1
|
Wang Y, Wu X, Fan X, Han C, Zheng F, Zhang Z. Screening and transcriptomic analysis of anti- Sporothrix globosa targeting AbaA. Front Microbiol 2025; 16:1546020. [PMID: 40365064 PMCID: PMC12069444 DOI: 10.3389/fmicb.2025.1546020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Sporotrichosis is a fungal disease caused by a complex of Sporothrix schenckii, leading to chronic infections of the epidermis and subcutaneous tissue in both humans and animals. Methods Through virtual screening targeting the key gene abaA to screen out the small-molecule drugs to treat Sporotrichosis. To further validate the antifungal activity of small-molecule drugs, growth curves, minimum bactericidal concentration (MBC), and minimum inhibitory concentration (MIC) for Sporothrix globosa (S. globosa) and Sporothrix schenckii (S. schenckii) were measured. In addition, we have done animal experiments to explore the function of the drugs. At the same time, qRT-PCR and transcriptome were used to verify the important role of abaA gene in Sporothrix. Results Azelastine and Mefloquine effectively inhibit S. globosa and S. schenckii. MBC, and MIC for S. globosa and S. schenckii confirmed that both Azelastine and Mefloquine inhibited the growth of S. globosa and S. schenckii. Additionally, animal experiments demonstrated that Azelastine and Mefloquine reduced skin lesions in mice; post-treatment observations revealed improvements in inflammatory infiltration and granuloma formation. Through transcriptome analysis and qRT-PCR for validation, our findings demonstrate that the abaA gene plays a crucial role in regulating the attachment of the Sporothrix cell wall to the host matrix and in melanin regulation. Notably, when the abaA gene was inhibited, there was a marked increase in the expression of repair genes. These results emphasize the significance of the abaA gene in the biology of Sporothrix. Discussion Two small-molecule drugs exhibit the ability to inhibit Sporothrix and treat sporotrichosis both in vitro and in murine models, suggesting their potential for development as therapeutic agents for sporotrichosis. And qRT-PCR and transcriptome results underscore the significance of the abaA gene in Sporothrix. Our results lay the foundation for the search for new treatments for other mycosis.
Collapse
Affiliation(s)
- Ying Wang
- Academy of Life Science, Liaoning University, Shenyang, China
| | - Xiaoyan Wu
- Department of Dermatology, University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Xiyuan Fan
- Academy of Life Science, Liaoning University, Shenyang, China
| | - Chanxu Han
- Department of Dermatology, University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Fangliang Zheng
- Academy of Life Science, Liaoning University, Shenyang, China
| | - Zhenying Zhang
- Department of Dermatology, University of Hong Kong Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Díaz-Santiago E, Moya-García AA, Pérez-García J, Yahyaoui R, Orengo C, Pazos F, Perkins JR, Ranea JAG. Better understanding the phenotypic effects of drugs through shared targets in genetic disease networks. Front Pharmacol 2025; 15:1470931. [PMID: 39911831 PMCID: PMC11794328 DOI: 10.3389/fphar.2024.1470931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/12/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Most drugs fail during development and there is a clear and unmet need for approaches to better understand mechanistically how drugs exert both their intended and adverse effects. Gaining traction in this field is the use of disease data linking genes with pathological phenotypes and combining this with drugtarget interaction data. Methods We introduce methodology to associate drugs with effects, both intended and adverse, using a tripartite network approach that combines drug-target and target-phenotype data, in which targets can be represented as proteins and protein domains. Results We were able to detect associations for over 140,000 ChEMBL drugs and 3,800 phenotypes, represented as Human Phenotype Ontology (HPO) terms. The overlap of these results with the SIDER databases of known drug side effects was up to 10 times higher than random, depending on the target type, disease database and score threshold used. In terms of overlap with drug-phenotype pairs extracted from the literature, the performance of our methodology was up to 17.47 times greater than random. The top results include phenotype-drug associations that represent intended effects, particularly for cancers such as chronic myelogenous leukemia, which was linked with nilotinib. They also include adverse side effects, such as blurred vision being linked with tetracaine. Discussion This work represents an important advance in our understanding of how drugs cause intended and adverse side effects through their action on disease causing genes and has potential applications for drug development and repositioning.
Collapse
Affiliation(s)
- Elena Díaz-Santiago
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain
| | | | - Jesús Pérez-García
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain
| | - Raquel Yahyaoui
- Laboratory of Inherited Metabolic Diseases and Newborn Screening, Malaga Regional University Hospital, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Florencio Pazos
- Computational Systems Biology Group, Systems Biology Department, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - James R. Perkins
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan A. G. Ranea
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
3
|
Liao J, Yi H, Wang H, Yang S, Jiang D, Huang X, Zhang M, Shen J, Lu H, Niu Y. CDCM: a correlation-dependent connectivity map approach to rapidly screen drugs during outbreaks of infectious diseases. Brief Bioinform 2024; 26:bbae659. [PMID: 39701599 DOI: 10.1093/bib/bbae659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/06/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
In the context of the global damage caused by coronavirus disease 2019 (COVID-19) and the emergence of the monkeypox virus (MPXV) outbreak as a public health emergency of international concern, research into methods that can rapidly test potential therapeutics during an outbreak of a new infectious disease is urgently needed. Computational drug discovery is an effective way to solve such problems. The existence of various large open databases has mitigated the time and resource consumption of traditional drug development and improved the speed of drug discovery. However, the diversity of cell lines used in various databases remains limited, and previous drug discovery methods are ineffective for cross-cell prediction. In this study, we propose a correlation-dependent connectivity map (CDCM) to achieve cross-cell predictions of drug similarity. The CDCM mainly identifies drug-drug or disease-drug relationships from the perspective of gene networks by exploring the correlation changes between genes and identifying similarities in the effects of drugs or diseases on gene expression. We validated the CDCM on multiple datasets and found that it performed well for drug identification across cell lines. A comparison with the Connectivity Map revealed that our method was more stable and performed better across different cell lines. In the application of the CDCM to COVID-19 and MPXV data, the predictions of potential therapeutic compounds for COVID-19 were consistent with several previous studies, and most of the predicted drugs were found to be experimentally effective against MPXV. This result confirms the practical value of the CDCM. With the ability to predict across cell lines, the CDCM outperforms the Connectivity Map, and it has wider application prospects and a reduced cost of use.
Collapse
Affiliation(s)
- Junlei Liao
- School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha 410083, Hunan, China
| | - Hongyang Yi
- National Clinical Research Centre for Infectious Diseases, The Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China
| | - Hao Wang
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen 518133, China
| | - Sumei Yang
- National Clinical Research Centre for Infectious Diseases, The Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China
| | - Duanmei Jiang
- School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha 410083, Hunan, China
| | - Xin Huang
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen 518133, China
| | - Mingxia Zhang
- National Clinical Research Centre for Infectious Diseases, The Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China
| | - Jiayin Shen
- National Clinical Research Centre for Infectious Diseases, The Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China
| | - Hongzhou Lu
- National Clinical Research Centre for Infectious Diseases, The Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China
| | - Yuanling Niu
- School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
4
|
Takundwa MM, Thimiri Govinda Raj DB. Novel strategies for drug repurposing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:9-21. [PMID: 38789188 DOI: 10.1016/bs.pmbts.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Synthetic biology, precision medicine, and nanobiotechnology are the three main emerging areas that drive translational innovation toward commercialization. There are several strategies used in precision medicine and drug repurposing is one of the key approaches as it addresses the challenges in drug discovery (high cost and time). Here, we provide a perspective on various new approaches to drug repurposing for cancer precision medicine. We report here our optimized wound healing methodology that can be used to validate drug sensitivity and drug repurposing. Using HeLa as our benchmark, we demonstrated that the assay can be applied to identify drugs that limit cell proliferation. From a future perspective, this assay can be expanded to ex vivo culturing of solid tumors in 2D culture and leukemia in 3D culture.
Collapse
Affiliation(s)
- Mutsa Monica Takundwa
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Deepak B Thimiri Govinda Raj
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa.
| |
Collapse
|
5
|
Rawat S, Subramaniam K, Subramanian SK, Subbarayan S, Dhanabalan S, Chidambaram SKM, Stalin B, Roy A, Nagaprasad N, Aruna M, Tesfaye JL, Badassa B, Krishnaraj R. Drug Repositioning Using Computer-aided Drug Design (CADD). Curr Pharm Biotechnol 2024; 25:301-312. [PMID: 37605405 DOI: 10.2174/1389201024666230821103601] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 08/23/2023]
Abstract
Drug repositioning is a method of using authorized drugs for other unusually complex diseases. Compared to new drug development, this method is fast, low in cost, and effective. Through the use of outstanding bioinformatics tools, such as computer-aided drug design (CADD), computer strategies play a vital role in the re-transformation of drugs. The use of CADD's special strategy for target-based drug reuse is the most promising method, and its realization rate is high. In this review article, we have particularly focused on understanding the various technologies of CADD and the use of computer-aided drug design for target-based drug reuse, taking COVID-19 and cancer as examples. Finally, it is concluded that CADD technology is accelerating the development of repurposed drugs due to its many advantages, and there are many facts to prove that the new ligand-targeting strategy is a beneficial method and that it will gain momentum with the development of technology.
Collapse
Affiliation(s)
- Sona Rawat
- School of Life Sciences, Jaipur National University, Jaipur-302017, India
| | - Kanmani Subramaniam
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore-641407, Tamil Nadu, India
| | - Selva Kumar Subramanian
- Department of Sciences, Amrita School of Engineering, Coimbatore - 641112, Tamil Nadu, India
| | - Saravanan Subbarayan
- Department of Civil Engineering, National Institute of Technology, Trichy-620015, Tamil Nadu, India
| | - Subramanian Dhanabalan
- Department of Mechanical Engineering, M. Kumarasamy College of Engineering, Karur - 639113, Tamil Nadu, India
| | | | - Balasubramaniam Stalin
- Department of Mechanical Engineering, Anna University, Regional Campus Madurai, Madurai - 625 019, Tamil Nadu, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India
| | - Nagaraj Nagaprasad
- Department of Mechanical Engineering, ULTRA College of Engineering and Technology, Madurai - 625104, Tamilnadu, India
| | - Mahalingam Aruna
- College of Engineering and Computing, Al Ghurair University, Academic City, Dubai, UAE
| | - Jule Leta Tesfaye
- Dambi Dollo University, College of Natural and Computational Science, Department of Physics, Ethiopia
- Centre for Excellence-Indigenous Knowledge, Innovative Technology Transfer and Entrepreneurship, Dambi Dollo University, Dambi Dollo, Ethiopia
- Ministry of innovation and technology, Ethiopia
| | - Bayissa Badassa
- Department of Mechanical Engineering, Dambi Dollo University, Dambi Dollo, Ethiopia
| | - Ramaswamy Krishnaraj
- Centre for Excellence-Indigenous Knowledge, Innovative Technology Transfer and Entrepreneurship, Dambi Dollo University, Dambi Dollo, Ethiopia
- Ministry of innovation and technology, Ethiopia
- Department of Mechanical Engineering, Dambi Dollo University, Dambi Dollo, Ethiopia
| |
Collapse
|
6
|
Tanabe M, Sakate R, Nakabayashi J, Tsumura K, Ohira S, Iwato K, Kimura T. A novel in silico scaffold-hopping method for drug repositioning in rare and intractable diseases. Sci Rep 2023; 13:19358. [PMID: 37938624 PMCID: PMC10632405 DOI: 10.1038/s41598-023-46648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
In the field of rare and intractable diseases, new drug development is difficult and drug repositioning (DR) is a key method to improve this situation. In this study, we present a new method for finding DR candidates utilizing virtual screening, which integrates amino acid interaction mapping into scaffold-hopping (AI-AAM). At first, we used a spleen associated tyrosine kinase inhibitor as a reference to evaluate the technique, and succeeded in scaffold-hopping maintaining the pharmacological activity. Then we applied this method to five drugs and obtained 144 compounds with diverse structures. Among these, 31 compounds were known to target the same proteins as their reference compounds and 113 compounds were known to target different proteins. We found that AI-AAM dominantly selected functionally similar compounds; thus, these selected compounds may represent improved alternatives to their reference compounds. Moreover, the latter compounds were presumed to bind to the targets of their references as well. This new "compound-target" information provided DR candidates that could be utilized for future drug development.
Collapse
Affiliation(s)
- Mao Tanabe
- Laboratory of Rare Disease Information and Resource Library, Center for Intractable Diseases and ImmunoGenomics Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Ryuichi Sakate
- Laboratory of Rare Disease Information and Resource Library, Center for Intractable Diseases and ImmunoGenomics Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Jun Nakabayashi
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minami-ashigara, Kanagawa, Japan
| | - Kyosuke Tsumura
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minami-ashigara, Kanagawa, Japan
| | - Shino Ohira
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minami-ashigara, Kanagawa, Japan
| | - Kaoru Iwato
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minami-ashigara, Kanagawa, Japan
| | - Tomonori Kimura
- Reverse Translational Research Project, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-City, Osaka, Japan.
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan.
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
7
|
Hu L, Fu C, Ren Z, Cai Y, Yang J, Xu S, Xu W, Tang D. SSELM-neg: spherical search-based extreme learning machine for drug-target interaction prediction. BMC Bioinformatics 2023; 24:38. [PMID: 36737694 PMCID: PMC9896467 DOI: 10.1186/s12859-023-05153-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The experimental verification of a drug discovery process is expensive and time-consuming. Therefore, efficiently and effectively identifying drug-target interactions (DTIs) has been the focus of research. At present, many machine learning algorithms are used for predicting DTIs. The key idea is to train the classifier using an existing DTI to predict a new or unknown DTI. However, there are various challenges, such as class imbalance and the parameter optimization of many classifiers, that need to be solved before an optimal DTI model is developed. METHODS In this study, we propose a framework called SSELM-neg for DTI prediction, in which we use a screening approach to choose high-quality negative samples and a spherical search approach to optimize the parameters of the extreme learning machine. RESULTS The results demonstrated that the proposed technique outperformed other state-of-the-art methods in 10-fold cross-validation experiments in terms of the area under the receiver operating characteristic curve (0.986, 0.993, 0.988, and 0.969) and AUPR (0.982, 0.991, 0.982, and 0.946) for the enzyme dataset, G-protein coupled receptor dataset, ion channel dataset, and nuclear receptor dataset, respectively. CONCLUSION The screening approach produced high-quality negative samples with the same number of positive samples, which solved the class imbalance problem. We optimized an extreme learning machine using a spherical search approach to identify DTIs. Therefore, our models performed better than other state-of-the-art methods.
Collapse
Affiliation(s)
- Lingzhi Hu
- grid.411847.f0000 0004 1804 4300School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Chengzhou Fu
- grid.411847.f0000 0004 1804 4300School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China ,Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, People’s Republic of China
| | - Zhonglu Ren
- grid.411847.f0000 0004 1804 4300School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Yongming Cai
- grid.411847.f0000 0004 1804 4300School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China ,Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, People’s Republic of China
| | - Jin Yang
- grid.411847.f0000 0004 1804 4300School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China ,Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, People’s Republic of China
| | - Siwen Xu
- grid.411847.f0000 0004 1804 4300School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Wenhua Xu
- grid.411847.f0000 0004 1804 4300School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Deyu Tang
- grid.411847.f0000 0004 1804 4300School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China ,grid.79703.3a0000 0004 1764 3838School of Computer Science and Engineering, South China University of Technology, Guangzhou, People’s Republic of China ,Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, People’s Republic of China
| |
Collapse
|
8
|
Vora DS, Kalakoti Y, Sundar D. Computational Methods and Deep Learning for Elucidating Protein Interaction Networks. Methods Mol Biol 2023; 2553:285-323. [PMID: 36227550 DOI: 10.1007/978-1-0716-2617-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein interactions play a critical role in all biological processes, but experimental identification of protein interactions is a time- and resource-intensive process. The advances in next-generation sequencing and multi-omics technologies have greatly benefited large-scale predictions of protein interactions using machine learning methods. A wide range of tools have been developed to predict protein-protein, protein-nucleic acid, and protein-drug interactions. Here, we discuss the applications, methods, and challenges faced when employing the various prediction methods. We also briefly describe ways to overcome the challenges and prospective future developments in the field of protein interaction biology.
Collapse
Affiliation(s)
- Dhvani Sandip Vora
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Yogesh Kalakoti
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.
- School of Artificial Intelligence, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.
| |
Collapse
|
9
|
Ma C, Zhou Z, Liu H, Koslicki D. KGML-xDTD: a knowledge graph-based machine learning framework for drug treatment prediction and mechanism description. Gigascience 2022; 12:giad057. [PMID: 37602759 PMCID: PMC10441000 DOI: 10.1093/gigascience/giad057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/05/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Computational drug repurposing is a cost- and time-efficient approach that aims to identify new therapeutic targets or diseases (indications) of existing drugs/compounds. It is especially critical for emerging and/or orphan diseases due to its cheaper investment and shorter research cycle compared with traditional wet-lab drug discovery approaches. However, the underlying mechanisms of action (MOAs) between repurposed drugs and their target diseases remain largely unknown, which is still a main obstacle for computational drug repurposing methods to be widely adopted in clinical settings. RESULTS In this work, we propose KGML-xDTD: a Knowledge Graph-based Machine Learning framework for explainably predicting Drugs Treating Diseases. It is a 2-module framework that not only predicts the treatment probabilities between drugs/compounds and diseases but also biologically explains them via knowledge graph (KG) path-based, testable MOAs. We leverage knowledge-and-publication-based information to extract biologically meaningful "demonstration paths" as the intermediate guidance in the Graph-based Reinforcement Learning (GRL) path-finding process. Comprehensive experiments and case study analyses show that the proposed framework can achieve state-of-the-art performance in both predictions of drug repurposing and recapitulation of human-curated drug MOA paths. CONCLUSIONS KGML-xDTD is the first model framework that can offer KG path explanations for drug repurposing predictions by leveraging the combination of prediction outcomes and existing biological knowledge and publications. We believe it can effectively reduce "black-box" concerns and increase prediction confidence for drug repurposing based on predicted path-based explanations and further accelerate the process of drug discovery for emerging diseases.
Collapse
Affiliation(s)
- Chunyu Ma
- Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA 16801, USA
| | - Zhihan Zhou
- Department of Computer Science, Northwestern University, Evanston, IL 60208, USA
| | - Han Liu
- Department of Computer Science, Northwestern University, Evanston, IL 60208, USA
| | - David Koslicki
- Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA 16801, USA
- Department of Computer Science and Engineering, Pennsylvania State University, State College, PA 16801, USA
- Department of Biology, Pennsylvania State University, State College, PA 16801, USA
| |
Collapse
|
10
|
Sun G, Dong D, Dong Z, Zhang Q, Fang H, Wang C, Zhang S, Wu S, Dong Y, Wan Y. Drug repositioning: A bibliometric analysis. Front Pharmacol 2022; 13:974849. [PMID: 36225586 PMCID: PMC9549161 DOI: 10.3389/fphar.2022.974849] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/12/2022] [Indexed: 11/14/2022] Open
Abstract
Drug repurposing has become an effective approach to drug discovery, as it offers a new way to explore drugs. Based on the Science Citation Index Expanded (SCI-E) and Social Sciences Citation Index (SSCI) databases of the Web of Science core collection, this study presents a bibliometric analysis of drug repurposing publications from 2010 to 2020. Data were cleaned, mined, and visualized using Derwent Data Analyzer (DDA) software. An overview of the history and development trend of the number of publications, major journals, major countries, major institutions, author keywords, major contributors, and major research fields is provided. There were 2,978 publications included in the study. The findings show that the United States leads in this area of research, followed by China, the United Kingdom, and India. The Chinese Academy of Science published the most research studies, and NIH ranked first on the h-index. The Icahn School of Medicine at Mt Sinai leads in the average number of citations per study. Sci Rep, Drug Discov. Today, and Brief. Bioinform. are the three most productive journals evaluated from three separate perspectives, and pharmacology and pharmacy are unquestionably the most commonly used subject categories. Cheng, FX; Mucke, HAM; and Butte, AJ are the top 20 most prolific and influential authors. Keyword analysis shows that in recent years, most research has focused on drug discovery/drug development, COVID-19/SARS-CoV-2/coronavirus, molecular docking, virtual screening, cancer, and other research areas. The hotspots have changed in recent years, with COVID-19/SARS-CoV-2/coronavirus being the most popular topic for current drug repurposing research.
Collapse
Affiliation(s)
- Guojun Sun
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Dashun Dong
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Zuojun Dong
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Qian Zhang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Hui Fang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| | - Chaojun Wang
- Hangzhou Aeronautical Sanatorium for Special Service of Chinese Air Force, Hangzhou, China
| | - Shaoya Zhang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Shuaijun Wu
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yichen Dong
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
11
|
Pu Y, Li J, Tang J, Guo F. DeepFusionDTA: Drug-Target Binding Affinity Prediction With Information Fusion and Hybrid Deep-Learning Ensemble Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2760-2769. [PMID: 34379594 DOI: 10.1109/tcbb.2021.3103966] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Identification of drug-target interaction (DTI) is the most important issue in the broad field of drug discovery. Using purely biological experiments to verify drug-target binding profiles takes lots of time and effort, so computational technologies for this task obviously have great benefits in reducing the drug search space. Most of computational methods to predict DTI are proposed to solve a binary classification problem, which ignore the influence of binding strength. Therefore, drug-target binding affinity prediction is still a challenging issue. Currently, lots of studies only extract sequence information that lacks feature-rich representation, but we consider more spatial features in order to merge various data in drug and target spaces. In this study, we propose a two-stage deep neural network ensemble model for detecting drug-target binding affinity, called DeepFusionDTA, via various information analysis modules. First stage is to utilize sequence and structure information to generate fusion feature map of candidate protein and drug pair through various analysis modules based deep learning. Second stage is to apply bagging-based ensemble learning strategy for regression prediction, and we obtain outstanding results by combining the advantages of various algorithms in efficient feature abstraction and regression calculation. Importantly, we evaluate our novel method, DeepFusionDTA, which delivers 1.5 percent CI increase on KIBA dataset and 1.0 percent increase on Davis dataset, by comparing with existing prediction tools, DeepDTA. Furthermore, the ideas we have offered can be applied to in-silico screening of the interaction space, to provide novel DTIs which can be experimentally pursued. The codes and data are available from https://github.com/guofei-tju/DeepFusionDTA.
Collapse
|
12
|
Krishnamurthy N, Grimshaw AA, Axson SA, Choe SH, Miller JE. Drug repurposing: a systematic review on root causes, barriers and facilitators. BMC Health Serv Res 2022; 22:970. [PMID: 35906687 PMCID: PMC9336118 DOI: 10.1186/s12913-022-08272-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Repurposing is a drug development strategy receiving heightened attention after the Food and Drug Administration granted emergency use authorization of several repurposed drugs to treat Covid-19. There remain knowledge gaps on the root causes, facilitators and barriers for repurposing. METHOD This systematic review used controlled vocabulary and free text terms to search ABI/Informa, Academic Search Premier, Business Source Complete, Cochrane Library, EconLit, Google Scholar, Ovid Embase, Ovid Medline, Pubmed, Scopus, and Web of Science Core Collection databases for the characteristics, reasons and example of companies deprioritizing development of promising drugs and barriers, facilitators and examples of successful re-purposing. RESULTS We identified 11,814 articles, screened 5,976 for relevance, found 437 eligible for full text review, 115 of which were included in full analysis. Most articles (66%, 76/115) discussed why promising drugs are abandoned, with lack of efficacy or superiority to other therapies (n = 59), strategic business reasons (n = 35), safety problems (n = 28), research design decisions (n = 12), the complex nature of a studied disease or drug (n = 7) and regulatory bodies requiring more information (n = 2) among top reasons. Key barriers to repurposing include inadequate resources (n = 42), trial data access and transparency around abandoned compounds (n = 20) and expertise (n = 11). Additional barriers include uncertainty about the value of repurposing (n = 13), liability risks (n = 5) and intellectual property (IP) challenges (n = 26). Facilitators include the ability to form multi-partner collaborations (n = 38), access to compound databases and database screening tools (n = 32), regulatory modifications (n = 5) and tax incentives (n = 2). CONCLUSION Promising drugs are commonly shelved due to insufficient efficacy or superiority to alternate therapies, poor market prospects, and industry consolidation. Inadequate resources and data access and challenges negotiating IP are key barriers to repurposing reaching its full potential as a core approach in drug development. Multi-partner collaborations and the availability and use of compound databases and tax incentives are key facilitators for repurposing. More research is needed on the current value of repurposing in drug development and how to better facilitate resources to support it, where valuable, especially financial, staffing for out-licensing shelved products, and legal expertise to negotiate IP agreements in multi-partner collaborations. TRIAL REGISTRATION The protocol was registered on Open Science Framework ( https://osf.io/f634k/ ) as it was not eligible for registration on PROSPERO as the review did not focus on a health-related outcome.
Collapse
Affiliation(s)
- Nithya Krishnamurthy
- Internal Medicine Department, Yale University School of Medicine, 367 Cedar Street, 4th Floor, New Haven, CT, 06520, USA
| | - Alyssa A Grimshaw
- Cushing/Whitney Medical Library, Yale University, 333 Cedar Street, Box 208014, New Haven, CT, 06520, USA
| | - Sydney A Axson
- Internal Medicine Department, Yale University School of Medicine, 367 Cedar Street, 4th Floor, New Haven, CT, 06520, USA
| | - Sung Hee Choe
- Milken Institute Center for Faster Cures, 730 15th Street NW, Washington, DC, 20005, USA
| | - Jennifer E Miller
- Internal Medicine Department, Yale University School of Medicine, 367 Cedar Street, 4th Floor, New Haven, CT, 06520, USA.
| |
Collapse
|
13
|
A Novel Deep Neural Network Technique for Drug–Target Interaction. Pharmaceutics 2022; 14:pharmaceutics14030625. [PMID: 35336000 PMCID: PMC8954728 DOI: 10.3390/pharmaceutics14030625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 01/20/2023] Open
Abstract
Drug discovery (DD) is a time-consuming and expensive process. Thus, the industry employs strategies such as drug repositioning and drug repurposing, which allows the application of already approved drugs to treat a different disease, as occurred in the first months of 2020, during the COVID-19 pandemic. The prediction of drug–target interactions is an essential part of the DD process because it can accelerate it and reduce the required costs. DTI prediction performed in silico have used approaches based on molecular docking simulations, including similarity-based and network- and graph-based ones. This paper presents MPS2IT-DTI, a DTI prediction model obtained from research conducted in the following steps: the definition of a new method for encoding molecule and protein sequences onto images; the definition of a deep-learning approach based on a convolutional neural network in order to create a new method for DTI prediction. Training results conducted with the Davis and KIBA datasets show that MPS2IT-DTI is viable compared to other state-of-the-art (SOTA) approaches in terms of performance and complexity of the neural network model. With the Davis dataset, we obtained 0.876 for the concordance index and 0.276 for the MSE; with the KIBA dataset, we obtained 0.836 and 0.226 for the concordance index and the MSE, respectively. Moreover, the MPS2IT-DTI model represents molecule and protein sequences as images, instead of treating them as an NLP task, and as such, does not employ an embedding layer, which is present in other models.
Collapse
|
14
|
Yin Z, Wong STC. Artificial intelligence unifies knowledge and actions in drug repositioning. Emerg Top Life Sci 2021; 5:803-813. [PMID: 34881780 PMCID: PMC8923082 DOI: 10.1042/etls20210223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
Drug repositioning aims to reuse existing drugs, shelved drugs, or drug candidates that failed clinical trials for other medical indications. Its attraction is sprung from the reduction in risk associated with safety testing of new medications and the time to get a known drug into the clinics. Artificial Intelligence (AI) has been recently pursued to speed up drug repositioning and discovery. The essence of AI in drug repositioning is to unify the knowledge and actions, i.e. incorporating real-world and experimental data to map out the best way forward to identify effective therapeutics against a disease. In this review, we share positive expectations for the evolution of AI and drug repositioning and summarize the role of AI in several methods of drug repositioning.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center and Ting Tsung & Wei Fong Chao Center for BRAIN, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX 77030, U.S.A
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center and Ting Tsung & Wei Fong Chao Center for BRAIN, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX 77030, U.S.A
| |
Collapse
|
15
|
Application of network link prediction in drug discovery. BMC Bioinformatics 2021; 22:187. [PMID: 33845763 PMCID: PMC8042985 DOI: 10.1186/s12859-021-04082-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 03/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Technological and research advances have produced large volumes of biomedical data. When represented as a network (graph), these data become useful for modeling entities and interactions in biological and similar complex systems. In the field of network biology and network medicine, there is a particular interest in predicting results from drug–drug, drug–disease, and protein–protein interactions to advance the speed of drug discovery. Existing data and modern computational methods allow to identify potentially beneficial and harmful interactions, and therefore, narrow drug trials ahead of actual clinical trials. Such automated data-driven investigation relies on machine learning techniques. However, traditional machine learning approaches require extensive preprocessing of the data that makes them impractical for large datasets. This study presents wide range of machine learning methods for predicting outcomes from biomedical interactions and evaluates the performance of the traditional methods with more recent network-based approaches. Results We applied a wide range of 32 different network-based machine learning models to five commonly available biomedical datasets, and evaluated their performance based on three important evaluations metrics namely AUROC, AUPR, and F1-score. We achieved this by converting link prediction problem as binary classification problem. In order to achieve this we have considered the existing links as positive example and randomly sampled negative examples from non-existant set. After experimental evaluation we found that Prone, ACT and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$LRW_5$$\end{document}LRW5 are the top 3 best performers on all five datasets. Conclusions This work presents a comparative evaluation of network-based machine learning algorithms for predicting network links, with applications in the prediction of drug-target and drug–drug interactions, and applied well known network-based machine learning methods. Our work is helpful in guiding researchers in the appropriate selection of machine learning methods for pharmaceutical tasks. Supplementary Information The online version supplementary material available at 10.1186/s12859-021-04082-y.
Collapse
|
16
|
Roy S, Dhaneshwar S, Bhasin B. Drug Repurposing: An Emerging Tool for Drug Reuse, Recycling and Discovery. Curr Drug Res Rev 2021; 13:101-119. [PMID: 33573567 DOI: 10.2174/2589977513666210211163711] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/07/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
Drug repositioning or repurposing is a revolutionary breakthrough in drug development that focuses on rediscovering new uses for old therapeutic agents. Drug repositioning can be defined more precisely as the process of exploring new indications for an already approved drug while drug repurposing includes overall re-development approaches grounded in the identical chemical structure of the active drug moiety as in the original product. The repositioning approach accelerates the drug development process, curtails the cost and risk inherent to drug development. The strategy focuses on the polypharmacology of drugs to unlocks novel opportunities for logically designing more efficient therapeutic agents for unmet medical disorders. Drug repositioning also expresses certain regulatory challenges that hamper its further utilization. The review outlines the eminent role of drug repositioning in new drug discovery, methods to predict the molecular targets of a drug molecule, advantages that the strategy offers to the pharmaceutical industries, explaining how the industrial collaborations with academics can assist in the discovering more repositioning opportunities. The focus of the review is to highlight the latest applications of drug repositioning in various disorders. The review also includes a comparison of old and new therapeutic uses of repurposed drugs, assessing their novel mechanisms of action and pharmacological effects in the management of various disorders. Various restrictions and challenges that repurposed drugs come across during their development and regulatory phases are also highlighted.
Collapse
Affiliation(s)
- Supriya Roy
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, India
| | - Bhavya Bhasin
- Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| |
Collapse
|
17
|
Shi W, Chen X, Deng L. A Review of Recent Developments and Progress in Computational Drug Repositioning. Curr Pharm Des 2021; 26:3059-3068. [PMID: 31951162 DOI: 10.2174/1381612826666200116145559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022]
Abstract
Computational drug repositioning is an efficient approach towards discovering new indications for existing drugs. In recent years, with the accumulation of online health-related information and the extensive use of biomedical databases, computational drug repositioning approaches have achieved significant progress in drug discovery. In this review, we summarize recent advancements in drug repositioning. Firstly, we explicitly demonstrated the available data source information which is conducive to identifying novel indications. Furthermore, we provide a summary of the commonly used computing approaches. For each method, we briefly described techniques, case studies, and evaluation criteria. Finally, we discuss the limitations of the existing computing approaches.
Collapse
Affiliation(s)
- Wanwan Shi
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Xuegong Chen
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
18
|
Jarada TN, Rokne JG, Alhajj R. A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions. J Cheminform 2020; 12:46. [PMID: 33431024 PMCID: PMC7374666 DOI: 10.1186/s13321-020-00450-7] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/13/2020] [Indexed: 01/13/2023] Open
Abstract
Drug repositioning is the process of identifying novel therapeutic potentials for existing drugs and discovering therapies for untreated diseases. Drug repositioning, therefore, plays an important role in optimizing the pre-clinical process of developing novel drugs by saving time and cost compared to the traditional de novo drug discovery processes. Since drug repositioning relies on data for existing drugs and diseases the enormous growth of publicly available large-scale biological, biomedical, and electronic health-related data along with the high-performance computing capabilities have accelerated the development of computational drug repositioning approaches. Multidisciplinary researchers and scientists have carried out numerous attempts, with different degrees of efficiency and success, to computationally study the potential of repositioning drugs to identify alternative drug indications. This study reviews recent advancements in the field of computational drug repositioning. First, we highlight different drug repositioning strategies and provide an overview of frequently used resources. Second, we summarize computational approaches that are extensively used in drug repositioning studies. Third, we present different computing and experimental models to validate computational methods. Fourth, we address prospective opportunities, including a few target areas. Finally, we discuss challenges and limitations encountered in computational drug repositioning and conclude with an outline of further research directions.
Collapse
Affiliation(s)
- Tamer N Jarada
- Department of Computer Science, University of Calgary, Calgary, Alberta, Canada
| | - Jon G Rokne
- Department of Computer Science, University of Calgary, Calgary, Alberta, Canada
| | - Reda Alhajj
- Department of Computer Science, University of Calgary, Calgary, Alberta, Canada.
- Department of Computer Engineering, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
19
|
Wu Y, Warner JL, Wang L, Jiang M, Xu J, Chen Q, Nian H, Dai Q, Du X, Yang P, Denny JC, Liu H, Xu H. Discovery of Noncancer Drug Effects on Survival in Electronic Health Records of Patients With Cancer: A New Paradigm for Drug Repurposing. JCO Clin Cancer Inform 2020; 3:1-9. [PMID: 31141421 PMCID: PMC6693869 DOI: 10.1200/cci.19.00001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Drug development is becoming increasingly expensive and time consuming. Drug repurposing is one potential solution to accelerate drug discovery. However, limited research exists on the use of electronic health record (EHR) data for drug repurposing, and most published studies have been conducted in a hypothesis-driven manner that requires a predefined hypothesis about drugs and new indications. Whether EHRs can be used to detect drug repurposing signals is not clear. We want to demonstrate the feasibility of mining large, longitudinal EHRs for drug repurposing by detecting candidate noncancer drugs that can potentially be used for the treatment of cancer. PATIENTS AND METHODS By linking cancer registry data to EHRs, we identified 43,310 patients with cancer treated at Vanderbilt University Medical Center (VUMC) and 98,366 treated at the Mayo Clinic. We assessed the effect of 146 noncancer drugs on cancer survival using VUMC EHR data and sought to replicate significant associations (false discovery rate < .1) using the identical approach with Mayo Clinic EHR data. To evaluate replicated signals further, we reviewed the biomedical literature and clinical trials on cancers for corroborating evidence. RESULTS We identified 22 drugs from six drug classes (statins, proton pump inhibitors, angiotensin-converting enzyme inhibitors, β-blockers, nonsteroidal anti-inflammatory drugs, and α-1 blockers) associated with improved overall cancer survival (false discovery rate < .1) from VUMC; nine of the 22 drug associations were replicated at the Mayo Clinic. Literature and cancer clinical trial evaluations also showed very strong evidence to support the repurposing signals from EHRs. CONCLUSION Mining of EHRs for drug exposure–mediated survival signals is feasible and identifies potential candidates for antineoplastic repurposing. This study sets up a new model of mining EHRs for drug repurposing signals.
Collapse
Affiliation(s)
- Yonghui Wu
- The University of Texas Health Science Center at Houston, Houston, TX.,University of Florida, Gainesville, FL
| | | | | | - Min Jiang
- The University of Texas Health Science Center at Houston, Houston, TX
| | - Jun Xu
- The University of Texas Health Science Center at Houston, Houston, TX
| | - Qingxia Chen
- Vanderbilt University Medical Center, Nashville, TN
| | - Hui Nian
- Vanderbilt University Medical Center, Nashville, TN
| | - Qi Dai
- Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
| | - Xianglin Du
- The University of Texas Health Science Center at Houston, Houston, TX
| | | | | | | | - Hua Xu
- The University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
20
|
Bagherian M, Sabeti E, Wang K, Sartor MA, Nikolovska-Coleska Z, Najarian K. Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Brief Bioinform 2020; 22:247-269. [PMID: 31950972 PMCID: PMC7820849 DOI: 10.1093/bib/bbz157] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.
Collapse
Affiliation(s)
- Maryam Bagherian
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elyas Sabeti
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kai Wang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maureen A Sartor
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Kayvan Najarian
- Department of Electrical Engineering and Computer Science, College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
21
|
Karaman B, Sippl W. Computational Drug Repurposing: Current Trends. Curr Med Chem 2019; 26:5389-5409. [DOI: 10.2174/0929867325666180530100332] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/06/2018] [Accepted: 05/14/2018] [Indexed: 01/31/2023]
Abstract
:
Biomedical discovery has been reshaped upon the exploding digitization of data
which can be retrieved from a number of sources, ranging from clinical pharmacology to
cheminformatics-driven databases. Now, supercomputing platforms and publicly available
resources such as biological, physicochemical, and clinical data, can all be integrated to construct
a detailed map of signaling pathways and drug mechanisms of action in relation to drug
candidates. Recent advancements in computer-aided data mining have facilitated analyses of
‘big data’ approaches and the discovery of new indications for pre-existing drugs has been
accelerated. Linking gene-phenotype associations to predict novel drug-disease signatures or
incorporating molecular structure information of drugs and protein targets with other kinds of
data derived from systems biology provide great potential to accelerate drug discovery and
improve the success of drug repurposing attempts. In this review, we highlight commonly
used computational drug repurposing strategies, including bioinformatics and cheminformatics
tools, to integrate large-scale data emerging from the systems biology, and consider both
the challenges and opportunities of using this approach. Moreover, we provide successful examples
and case studies that combined various in silico drug-repurposing strategies to predict
potential novel uses for known therapeutics.
Collapse
Affiliation(s)
- Berin Karaman
- Biruni University - Department of Pharmaceutical Chemistry, Istanbul, Turkey
| | - Wolfgang Sippl
- Martin-Luther University of Halle-Wittenberg - Institute of Pharmacy, Halle (Saale), Germany
| |
Collapse
|
22
|
Fine J, Lackner R, Samudrala R, Chopra G. Computational chemoproteomics to understand the role of selected psychoactives in treating mental health indications. Sci Rep 2019; 9:13155. [PMID: 31511563 PMCID: PMC6739337 DOI: 10.1038/s41598-019-49515-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
We have developed the Computational Analysis of Novel Drug Opportunities (CANDO) platform to infer homology of drug behaviour at a proteomic level by constructing and analysing structural compound-proteome interaction signatures of 3,733 compounds with 48,278 proteins in a shotgun manner. We applied the CANDO platform to predict putative therapeutic properties of 428 psychoactive compounds that belong to the phenylethylamine, tryptamine, and cannabinoid chemical classes for treating mental health indications. Our findings indicate that these 428 psychoactives are among the top-ranked predictions for a significant fraction of mental health indications, demonstrating a significant preference for treating such indications over non-mental health indications, relative to randomized controls. Also, we analysed the use of specific tryptamines for the treatment of sleeping disorders, bupropion for substance abuse disorders, and cannabinoids for epilepsy. Our innovative use of the CANDO platform may guide the identification and development of novel therapies for mental health indications and provide an understanding of their causal basis on a detailed mechanistic level. These predictions can be used to provide new leads for preclinical drug development for mental health and other neurological disorders.
Collapse
Affiliation(s)
- Jonathan Fine
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Rachel Lackner
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, SUNY, Buffalo, NY, USA.
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Drug Discovery, Purdue Institute for Integrative Neuroscience, Purdue Institute for Integrative Neuroscience, Purdue Institute for Immunology, Inflammation and Infectious Disease, Integrative Data Science Initiative, Purdue Center for Cancer Research, West Lafayette, IN, USA.
| |
Collapse
|
23
|
Diarylthiazole and diarylimidazole selective COX-1 inhibitor analysis through pharmacophore modeling, virtual screening, and DFT-based approaches. Struct Chem 2019. [DOI: 10.1007/s11224-019-01414-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Xia LY, Yang ZY, Zhang H, Liang Y. Improved Prediction of Drug-Target Interactions Using Self-Paced Learning with Collaborative Matrix Factorization. J Chem Inf Model 2019; 59:3340-3351. [PMID: 31260620 DOI: 10.1021/acs.jcim.9b00408] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Identifying drug-target interactions (DTIs) plays an important role in the field of drug discovery, drug side-effects, and drug repositioning. However, in vivo or biochemical experimental methods for identifying new DTIs are extremely expensive and time-consuming. Recently, in silico or various computational methods have been developed for DTI prediction, such as ligand-based approaches and docking approaches, but these traditional computational methods have several limitations. This work utilizes the chemogenomic-based approaches for efficiently identifying potential DTI candidates, namely, self-paced learning with collaborative matrix factorization based on weighted low-rank approximation (SPLCMF) for DTI prediction, which integrates multiple networks related to drugs and targets into regularized least-squares and focuses on learning a low-dimensional vector representation of features. The SPLCMF framework can select samples from easy to complex into training by using soft weighting, which is inclined to more faithfully reflect the latent importance of samples in training. Experimental results on synthetic data and five benchmark data sets show that our proposed SPLCMF outperforms other existing state-of-the-art approaches. These results indicate that our proposed SPLCMF can provide a useful tool to predict unknown DTIs, which may provide new insights into drug discovery, drug side-effect prediction, and repositioning existing drug.
Collapse
Affiliation(s)
- Liang-Yong Xia
- Faculty of Information Technology , Macau University of Science and Technology , Macau , China 999078
| | - Zi-Yi Yang
- Faculty of Information Technology , Macau University of Science and Technology , Macau , China 999078
| | - Hui Zhang
- Faculty of Information Technology , Macau University of Science and Technology , Macau , China 999078
| | - Yong Liang
- Faculty of Information Technology , Macau University of Science and Technology , Macau , China 999078.,State Key Laboratory of Quality Research in Chinese Medicines , Macau University of Science and Technology , Macau , China 999078
| |
Collapse
|
25
|
Park K. A review of computational drug repurposing. Transl Clin Pharmacol 2019; 27:59-63. [PMID: 32055582 PMCID: PMC6989243 DOI: 10.12793/tcp.2019.27.2.59] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Although sciences and technology have progressed rapidly, de novo drug development has been a costly and time-consuming process over the past decades. In view of these circumstances, ‘drug repurposing’ (or ‘drug repositioning’) has appeared as an alternative tool to accelerate drug development process by seeking new indications for already approved drugs rather than discovering de novo drug compounds, nowadays accounting for 30% of newly marked drugs in the U.S. In the meantime, the explosive and large-scale growth of molecular, genomic and phenotypic data of pharmacological compounds is enabling the development of new area of drug repurposing called computational drug repurposing. This review provides an overview of recent progress in the area of computational drug repurposing. First, it summarizes available repositioning strategies, followed by computational methods commonly used. Then, it describes validation techniques for repurposing studies. Finally, it concludes by discussing the remaining challenges in computational repurposing.
Collapse
Affiliation(s)
- Kyungsoo Park
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
26
|
Sachdev K, Gupta MK. A comprehensive review of feature based methods for drug target interaction prediction. J Biomed Inform 2019; 93:103159. [PMID: 30926470 DOI: 10.1016/j.jbi.2019.103159] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022]
Abstract
Drug target interaction is a prominent research area in the field of drug discovery. It refers to the recognition of interactions between chemical compounds and the protein targets in the human body. Wet lab experiments to identify these interactions are expensive as well as time consuming. The computational methods of interaction prediction help limit the search space for these experiments. These computational methods can be divided into ligand based approaches, docking approaches and chemogenomic approaches. In this review, we aim to describe the various feature based chemogenomic methods for drug target interaction prediction. It provides a comprehensive overview of the various techniques, datasets, tools and metrics. The feature based methods have been categorized, explained and compared. A novel framework for drug target interaction prediction has also been proposed that aims to improve the performance of existing methods. To the best of our knowledge, this is the first comprehensive review focusing only on feature based methods of drug target interaction.
Collapse
Affiliation(s)
- Kanica Sachdev
- Computer Science and Engineering Department, SMVDU, J&K, India.
| | | |
Collapse
|
27
|
Arrouchi H, Lakhlili W, Ibrahimi A. Re-positioning of known drugs for Pim-1 kinase target using molecular docking analysis. Bioinformation 2019; 15:116-120. [PMID: 31435157 PMCID: PMC6677905 DOI: 10.6026/97320630015116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/02/2022] Open
Abstract
The Concept of reusing existing drugs for new targets is gaining momentum in recent years because of cost-effectiveness as safety and toxicology data are already available. Therefore, it is of interest to re-profile known drugs against the Pim-1 kinase target using molecular docking analysis. Results show that known drugs such as nilotinib, vemurafenib, Idelalisib, and other small kinases inhibitors have high binding ability with Pim-1 kinase for consideration as potential inhibitors.
Collapse
Affiliation(s)
- Housna Arrouchi
- Biotechnology Laboratory (Medbiotech),BioInova Research center,Rabat Medical and Pharmacy School,Mohammed V University in Rabat,Rabat,Morroco
| | - Wiame Lakhlili
- Biotechnology Laboratory (Medbiotech),BioInova Research center,Rabat Medical and Pharmacy School,Mohammed V University in Rabat,Rabat,Morroco
| | - Azeddine Ibrahimi
- Biotechnology Laboratory (Medbiotech),BioInova Research center,Rabat Medical and Pharmacy School,Mohammed V University in Rabat,Rabat,Morroco
| |
Collapse
|
28
|
Shi JY, Zhang AQ, Zhang SW, Mao KT, Yiu SM. A unified solution for different scenarios of predicting drug-target interactions via triple matrix factorization. BMC SYSTEMS BIOLOGY 2018; 12:136. [PMID: 30598094 PMCID: PMC6311903 DOI: 10.1186/s12918-018-0663-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background During the identification of potential candidates, computational prediction of drug-target interactions (DTIs) is important to subsequent expensive validation in wet-lab. DTI screening considers four scenarios, depending on whether the drug is an existing or a new drug and whether the target is an existing or a new target. However, existing approaches have the following limitations. First, only a few of them can address the most difficult scenario (i.e., predicting interactions between new drugs and new targets). More importantly, none of the existing approaches could provide the explicit information for understanding the mechanism of forming interactions, such as the drug-target feature pairs contributing to the interactions. Results In this paper, we propose a Triple Matrix Factorization-based model (TMF) to tackle these problems. Compared with former state-of-the-art predictive methods, TMF demonstrates its significant superiority by assessing the predictions on four benchmark datasets over four kinds of screening scenarios. Also, it exhibits its outperformance by validating predicted novel interactions. More importantly, by using PubChem fingerprints of chemical structures as drug features and occurring frequencies of amino acid trimer as protein features, TMF shows its ability to find out the features determining interactions, including dominant feature pairs, frequently occurring substructures, and conserved triplet of amino acids. Conclusions Our TMF provides a unified framework of DTI prediction for all the screening scenarios. It also presents a new insight for the underlying mechanism of DTIs by indicating dominant features, which play important roles in the forming of DTI. Electronic supplementary material The online version of this article (10.1186/s12918-018-0663-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian-Yu Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'An, China.
| | - An-Qi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'An, China
| | - Shao-Wu Zhang
- School of Automations, Northwestern Polytechnical University, Xi'An, China
| | - Kui-Tao Mao
- School of Computer Science, Northwestern Polytechnical University, Xi'An, China
| | - Siu-Ming Yiu
- Department of Computer Science, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
29
|
Drug Repurposing Prediction for Immune-Mediated Cutaneous Diseases using a Word-Embedding-Based Machine Learning Approach. J Invest Dermatol 2018; 139:683-691. [PMID: 30342048 DOI: 10.1016/j.jid.2018.09.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 11/22/2022]
Abstract
Immune-mediated diseases affect more than 20% of the population, and many autoimmune diseases affect the skin. Drug repurposing (or repositioning) is a cost-effective approach for finding drugs that can be used to treat diseases for which they are currently not prescribed. We implemented an efficient bioinformatics approach using word embedding to summarize drug information from more than 20 million articles and applied machine learning to model the drug-disease relationship. We trained our drug repurposing approach separately on nine cutaneous diseases (including psoriasis, atopic dermatitis, and alopecia areata) and eight other immune-mediated diseases and obtained a mean area under the receiver operating characteristic of 0.93 in cross-validation. Focusing in particular on psoriasis, a chronic inflammatory condition of skin that affects more than 100 million people worldwide, we were able to confirm drugs that are known to be effective for psoriasis and to identify potential candidates used to treat other diseases. Furthermore, the targets of drug candidates predicted by our approach were significantly enriched among genes differentially expressed in psoriatic lesional skin from a large-scale RNA sequencing cohort. Although our algorithm cannot be used to determine clinical efficacy, our work provides an approach for suggesting drugs for repurposing to immune-mediated cutaneous diseases.
Collapse
|
30
|
Gaur AS, Nagamani S, Tanneeru K, Druzhilovskiy D, Rudik A, Poroikov V, Narahari Sastry G. Molecular property diagnostic suite for diabetes mellitus (MPDSDM): An integrated web portal for drug discovery and drug repurposing. J Biomed Inform 2018; 85:114-125. [DOI: 10.1016/j.jbi.2018.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/26/2018] [Accepted: 08/05/2018] [Indexed: 01/08/2023]
|
31
|
Kruse RL, Vanijcharoenkarn K. Drug repurposing to treat asthma and allergic disorders: Progress and prospects. Allergy 2018; 73:313-322. [PMID: 28880396 DOI: 10.1111/all.13305] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2017] [Indexed: 12/18/2022]
Abstract
Allergy and atopic asthma have continued to become more prevalent in modern society despite the advent of new treatments, representing a major global health problem. Common medications such as antihistamines and steroids can have undesirable long-term side-effects and lack efficacy in some resistant patients. Biologic medications are increasingly given to treatment-resistant patients, but they can represent high costs, complex dosing and management, and are not widely available around the world. The field needs new, cheap, and convenient treatment options in order to bring better symptom relief to patients. Beyond continued research and development of new drugs, a focus on drug repurposing could alleviate this problem by repositioning effective and safe small-molecule drugs from other fields of medicine and applying them toward the treatment for asthma and allergy. Herein, preclinical models, case reports, and clinical trials of drug repurposing efficacy in allergic disease are reviewed. Novel drugs are also proposed for repositioning based on their mechanism of action to treat asthma and allergy. Overall, drug repurposing could become increasingly important as a way of advancing allergy and atopic asthma therapy, filling a need in treatment of patients today.
Collapse
Affiliation(s)
- R. L. Kruse
- Medical Scientist Training Program; Baylor College of Medicine; Houston TX USA
| | - K. Vanijcharoenkarn
- Division of Allergy & Immunology; Department of Pediatrics; Emory University School of Medicine; Atlanta GA USA
| |
Collapse
|
32
|
Gupta N, Pandya P, Verma S. Computational Predictions for Multi-Target Drug Design. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/7653_2018_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Abstract
In this review we address to what extent computational techniques can augment our ability to predict toxicity. The first section provides a brief history of empirical observations on toxicity dating back to the dawn of Sumerian civilization. Interestingly, the concept of dose emerged very early on, leading up to the modern emphasis on kinetic properties, which in turn encodes the insight that toxicity is not solely a property of a compound but instead depends on the interaction with the host organism. The next logical step is the current conception of evaluating drugs from a personalized medicine point of view. We review recent work on integrating what could be referred to as classical pharmacokinetic analysis with emerging systems biology approaches incorporating multiple omics data. These systems approaches employ advanced statistical analytical data processing complemented with machine learning techniques and use both pharmacokinetic and omics data. We find that such integrated approaches not only provide improved predictions of toxicity but also enable mechanistic interpretations of the molecular mechanisms underpinning toxicity and drug resistance. We conclude the chapter by discussing some of the main challenges, such as how to balance the inherent tension between the predicitive capacity of models, which in practice amounts to constraining the number of features in the models versus allowing for rich mechanistic interpretability, i.e., equipping models with numerous molecular features. This challenge also requires patient-specific predictions on toxicity, which in turn requires proper stratification of patients as regards how they respond, with or without adverse toxic effects. In summary, the transformation of the ancient concept of dose is currently successfully operationalized using rich integrative data encoded in patient-specific models.
Collapse
|
34
|
Shen M, Asawa R, Zhang YQ, Cunningham E, Sun H, Tropsha A, Janzen WP, Muratov EN, Capuzzi SJ, Farag S, Jadhav A, Blatt J, Simeonov A, Martinez NJ. Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing. Oncotarget 2017; 9:4758-4772. [PMID: 29435139 PMCID: PMC5797010 DOI: 10.18632/oncotarget.23462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/26/2017] [Indexed: 01/10/2023] Open
Abstract
Drug repurposing approaches have the potential advantage of facilitating rapid and cost-effective development of new therapies. Particularly, the repurposing of drugs with known safety profiles in children could bypass or streamline toxicity studies. We employed a phenotypic screening paradigm on a panel of well-characterized cell lines derived from pediatric solid tumors against a collection of ∼3,800 compounds spanning approved drugs and investigational agents. Specifically, we employed titration-based screening where compounds were tested at multiple concentrations for their effect on cell viability. Molecular and cellular target enrichment analysis indicated that numerous agents across different therapeutic categories and modes of action had an antiproliferative effect, notably antiparasitic/protozoal drugs with non-classic antineoplastic activity. Focusing on active compounds with dosing and safety information in children according to the Children's Pharmacy Collaborative database, we identified compounds with therapeutic potential through further validation using 3D tumor spheroid models. Moreover, we show that antiparasitic agents induce cell death via apoptosis induction. This study demonstrates that our screening platform enables the identification of chemical agents with cytotoxic activity in pediatric cancer cell lines of which many have known safety/toxicity profiles in children. These agents constitute attractive candidates for efficacy studies in pre-clinical models of pediatric solid tumors.
Collapse
Affiliation(s)
- Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Rosita Asawa
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ya-Qin Zhang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Elizabeth Cunningham
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Hongmao Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Alexander Tropsha
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Eugene N Muratov
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Stephen J Capuzzi
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Sherif Farag
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Julie Blatt
- Division of Pediatric Hematology Oncology, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Natalia J Martinez
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
35
|
Kong R, Wong ST. Repositioning of Drug – New Indications for Marketed Drugs. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017:55-78. [DOI: 10.1002/9783527674381.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
36
|
Balasundaram P, Veerappapillai S, Krishnamurthy S, Karuppasamy R. Drug repurposing: An approach to tackle drug resistance in S. typhimurium. J Cell Biochem 2017; 119:2818-2831. [PMID: 29058787 DOI: 10.1002/jcb.26457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/17/2017] [Indexed: 11/07/2022]
Abstract
Drug resistant S. typhimurium pose important public health problem. The development of effective drugs with novel mechanism(s) of action is needed to overcome issues pertaining to drug resistance. Drug repurposing based on computational analyses is considered a viable alternative strategy to circumvent this issue. In this context, 1309 FDA-approved drugs molecules from Mantra 2.0 database were analyzed for this study, against S. typhimurium. Sixteen compounds having similar profiles of gene expression as quinolones were identified from the database, Mantra 2.0. Further, the pharmacophore characteristics of each resultant molecule were identified and compared with the features of nalidixic acid, using the PharamGist program. Subsequently, the activities of these compounds against S. typhimurium DNA gyrase were identified, using molecular docking study. Side effects analysis was also performed for the identified compounds. Molecular dynamics simulation was carried out for the compound to validate its binding efficiency. Further, characterization of screened compound revealed IC50 values in micromolar concentration range, of which flufenamic acid showed comparable in vitro activity alongside ciprofloxacin and nalidixic acid. Thus represent interesting starting points for further optimization against S. typhimurium infections. It may be noted that the results we have obtained are the first experimental evidence of flufenamic acid activity against S. typhimurium.
Collapse
Affiliation(s)
- Preethi Balasundaram
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Tamil Nadu, India
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Tamil Nadu, India
| | - Suthindhiran Krishnamurthy
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, VIT University, Tamil Nadu, India
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Tamil Nadu, India
| |
Collapse
|
37
|
Chopra G, Samudrala R. Exploring Polypharmacology in Drug Discovery and Repurposing Using the CANDO Platform. Curr Pharm Des 2017; 22:3109-23. [PMID: 27013226 DOI: 10.2174/1381612822666160325121943] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/01/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Traditional drug discovery approaches focus on a limited set of target molecules for treatment against specific indications/diseases. However, drug absorption, dispersion, metabolism, and excretion (ADME) involve interactions with multiple protein systems. Drugs approved for particular indication(s) may be repurposed as novel therapeutics for others. The severely declining rate of discovery and increasing costs of new drugs illustrate the limitations of the traditional reductionist paradigm in drug discovery. METHODS We developed the Computational Analysis of Novel Drug Opportunities (CANDO) platform based on a hypothesis that drugs function by interacting with multiple protein targets to create a molecular interaction signature that can be exploited for therapeutic repurposing and discovery. We compiled a library of compounds that are human ingestible with minimal side effects, followed by an 'all-compounds' vs 'all-proteins' fragment-based multitarget docking with dynamics screen to construct compound-proteome interaction matrices that were then analyzed to determine similarity of drug behavior. The proteomic signature similarity of drugs is then ranked to make putative drug predictions for all indications in a shotgun manner. RESULTS We have previously applied this platform with success in both retrospective benchmarking and prospective validation, and to understand the effect of druggable protein classes on repurposing accuracy. Here we use the CANDO platform to analyze and determine the contribution of multitargeting (polypharmacology) to drug repurposing benchmarking accuracy. Taken together with the previous work, our results indicate that a large number of protein structures with diverse fold space and a specific polypharmacological interactome is necessary for accurate drug predictions using our proteomic and evolutionary drug discovery and repurposing platform. CONCLUSION These results have implications for future drug development and repurposing in the context of polypharmacology.
Collapse
Affiliation(s)
- Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | - Ram Samudrala
- Department of Biomedical Informatics, SUNY, Buffalo, NY, USA.
| |
Collapse
|
38
|
Buza K, Peška L. Drug–target interaction prediction with Bipartite Local Models and hubness-aware regression. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.04.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
39
|
Computational Cell Cycle Profiling of Cancer Cells for Prioritizing FDA-Approved Drugs with Repurposing Potential. Sci Rep 2017; 7:11261. [PMID: 28900159 PMCID: PMC5595967 DOI: 10.1038/s41598-017-11508-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022] Open
Abstract
Discovery of first-in-class medicines for treating cancer is limited by concerns with their toxicity and safety profiles, while repurposing known drugs for new anticancer indications has become a viable alternative. Here, we have developed a new approach that utilizes cell cycle arresting patterns as unique molecular signatures for prioritizing FDA-approved drugs with repurposing potential. As proof-of-principle, we conducted large-scale cell cycle profiling of 884 FDA-approved drugs. Using cell cycle indexes that measure changes in cell cycle profile patterns upon chemical perturbation, we identified 36 compounds that inhibited cancer cell viability including 6 compounds that were previously undescribed. Further cell cycle fingerprint analysis and 3D chemical structural similarity clustering identified unexpected FDA-approved drugs that induced DNA damage, including clinically relevant microtubule destabilizers, which was confirmed experimentally via cell-based assays. Our study shows that computational cell cycle profiling can be used as an approach for prioritizing FDA-approved drugs with repurposing potential, which could aid the development of cancer therapeutics.
Collapse
|
40
|
Lee YH, Choi H, Park S, Lee B, Yi GS. Drug repositioning for enzyme modulator based on human metabolite-likeness. BMC Bioinformatics 2017; 18:226. [PMID: 28617219 PMCID: PMC5471945 DOI: 10.1186/s12859-017-1637-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Recently, the metabolite-likeness of the drug space has emerged and has opened a new possibility for exploring human metabolite-like candidates in drug discovery. However, the applicability of metabolite-likeness in drug discovery has been largely unexplored. Moreover, there are no reports on its applications for the repositioning of drugs to possible enzyme modulators, although enzyme-drug relations could be directly inferred from the similarity relationships between enzyme's metabolites and drugs. METHODS We constructed a drug-metabolite structural similarity matrix, which contains 1,861 FDA-approved drugs and 1,110 human intermediary metabolites scored with the Tanimoto similarity. To verify the metabolite-likeness measure for drug repositioning, we analyzed 17 known antimetabolite drugs that resemble the innate metabolites of their eleven target enzymes as the gold standard positives. Highly scored drugs were selected as possible modulators of enzymes for their corresponding metabolites. Then, we assessed the performance of metabolite-likeness with a receiver operating characteristic analysis and compared it with other drug-target prediction methods. We set the similarity threshold for drug repositioning candidates of new enzyme modulators based on maximization of the Youden's index. We also carried out literature surveys for supporting the drug repositioning results based on the metabolite-likeness. RESULTS In this paper, we applied metabolite-likeness to repurpose FDA-approved drugs to disease-associated enzyme modulators that resemble human innate metabolites. All antimetabolite drugs were mapped with their known 11 target enzymes with statistically significant similarity values to the corresponding metabolites. The comparison with other drug-target prediction methods showed the higher performance of metabolite-likeness for predicting enzyme modulators. After that, the drugs scored higher than similarity score of 0.654 were selected as possible modulators of enzymes for their corresponding metabolites. In addition, we showed that drug repositioning results of 10 enzymes were concordant with the literature evidence. CONCLUSIONS This study introduced a method to predict the repositioning of known drugs to possible modulators of disease associated enzymes using human metabolite-likeness. We demonstrated that this approach works correctly with known antimetabolite drugs and showed that the proposed method has better performance compared to other drug target prediction methods in terms of enzyme modulators prediction. This study as a proof-of-concept showed how to apply metabolite-likeness to drug repositioning as well as potential in further expansion as we acquire more disease associated metabolite-target protein relations.
Collapse
Affiliation(s)
- Yoon Hyeok Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hojae Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Seongyong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Boah Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
| |
Collapse
|
41
|
Sun P, Guo J, Winnenburg R, Baumbach J. Drug repurposing by integrated literature mining and drug–gene–disease triangulation. Drug Discov Today 2017; 22:615-619. [DOI: 10.1016/j.drudis.2016.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/26/2016] [Accepted: 10/18/2016] [Indexed: 01/18/2023]
|
42
|
Drug repositioning based on triangularly balanced structure for tissue-specific diseases in incomplete interactome. Artif Intell Med 2017; 77:53-63. [DOI: 10.1016/j.artmed.2017.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/06/2017] [Accepted: 03/17/2017] [Indexed: 01/16/2023]
|
43
|
A Systematic Framework for Drug Repositioning from Integrated Omics and Drug Phenotype Profiles Using Pathway-Drug Network. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7147039. [PMID: 28127549 PMCID: PMC5233404 DOI: 10.1155/2016/7147039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 12/23/2022]
Abstract
Drug repositioning offers new clinical indications for old drugs. Recently, many computational approaches have been developed to repurpose marketed drugs in human diseases by mining various of biological data including disease expression profiles, pathways, drug phenotype expression profiles, and chemical structure data. However, despite encouraging results, a comprehensive and efficient computational drug repositioning approach is needed that includes the high-level integration of available resources. In this study, we propose a systematic framework employing experimental genomic knowledge and pharmaceutical knowledge to reposition drugs for a specific disease. Specifically, we first obtain experimental genomic knowledge from disease gene expression profiles and pharmaceutical knowledge from drug phenotype expression profiles and construct a pathway-drug network representing a priori known associations between drugs and pathways. To discover promising candidates for drug repositioning, we initialize node labels for the pathway-drug network using identified disease pathways and known drugs associated with the phenotype of interest and perform network propagation in a semisupervised manner. To evaluate our method, we conducted some experiments to reposition 1309 drugs based on four different breast cancer datasets and verified the results of promising candidate drugs for breast cancer by a two-step validation procedure. Consequently, our experimental results showed that the proposed framework is quite useful approach to discover promising candidates for breast cancer treatment.
Collapse
|
44
|
Combating Ebola with Repurposed Therapeutics Using the CANDO Platform. Molecules 2016; 21:molecules21121537. [PMID: 27898018 PMCID: PMC5958544 DOI: 10.3390/molecules21121537] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/23/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022] Open
Abstract
Ebola virus disease (EVD) is extremely virulent with an estimated mortality rate of up to 90%. However, the state-of-the-art treatment for EVD is limited to quarantine and supportive care. The 2014 Ebola epidemic in West Africa, the largest in history, is believed to have caused more than 11,000 fatalities. The countries worst affected are also among the poorest in the world. Given the complexities, time, and resources required for a novel drug development, finding efficient drug discovery pathways is going to be crucial in the fight against future outbreaks. We have developed a Computational Analysis of Novel Drug Opportunities (CANDO) platform based on the hypothesis that drugs function by interacting with multiple protein targets to create a molecular interaction signature that can be exploited for rapid therapeutic repurposing and discovery. We used the CANDO platform to identify and rank FDA-approved drug candidates that bind and inhibit all proteins encoded by the genomes of five different Ebola virus strains. Top ranking drug candidates for EVD treatment generated by CANDO were compared to in vitro screening studies against Ebola virus-like particles (VLPs) by Kouznetsova et al. and genetically engineered Ebola virus and cell viability studies by Johansen et al. to identify drug overlaps between the in virtuale and in vitro studies as putative treatments for future EVD outbreaks. Our results indicate that integrating computational docking predictions on a proteomic scale with results from in vitro screening studies may be used to select and prioritize compounds for further in vivo and clinical testing. This approach will significantly reduce the lead time, risk, cost, and resources required to determine efficacious therapies against future EVD outbreaks.
Collapse
|
45
|
Abstract
How to design a ligand to bind multiple targets, rather than to a single target, is the focus of this review. Rational polypharmacology draws on knowledge that is both broad ranging and hierarchical. Computer-aided multitarget ligand design methods are described according to their nested knowledge level. Ligand-only and then receptor-ligand strategies are first described; followed by the metabolic network viewpoint. Subsequently strategies that view infectious diseases as multigenomic targets are discussed, and finally the disease level interpretation of medicinal therapy is considered. As yet there is no consensus on how best to proceed in designing a multitarget ligand. The current methodologies are bought together in an attempt to give a practical overview of how polypharmacology design might be best initiated.
Collapse
|
46
|
Liao Q, Guan N, Wu C, Zhang Q. Predicting Unknown Interactions Between Known Drugs and Targets via Matrix Completion. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING 2016. [DOI: 10.1007/978-3-319-31753-3_47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Repurposing medicinal compounds for blood cancer treatment. Ann Hematol 2015; 94:1267-76. [PMID: 26048243 PMCID: PMC4488459 DOI: 10.1007/s00277-015-2412-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/28/2015] [Indexed: 01/14/2023]
Abstract
Drug development is being continuously scrutinised for its lack of productivity. Novel drug development is associated with high costs, high failure rates and lengthy development process. These downfalls combined with a huge demand in blood cancer for new therapeutic treatments have led many to consider the method of drug repurposing. Finding new therapeutic indications for already established drug substances is known as redirecting, repositioning, reprofiling, or repurposing of drugs. Off-patent and on-patent drugs can be screened for additional targets and new indications thus bringing them to clinical trials at a faster pace. This approach offers smaller research groups, such as those that are academic based, into the drug development industry. Drug repurposing can make use of previously published data concerning dosage, toxicology and mechanism of activity.
Collapse
|
48
|
Li J, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z. A survey of current trends in computational drug repositioning. Brief Bioinform 2015; 17:2-12. [PMID: 25832646 DOI: 10.1093/bib/bbv020] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 12/26/2022] Open
Abstract
Computational drug repositioning or repurposing is a promising and efficient tool for discovering new uses from existing drugs and holds the great potential for precision medicine in the age of big data. The explosive growth of large-scale genomic and phenotypic data, as well as data of small molecular compounds with granted regulatory approval, is enabling new developments for computational repositioning. To achieve the shortest path toward new drug indications, advanced data processing and analysis strategies are critical for making sense of these heterogeneous molecular measurements. In this review, we show recent advancements in the critical areas of computational drug repositioning from multiple aspects. First, we summarize available data sources and the corresponding computational repositioning strategies. Second, we characterize the commonly used computational techniques. Third, we discuss validation strategies for repositioning studies, including both computational and experimental methods. Finally, we highlight potential opportunities and use-cases, including a few target areas such as cancers. We conclude with a brief discussion of the remaining challenges in computational drug repositioning.
Collapse
|
49
|
Abstract
In recent years, chemical biology and chemical genomics have been increasingly applied to the field of microbiology to uncover new potential therapeutics as well as to probe virulence mechanisms in pathogens. The approach offers some clear advantages, as identified compounds (i) can serve as a proof of principle for the applicability of drugs to specific targets; (ii) can serve as conditional effectors to explore the function of their targets in vitro and in vivo; (iii) can be used to modulate gene expression in otherwise genetically intractable organisms; and (iv) can be tailored to a narrow or broad range of bacteria. This review highlights recent examples from the literature to illustrate how the use of small molecules has advanced discovery of novel potential treatments and has been applied to explore biological mechanisms underlying pathogenicity. We also use these examples to discuss practical considerations that are key to establishing a screening or discovery program. Finally, we discuss the advantages and challenges of different approaches and the methods that are emerging to address these challenges.
Collapse
Affiliation(s)
- Rebecca Anthouard
- Laboratory of Genetics & Molecular Biology of Intestinal Pathogens, Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Victor J DiRita
- Laboratory of Genetics & Molecular Biology of Intestinal Pathogens, Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
50
|
Early repositioning through compound set enrichment analysis: a knowledge-recycling strategy. Future Med Chem 2014; 6:563-75. [PMID: 24649958 DOI: 10.4155/fmc.14.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite famous serendipitous drug repositioning success stories, systematic projects have not yet delivered the expected results. However, repositioning technologies are gaining ground in different phases of routine drug development, together with new adaptive strategies. We demonstrate the power of the compound information pool, the ever-growing heterogeneous information repertoire of approved drugs and candidates as an invaluable catalyzer in this transition. Systematic, computational utilization of this information pool for candidates in early phases is an open research problem; we propose a novel application of the enrichment analysis statistical framework for fusion of this information pool, specifically for the prediction of indications. Pharmaceutical consequences are formulated for a systematic and continuous knowledge recycling strategy, utilizing this information pool throughout the drug-discovery pipeline.
Collapse
|