1
|
Lucien F, Gustafson D, Lenassi M, Li B, Teske JJ, Boilard E, von Hohenberg KC, Falcón‐Perez JM, Gualerzi A, Reale A, Jones JC, Lässer C, Lawson C, Nazarenko I, O'Driscoll L, Pink R, Siljander PR, Soekmadji C, Hendrix A, Welsh JA, Witwer KW, Nieuwland R. MIBlood-EV: Minimal information to enhance the quality and reproducibility of blood extracellular vesicle research. J Extracell Vesicles 2023; 12:e12385. [PMID: 38063210 PMCID: PMC10704543 DOI: 10.1002/jev2.12385] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Blood is the most commonly used body fluid for extracellular vesicle (EV) research. The composition of a blood sample and its derivatives (i.e., plasma and serum) are not only donor-dependent but also influenced by collection and preparation protocols. Since there are hundreds of pre-analytical protocols and over forty variables, the development of standard operating procedures for EV research is very challenging. To improve the reproducibility of blood EV research, the International Society for Extracellular Vesicles (ISEV) Blood EV Task Force proposes standardized reporting of (i) the applied blood collection and preparation protocol and (ii) the quality of the prepared plasma and serum samples. Gathering detailed information will provide insight into the performance of the protocols and more effectively identify potential confounders in the prepared plasma and serum samples. To collect this information, the ISEV Blood EV Task Force created the Minimal Information for Blood EV research (MIBlood-EV), a tool to record and report information about pre-analytical protocols used for plasma and serum preparation as well as assays used to assess the quality of these preparations. This tool does not require modifications of established local pre-analytical protocols and can be easily implemented to enhance existing databases thereby enabling evidence-based optimization of pre-analytical protocols through meta-analysis. Taken together, insight into the quality of prepared plasma and serum samples will (i) improve the quality of biobanks for EV research, (ii) guide the exchange of plasma and serum samples between biobanks and laboratories, (iii) facilitate inter-laboratory comparative EV studies, and (iv) improve the peer review process.
Collapse
Affiliation(s)
- Fabrice Lucien
- Department of UrologyMayo ClinicRochesterMinnesotaUSA
- Department of ImmunologyMayo ClinicRochesterMinnesotaUSA
| | - Dakota Gustafson
- Department of Laboratory Medicine & PathobiologyUniversity of TorontoTorontoOntarioCanada
- Toronto General Hospital Research InstituteTorontoOntarioCanada
- Department of Public Health SciencesQueen's UniversityKingstonOntarioCanada
| | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Bo Li
- Department of Laboratory MedicineNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Laboratory of Experimental Clinical Chemistry, and Amsterdam Vesicle CenterAmsterdam UMClocation AMCAmsterdamNetherlands
| | | | - Eric Boilard
- Centre de Recherche du CHU de Québec – Université Laval, Département de microbiologie et immunologieFaculté de Médecine de l'Université LavalQuébecQuebecCanada
| | | | - Juan Manual Falcón‐Perez
- Exosomes laboratory and Metabolomics PlatformCIC bioGUNE‐BRTADerioSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | | | - Antonia Reale
- Division of Blood CancersMonash University ‐ Alfred HealthMelbourneVictoriaAustralia
| | - Jennifer C. Jones
- Laboratory of Pathology, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | | | - Irina Nazarenko
- Institute for Infection Prevention and Control, Faculty of MedicineUniversity of Freiburg, Freiburg, Germany, German Cancer Consortium
- Partner Site Freiburg and German Cancer Research CenterHeidelbergGermany
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute & Trinity St. James's Cancer InstituteTrinity College DublinDublinIreland
| | - Ryan Pink
- Faculty Health and Life SciencesOxford Brookes UniversityOxfordUnited Kingdom of Great Britain and Northern Ireland
| | - Pia R‐M Siljander
- EV‐group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical BiosciencesUniversity of HelsinkiHelsinkiFinland
| | - Carolina Soekmadji
- School of Biomedical Sciences, Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
| | - Joshua A Welsh
- School of Medicine, Department of Molecular and Comparative Pathobiology, and Department of NeurologyJohns Hopkins UniversityBaltimoreMarylandUnited States
| | - Kenneth W. Witwer
- School of Medicine, Department of Molecular and Comparative Pathobiology, and Department of NeurologyJohns Hopkins UniversityBaltimoreMarylandUnited States
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, and Amsterdam Vesicle CenterAmsterdam UMClocation AMCAmsterdamNetherlands
| |
Collapse
|
2
|
Huang Y, Arab T, Russell AE, Mallick ER, Nagaraj R, Gizzie E, Redding‐Ochoa J, Troncoso JC, Pletnikova O, Turchinovich A, Routenberg DA, Witwer KW. Toward a human brain extracellular vesicle atlas: Characteristics of extracellular vesicles from different brain regions, including small RNA and protein profiles. INTERDISCIPLINARY MEDICINE 2023; 1:e20230016. [PMID: 38089920 PMCID: PMC10712435 DOI: 10.1002/inmd.20230016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 12/20/2023]
Abstract
Extracellular vesicles (EVs) are released from different cell types in the central nervous system (CNS) and play roles in regulating physiological and pathological functions. Although brain-derived EVs (bdEVs) have been successfully collected from brain tissue, there is not yet a "bdEV Atlas" of EVs from different brain regions. To address this gap, we separated EVs from eight anatomical brain regions of a single individual and subsequently characterized them by count, size, morphology, and protein and RNA content. The greatest particle yield was from cerebellum, while the fewest particles were recovered from the orbitofrontal, postcentral gyrus, and thalamus regions. EV surface phenotyping indicated that CD81 and CD9 were more abundant than CD63 in all regions. Cell-enriched surface markers varied between brain regions. For example, putative neuronal markers NCAM, CD271, and NRCAM were more abundant in medulla, cerebellum, and occipital regions, respectively. These findings, while restricted to tissues from a single individual, suggest that additional studies are warranted to provide more insight into the links between EV heterogeneity and function in the CNS.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Tanina Arab
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ashley E. Russell
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of BiologySchool of SciencePenn State ErieThe Behrend CollegeEriePennsylvaniaUSA
| | - Emily R. Mallick
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - Evan Gizzie
- Meso Scale DiagnosticsLLCRockvilleMarylandUSA
| | - Javier Redding‐Ochoa
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Juan C. Troncoso
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Olga Pletnikova
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Pathology and Anatomical SciencesJacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNew YorkUSA
| | - Andrey Turchinovich
- Division of Cancer Genome ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Biolabs GmbHHeidelbergGermany
| | | | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
3
|
Kalia V, Baccarelli AA, Happel C, Hollander JA, Jukic AM, McAllister KA, Menon R, Merrick BA, Milosavljevic A, Ravichandran LV, Roth ME, Subramanian A, Tyson FL, Worth L, Shaughnessy DT. Seminar: Extracellular Vesicles as Mediators of Environmental Stress in Human Disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:104201. [PMID: 37861803 PMCID: PMC10588739 DOI: 10.1289/ehp12980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs), membrane-bound particles containing a variety of RNA types, DNA, proteins, and other macromolecules, are now appreciated as an important means of communication between cells and tissues, both in normal cellular physiology and as a potential indicator of cellular stress, environmental exposures, and early disease pathogenesis. Extracellular signaling through EVs is a growing field of research for understanding fundamental mechanisms of health and disease and for the potential for biomarker discovery and therapy development. EVs are also known to play important roles in mediating the effects of exposure to environmental stress. OBJECTIVES This seminar addresses the application of new tools and approaches for EV research, developed in part through the National Institutes of Health (NIH) Extracellular RNA Communication Program, and reflects presentations and discussions from a workshop held 27-28 September 2021 by the National Institute of Environmental Health Sciences (NIEHS) and the National Center for Advancing Translational Sciences (NCATS) on "Extracellular Vesicles, Exosomes, and Cell-Cell Signaling in Response to Environmental Stress." The panel of experts discussed current research on EVs and environmental exposures, highlighted recent advances in EV isolation and characterization, and considered research gaps and opportunities toward identifying and characterizing the roles for EVs in environmentally related diseases, as well as the current challenges and opportunities in this field. DISCUSSION The authors discuss the application of new experimental models, particularly organ-on-chip (OOC) systems and in vitro approaches and how these have the potential to extend findings in population-based studies of EVs in exposure-related diseases. Given the complex challenges of identifying cell-specific EVs related to environmental exposures, as well as the general heterogeneity and variability in EVs in blood and other accessible biological samples, there is a critical need for rigorous reporting of experimental methods and validation studies. The authors note that these efforts, combined with cross-disciplinary approaches, would ensure that future research efforts in environmental health studies on EV biomarkers are rigorous and reproducible. https://doi.org/10.1289/EHP12980.
Collapse
Affiliation(s)
- Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Christine Happel
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), U.S. Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Jonathan A. Hollander
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Anne Marie Jukic
- Division of Intramural Research, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Kimberly A. McAllister
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Basic Science and Translational Research, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Bruce A. Merrick
- Division of Translational Toxicology, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | | | - Lingamanaidu V. Ravichandran
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Matthew E. Roth
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Anita Subramanian
- Division of Intramural Research, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Frederick L. Tyson
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Leroy Worth
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Daniel T. Shaughnessy
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| |
Collapse
|