School of Biomolecular and Biomedical Science, UCD Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
48
|
Zhang Y, Ye T, Xi H, Juhas M, Li J. Deep Learning Driven Drug Discovery: Tackling Severe Acute Respiratory Syndrome Coronavirus 2. Front Microbiol 2021; 12:739684. [PMID: 34777286 PMCID: PMC8581544 DOI: 10.3389/fmicb.2021.739684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Deep learning significantly accelerates the drug discovery process, and contributes to global efforts to stop the spread of infectious diseases. Besides enhancing the efficiency of screening of antimicrobial compounds against a broad spectrum of pathogens, deep learning has also the potential to efficiently and reliably identify drug candidates against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Consequently, deep learning has been successfully used for the identification of a number of potential drugs against SARS-CoV-2, including Atazanavir, Remdesivir, Kaletra, Enalaprilat, Venetoclax, Posaconazole, Daclatasvir, Ombitasvir, Toremifene, Niclosamide, Dexamethasone, Indomethacin, Pralatrexate, Azithromycin, Palmatine, and Sauchinone. This mini-review discusses recent advances and future perspectives of deep learning-based SARS-CoV-2 drug discovery.
Collapse
Affiliation(s)
- Yang Zhang
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Taoyu Ye
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Hui Xi
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Mario Juhas
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Junyi Li
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| |
Collapse
|
49
|
Timmons PB, Hewage CM. Biophysical study of the structure and dynamics of the antimicrobial peptide maximin 1. J Pept Sci 2021; 28:e3370. [PMID: 34569121 DOI: 10.1002/psc.3370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
Maximin 1 is a cationic, amphipathic antimicrobial peptide found in the skin secretions and brains of the Chinese red belly toad Bombina maxima. The 27 amino acid residue-long peptide is biologically interesting as it possesses a variety of biological activities, including antibacterial, antifungal, antiviral, antitumour and spermicidal activities. Its three-dimensional structural model was obtained in a 50/50% water/2,2,2-trifluoroethanol-d3 mixture using two-dimensional NMR spectroscopy. Maximin 1 was found to adopt an α-helical structure from residue Ile2 to Ala26 . The peptide is amphipathic, showing a clear separation between polar and non-polar residues. The interactions with sodium dodecyl sulfate micelles, a widely-used bacterial membrane-mimicking environment, were modelled using molecular dynamics simulations. The peptide maintains an α-helical conformation, occasionally displaying a flexibility around the Gly9 and Gly16 residues, which is likely responsible for the peptide's low haemolytic activity. It is found to preferentially adopt a position parallel to the micellar surface, establishing a number of hydrophobic and electrostatic interactions with the micelle.
Collapse
Affiliation(s)
- Patrick B Timmons
- UCD School of Biomolecular and Biomedical Science,UCD Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Chandralal M Hewage
- UCD School of Biomolecular and Biomedical Science,UCD Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|