1
|
Asim MN, Asif T, Hassan F, Dengel A. Protein Sequence Analysis landscape: A Systematic Review of Task Types, Databases, Datasets, Word Embeddings Methods, and Language Models. Database (Oxford) 2025; 2025:baaf027. [PMID: 40448683 DOI: 10.1093/database/baaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/06/2025] [Accepted: 03/26/2025] [Indexed: 06/02/2025]
Abstract
Protein sequence analysis examines the order of amino acids within protein sequences to unlock diverse types of a wealth of knowledge about biological processes and genetic disorders. It helps in forecasting disease susceptibility by finding unique protein signatures, or biomarkers that are linked to particular disease states. Protein Sequence analysis through wet-lab experiments is expensive, time-consuming and error prone. To facilitate large-scale proteomics sequence analysis, the biological community is striving for utilizing AI competence for transitioning from wet-lab to computer aided applications. However, Proteomics and AI are two distinct fields and development of AI-driven protein sequence analysis applications requires knowledge of both domains. To bridge the gap between both fields, various review articles have been written. However, these articles focus revolves around few individual tasks or specific applications rather than providing a comprehensive overview about wide tasks and applications. Following the need of a comprehensive literature that presents a holistic view of wide array of tasks and applications, contributions of this manuscript are manifold: It bridges the gap between Proteomics and AI fields by presenting a comprehensive array of AI-driven applications for 63 distinct protein sequence analysis tasks. It equips AI researchers by facilitating biological foundations of 63 protein sequence analysis tasks. It enhances development of AI-driven protein sequence analysis applications by providing comprehensive details of 68 protein databases. It presents a rich data landscape, encompassing 627 benchmark datasets of 63 diverse protein sequence analysis tasks. It highlights the utilization of 25 unique word embedding methods and 13 language models in AI-driven protein sequence analysis applications. It accelerates the development of AI-driven applications by facilitating current state-of-the-art performances across 63 protein sequence analysis tasks.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence, Kaiserslautern 67663, Germany
- Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany
| | - Tayyaba Asif
- Department of Computer Science, Rheinland Pfälzische Technische Universität, Kaiserslautern 67663, Germany
| | - Faiza Hassan
- Department of Computer Science, Rheinland Pfälzische Technische Universität, Kaiserslautern 67663, Germany
| | - Andreas Dengel
- German Research Center for Artificial Intelligence, Kaiserslautern 67663, Germany
- Department of Computer Science, Rheinland Pfälzische Technische Universität, Kaiserslautern 67663, Germany
- Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany
| |
Collapse
|
2
|
Zhang L, Yao T, Luo J, Yi H, Han X, Pan W, Xue Q, Liu X, Fu J, Zhang A. ChemNTP: Advanced Prediction of Neurotoxicity Targets for Environmental Chemicals Using a Siamese Neural Network. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22646-22656. [PMID: 39661815 DOI: 10.1021/acs.est.4c10081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Environmental chemicals can enter the human body through various exposure pathways, potentially leading to neurotoxic effects that pose significant health risks. Many such chemicals have been identified as neurotoxic, but the molecular mechanisms underlying their toxicity, including specific binding targets, remain unclear. To address this, we developed ChemNTP, a predictive model for identifying neurotoxicity targets of environmental chemicals. ChemNTP integrates a comprehensive representation of chemical structures and biological targets, improving upon traditional methods that are limited to single targets and mechanisms. By leveraging these structural representations, ChemNTP enables rapid screening across 199 potential neurotoxic targets or key molecular initiating events (MIEs). The model demonstrates robust predictive performance, achieving an area under the receiver operating characteristic curve (AUCROC) of 0.923 on the test set. Additionally, ChemNTP's attention mechanism highlights critical residues in binding targets and key functional groups or atoms in molecules, offering insights into the structural basis of interactions. Experimental validation through in vitro enzyme activity assays and molecular docking confirmed the binding of eight polybrominated diphenyl ethers (PBDEs) to acetylcholinesterase (AChE). We also provide a user-friendly software interface to facilitate the rapid identification of neurotoxicity targets for emerging environmental pollutants, with potential applications in studying MIEs for more types of toxicity.
Collapse
Affiliation(s)
- Lingjing Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Tingji Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jiaqi Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Hang Yi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Xiaoxiao Han
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, P. R. China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, P.R. China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, P. R. China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, P.R. China
| |
Collapse
|
3
|
Chen H, Liu J, Tang G, Hao G, Yang G. Bioinformatic Resources for Exploring Human-virus Protein-protein Interactions Based on Binding Modes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae075. [PMID: 39404802 PMCID: PMC11658832 DOI: 10.1093/gpbjnl/qzae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 12/21/2024]
Abstract
Historically, there have been many outbreaks of viral diseases that have continued to claim millions of lives. Research on human-virus protein-protein interactions (PPIs) is vital to understanding the principles of human-virus relationships, providing an essential foundation for developing virus control strategies to combat diseases. The rapidly accumulating data on human-virus PPIs offer unprecedented opportunities for bioinformatics research around human-virus PPIs. However, available detailed analyses and summaries to help use these resources systematically and efficiently are lacking. Here, we comprehensively review the bioinformatic resources used in human-virus PPI research, and discuss and compare their functions, performance, and limitations. This review aims to provide researchers with a bioinformatic toolbox that will hopefully better facilitate the exploration of human-virus PPIs based on binding modes.
Collapse
Affiliation(s)
- Huimin Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Jiaxin Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Gege Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Guangfu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
4
|
Ko YS, Parkinson J, Liu C, Wang W. TUnA: an uncertainty-aware transformer model for sequence-based protein-protein interaction prediction. Brief Bioinform 2024; 25:bbae359. [PMID: 39051117 PMCID: PMC11269822 DOI: 10.1093/bib/bbae359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/31/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Protein-protein interactions (PPIs) are important for many biological processes, but predicting them from sequence data remains challenging. Existing deep learning models often cannot generalize to proteins not present in the training set and do not provide uncertainty estimates for their predictions. To address these limitations, we present TUnA, a Transformer-based uncertainty-aware model for PPI prediction. TUnA uses ESM-2 embeddings with Transformer encoders and incorporates a Spectral-normalized Neural Gaussian Process. TUnA achieves state-of-the-art performance and, importantly, evaluates uncertainty for unseen sequences. We demonstrate that TUnA's uncertainty estimates can effectively identify the most reliable predictions, significantly reducing false positives. This capability is crucial in bridging the gap between computational predictions and experimental validation.
Collapse
Affiliation(s)
- Young Su Ko
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359, United States
| | - Jonathan Parkinson
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359, United States
| | - Cong Liu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359, United States
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359, United States
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0359, United States
| |
Collapse
|
5
|
Jia P, Zhang F, Wu C, Li M. A comprehensive review of protein-centric predictors for biomolecular interactions: from proteins to nucleic acids and beyond. Brief Bioinform 2024; 25:bbae162. [PMID: 38739759 PMCID: PMC11089422 DOI: 10.1093/bib/bbae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/17/2024] [Accepted: 03/31/2024] [Indexed: 05/16/2024] Open
Abstract
Proteins interact with diverse ligands to perform a large number of biological functions, such as gene expression and signal transduction. Accurate identification of these protein-ligand interactions is crucial to the understanding of molecular mechanisms and the development of new drugs. However, traditional biological experiments are time-consuming and expensive. With the development of high-throughput technologies, an increasing amount of protein data is available. In the past decades, many computational methods have been developed to predict protein-ligand interactions. Here, we review a comprehensive set of over 160 protein-ligand interaction predictors, which cover protein-protein, protein-nucleic acid, protein-peptide and protein-other ligands (nucleotide, heme, ion) interactions. We have carried out a comprehensive analysis of the above four types of predictors from several significant perspectives, including their inputs, feature profiles, models, availability, etc. The current methods primarily rely on protein sequences, especially utilizing evolutionary information. The significant improvement in predictions is attributed to deep learning methods. Additionally, sequence-based pretrained models and structure-based approaches are emerging as new trends.
Collapse
Affiliation(s)
- Pengzhen Jia
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| | - Fuhao Zhang
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
- College of Information Engineering, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Chaojin Wu
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| |
Collapse
|
6
|
Xian L, Wang Y. Advances in Computational Methods for Protein–Protein Interaction Prediction. ELECTRONICS 2024; 13:1059. [DOI: 10.3390/electronics13061059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Protein–protein interactions (PPIs) are pivotal in various physiological processes inside biological entities. Accurate identification of PPIs holds paramount significance for comprehending biological processes, deciphering disease mechanisms, and advancing medical research. Given the costly and labor-intensive nature of experimental approaches, a multitude of computational methods have been devised to enable swift and large-scale PPI prediction. This review offers a thorough examination of recent strides in computational methodologies for PPI prediction, with a particular focus on the utilization of deep learning techniques within this domain. Alongside a systematic classification and discussion of relevant databases, feature extraction strategies, and prominent computational approaches, we conclude with a thorough analysis of current challenges and prospects for the future of this field.
Collapse
Affiliation(s)
- Lei Xian
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
7
|
Sousa RT, Silva S, Pesquita C. Explaining protein-protein interactions with knowledge graph-based semantic similarity. Comput Biol Med 2024; 170:108076. [PMID: 38308873 DOI: 10.1016/j.compbiomed.2024.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/11/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
The application of artificial intelligence and machine learning methods for several biomedical applications, such as protein-protein interaction prediction, has gained significant traction in recent decades. However, explainability is a key aspect of using machine learning as a tool for scientific discovery. Explainable artificial intelligence approaches help clarify algorithmic mechanisms and identify potential bias in the data. Given the complexity of the biomedical domain, explanations should be grounded in domain knowledge which can be achieved by using ontologies and knowledge graphs. These knowledge graphs express knowledge about a domain by capturing different perspectives of the representation of real-world entities. However, the most popular way to explore knowledge graphs with machine learning is through using embeddings, which are not explainable. As an alternative, knowledge graph-based semantic similarity offers the advantage of being explainable. Additionally, similarity can be computed to capture different semantic aspects within the knowledge graph and increasing the explainability of predictive approaches. We propose a novel method to generate explainable vector representations, KGsim2vec, that uses aspect-oriented semantic similarity features to represent pairs of entities in a knowledge graph. Our approach employs a set of machine learning models, including decision trees, genetic programming, random forest and eXtreme gradient boosting, to predict relations between entities. The experiments reveal that considering multiple semantic aspects when representing the similarity between two entities improves explainability and predictive performance. KGsim2vec performs better than black-box methods based on knowledge graph embeddings or graph neural networks. Moreover, KGsim2vec produces global models that can capture biological phenomena and elucidate data biases.
Collapse
Affiliation(s)
- Rita T Sousa
- LASIGE, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.
| | - Sara Silva
- LASIGE, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Catia Pesquita
- LASIGE, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
8
|
Zheng L, Shi S, Lu M, Fang P, Pan Z, Zhang H, Zhou Z, Zhang H, Mou M, Huang S, Tao L, Xia W, Li H, Zeng Z, Zhang S, Chen Y, Li Z, Zhu F. AnnoPRO: a strategy for protein function annotation based on multi-scale protein representation and a hybrid deep learning of dual-path encoding. Genome Biol 2024; 25:41. [PMID: 38303023 PMCID: PMC10832132 DOI: 10.1186/s13059-024-03166-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Protein function annotation has been one of the longstanding issues in biological sciences, and various computational methods have been developed. However, the existing methods suffer from a serious long-tail problem, with a large number of GO families containing few annotated proteins. Herein, an innovative strategy named AnnoPRO was therefore constructed by enabling sequence-based multi-scale protein representation, dual-path protein encoding using pre-training, and function annotation by long short-term memory-based decoding. A variety of case studies based on different benchmarks were conducted, which confirmed the superior performance of AnnoPRO among available methods. Source code and models have been made freely available at: https://github.com/idrblab/AnnoPRO and https://zenodo.org/records/10012272.
Collapse
Affiliation(s)
- Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Pan Fang
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hongning Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhimeng Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shijie Huang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Weiqi Xia
- Pharmaceutical Department, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Honglin Li
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhenyu Zeng
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Shun Zhang
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Zhaorong Li
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
9
|
Bernett J, Blumenthal DB, List M. Cracking the black box of deep sequence-based protein-protein interaction prediction. Brief Bioinform 2024; 25:bbae076. [PMID: 38446741 PMCID: PMC10939362 DOI: 10.1093/bib/bbae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Indexed: 03/08/2024] Open
Abstract
Identifying protein-protein interactions (PPIs) is crucial for deciphering biological pathways. Numerous prediction methods have been developed as cheap alternatives to biological experiments, reporting surprisingly high accuracy estimates. We systematically investigated how much reproducible deep learning models depend on data leakage, sequence similarities and node degree information, and compared them with basic machine learning models. We found that overlaps between training and test sets resulting from random splitting lead to strongly overestimated performances. In this setting, models learn solely from sequence similarities and node degrees. When data leakage is avoided by minimizing sequence similarities between training and test set, performances become random. Moreover, baseline models directly leveraging sequence similarity and network topology show good performances at a fraction of the computational cost. Thus, we advocate that any improvements should be reported relative to baseline methods in the future. Our findings suggest that predicting PPIs remains an unsolved task for proteins showing little sequence similarity to previously studied proteins, highlighting that further experimental research into the 'dark' protein interactome and better computational methods are needed.
Collapse
Affiliation(s)
- Judith Bernett
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 3, 85354, Freising, Germany
| | - David B Blumenthal
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Werner-von-Siemens-Str. 61, 91052, Erlangen, Germany
| | - Markus List
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 3, 85354, Freising, Germany
| |
Collapse
|
10
|
Wu J, Liu B, Zhang J, Wang Z, Li J. DL-PPI: a method on prediction of sequenced protein-protein interaction based on deep learning. BMC Bioinformatics 2023; 24:473. [PMID: 38097937 PMCID: PMC10722729 DOI: 10.1186/s12859-023-05594-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
PURPOSE Sequenced Protein-Protein Interaction (PPI) prediction represents a pivotal area of study in biology, playing a crucial role in elucidating the mechanistic underpinnings of diseases and facilitating the design of novel therapeutic interventions. Conventional methods for extracting features through experimental processes have proven to be both costly and exceedingly complex. In light of these challenges, the scientific community has turned to computational approaches, particularly those grounded in deep learning methodologies. Despite the progress achieved by current deep learning technologies, their effectiveness diminishes when applied to larger, unfamiliar datasets. RESULTS In this study, the paper introduces a novel deep learning framework, termed DL-PPI, for predicting PPIs based on sequence data. The proposed framework comprises two key components aimed at improving the accuracy of feature extraction from individual protein sequences and capturing relationships between proteins in unfamiliar datasets. 1. Protein Node Feature Extraction Module: To enhance the accuracy of feature extraction from individual protein sequences and facilitate the understanding of relationships between proteins in unknown datasets, the paper devised a novel protein node feature extraction module utilizing the Inception method. This module efficiently captures relevant patterns and representations within protein sequences, enabling more informative feature extraction. 2. Feature-Relational Reasoning Network (FRN): In the Global Feature Extraction module of our model, the paper developed a novel FRN that leveraged Graph Neural Networks to determine interactions between pairs of input proteins. The FRN effectively captures the underlying relational information between proteins, contributing to improved PPI predictions. DL-PPI framework demonstrates state-of-the-art performance in the realm of sequence-based PPI prediction.
Collapse
Affiliation(s)
- Jiahui Wu
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Bo Liu
- School of Mathematical and Computational Sciences, Massey University, Auckland, 0745, New Zealand.
| | - Jidong Zhang
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Zhihan Wang
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Jianqiang Li
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
11
|
Kang Y, Wang X, Xie C, Zhang H, Xie W. BBLN: A bilateral-branch learning network for unknown protein-protein interaction prediction. Comput Biol Med 2023; 167:107588. [PMID: 37918265 DOI: 10.1016/j.compbiomed.2023.107588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Unknown Protein-Protein Interactions (PPIs) prediction has a huge demand in the biological analysis field. Since the effect of the limited availability of protein data is severe, transferable representations are highly demanded to be learned from various data. The latest works enhance the model performance on unknown PPIs prediction and have achieved certain improvements by combining protein information and relation information on PPI graph. However, such methods inevitably suffer from a so-called information monotonicity problem that limits the improvements when encountering large amounts of unknown PPIs. The prediction performance cannot be actually increased without considering the complementary information and relationship information among various modalities of protein data. To this end, we propose a bilateral-branch learning network to deeply enhance the both complementary and relationship information based on the amino acid sequence and gene ontology from multi- and cross-modal views. Experimental results on massive real-world datasets show that our method significantly outperforms the previous state-of-the-art on both traditional and novel unknown PPIs prediction.
Collapse
Affiliation(s)
- Yan Kang
- National Pilot School of Software, Yunnan University, Kunming, 650091, Yunnan, China; Yunnan Key Laboratory of Software Engineering, China
| | - Xinchao Wang
- National Pilot School of Software, Yunnan University, Kunming, 650091, Yunnan, China
| | - Cheng Xie
- National Pilot School of Software, Yunnan University, Kunming, 650091, Yunnan, China.
| | - Huadong Zhang
- National Pilot School of Software, Yunnan University, Kunming, 650091, Yunnan, China
| | - Wentao Xie
- National Pilot School of Software, Yunnan University, Kunming, 650091, Yunnan, China
| |
Collapse
|
12
|
Kurgan L, Hu G, Wang K, Ghadermarzi S, Zhao B, Malhis N, Erdős G, Gsponer J, Uversky VN, Dosztányi Z. Tutorial: a guide for the selection of fast and accurate computational tools for the prediction of intrinsic disorder in proteins. Nat Protoc 2023; 18:3157-3172. [PMID: 37740110 DOI: 10.1038/s41596-023-00876-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/21/2023] [Indexed: 09/24/2023]
Abstract
Intrinsic disorder is instrumental for a wide range of protein functions, and its analysis, using computational predictions from primary structures, complements secondary and tertiary structure-based approaches. In this Tutorial, we provide an overview and comparison of 23 publicly available computational tools with complementary parameters useful for intrinsic disorder prediction, partly relying on results from the Critical Assessment of protein Intrinsic Disorder prediction experiment. We consider factors such as accuracy, runtime, availability and the need for functional insights. The selected tools are available as web servers and downloadable programs, offer state-of-the-art predictions and can be used in a high-throughput manner. We provide examples and instructions for the selected tools to illustrate practical aspects related to the submission, collection and interpretation of predictions, as well as the timing and their limitations. We highlight two predictors for intrinsically disordered proteins, flDPnn as accurate and fast and IUPred as very fast and moderately accurate, while suggesting ANCHOR2 and MoRFchibi as two of the best-performing predictors for intrinsically disordered region binding. We link these tools to additional resources, including databases of predictions and web servers that integrate multiple predictive methods. Altogether, this Tutorial provides a hands-on guide to comparatively evaluating multiple predictors, submitting and collecting their own predictions, and reading and interpreting results. It is suitable for experimentalists and computational biologists interested in accurately and conveniently identifying intrinsic disorder, facilitating the functional characterization of the rapidly growing collections of protein sequences.
Collapse
Affiliation(s)
- Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Kui Wang
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Sina Ghadermarzi
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Nawar Malhis
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gábor Erdős
- MTA-ELTE Momentum Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Byrd Alzheimer's Center and Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Zsuzsanna Dosztányi
- MTA-ELTE Momentum Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
13
|
Mardikoraem M, Wang Z, Pascual N, Woldring D. Generative models for protein sequence modeling: recent advances and future directions. Brief Bioinform 2023; 24:bbad358. [PMID: 37864295 PMCID: PMC10589401 DOI: 10.1093/bib/bbad358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/22/2023] Open
Abstract
The widespread adoption of high-throughput omics technologies has exponentially increased the amount of protein sequence data involved in many salient disease pathways and their respective therapeutics and diagnostics. Despite the availability of large-scale sequence data, the lack of experimental fitness annotations underpins the need for self-supervised and unsupervised machine learning (ML) methods. These techniques leverage the meaningful features encoded in abundant unlabeled sequences to accomplish complex protein engineering tasks. Proficiency in the rapidly evolving fields of protein engineering and generative AI is required to realize the full potential of ML models as a tool for protein fitness landscape navigation. Here, we support this work by (i) providing an overview of the architecture and mathematical details of the most successful ML models applicable to sequence data (e.g. variational autoencoders, autoregressive models, generative adversarial neural networks, and diffusion models), (ii) guiding how to effectively implement these models on protein sequence data to predict fitness or generate high-fitness sequences and (iii) highlighting several successful studies that implement these techniques in protein engineering (from paratope regions and subcellular localization prediction to high-fitness sequences and protein design rules generation). By providing a comprehensive survey of model details, novel architecture developments, comparisons of model applications, and current challenges, this study intends to provide structured guidance and robust framework for delivering a prospective outlook in the ML-driven protein engineering field.
Collapse
Affiliation(s)
- Mehrsa Mardikoraem
- Michigan State University (MSU)‘s Department of Chemical Engineering and Materials Science
| | - Zirui Wang
- Regeneron Pharmaceuticals, Inc. Having received his B.S. in Chemical Engineering from MSU, he is currently pursuing a M.S. in Computer Science from Syracuse University
| | | | - Daniel Woldring
- MSU’s Department of Chemical Engineering and Materials Science and a member of MSU’s Institute for Quantitative Health Sciences and Engineering
| |
Collapse
|
14
|
Xie S, Xie X, Zhao X, Liu F, Wang Y, Ping J, Ji Z. HNSPPI: a hybrid computational model combing network and sequence information for predicting protein-protein interaction. Brief Bioinform 2023; 24:bbad261. [PMID: 37480553 DOI: 10.1093/bib/bbad261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/24/2023] Open
Abstract
Most life activities in organisms are regulated through protein complexes, which are mainly controlled via Protein-Protein Interactions (PPIs). Discovering new interactions between proteins and revealing their biological functions are of great significance for understanding the molecular mechanisms of biological processes and identifying the potential targets in drug discovery. Current experimental methods only capture stable protein interactions, which lead to limited coverage. In addition, expensive cost and time consuming are also the obvious shortcomings. In recent years, various computational methods have been successfully developed for predicting PPIs based only on protein homology, primary sequences of protein or gene ontology information. Computational efficiency and data complexity are still the main bottlenecks for the algorithm generalization. In this study, we proposed a novel computational framework, HNSPPI, to predict PPIs. As a hybrid supervised learning model, HNSPPI comprehensively characterizes the intrinsic relationship between two proteins by integrating amino acid sequence information and connection properties of PPI network. The experimental results show that HNSPPI works very well on six benchmark datasets. Moreover, the comparison analysis proved that our model significantly outperforms other five existing algorithms. Finally, we used the HNSPPI model to explore the SARS-CoV-2-Human interaction system and found several potential regulations. In summary, HNSPPI is a promising model for predicting new protein interactions from known PPI data.
Collapse
Affiliation(s)
- Shijie Xie
- College of Artificial Intelligence, Nanjing Agricultural University, No. 1 Weigang Rd, Nanjing, Jiangsu 210095, China
| | - Xiaojun Xie
- College of Artificial Intelligence, Nanjing Agricultural University, No. 1 Weigang Rd, Nanjing, Jiangsu 210095, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yiming Wang
- Key Laboratory of Biological Interactions and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jihui Ping
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhiwei Ji
- College of Artificial Intelligence, Nanjing Agricultural University, No. 1 Weigang Rd, Nanjing, Jiangsu 210095, China
| |
Collapse
|
15
|
Zhang F, Zhang Y, Zhu X, Chen X, Lu F, Zhang X. DeepSG2PPI: A Protein-Protein Interaction Prediction Method Based on Deep Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2907-2919. [PMID: 37079417 DOI: 10.1109/tcbb.2023.3268661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Protein-protein interaction (PPI) plays an important role in almost all life activities. Many protein interaction sites have been confirmed by biological experiments, but these PPI site identification methods are time-consuming and expensive. In this study, a deep learning-based PPI prediction method, named DeepSG2PPI, is developed. First, the protein sequence information is retrieved and the local context information of each amino acid residue is calculated. A two-dimensional convolutional neural network (2D-CNN) model is employed to extract features from a two-channel coding structure, in which an attention mechanism is embedded to assign higher weights to key features. Second, the global statistical information of each amino acid residue and the relationship graph between the protein and GO (Gene Ontology) function annotation are built, and the graph embedding vector is constructed to represent the biological features of the protein. Finally, a 2D-CNN model and two 1D-CNN models are combined for PPI prediction. The comparison analysis with existing algorithms shows that the DeepSG2PPI method has better performance. It provides more accurate and effective PPI site prediction, which will be helpful in reducing the cost and failure rate of biological experiments.
Collapse
|
16
|
Tang X, Shang J, Ji Y, Sun Y. PLASMe: a tool to identify PLASMid contigs from short-read assemblies using transformer. Nucleic Acids Res 2023; 51:e83. [PMID: 37427782 PMCID: PMC10450166 DOI: 10.1093/nar/gkad578] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
Plasmids are mobile genetic elements that carry important accessory genes. Cataloging plasmids is a fundamental step to elucidate their roles in promoting horizontal gene transfer between bacteria. Next generation sequencing (NGS) is the main source for discovering new plasmids today. However, NGS assembly programs tend to return contigs, making plasmid detection difficult. This problem is particularly grave for metagenomic assemblies, which contain short contigs of heterogeneous origins. Available tools for plasmid contig detection still suffer from some limitations. In particular, alignment-based tools tend to miss diverged plasmids while learning-based tools often have lower precision. In this work, we develop a plasmid detection tool PLASMe that capitalizes on the strength of alignment and learning-based methods. Closely related plasmids can be easily identified using the alignment component in PLASMe while diverged plasmids can be predicted using order-specific Transformer models. By encoding plasmid sequences as a language defined on the protein cluster-based token set, Transformer can learn the importance of proteins and their correlation through positionally token embedding and the attention mechanism. We compared PLASMe and other tools on detecting complete plasmids, plasmid contigs, and contigs assembled from CAMI2 simulated data. PLASMe achieved the highest F1-score. After validating PLASMe on data with known labels, we also tested it on real metagenomic and plasmidome data. The examination of some commonly used marker genes shows that PLASMe exhibits more reliable performance than other tools.
Collapse
Affiliation(s)
- Xubo Tang
- Department of Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Jiayu Shang
- Department of Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yongxin Ji
- Department of Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
17
|
Lee M. Recent Advances in Deep Learning for Protein-Protein Interaction Analysis: A Comprehensive Review. Molecules 2023; 28:5169. [PMID: 37446831 DOI: 10.3390/molecules28135169] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Deep learning, a potent branch of artificial intelligence, is steadily leaving its transformative imprint across multiple disciplines. Within computational biology, it is expediting progress in the understanding of Protein-Protein Interactions (PPIs), key components governing a wide array of biological functionalities. Hence, an in-depth exploration of PPIs is crucial for decoding the intricate biological system dynamics and unveiling potential avenues for therapeutic interventions. As the deployment of deep learning techniques in PPI analysis proliferates at an accelerated pace, there exists an immediate demand for an exhaustive review that encapsulates and critically assesses these novel developments. Addressing this requirement, this review offers a detailed analysis of the literature from 2021 to 2023, highlighting the cutting-edge deep learning methodologies harnessed for PPI analysis. Thus, this review stands as a crucial reference for researchers in the discipline, presenting an overview of the recent studies in the field. This consolidation helps elucidate the dynamic paradigm of PPI analysis, the evolution of deep learning techniques, and their interdependent dynamics. This scrutiny is expected to serve as a vital aid for researchers, both well-established and newcomers, assisting them in maneuvering the rapidly shifting terrain of deep learning applications in PPI analysis.
Collapse
Affiliation(s)
- Minhyeok Lee
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
18
|
Mishra G, Meena RK, Kant R, Pandey S, Ginwal HS, Bhandari MS. Genome-wide characterization leading to simple sequence repeat (SSR) markers development in Shorea robusta. Funct Integr Genomics 2023; 23:51. [PMID: 36707443 PMCID: PMC9883139 DOI: 10.1007/s10142-023-00975-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/29/2023]
Abstract
Tropical rainforests in Southeast Asia are enriched by multifarious biota dominated by Dipterocarpaceae. In this family, Shorea robusta is an ecologically sensitive and economically important timber species whose genomic diversity and phylogeny remain understudied due to lack of datasets on genetic resources. Smattering availability of molecular markers impedes population genetic studies indicating a necessity to develop genomic databases and species-specific markers in S. robusta. Accordingly, the present study focused on fostering de novo low-depth genome sequencing, identification of reliable microsatellites markers, and their validation in various populations of S. robusta in Uttarakhand Himalayas. With 69.88 million raw reads assembled into 1,97,489 contigs (read mapped to 93.2%) and a genome size of 357.11 Mb (29 × coverage), Illumina paired-end sequencing technology arranged a library of sequence data of ~ 10 gigabases (Gb). From 57,702 microsatellite repeats, a total of 35,049 simple sequence repeat (SSR) primer pairs were developed. Afterward, among randomly selected 60 primer pairs, 50 showed successful amplification and 24 were found as polymorphic. Out of which, nine polymorphic loci were further used for genetic analysis in 16 genotypes each from three different geographical locations of Uttarakhand (India). Prominently, the average number of alleles per locus (Na), observed heterozygosity (Ho), expected heterozygosity (He), and the polymorphism information content (PIC) were recorded as 2.44, 0.324, 0.277 and 0.252, respectively. The accessibility of sequence information and novel SSR markers potentially enriches the current knowledge of the genomic background for S. robusta and to be utilized in various genetic studies in species under tribe Shoreae.
Collapse
Affiliation(s)
- Garima Mishra
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun - 248 195, Uttarakhand Dehradun, India
| | - Rajendra K. Meena
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun - 248 195, Uttarakhand Dehradun, India
| | - Rama Kant
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun - 248 195, Uttarakhand Dehradun, India
| | - Shailesh Pandey
- Forest Pathology Discipline, Division of Forest Protection, Forest Research Institute, Dehradun - 248 006, Uttarakhand Dehradun, India
| | - Harish S. Ginwal
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun - 248 195, Uttarakhand Dehradun, India
| | - Maneesh S. Bhandari
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun - 248 195, Uttarakhand Dehradun, India
| |
Collapse
|
19
|
Temiz M, Bakir-Gungor B, Güner Şahan P, Coskun M. Topological feature generation for link prediction in biological networks. PeerJ 2023; 11:e15313. [PMID: 37187525 PMCID: PMC10178302 DOI: 10.7717/peerj.15313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Graph or network embedding is a powerful method for extracting missing or potential information from interactions between nodes in biological networks. Graph embedding methods learn representations of nodes and interactions in a graph with low-dimensional vectors, which facilitates research to predict potential interactions in networks. However, most graph embedding methods suffer from high computational costs in the form of high computational complexity of the embedding methods and learning times of the classifier, as well as the high dimensionality of complex biological networks. To address these challenges, in this study, we use the Chopper algorithm as an alternative approach to graph embedding, which accelerates the iterative processes and thus reduces the running time of the iterative algorithms for three different (nervous system, blood, heart) undirected protein-protein interaction (PPI) networks. Due to the high dimensionality of the matrix obtained after the embedding process, the data are transformed into a smaller representation by applying feature regularization techniques. We evaluated the performance of the proposed method by comparing it with state-of-the-art methods. Extensive experiments demonstrate that the proposed approach reduces the learning time of the classifier and performs better in link prediction. We have also shown that the proposed embedding method is faster than state-of-the-art methods on three different PPI datasets.
Collapse
Affiliation(s)
- Mustafa Temiz
- Department of Computer Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Burcu Bakir-Gungor
- Department of Computer Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Pınar Güner Şahan
- Department of Computer Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Mustafa Coskun
- Department of Artificial Intelligence and Big Data Engineering, Ankara University, Ankara, Turkey
| |
Collapse
|
20
|
Yang L, Zhang YH, Huang F, Li Z, Huang T, Cai YD. Identification of protein–protein interaction associated functions based on gene ontology and KEGG pathway. Front Genet 2022; 13:1011659. [PMID: 36171880 PMCID: PMC9511048 DOI: 10.3389/fgene.2022.1011659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Protein–protein interactions (PPIs) are extremely important for gaining mechanistic insights into the functional organization of the proteome. The resolution of PPI functions can help in the identification of novel diagnostic and therapeutic targets with medical utility, thus facilitating the development of new medications. However, the traditional methods for resolving PPI functions are mainly experimental methods, such as co-immunoprecipitation, pull-down assays, cross-linking, label transfer, and far-Western blot analysis, that are not only expensive but also time-consuming. In this study, we constructed an integrated feature selection scheme for the large-scale selection of the relevant functions of PPIs by using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations of PPI participants. First, we encoded the proteins in each PPI with their gene ontologies and KEGG pathways. Then, the encoded protein features were refined as features of both positive and negative PPIs. Subsequently, Boruta was used for the initial filtering of features to obtain 5684 features. Three feature ranking algorithms, namely, least absolute shrinkage and selection operator, light gradient boosting machine, and max-relevance and min-redundancy, were applied to evaluate feature importance. Finally, the top-ranked features derived from multiple datasets were comprehensively evaluated, and the intersection of results mined by three feature ranking algorithms was taken to identify the features with high correlation with PPIs. Some functional terms were identified in our study, including cytokine–cytokine receptor interaction (hsa04060), intrinsic component of membrane (GO:0031224), and protein-binding biological process (GO:0005515). Our newly proposed integrated computational approach offers a novel perspective of the large-scale mining of biological functions linked to PPI.
Collapse
Affiliation(s)
- Lili Yang
- Measurement Biotechnique Research Center, School of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - ZhanDong Li
- Measurement Biotechnique Research Center, School of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| |
Collapse
|
21
|
Kurgan L. Resources for computational prediction of intrinsic disorder in proteins. Methods 2022; 204:132-141. [DOI: 10.1016/j.ymeth.2022.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
|