1
|
Volarić M, Meštrović N, Despot-Slade E. SatXplor-a comprehensive pipeline for satellite DNA analyses in complex genome assemblies. Brief Bioinform 2024; 26:bbae660. [PMID: 39708839 DOI: 10.1093/bib/bbae660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024] Open
Abstract
Satellite DNAs (satDNAs) are tandemly repeated sequences that make up a significant portion of almost all eukaryotic genomes. Although satDNAs have been shown to play an important role in genome organization and evolution, they are relatively poorly analyzed, even in model organisms. One of the main reasons for the current lack of in-depth studies on satDNAs is their underrepresentation in genome assemblies. Due to complexity, abundance, and highly repetitive nature of satDNAs, their analysis is challenging, requiring efficient tools that ensure accurate annotation and comprehensive genome-wide analysis. We present a novel pipeline, named satellite DNA Exploration (SatXplor), designed to robustly characterize satDNA elements and analyze their arrays and flanking regions. SatXplor is benchmarked against other tools and curated satDNA datasets from diverse species, including mice and humans, showcase its versatility across genomes with varying complexities and satDNA profiles. Component algorithms excel in the identification of tandemly repeated sequences and, for the first time, enable evaluation of satDNA variation and array annotation with the addition of information about surrounding genomic landscape. SatXplor is an innovative pipeline for satDNA analysis that can be paired with any tool used for satDNA detection, offering insights into the structural characteristics, array determination, and genomic context of satDNA elements. By integrating various computational techniques, from sequence analysis and homology investigation to advanced clustering and graph-based methods, it provides a versatile and comprehensive approach to explore the complexity of satDNA organization and understand the underlying mechanisms and evolutionary aspects. It is open-source and freely accessible at https://github.com/mvolar/SatXplor.
Collapse
Affiliation(s)
- Marin Volarić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
2
|
Macas J, Ávila Robledillo L, Kreplak J, Novák P, Koblížková A, Vrbová I, Burstin J, Neumann P. Assembly of the 81.6 Mb centromere of pea chromosome 6 elucidates the structure and evolution of metapolycentric chromosomes. PLoS Genet 2023; 19:e1010633. [PMID: 36735726 PMCID: PMC10027222 DOI: 10.1371/journal.pgen.1010633] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/20/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Centromeres in the legume genera Pisum and Lathyrus exhibit unique morphological characteristics, including extended primary constrictions and multiple separate domains of centromeric chromatin. These so-called metapolycentromeres resemble an intermediate form between monocentric and holocentric types, and therefore provide a great opportunity for studying the transitions between different types of centromere organizations. However, because of the exceedingly large and highly repetitive nature of metapolycentromeres, highly contiguous assemblies needed for these studies are lacking. Here, we report on the assembly and analysis of a 177.6 Mb region of pea (Pisum sativum) chromosome 6, including the 81.6 Mb centromere region (CEN6) and adjacent chromosome arms. Genes, DNA methylation profiles, and most of the repeats were uniformly distributed within the centromere, and their densities in CEN6 and chromosome arms were similar. The exception was an accumulation of satellite DNA in CEN6, where it formed multiple arrays up to 2 Mb in length. Centromeric chromatin, characterized by the presence of the CENH3 protein, was predominantly associated with arrays of three different satellite repeats; however, five other satellites present in CEN6 lacked CENH3. The presence of CENH3 chromatin was found to determine the spatial distribution of the respective satellites during the cell cycle. Finally, oligo-FISH painting experiments, performed using probes specifically designed to label the genomic regions corresponding to CEN6 in Pisum, Lathyrus, and Vicia species, revealed that metapolycentromeres evolved via the expansion of centromeric chromatin into neighboring chromosomal regions and the accumulation of novel satellite repeats. However, in some of these species, centromere evolution also involved chromosomal translocations and centromere repositioning.
Collapse
Affiliation(s)
- Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, Czech Republic
| | - Laura Ávila Robledillo
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, Czech Republic
| | - Jonathan Kreplak
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, Czech Republic
| | - Andrea Koblížková
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, Czech Republic
| | - Iva Vrbová
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, Czech Republic
| | - Judith Burstin
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, Czech Republic
| |
Collapse
|
3
|
Cattaneo P, Hayes MGB, Baumgarten N, Hecker D, Peruzzo S, Aslan GS, Kunderfranco P, Larcher V, Zhang L, Contu R, Fonseca G, Spinozzi S, Chen J, Condorelli G, Dimmeler S, Schulz MH, Heinz S, Guimarães-Camboa N, Evans SM. DOT1L regulates chamber-specific transcriptional networks during cardiogenesis and mediates postnatal cell cycle withdrawal. Nat Commun 2022; 13:7444. [PMID: 36460641 PMCID: PMC9718823 DOI: 10.1038/s41467-022-35070-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Mechanisms by which specific histone modifications regulate distinct gene networks remain little understood. We investigated how H3K79me2, a modification catalyzed by DOT1L and previously considered a general transcriptional activation mark, regulates gene expression during cardiogenesis. Embryonic cardiomyocyte ablation of Dot1l revealed that H3K79me2 does not act as a general transcriptional activator, but rather regulates highly specific transcriptional networks at two critical cardiogenic junctures: embryonic cardiogenesis, where it was particularly important for left ventricle-specific genes, and postnatal cardiomyocyte cell cycle withdrawal, with Dot1L mutants having more mononuclear cardiomyocytes and prolonged cardiomyocyte cell cycle activity. Mechanistic analyses revealed that H3K79me2 in two distinct domains, gene bodies and regulatory elements, synergized to promote expression of genes activated by DOT1L. Surprisingly, H3K79me2 in specific regulatory elements also contributed to silencing genes usually not expressed in cardiomyocytes. These results reveal mechanisms by which DOT1L successively regulates left ventricle specification and cardiomyocyte cell cycle withdrawal.
Collapse
Affiliation(s)
- Paola Cattaneo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 92093, La Jolla, CA, USA.
- Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council of Italy, 20138, Milan, Italy.
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590, Frankfurt am Main, Germany.
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany.
| | - Michael G B Hayes
- Department of Medicine, University of California San Diego, 92093, La Jolla, CA, USA
| | - Nina Baumgarten
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590, Frankfurt am Main, Germany
| | - Dennis Hecker
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590, Frankfurt am Main, Germany
| | - Sofia Peruzzo
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590, Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Galip S Aslan
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590, Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University, 60590, Frankfurt am Main, Germany
| | | | - Veronica Larcher
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590, Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Lunfeng Zhang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 92093, La Jolla, CA, USA
| | - Riccardo Contu
- Department of Medicine, University of California San Diego, 92093, La Jolla, CA, USA
| | - Gregory Fonseca
- Department of Medicine, Meakins-Christie Laboratories, McGill University, H4A 3J1, Montreal, QC, Canada
| | - Simone Spinozzi
- Department of Medicine, University of California San Diego, 92093, La Jolla, CA, USA
| | - Ju Chen
- Department of Medicine, University of California San Diego, 92093, La Jolla, CA, USA
| | - Gianluigi Condorelli
- Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council of Italy, 20138, Milan, Italy
- IRCCS Humanitas Research Hospital, 20089, Rozzano (MI), Italy
- Department of Biomedical Sciences, Humanitas University, 20090, Pieve Emanuele (MI), Italy
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590, Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Marcel H Schulz
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590, Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Sven Heinz
- Department of Medicine, University of California San Diego, 92093, La Jolla, CA, USA
| | - Nuno Guimarães-Camboa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 92093, La Jolla, CA, USA
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590, Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 92093, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, 92093, La Jolla, CA, USA.
| |
Collapse
|
4
|
Takeuchi T, Suzuki Y, Watabe S, Nagai K, Masaoka T, Fujie M, Kawamitsu M, Satoh N, Myers EW. A high-quality, haplotype-phased genome reconstruction reveals unexpected haplotype diversity in a pearl oyster. DNA Res 2022; 29:dsac035. [PMID: 36351462 PMCID: PMC9646362 DOI: 10.1093/dnares/dsac035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 07/30/2023] Open
Abstract
Homologous chromosomes in the diploid genome are thought to contain equivalent genetic information, but this common concept has not been fully verified in animal genomes with high heterozygosity. Here we report a near-complete, haplotype-phased, genome assembly of the pearl oyster, Pinctada fucata, using hi-fidelity (HiFi) long reads and chromosome conformation capture data. This assembly includes 14 pairs of long scaffolds (>38 Mb) corresponding to chromosomes (2n = 28). The accuracy of the assembly, as measured by an analysis of k-mers, is estimated to be 99.99997%. Moreover, the haplotypes contain 95.2% and 95.9%, respectively, complete and single-copy BUSCO genes, demonstrating the high quality of the assembly. Transposons comprise 53.3% of the assembly and are a major contributor to structural variations. Despite overall collinearity between haplotypes, one of the chromosomal scaffolds contains megabase-scale non-syntenic regions, which necessarily have never been detected and resolved in conventional haplotype-merged assemblies. These regions encode expanded gene families of NACHT, DZIP3/hRUL138-like HEPN, and immunoglobulin domains, multiplying the immunity gene repertoire, which we hypothesize is important for the innate immune capability of pearl oysters. The pearl oyster genome provides insight into remarkable haplotype diversity in animals.
Collapse
Affiliation(s)
| | - Yoshihiko Suzuki
- Present address: Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shugo Watabe
- Kitasato University School of Marine Biosciences, Sagamihara, Kanagawa, Japan
| | - Kiyohito Nagai
- Pearl Research Institute, K. MIKIMOTO & CO., LTD, Shima, Mie, Japan
| | - Tetsuji Masaoka
- Aquatic Breeding Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Tamaki, Mie, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Mayumi Kawamitsu
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Eugene W Myers
- Algorithms for Eco and Evo Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| |
Collapse
|
5
|
Comparative Analysis of Transposable Elements and the Identification of Candidate Centromeric Elements in the Prunus Subgenus Cerasus and Its Relatives. Genes (Basel) 2022; 13:genes13040641. [PMID: 35456447 PMCID: PMC9028240 DOI: 10.3390/genes13040641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
The subgenus Cerasus and its relatives include many crucial economic drupe fruits and ornamental plants. Repetitive elements make up a large part of complex genomes, and some of them play an important role in gene regulation that can affect phenotypic variation. However, the variation in their genomes remains poorly understood. This work conducted a comprehensive repetitive sequence identification across the draft genomes of eight taxa of the genus Prunus, including four of the Prunus subgenus Cerasus (Prunus pseudocerasus, P. avium, P. yedoensis and P. × yedoensis) as well as congeneric species (Prunus salicina, P. armeniaca, P. dulcis and P. persica). Annotation results showed high proportions of transposable elements in their genomes, ranging from 52.28% (P. armeniaca) to 61.86% (P. pseudocerasus). The most notable differences in the contents of long terminal repeat retrotransposons (LTR-RTs) and tandem repeats (TRs) were confirmed with de novo identification based on the structure of each genome, which significantly contributed to their genome size variation, especially in P. avium and P.salicina. Sequence comparisons showed many similar LTR-RTs closely related to their phylogenetic relationships, and a highly similar monomer unit of the TR sequence was conserved among species. Additionally, the predicted centromere-associated sequence was located in centromeric regions with FISH in the 12 taxa of Prunus. It presented significantly different signal intensities, even within the diverse interindividual phenotypes for Prunus tomentosa. This study provides insight into the LTR-RT and TR variation within Prunus and increases our knowledge about its role in genome evolution.
Collapse
|
6
|
Subgenome Discrimination in Brassica and Raphanus Allopolyploids Using Microsatellites. Cells 2021; 10:cells10092358. [PMID: 34572008 PMCID: PMC8466703 DOI: 10.3390/cells10092358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/11/2023] Open
Abstract
Intergeneric crosses between Brassica species and Raphanus sativus have produced crops with prominent shoot and root systems of Brassica and R. sativus, respectively. It is necessary to discriminate donor genomes when studying cytogenetic stability in distant crosses to identify homologous chromosome pairing, and microsatellite repeats have been used to discriminate subgenomes in allopolyploids. To identify genome-specific microsatellites, we explored the microsatellite content in three Brassica species (B. rapa, AA, B. oleracea, CC, and B. nigra, BB) and R. sativus (RR) genomes, and validated their genome specificity by fluorescence in situ hybridization. We identified three microsatellites showing A, C, and B/R genome specificity. ACBR_msat14 and ACBR_msat20 were detected in the A and C chromosomes, respectively, and ACBR_msat01 was detected in B and R genomes. However, we did not find a microsatellite that discriminated the B and R genomes. The localization of ACBR_msat20 in the 45S rDNA array in ×Brassicoraphanus 977 corroborated the association of the 45S rDNA array with genome rearrangement. Along with the rDNA and telomeric repeat probes, these microsatellites enabled the easy identification of homologous chromosomes. These data demonstrate the utility of microsatellites as probes in identifying subgenomes within closely related Brassica and Raphanus species for the analysis of genetic stability of new synthetic polyploids of these genomes.
Collapse
|
7
|
Ferguson KB, Visser S, Dalíková M, Provazníková I, Urbaneja A, Pérez‐Hedo M, Marec F, Werren JH, Zwaan BJ, Pannebakker BA, Verhulst EC. Jekyll or Hyde? The genome (and more) of Nesidiocoris tenuis, a zoophytophagous predatory bug that is both a biological control agent and a pest. INSECT MOLECULAR BIOLOGY 2021; 30:188-209. [PMID: 33305885 PMCID: PMC8048687 DOI: 10.1111/imb.12688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 05/14/2023]
Abstract
Nesidiocoris tenuis (Reuter) is an efficient predatory biological control agent used throughout the Mediterranean Basin in tomato crops but regarded as a pest in northern European countries. From the family Miridae, it is an economically important insect yet very little is known in terms of genetic information and no genomic or transcriptomic studies have been published. Here, we use a linked-read sequencing strategy on a single female N. tenuis. From this, we assembled the 355 Mbp genome and delivered an ab initio, homology-based and evidence-based annotation. Along the way, the bacterial "contamination" was removed from the assembly. In addition, bacterial lateral gene transfer (LGT) candidates were detected in the N. tenuis genome. The complete gene set is composed of 24 688 genes; the associated proteins were compared to other hemipterans (Cimex lectularis, Halyomorpha halys and Acyrthosiphon pisum). We visualized the genome using various cytogenetic techniques, such as karyotyping, CGH and GISH, indicating a karyotype of 2n = 32. Additional analyses include the localization of 18S rDNA and unique satellite probes as well as pooled sequencing to assess nucleotide diversity and neutrality of the commercial population. This is one of the first mirid genomes to be released and the first of a mirid biological control agent.
Collapse
Affiliation(s)
- K. B. Ferguson
- Laboratory of GeneticsWageningen UniversityWageningenThe Netherlands
| | - S. Visser
- Biology Centre CASInstitute of EntomologyČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - M. Dalíková
- Biology Centre CASInstitute of EntomologyČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - I. Provazníková
- Biology Centre CASInstitute of EntomologyČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- European Molecular Biology LaboratoryHeidelbergGermany
| | - A. Urbaneja
- Centro de Protección Vegetal y BiotecnologíaInstituto Valenciano de Investigaciones Agrarias (IVIA)MoncadaSpain
| | - M. Pérez‐Hedo
- Centro de Protección Vegetal y BiotecnologíaInstituto Valenciano de Investigaciones Agrarias (IVIA)MoncadaSpain
| | - F. Marec
- Biology Centre CASInstitute of EntomologyČeské BudějoviceCzech Republic
| | - J. H. Werren
- Department of BiologyUniversity of RochesterRochesterNew YorkUSA
| | - B. J. Zwaan
- Laboratory of GeneticsWageningen UniversityWageningenThe Netherlands
| | - B. A. Pannebakker
- Laboratory of GeneticsWageningen UniversityWageningenThe Netherlands
| | - E. C. Verhulst
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
8
|
Neumann P, Oliveira L, Čížková J, Jang TS, Klemme S, Novák P, Stelmach K, Koblížková A, Doležel J, Macas J. Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus Cuscuta. THE NEW PHYTOLOGIST 2021; 229:2365-2377. [PMID: 33090498 DOI: 10.1111/nph.17003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/01/2020] [Indexed: 05/06/2023]
Abstract
The parasitic genus Cuscuta (Convolvulaceae) is exceptional among plants with respect to centromere organization, including both monocentric and holocentric chromosomes, and substantial variation in genome size and chromosome number. We investigated 12 species representing the diversity of the genus in a phylogenetic context to reveal the molecular and evolutionary processes leading to diversification of their genomes. We measured genome sizes and investigated karyotypes and centromere organization using molecular cytogenetic techniques. We also performed low-pass whole genome sequencing and comparative analysis of repetitive DNA composition. A remarkable 102-fold variation in genome sizes (342-34 734 Mbp/1C) was detected for monocentric Cuscuta species, while genomes of holocentric species were of moderate sizes (533-1545 Mbp/1C). The genome size variation was primarily driven by the differential accumulation of LTR-retrotransposons and satellite DNA. The transition to holocentric chromosomes in the subgenus Cuscuta was associated with loss of histone H2A phosphorylation and elimination of centromeric retrotransposons. In addition, basic chromosome number of holocentric species (x = 7) was smaller than in monocentrics (x = 15 or 16). We demonstrated that the transition to holocentricity in Cuscuta was accompanied by significant changes in epigenetic marks, chromosome number and the repetitive DNA sequence composition.
Collapse
Affiliation(s)
- Pavel Neumann
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Ludmila Oliveira
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc, CZ-779 00, Czech Republic
| | - Tae-Soo Jang
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sonja Klemme
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Katarzyna Stelmach
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
- Department of Plant Biology and Biotechnology, University of Agriculture in Krakow, 29 Listopada 54, Krakow, 31-425, Poland
| | - Andrea Koblížková
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc, CZ-779 00, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| |
Collapse
|
9
|
Jesionek W, Bodláková M, Kubát Z, Čegan R, Vyskot B, Vrána J, Šafář J, Puterova J, Hobza R. Fundamentally different repetitive element composition of sex chromosomes in Rumex acetosa. ANNALS OF BOTANY 2021; 127:33-47. [PMID: 32902599 PMCID: PMC7750719 DOI: 10.1093/aob/mcaa160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Dioecious species with well-established sex chromosomes are rare in the plant kingdom. Most sex chromosomes increase in size but no comprehensive analysis of the kind of sequences that drive this expansion has been presented. Here we analyse sex chromosome structure in common sorrel (Rumex acetosa), a dioecious plant with XY1Y2 sex determination, and we provide the first chromosome-specific repeatome analysis for a plant species possessing sex chromosomes. METHODS We flow-sorted and separately sequenced sex chromosomes and autosomes in R. acetosa using the two-dimensional fluorescence in situ hybridization in suspension (FISHIS) method and Illumina sequencing. We identified and quantified individual repeats using RepeatExplorer, Tandem Repeat Finder and the Tandem Repeats Analysis Program. We employed fluorescence in situ hybridization (FISH) to analyse the chromosomal localization of satellites and transposons. KEY RESULTS We identified a number of novel satellites, which have, in a fashion similar to previously known satellites, significantly expanded on the Y chromosome but not as much on the X or on autosomes. Additionally, the size increase of Y chromosomes is caused by non-long terminal repeat (LTR) and LTR retrotransposons, while only the latter contribute to the enlargement of the X chromosome. However, the X chromosome is populated by different LTR retrotransposon lineages than those on Y chromosomes. CONCLUSIONS The X and Y chromosomes have significantly diverged in terms of repeat composition. The lack of recombination probably contributed to the expansion of diverse satellites and microsatellites and faster fixation of newly inserted transposable elements (TEs) on the Y chromosomes. In addition, the X and Y chromosomes, despite similar total counts of TEs, differ significantly in the representation of individual TE lineages, which indicates that transposons proliferate preferentially in either the paternal or the maternal lineage.
Collapse
Affiliation(s)
- Wojciech Jesionek
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice, Brno, Czech Republic
- For correspondence. E-mail: or
| | - Markéta Bodláková
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
| | - Zdeněk Kubát
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
| | - Radim Čegan
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc-Holice, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc-Holice, Czech Republic
| | - Janka Puterova
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
- Brno University of Technology, Faculty of Information Technology, Centre of Excellence IT4Innovations, Bozetechova, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
- For correspondence. E-mail: or
| |
Collapse
|
10
|
Hoang PTN, Fiebig A, Novák P, Macas J, Cao HX, Stepanenko A, Chen G, Borisjuk N, Scholz U, Schubert I. Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries. Sci Rep 2020; 10:19230. [PMID: 33154426 PMCID: PMC7645714 DOI: 10.1038/s41598-020-75728-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Duckweeds are small, free-floating, morphologically highly reduced organisms belonging to the monocot order Alismatales. They display the most rapid growth among flowering plants, vary ~ 14-fold in genome size and comprise five genera. Spirodela is the phylogenetically oldest genus with only two mainly asexually propagating species: S. polyrhiza (2n = 40; 160 Mbp/1C) and S. intermedia (2n = 36; 160 Mbp/1C). This study combined comparative cytogenetics and de novo genome assembly based on PacBio, Illumina and Oxford Nanopore (ON) reads to obtain the first genome reference for S. intermedia and to compare its genomic features with those of the sister species S. polyrhiza. Both species' genomes revealed little more than 20,000 putative protein-coding genes, very low rDNA copy numbers and a low amount of repetitive sequences, mainly Ty3/gypsy retroelements. The detection of a few new small chromosome rearrangements between both Spirodela species refined the karyotype and the chromosomal sequence assignment for S. intermedia.
Collapse
Affiliation(s)
- Phuong T N Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
- Biology Faculty, Dalat University, District 8, Dalat City, Lamdong Province, Vietnam
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Hieu X Cao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, 06120, Halle, Germany
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany.
| |
Collapse
|
11
|
Cheng P, Huang Y, Du H, Li C, Lv Y, Ruan R, Ye H, Bian C, You X, Xu J, Liang X, Shi Q, Wei Q. Draft Genome and Complete Hox-Cluster Characterization of the Sterlet ( Acipenser ruthenus). Front Genet 2019; 10:776. [PMID: 31543900 PMCID: PMC6739705 DOI: 10.3389/fgene.2019.00776] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/23/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Sturgeons (Chondrostei: Acipenseridae) are a group of “living fossil” fishes at a basal position among Actinopteri. They have raised great public interest due to their special evolutionary position, species conservation challenges, as well as their highly-prized eggs (caviar). The sterlet, Acipenser ruthenus, is a relatively small-sized member of sturgeons and has been widely distributing in both Europe and Asia. In this study, we performed whole genome sequencing, de novo assembly and gene annotation of the tarlet to construct its draft genome. Findings: We finally obtained a 1.83-Gb genome assembly (BUSCO completeness of 81.6%) from a total of 316.8-Gb raw reads generated by an Illumina Hiseq 2500 platform. The scaffold N50 and contig N50 values reached 191.06 and 18.88 kb, respectively. The sterlet genome was predicted to be comprised of 42.84% repeated sequences and to contain 22,184 protein-coding genes, of which 21,112 (95.17%) have been functionally annotated with at least one hit in public databases. A genetic phylogeny demonstrated that the sterlet is situated in the basal position among ray-finned fishes and 4dTv analysis estimated that a recent whole genome duplication occurred 21.3 million years ago. Moreover, seven Hox clusters carrying 68 Hox genes were characterized in the sterlet. Phylogeny of HoxA clusters in the sterlet and American paddlefish divided these sturgeons into two groups, confirming the independence of each lineage-specific genome duplication in Acipenseridae and Polyodontidae. Conclusions: This draft genome makes up for the lack of genomic and molecular data of the sterlet and its Hox clusters. It also provides a genetic basis for further investigation of lineage-specific genome duplication and the early evolution of ray-finned fishes.
Collapse
Affiliation(s)
- Peilin Cheng
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
| | - Yu Huang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Academy of Marine Sciences, BGI Marine, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yunyun Lv
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Academy of Marine Sciences, BGI Marine, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Rui Ruan
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Junmin Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Academy of Marine Sciences, BGI Marine, Shenzhen, China.,School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Xufang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Academy of Marine Sciences, BGI Marine, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
12
|
Oliveira L, Neumann P, Jang TS, Klemme S, Schubert V, Koblížková A, Houben A, Macas J. Mitotic Spindle Attachment to the Holocentric Chromosomes of Cuscuta europaea Does Not Correlate With the Distribution of CENH3 Chromatin. FRONTIERS IN PLANT SCIENCE 2019; 10:1799. [PMID: 32038700 PMCID: PMC6992598 DOI: 10.3389/fpls.2019.01799] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/23/2019] [Indexed: 05/17/2023]
Abstract
The centromere is the region on a chromosome where the kinetochore assembles and spindle microtubules attach during mitosis and meiosis. In the vast majority of eukaryotes, the centromere position is determined epigenetically by the presence of the centromere-specific histone H3 variant CENH3. In species with monocentric chromosomes, CENH3 is confined to a single chromosomal region corresponding to the primary constriction on metaphase chromosomes. By contrast, in holocentrics, CENH3 (and thus centromere activity) is distributed along the entire chromosome length. Here, we report a unique pattern of CENH3 distribution in the holocentric plant Cuscuta europaea. This species expressed two major variants of CENH3, both of which were deposited into one to three discrete regions per chromosome, whereas the rest of the chromatin appeared to be devoid of CENH3. The two CENH3 variants fully co-localized, and their immunodetection signals overlapped with the positions of DAPI-positive heterochromatic bands containing the highly amplified satellite repeat CUS-TR24. This CENH3 distribution pattern contrasted with the distribution of the mitotic spindle microtubules, which attached at uniform density along the entire chromosome length. This distribution of spindle attachment sites proves the holocentric nature of C. europaea chromosomes and also suggests that, in this species, CENH3 either lost its function or acts in parallel to an additional CENH3-free mechanism of kinetochore positioning.
Collapse
Affiliation(s)
- Ludmila Oliveira
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czechia
| | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czechia
| | - Tae-Soo Jang
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czechia
| | - Sonja Klemme
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czechia
| | - Veit Schubert
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Andrea Koblížková
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czechia
| | - Andreas Houben
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czechia
- *Correspondence: Jiří Macas,
| |
Collapse
|
13
|
Liu M, Zhao Q, Qi F, Stiller J, Tang S, Miao J, Vrána J, Holušová K, Liu D, Doležel J, Manners JM, Han B, Liu C. Sequence divergence between spelt and common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1125-1132. [PMID: 29427242 DOI: 10.1007/s00122-018-3064-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Sequence comparison between spelt and common wheat reveals that the former has huge potential in enriching the genetic variation of the latter. Genetic variation is the foundation of crop improvement. By comparing genome sequences of a Triticum spelta accession and one of its derived hexaploid lines with the sequences of the international reference genotype Chinese Spring, we detected variants more than tenfold higher than those present among common wheat (T. aestivum L) genotypes. Furthermore, different from the typical 'V-shaped' pattern of variant distribution often observed along wheat chromosomes, the sequence variation detected in this study was more evenly distributed along the 3B chromosome. This was also the case between T. spelta and the wild emmer genome. Genetic analysis showed that T. spelta and common wheat formed discrete groups. These results showed that, although it is believed that the spelt and common wheat are evolutionarily closely related and belong to the same species, a significant sequence divergence exists between them. Thus, the values of T. spelta in enriching the genetic variation of common wheat can be huge.
Collapse
Affiliation(s)
- Miao Liu
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, 4 Shizishan Road, Jinjiang District, Chengdu, 610066, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Qiang Zhao
- National Center for Gene Research, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233, China
| | - Feng Qi
- National Center for Gene Research, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233, China
| | - Jiri Stiller
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Shican Tang
- National Center for Gene Research, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233, China
| | - Jiashun Miao
- National Center for Gene Research, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233, China
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Kateřina Holušová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - John M Manners
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Bin Han
- National Center for Gene Research, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233, China.
| | - Chunji Liu
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia.
| |
Collapse
|
14
|
Giri BR, Ye J, Chen Y, Wei C, Cheng G. In silico analysis of endogenous siRNAs associated transposable elements and NATs in Schistosoma japonicum reveals their putative roles during reproductive development. Parasitol Res 2018; 117:1549-1558. [PMID: 29568977 DOI: 10.1007/s00436-018-5830-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/06/2018] [Indexed: 12/16/2022]
Abstract
Schistosomiasis is a neglected tropical disease caused by trematode of the genus Schistosoma. Successful reproductive development is critical for the production of eggs, which are responsible for host pathology and disease dissemination. Endogenous small non-coding RNAs play important roles in many biological processes such as protection against foreign pathogens, cell differentiation, and chromosomal stability by regulating target gene expression at the transcriptional and post-transcriptional levels. In this study, we performed in silico analysis of endogenous small non-coding RNAs in different stages, and sex of S. japonicum focusing on endogenous small interfering RNAs (endo-siRNAs) generated from transposable elements (TEs) and natural antisense transcripts (NATs). Both total and unique siRNA populations show 18-30 nt in length, but the predominant size was 20 nt and the leading first base was adenosine. Sense TE-derived endo-siRNAs reads were higher than antisense reads at different relative positions of TEs, whereas no such difference was observed for NAT-derived endo-siRNAs. TE- and NAT-derived endo-siRNAs were more enriched in the male compared to female worms, with the higher relative expression in early phase of pairing. Putative targets of endo-siRNAs indicated more of them in males (106 and 66) than in females (6 and 23) for TE- and NAT-derived endo-siRNAs, respectively. Our preliminary study revealed vital role of endo-siRNAs during the reproductive development of S. japonicum and provide clues for putative novel targets to suppress worm reproduction and direction for effective anti-schistosomal drug development.
Collapse
Affiliation(s)
- Bikash Ranjan Giri
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Jiannan Ye
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Chaochun Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Guofeng Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China.
| |
Collapse
|
15
|
Filho JAF, de Brito LS, Leão AP, Alves AA, Formighieri EF, Júnior MTS. In Silico Approach for Characterization and Comparison of Repeats in the Genomes of Oil and Date Palms. Bioinform Biol Insights 2017; 11:1177932217702388. [PMID: 28469420 PMCID: PMC5402704 DOI: 10.1177/1177932217702388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/02/2017] [Indexed: 11/16/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements present in almost all eukaryotic genomes. Due to their typical patterns of repetition, discovery, and characterization, they demand analysis by various bioinformatics software. Probably, as a result of the need for a complex analysis, many genomes publicly available do not have these elements annotated yet. In this study, a de novo and homology-based identification of TEs and microsatellites was performed using genomic data from 3 palm species: Elaeis oleifera (American oil palm, v.1, Embrapa, unpublished; v.8, Malaysian Palm Oil Board [MPOB], public), Elaeis guineensis (African oil palm, v.5, MPOB, public), and Phoenix dactylifera (date palm). The estimated total coverage of TEs was 50.96% (523 572 kb) and 42.31% (593 463 kb), 39.41% (605 015 kb), and 33.67% (187 361 kb), respectively. A total of 155 726 microsatellite loci were identified in the genomes of oil and date palms. This is the first detailed description of repeats in the genomes of oil and date palms. A relatively high diversity and abundance of TEs were found in the genomes, opening a range of further opportunities for applied research in these genera. The development of molecular markers (mainly simple sequence repeat), which may be immediately applied in breeding programs of those species to support the selection of superior genotypes and to enhance knowledge of the genetic structure of the breeding and natural populations, is the most notable opportunity.
Collapse
Affiliation(s)
- Jaire Alves Ferreira Filho
- Graduate Program in Plant Biotechnology, Federal University of Lavras (UFLA), Lavras, Brazil.,Embrapa Agroenergia, Parque Estação Biológica (PqEB), Brasília, Brazil.,Center of Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | | | | | - Manoel Teixeira Souza Júnior
- Graduate Program in Plant Biotechnology, Federal University of Lavras (UFLA), Lavras, Brazil.,Embrapa Agroenergia, Parque Estação Biológica (PqEB), Brasília, Brazil
| |
Collapse
|
16
|
Bioinformatics tools and databases for whole genome sequence analysis of Mycobacterium tuberculosis. INFECTION GENETICS AND EVOLUTION 2016; 45:359-368. [PMID: 27637931 DOI: 10.1016/j.meegid.2016.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022]
Abstract
Tuberculosis (TB) is an infectious disease of global public health importance caused by Mycobacterium tuberculosis complex (MTC) in which M. tuberculosis (Mtb) is the major causative agent. Recent advancements in genomic technologies such as next generation sequencing have enabled high throughput cost-effective generation of whole genome sequence information from Mtb clinical isolates, providing new insights into the evolution, genomic diversity and transmission of the Mtb bacteria, including molecular mechanisms of antibiotic resistance. The large volume of sequencing data generated however necessitated effective and efficient management, storage, analysis and visualization of the data and results through development of novel and customized bioinformatics software tools and databases. In this review, we aim to provide a comprehensive survey of the current freely available bioinformatics software tools and publicly accessible databases for genomic analysis of Mtb for identifying disease transmission in molecular epidemiology and in rapid determination of the antibiotic profiles of clinical isolates for prompt and optimal patient treatment.
Collapse
|
17
|
Sincero TCM, Stoco PH, Steindel M, Vallejo GA, Grisard EC. Trypanosoma rangeli displays a clonal population structure, revealing a subdivision of KP1(-) strains and the ancestry of the Amazonian group. Int J Parasitol 2015; 45:225-35. [PMID: 25592964 DOI: 10.1016/j.ijpara.2014.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/12/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022]
Abstract
Assessment of the genetic variability and population structure of Trypanosoma rangeli, a non-pathogenic American trypanosome, was carried out through microsatellite and single-nucleotide polymorphism analyses. Two approaches were used for microsatellite typing: data mining in expressed sequence tag /open reading frame expressed sequence tags libraries and PCR-based Isolation of Microsatellite Arrays from genomic libraries. All microsatellites found were evaluated for their abundance, frequency and usefulness as markers. Genotyping of T. rangeli strains and clones was performed for 18 loci amplified by PCR from expressed sequence tag/open reading frame expressed sequence tags libraries. The presence of single-nucleotide polymorphisms in the nuclear, multi-copy, spliced leader gene was assessed in 18 T. rangeli strains, and the results show that T. rangeli has a predominantly clonal population structure, allowing a robust phylogenetic analysis. Microsatellite typing revealed a subdivision of the KP1(-) genetic group, which may be influenced by geographical location and/or by the co-evolution of parasite and vectors occurring within the same geographical areas. The hypothesis of parasite-vector co-evolution was corroborated by single-nucleotide polymorphism analysis of the spliced leader gene. Taken together, the results suggest three T. rangeli groups: (i) the T. rangeli Amazonian group; (ii) the T. rangeli KP1(-) group; and (iii) the T. rangeli KP1(+) group. The latter two groups possibly evolved from the Amazonian group to produce KP1(+) and KP1(-) strains.
Collapse
Affiliation(s)
- Thaís Cristine Marques Sincero
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências da Saúde (CCS), Departamento de Análises Clínicas (ACL), Setor E, Bloco K, Florianópolis, SC 88.040-970, Brazil.
| | - Patricia Hermes Stoco
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências Biológicas (CCB), Departamento de Microbiologia, Imunologia e Parasitologia (MIP), Setor F, Bloco A, Florianópolis, SC 88.040-970, Brazil
| | - Mário Steindel
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências Biológicas (CCB), Departamento de Microbiologia, Imunologia e Parasitologia (MIP), Setor F, Bloco A, Florianópolis, SC 88.040-970, Brazil
| | - Gustavo Adolfo Vallejo
- Laboratorio de Investigaciones en Parasitología Tropical, Universidad del Tolima, Altos de Santa Helena, A.A. 546, Ibagué, Colombia
| | - Edmundo Carlos Grisard
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências Biológicas (CCB), Departamento de Microbiologia, Imunologia e Parasitologia (MIP), Setor F, Bloco A, Florianópolis, SC 88.040-970, Brazil.
| |
Collapse
|
18
|
Ruperao P, Edwards D. Bioinformatics: identification of markers from next-generation sequence data. Methods Mol Biol 2015; 1245:29-47. [PMID: 25373747 DOI: 10.1007/978-1-4939-1966-6_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
With the advent of sequencing technology, next-generation sequencing (NGS) technology has dramatically revolutionized plant genomics. NGS technology combined with new software tools enables the discovery, validation, and assessment of genetic markers on a large scale. Among different markers systems, simple sequence repeats (SSRs) and Single nucleotide polymorphisms (SNPs) are the markers of choice for genetics and plant breeding. SSR markers have been a choice for large-scale characterization of germplasm collections, construction of genetic maps, and QTL identification. Similarly, SNPs are the most abundant genetic variations with higher frequencies throughout the genome of plant species. This chapter discusses various tools available for genome assembly and widely focuses on SSR and SNP marker discovery.
Collapse
Affiliation(s)
- Pradeep Ruperao
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
19
|
Dhillon B, Gill N, Hamelin RC, Goodwin SB. The landscape of transposable elements in the finished genome of the fungal wheat pathogen Mycosphaerella graminicola. BMC Genomics 2014; 15:1132. [PMID: 25519841 PMCID: PMC4522978 DOI: 10.1186/1471-2164-15-1132] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/12/2014] [Indexed: 01/23/2023] Open
Abstract
Background In addition to gene identification and annotation, repetitive sequence analysis has become an integral part of genome sequencing projects. Identification of repeats is important not only because it improves gene prediction, but also because of the role that repetitive sequences play in determining the structure and evolution of genes and genomes. Several methods using different repeat-finding strategies are available for whole-genome repeat sequence analysis. Four independent approaches were used to identify and characterize the repetitive fraction of the Mycosphaerella graminicola (synonym Zymoseptoria tritici) genome. This ascomycete fungus is a wheat pathogen and its finished genome comprises 21 chromosomes, eight of which can be lost with no obvious effects on fitness so are dispensable. Results Using a combination of four repeat-finding methods, at least 17% of the M. graminicola genome was estimated to be repetitive. Class I transposable elements, that amplify via an RNA intermediate, account for about 70% of the total repetitive content in the M. graminicola genome. The dispensable chromosomes had a higher percentage of repetitive elements as compared to the core chromosomes. Distribution of repeats across the chromosomes also varied, with at least six chromosomes showing a non-random distribution of repetitive elements. Repeat families showed transition mutations and a CpA → TpA dinucleotide bias, indicating the presence of a repeat-induced point mutation (RIP)-like mechanism in M. graminicola. One gene family and two repeat families specific to subtelomeres also were identified in the M. graminicola genome. A total of 78 putative clusters of nested elements was found in the M. graminicola genome. Several genes with putative roles in pathogenicity were found associated with these nested repeat clusters. This analysis of the transposable element content in the finished M. graminicola genome resulted in a thorough and highly curated database of repetitive sequences. Conclusions This comprehensive analysis will serve as a scaffold to address additional biological questions regarding the origin and fate of transposable elements in fungi. Future analyses of the distribution of repetitive sequences in M. graminicola also will be able to provide insights into the association of repeats with genes and their potential role in gene and genome evolution. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1132) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Braham Dhillon
- Department of Forest and Conservation Sciences, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Navdeep Gill
- Department of Botany, Beaty Biodiversity Centre, 2212 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. .,Natural Resources Canada, Laurentian Forestry Centre, 1055 du PEPS, Stn. Sainte-Foy, P.O. Box 10380, Quebec, QC, G1V 4C7, Canada.
| | - Stephen B Goodwin
- USDA-ARS, Crop Production and Pest Control Research Unit, Purdue University, 915 W. State Street, West Lafayette, Indiana, 47907-2054, USA.
| |
Collapse
|
20
|
Gao Y, Gao Q, Zhang H, Wang L, Zhang F, Yang C, Song L. Draft sequencing and analysis of the genome of pufferfish Takifugu flavidus. DNA Res 2014; 21:627-37. [PMID: 25053628 PMCID: PMC4263296 DOI: 10.1093/dnares/dsu025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The pufferfish Takifugu flavidus is an important economic species due to its outstanding flavour and high market value. It has been regarded as an excellent model of genetic study for decades as well. In the present study, three mate-pair libraries of T. flavidus genome were sequenced by the SOLiD 4 next-generation sequencing platform, and the draft genome was constructed with the short reads using an assisted assembly strategy. The draft consists of 50,947 scaffolds with an N50 value of 305.7 kb, and the average GC content was 45.2%. The combined length of repetitive sequences was 26.5 Mb, which accounted for 6.87% of the genome, indicating that the compactness of T. flavidus genome was approximative with that of T. rubripes genome. A total of 1,253 non-coding RNA genes and 30,285 protein-encoding genes were assigned to the genome. There were 132,775 and 394 presumptive genes playing roles in the colour pattern variation, the relatively slow growth and the lipid metabolism, respectively. Among them, genes involved in the microtubule-dependent transport system, angiogenesis, decapentaplegic pathway and lipid mobilization were significantly expanded in the T. flavidus genome. This draft genome provides a valuable resource for understanding and improving both fundamental and applied research with pufferfish in the future.
Collapse
Affiliation(s)
- Yang Gao
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China University of Chinese Academy of Sciences, Shijingshan, Beijing 100049, China
| | - Qiang Gao
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Huan Zhang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Lingling Wang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Fuchong Zhang
- Ocean and Fishery Sciences Research Institute of Hebei Province, Qinhuangdao, Hebei 066200, China
| | - Chuanyan Yang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Linsheng Song
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
21
|
Reid AJ, Blake DP, Ansari HR, Billington K, Browne HP, Bryant J, Dunn M, Hung SS, Kawahara F, Miranda-Saavedra D, Malas TB, Mourier T, Naghra H, Nair M, Otto TD, Rawlings ND, Rivailler P, Sanchez-Flores A, Sanders M, Subramaniam C, Tay YL, Woo Y, Wu X, Barrell B, Dear PH, Doerig C, Gruber A, Ivens AC, Parkinson J, Rajandream MA, Shirley MW, Wan KL, Berriman M, Tomley FM, Pain A. Genomic analysis of the causative agents of coccidiosis in domestic chickens. Genome Res 2014; 24:1676-85. [PMID: 25015382 PMCID: PMC4199364 DOI: 10.1101/gr.168955.113] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Global production of chickens has trebled in the past two decades and they are now the most important source of dietary animal protein worldwide. Chickens are subject to many infectious diseases that reduce their performance and productivity. Coccidiosis, caused by apicomplexan protozoa of the genus Eimeria, is one of the most important poultry diseases. Understanding the biology of Eimeria parasites underpins development of new drugs and vaccines needed to improve global food security. We have produced annotated genome sequences of all seven species of Eimeria that infect domestic chickens, which reveal the full extent of previously described repeat-rich and repeat-poor regions and show that these parasites possess the most repeat-rich proteomes ever described. Furthermore, while no other apicomplexan has been found to possess retrotransposons, Eimeria is home to a family of chromoviruses. Analysis of Eimeria genes involved in basic biology and host-parasite interaction highlights adaptations to a relatively simple developmental life cycle and a complex array of co-expressed surface proteins involved in host cell binding.
Collapse
Affiliation(s)
- Adam J Reid
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Damer P Blake
- Royal Veterinary College, North Mymms, Hertfordshire AL9 7TA, United Kingdom; The Pirbright Institute, Compton Laboratory, Newbury, Berkshire RG20 7NN, United Kingdom
| | - Hifzur R Ansari
- Computational Bioscience Research Center, Biological Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955-6900, Kingdom of Saudi Arabia
| | - Karen Billington
- The Pirbright Institute, Compton Laboratory, Newbury, Berkshire RG20 7NN, United Kingdom
| | - Hilary P Browne
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Josephine Bryant
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Matt Dunn
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Stacy S Hung
- Program in Molecular Structure and Function, Hospital for Sick Children and Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Fumiya Kawahara
- Nippon Institute for Biological Science, Ome, Tokyo 198-0024, Japan
| | - Diego Miranda-Saavedra
- Fibrosis Laboratories, Institute of Cellular Medicine, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Tareq B Malas
- Computational Bioscience Research Center, Biological Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955-6900, Kingdom of Saudi Arabia
| | - Tobias Mourier
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Hardeep Naghra
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Mridul Nair
- Computational Bioscience Research Center, Biological Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955-6900, Kingdom of Saudi Arabia
| | - Thomas D Otto
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Neil D Rawlings
- European Bioinformatics Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Pierre Rivailler
- The Pirbright Institute, Compton Laboratory, Newbury, Berkshire RG20 7NN, United Kingdom; Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Apoyo Bioinformático, Institute of Biotechnology, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Chandra Subramaniam
- The Pirbright Institute, Compton Laboratory, Newbury, Berkshire RG20 7NN, United Kingdom
| | - Yea-Ling Tay
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia; Malaysia Genome Institute, Jalan Bangi, 43000 Kajang, Selangor DE, Malaysia
| | - Yong Woo
- Computational Bioscience Research Center, Biological Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955-6900, Kingdom of Saudi Arabia
| | - Xikun Wu
- The Pirbright Institute, Compton Laboratory, Newbury, Berkshire RG20 7NN, United Kingdom; Amgen Limited, Uxbridge UB8 1DH, United Kingdom
| | - Bart Barrell
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Paul H Dear
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Christian Doerig
- Department of Microbiology, Monash University, Clayton VIC 3800, Australia
| | - Arthur Gruber
- Departament of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Alasdair C Ivens
- Centre for Immunity, Infection and Evolution, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - John Parkinson
- Program in Molecular Structure and Function, Hospital for Sick Children and Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Marie-Adèle Rajandream
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Martin W Shirley
- The Pirbright Institute, Pirbright Laboratory, Pirbright, Surrey GU24 0NF, United Kingdom
| | - Kiew-Lian Wan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia; Malaysia Genome Institute, Jalan Bangi, 43000 Kajang, Selangor DE, Malaysia
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Fiona M Tomley
- Royal Veterinary College, North Mymms, Hertfordshire AL9 7TA, United Kingdom; The Pirbright Institute, Compton Laboratory, Newbury, Berkshire RG20 7NN, United Kingdom;
| | - Arnab Pain
- Computational Bioscience Research Center, Biological Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955-6900, Kingdom of Saudi Arabia;
| |
Collapse
|
22
|
Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J. "A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids". BMC Genomics 2013; 14:683. [PMID: 24094114 PMCID: PMC3852598 DOI: 10.1186/1471-2164-14-683] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 09/24/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Modern banana cultivars are primarily interspecific triploid hybrids of two species, Musa acuminata and Musa balbisiana, which respectively contribute the A- and B-genomes. The M. balbisiana genome has been associated with improved vigour and tolerance to biotic and abiotic stresses and is thus a target for Musa breeding programs. However, while a reference M. acuminata genome has recently been released (Nature 488:213-217, 2012), little sequence data is available for the corresponding B-genome.To address these problems we carried out Next Generation gDNA sequencing of the wild diploid M. balbisiana variety 'Pisang Klutuk Wulung' (PKW). Our strategy was to align PKW gDNA reads against the published A-genome and to extract the mapped consensus sequences for subsequent rounds of evaluation and gene annotation. RESULTS The resulting B-genome is 79% the size of the A-genome, and contains 36,638 predicted functional gene sequences which is nearly identical to the 36,542 of the A-genome. There is substantial sequence divergence from the A-genome at a frequency of 1 homozygous SNP per 23.1 bp, and a high degree of heterozygosity corresponding to one heterozygous SNP per 55.9 bp. Using expressed small RNA data, a similar number of microRNA sequences were predicted in both A- and B-genomes, but additional novel miRNAs were detected, including some that are unique to each genome. The usefulness of this B-genome sequence was evaluated by mapping RNA-seq data from a set of triploid AAA and AAB hybrids simultaneously to both genomes. Results for the plantains demonstrated the expected 2:1 distribution of reads across the A- and B-genomes, but for the AAA genomes, results show they contain regions of significant homology to the B-genome supporting proposals that there has been a history of interspecific recombination between homeologous A and B chromosomes in Musa hybrids. CONCLUSIONS We have generated and annotated a draft reference Musa B-genome and demonstrate that this can be used for molecular genetic mapping of gene transcripts and small RNA expression data from several allopolyploid banana cultivars. This draft therefore represents a valuable resource to support the study of metabolism in inter- and intraspecific triploid Musa hybrids and to help direct breeding programs.
Collapse
Affiliation(s)
- Mark W Davey
- Laboratory of Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit Leuven, Willem de Croylaan 42, box 2427B-3001, Heverlee, Leuven, Belgium
| | - Ranganath Gudimella
- Centre for Research in Biotechnology for Agriculture and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Lee Wan Sin
- Centre for Research in Biotechnology for Agriculture and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Norzulaani Khalid
- Centre for Research in Biotechnology for Agriculture and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Johan Keulemans
- Laboratory of Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit Leuven, Willem de Croylaan 42, box 2427B-3001, Heverlee, Leuven, Belgium
| |
Collapse
|
23
|
The genome of the hydatid tapeworm Echinococcus granulosus. Nat Genet 2013; 45:1168-75. [PMID: 24013640 DOI: 10.1038/ng.2757] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 08/14/2013] [Indexed: 12/12/2022]
Abstract
Cystic echinococcosis (hydatid disease), caused by the tapeworm E. granulosus, is responsible for considerable human morbidity and mortality. This cosmopolitan disease is difficult to diagnose, treat and control. We present a draft genomic sequence for the worm comprising 151.6 Mb encoding 11,325 genes. Comparisons with the genome sequences from other taxa show that E. granulosus has acquired a spectrum of genes, including the EgAgB family, whose products are secreted by the parasite to interact and redirect host immune responses. We also find that genes in bile salt pathways may control the bidirectional development of E. granulosus, and sequence differences in the calcium channel subunit EgCavβ1 may be associated with praziquantel sensitivity. Our study offers insights into host interaction, nutrient acquisition, strobilization, reproduction, immune evasion and maturation in the parasite and provides a platform to facilitate the development of new, effective treatments and interventions for echinococcosis control.
Collapse
|
24
|
Chen GL, Chang YJ, Hsueh CH. PRAP: an ab initio software package for automated genome-wide analysis of DNA repeats for prokaryotes. Bioinformatics 2013; 29:2683-9. [DOI: 10.1093/bioinformatics/btt482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
25
|
Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M, Fukuma Y, Shiwaku K, Tsujimoto A, Kobayashi T, Nakayama I, Ito F, Nakajima K, Sano M, Wada T, Kuhara S, Inouye K, Gojobori T, Ikeo K. The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS One 2013; 8:e57122. [PMID: 23536760 PMCID: PMC3594237 DOI: 10.1371/journal.pone.0057122] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/09/2013] [Indexed: 11/18/2022] Open
Abstract
Nori, a marine red alga, is one of the most profitable mariculture crops in the world. However, the biological properties of this macroalga are poorly understood at the molecular level. In this study, we determined the draft genome sequence of susabi-nori (Pyropia yezoensis) using next-generation sequencing platforms. For sequencing, thalli of P. yezoensis were washed to remove bacteria attached on the cell surface and enzymatically prepared as purified protoplasts. The assembled contig size of the P. yezoensis nuclear genome was approximately 43 megabases (Mb), which is an order of magnitude smaller than the previously estimated genome size. A total of 10,327 gene models were predicted and about 60% of the genes validated lack introns and the other genes have shorter introns compared to large-genome algae, which is consistent with the compact size of the P. yezoensis genome. A sequence homology search showed that 3,611 genes (35%) are functionally unknown and only 2,069 gene groups are in common with those of the unicellular red alga, Cyanidioschyzon merolae. As color trait determinants of red algae, light-harvesting genes involved in the phycobilisome were predicted from the P. yezoensis nuclear genome. In particular, we found a second homolog of phycobilisome-degradation gene, which is usually chloroplast-encoded, possibly providing a novel target for color fading of susabi-nori in aquaculture. These findings shed light on unexplained features of macroalgal genes and genomes, and suggest that the genome of P. yezoensis is a promising model genome of marine red algae.
Collapse
Affiliation(s)
- Yoji Nakamura
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
- * E-mail: (YN); (TG)
| | - Naobumi Sasaki
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Masahiro Kobayashi
- Seikai National Fisheries Research Institute, Fisheries Research Agency, Nagasaki-shi, Nagasaki, Japan
| | - Nobuhiko Ojima
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - Motoshige Yasuike
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - Yuya Shigenobu
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - Masataka Satomi
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | | | - Koji Shiwaku
- Hitachi Solutions, Ltd., Shinagawa-ku, Tokyo, Japan
| | | | | | - Ichiro Nakayama
- Ministry of Agriculture, Forestry and Fisheries, Chiyoda-ku, Tokyo, Japan
| | - Fuminari Ito
- National Research Institute of Aquaculture, Fisheries Research Agency, Minami-ise, Mie, Japan
| | - Kazuhiro Nakajima
- Japan Sea National Fisheries Research Institute, Fisheries Research Agency, Chuou-ku, Niigata, Japan
| | - Motohiko Sano
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - Tokio Wada
- Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - Satoru Kuhara
- Division of Molecular Biosciences, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | - Takashi Gojobori
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- * E-mail: (YN); (TG)
| | - Kazuho Ikeo
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
26
|
Chester M, Lipman MJ, Gallagher JP, Soltis PS, Soltis DE. An assessment of karyotype restructuring in the neoallotetraploid Tragopogon miscellus (Asteraceae). Chromosome Res 2013; 21:75-85. [PMID: 23430325 DOI: 10.1007/s10577-013-9339-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/11/2013] [Accepted: 02/03/2013] [Indexed: 11/24/2022]
Abstract
Tragopogon miscellus and Tragopogon mirus are two rare examples of allopolyploids that have formed recently in nature. Molecular cytogenetic studies have revealed chromosome copy number variation and intergenomic translocations in both allotetraploids. Due to a lack of interstitial chromosome markers, there remained the possibility of additional karyotype restructuring in these neopolyploids, via intrachromosomal and intragenomic rearrangements. To address this issue, we searched for additional high-copy tandem repeats in genomic sequences of the diploid progenitor species-Tragopogon dubius, Tragopogon pratensis and Tragopogon porrifolius-for application to the chromosomes of the allotetraploids. Eight novel repeats were localised by fluorescence in situ hybridisation (FISH) in the diploids; one of these repeats, TTR3, provided interstitial coverage. TTR3 was included in a cocktail with other previously characterised probes, producing better-resolved karyotypes for the three diploids. The cocktail was then used to test a hypothesis of karyotype restructuring in the recent allotetraploid T. miscellus by comparing repeat distributions to its diploid progenitors, T. dubius and T. pratensis. Five individuals of T. miscellus were selected from across the range of karyotypic variation previously observed in natural populations. FISH signal distributions mostly matched those observed in the diploid progenitors, with the exception of several losses or gains of signal at chromosomal subtermini and previously noted intergenomic translocations. Thus, in T. miscellus, we find most changes restricted to the subterminal regions, and although some were recurrent, none of the changes were common to all individuals analysed. We consider these findings in relation to the gene loss reported previously for T. miscellus.
Collapse
Affiliation(s)
- Michael Chester
- Department of Biology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | |
Collapse
|
27
|
Pagán HJT, Macas J, Novák P, McCulloch ES, Stevens RD, Ray DA. Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among vesper bats. Genome Biol Evol 2012; 4:575-85. [PMID: 22491057 PMCID: PMC3342881 DOI: 10.1093/gbe/evs038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The repetitive landscapes of mammalian genomes typically display high Class I (retrotransposon) transposable element (TE) content, which usually comprises around half of the genome. In contrast, the Class II (DNA transposon) contribution is typically small (<3% in model mammals). Most mammalian genomes exhibit a precipitous decline in Class II activity beginning roughly 40 Ma. The first signs of more recently active mammalian Class II TEs were obtained from the little brown bat, Myotis lucifugus, and are reflected by higher genome content (∼5%). To aid in determining taxonomic limits and potential impacts of this elevated Class II activity, we performed 454 survey sequencing of a second Myotis species as well as four additional taxa within the family Vespertilionidae and an outgroup species from Phyllostomidae. Graph-based clustering methods were used to reconstruct the major repeat families present in each species and novel elements were identified in several taxa. Retrotransposons remained the dominant group with regard to overall genome mass. Elevated Class II TE composition (3–4%) was observed in all five vesper bats, while less than 0.5% of the phyllostomid reads were identified as Class II derived. Differences in satellite DNA and Class I TE content are also described among vespertilionid taxa. These analyses present the first cohesive description of TE evolution across closely related mammalian species, revealing genome-scale differences in TE content within a single family.
Collapse
Affiliation(s)
- Heidi J T Pagán
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS, USA
| | | | | | | | | | | |
Collapse
|
28
|
Takeuchi T, Kawashima T, Koyanagi R, Gyoja F, Tanaka M, Ikuta T, Shoguchi E, Fujiwara M, Shinzato C, Hisata K, Fujie M, Usami T, Nagai K, Maeyama K, Okamoto K, Aoki H, Ishikawa T, Masaoka T, Fujiwara A, Endo K, Endo H, Nagasawa H, Kinoshita S, Asakawa S, Watabe S, Satoh N. Draft genome of the pearl oyster Pinctada fucata: a platform for understanding bivalve biology. DNA Res 2012; 19:117-30. [PMID: 22315334 PMCID: PMC3325083 DOI: 10.1093/dnares/dss005] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The study of the pearl oyster Pinctada fucata is key to increasing our understanding of the molecular mechanisms involved in pearl biosynthesis and biology of bivalve molluscs. We sequenced ∼1150-Mb genome at ∼40-fold coverage using the Roche 454 GS-FLX and Illumina GAIIx sequencers. The sequences were assembled into contigs with N50 = 1.6 kb (total contig assembly reached to 1024 Mb) and scaffolds with N50 = 14.5 kb. The pearl oyster genome is AT-rich, with a GC content of 34%. DNA transposons, retrotransposons, and tandem repeat elements occupied 0.4, 1.5, and 7.9% of the genome, respectively (a total of 9.8%). Version 1.0 of the P. fucata draft genome contains 23 257 complete gene models, 70% of which are supported by the corresponding expressed sequence tags. The genes include those reported to have an association with bio-mineralization. Genes encoding transcription factors and signal transduction molecules are present in numbers comparable with genomes of other metazoans. Genome-wide molecular phylogeny suggests that the lophotrochozoan represents a distinct clade from ecdysozoans. Our draft genome of the pearl oyster thus provides a platform for the identification of selection markers and genes for calcification, knowledge of which will be important in the pearl industry.
Collapse
Affiliation(s)
- Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Grover A, Aishwarya V, Sharma PC. Searching microsatellites in DNA sequences: approaches used and tools developed. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2012; 18:11-9. [PMID: 23573036 PMCID: PMC3550526 DOI: 10.1007/s12298-011-0098-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microsatellite instability associated genomic activities and evolutionary changes have led to a renewed focus on microsatellite research. In last decade, a number of microsatellite mining tools have been introduced based on different computational approaches. The choice is generally made between slow but exhaustive dynamic programming based approaches, or fast and incomplete heuristic methods. Tools based on stochastic approaches are more popular due to their simplicity and added ornamental features. We have performed a comparative evaluation of the relative efficiency of some microsatellite search tools with their default settings. The graphical user interface, the statistical analysis of the output and ability to mine imperfect repeats are the most important criteria in selecting a tool for a particular investigation. However, none of the available tools alone provides complete and accurate information about microsatellites, and a lot depends on the discretion of the user.
Collapse
Affiliation(s)
- Atul Grover
- />University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C Dwarka, New Delhi, 110075 India
- />Molecular Biology and Genetic Engineering Laboratory, Defence Institute of Bio Energy Research, Goraparao, Haldwani, 263139 India
| | - Veenu Aishwarya
- />University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C Dwarka, New Delhi, 110075 India
- />Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA USA
| | - P. C. Sharma
- />University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C Dwarka, New Delhi, 110075 India
| |
Collapse
|
30
|
Abstract
Advances in sequencing technologies have fundamentally changed the pace of genome sequencing projects and have contributed to the ever-increasing volume of genomic data. This has been paralleled by an increase in computational power and resources to process and translate raw sequence data into meaningful information. In addition to protein coding regions, an integral part of all the genomes studied so far has been the presence of repetitive sequences. Previously considered as "junk," numerous studies have implicated repetitive sequences in important biological and structural roles in the genome. Therefore, the identification and characterization of these repetitive sequences has become an indispensable part of genome sequencing projects. Numerous similarity-based and de novo methods have been developed to search for and annotate repeats in the genome, many of which have been discussed in this chapter.
Collapse
|
31
|
Hřibová E, Neumann P, Matsumoto T, Roux N, Macas J, Doležel J. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC PLANT BIOLOGY 2010; 10:204. [PMID: 20846365 PMCID: PMC2956553 DOI: 10.1186/1471-2229-10-204] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 09/16/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Bananas and plantains (Musa spp.) are grown in more than a hundred tropical and subtropical countries and provide staple food for hundreds of millions of people. They are seed-sterile crops propagated clonally and this makes them vulnerable to a rapid spread of devastating diseases and at the same time hampers breeding improved cultivars. Although the socio-economic importance of bananas and plantains cannot be overestimated, they remain outside the focus of major research programs. This slows down the study of nuclear genome and the development of molecular tools to facilitate banana improvement. RESULTS In this work, we report on the first thorough characterization of the repeat component of the banana (M. acuminata cv. 'Calcutta 4') genome. Analysis of almost 100 Mb of sequence data (0.15× genome coverage) permitted partial sequence reconstruction and characterization of repetitive DNA, making up about 30% of the genome. The results showed that the banana repeats are predominantly made of various types of Ty1/copia and Ty3/gypsy retroelements representing 16 and 7% of the genome respectively. On the other hand, DNA transposons were found to be rare. In addition to new families of transposable elements, two new satellite repeats were discovered and found useful as cytogenetic markers. To help in banana sequence annotation, a specific Musa repeat database was created, and its utility was demonstrated by analyzing the repeat composition of 62 genomic BAC clones. CONCLUSION A low-depth 454 sequencing of banana nuclear genome provided the largest amount of DNA sequence data available until now for Musa and permitted reconstruction of most of the major types of DNA repeats. The information obtained in this study improves the knowledge of the long-range organization of banana chromosomes, and provides sequence resources needed for repeat masking and annotation during the Musa genome sequencing project. It also provides sequence data for isolation of DNA markers to be used in genetic diversity studies and in marker-assisted selection.
Collapse
Affiliation(s)
- Eva Hřibová
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, Olomouc, CZ-77200, Czech Republic
| | - Pavel Neumann
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, České Budĕjovice, CZ-37005, Czech Republic
| | - Takashi Matsumoto
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Nicolas Roux
- Commodities for Livelihoods Programme, Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Jiří Macas
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, České Budĕjovice, CZ-37005, Czech Republic
| | - Jaroslav Doležel
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, Olomouc, CZ-77200, Czech Republic
| |
Collapse
|
32
|
Perez-Llaneza A, Caballero M, Baravalle E, Mesplet M, Mosqueda J, Suarez CE, Echaide I, Katzer F, Pacheco GM, Florin-Christensen M, Schnittger L. Development of a tandem repeat-based multilocus typing system distinguishing Babesia bovis geographic isolates. Vet Parasitol 2010; 167:196-204. [DOI: 10.1016/j.vetpar.2009.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity (Edinb) 2009; 104:520-33. [PMID: 19935826 DOI: 10.1038/hdy.2009.165] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The production of genome sequences has led to another important advance in their annotation, which is closely linked to the exact determination of their content in terms of repeats, among which are transposable elements (TEs). The evolutionary implications and the presence of coding regions in some TEs can confuse gene annotation, and also hinder the process of genome assembly, making particularly crucial to be able to annotate and classify them correctly in genome sequences. This review is intended to provide an overview as comprehensive as possible of the automated methods currently used to annotate and classify TEs in sequenced genomes. Different categories of programs exist according to their methodology and the repeat, which they can identify. I describe here the main characteristics of the programs, their main goals and the difficulties they can entail. The drawbacks of the different methods are also highlighted to help biologists who are unfamiliar with algorithmic methods to understand this methodology better. Globally, using several different programs and carrying out a cross comparison of their results has the best chance of finding reliable results as any single program. However, this makes it essential to verify the results provided by each program independently. The ideal solution would be to test all programs against the same data set to obtain a true comparison of their actual performance.
Collapse
|
34
|
Zarlenga DS, Gasbarre LC. From parasite genomes to one healthy world: Are we having fun yet? Vet Parasitol 2009; 163:235-49. [PMID: 19560277 DOI: 10.1016/j.vetpar.2009.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In 1990, the Human Genome Sequencing Project was established. This laid the ground work for an explosion of sequence data that has since followed. As a result of this effort, the first complete genome of an animal, Caenorhabditis elegans was published in 1998. The sequence of Drosophila melanogaster was made available in March, 2000 and in the following year, working drafts of the human genome were generated with the completed sequence (92%) being released in 2003. Recent advancements and next-generation technologies have made sequencing common place and have infiltrated every aspect of biological research, including parasitology. To date, sequencing of 32 apicomplexa and 24 nematode genomes are either in progress or near completion, and over 600k nematode EST and 200k apicomplexa EST submissions fill the databases. However, the winds have shifted and efforts are now refocusing on how best to store, mine and apply these data to problem solving. Herein we tend not to summarize existing X-omics datasets or present new technological advances that promise future benefits. Rather, the information to follow condenses up-to-date-applications of existing technologies to problem solving as it relates to parasite research. Advancements in non-parasite systems are also presented with the proviso that applications to parasite research are in the making.
Collapse
Affiliation(s)
- Dante S Zarlenga
- USDA, ARS, ANRI Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA.
| | | |
Collapse
|
35
|
Zhou Y, Zheng H, Chen X, Zhang L, Wang K, Guo J, Huang Z, Zhang B, Huang W, Jin K, Tonghai D, Hasegawa M, Wang L, Zhang Y, Zhou J, Tao L, Cao Z, Li Y, Vinar T, Brejova B, Brown D, Li M, Miller DJ, Blair D, Zhong Y, Chen Z. The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 2009; 460:345-51. [PMID: 19606140 PMCID: PMC3747554 DOI: 10.1038/nature08140] [Citation(s) in RCA: 543] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 05/08/2009] [Indexed: 11/09/2022]
Abstract
Schistosoma japonicum is a parasitic flatworm that causes human schistosomiasis, which is a significant cause of morbidity in China and the Philippines. Here we present a draft genomic sequence for the worm. The genome provides a global insight into the molecular architecture and host interaction of this complex metazoan pathogen, revealing that it can exploit host nutrients, neuroendocrine hormones and signalling pathways for growth, development and maturation. Having a complex nervous system and a well-developed sensory system, S. japonicum can accept stimulation of the corresponding ligands as a physiological response to different environments, such as fresh water or the tissues of its intermediate and mammalian hosts. Numerous proteases, including cercarial elastase, are implicated in mammalian skin penetration and haemoglobin degradation. The genomic information will serve as a valuable platform to facilitate development of new interventions for schistosomiasis control.
Collapse
Affiliation(s)
- Yan Zhou
- Shanghai-MOST key laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 250 Bi Bo Road, Shanghai, 201203, China
| | - Huajun Zheng
- Shanghai-MOST key laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 250 Bi Bo Road, Shanghai, 201203, China
- School of Life Science, Fudan University, 220 Han Dan Road, Shanghai, 200433, China
| | - Xiangyi Chen
- Shanghai-MOST key laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 250 Bi Bo Road, Shanghai, 201203, China
| | - Lei Zhang
- Shanghai-MOST key laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 250 Bi Bo Road, Shanghai, 201203, China
| | - Kai Wang
- Shanghai-MOST key laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 250 Bi Bo Road, Shanghai, 201203, China
| | - Jing Guo
- Shanghai-MOST key laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 250 Bi Bo Road, Shanghai, 201203, China
| | - Zhen Huang
- Shanghai-MOST key laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 250 Bi Bo Road, Shanghai, 201203, China
| | - Bo Zhang
- Shanghai-MOST key laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 250 Bi Bo Road, Shanghai, 201203, China
| | - Wei Huang
- Shanghai-MOST key laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 250 Bi Bo Road, Shanghai, 201203, China
| | - Ke Jin
- School of Life Science, Fudan University, 220 Han Dan Road, Shanghai, 200433, China
| | - Dou Tonghai
- School of Life Science, Fudan University, 220 Han Dan Road, Shanghai, 200433, China
| | - Masami Hasegawa
- School of Life Science, Fudan University, 220 Han Dan Road, Shanghai, 200433, China
| | - Li Wang
- School of Life Science, Fudan University, 220 Han Dan Road, Shanghai, 200433, China
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai 200235, China
| | - Yuan Zhang
- School of Life Science, Fudan University, 220 Han Dan Road, Shanghai, 200433, China
| | - Jie Zhou
- School of Life Science, Fudan University, 220 Han Dan Road, Shanghai, 200433, China
| | - Lin Tao
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai 200235, China
| | - Zhiwei Cao
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai 200235, China
| | - Yixue Li
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai 200235, China
| | - Tomas Vinar
- Cheriton School of Computer Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Brona Brejova
- Cheriton School of Computer Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Dan Brown
- Cheriton School of Computer Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Ming Li
- Cheriton School of Computer Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - David J. Miller
- Comparative Genomics Centre/School of Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia
| | - David Blair
- Comparative Genomics Centre/School of Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia
| | - Yang Zhong
- School of Life Science, Fudan University, 220 Han Dan Road, Shanghai, 200433, China
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai 200235, China
| | - Zhu Chen
- Shanghai-MOST key laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 250 Bi Bo Road, Shanghai, 201203, China
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, RuiJin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Rui Jin Road II, Shanghai, 200025, China
| |
Collapse
Collaborators
Yan Zhou, Huajun Zheng, Yangyi Chen, Lei Zhang, Kai Wang, Jing Guo, Zhen Huang, Bo Zhang, Wei Huang, Ke Jin, Tonghai Dou, Masami Hasegawa, Li Wang, Yuan Zhang, Jie Zhou, Lin Tao, Zhiwei Cao, Yixue Li, Tomas Vinar, Brona Brejova, Dan Brown, Ming Li, David J Miller, David Blair, Yang Zhong, Zhu Chen, Feng Liu, Wei Hu, Zhi-Qin Wang, Qin-Hua Zhang, Huai-Dong Song, Saijuan Chen, Xuenian Xu, Bin Xu, Chuan Ju, Yucheng Huang, Paul J Brindley, Donald P McManus, Zheng Feng, Ze-Guang Han, Gang Lu, Shuangxi Ren, Yuezhu Wang, Wenyi Gu, Hui Kang, Jie Chen, Xiaoyun Chen, Shuting Chen, Lijun Wang, Jie Yan, Biyun Wang, Xinyan Lv, Lei Jin, Bofei Wang, Shiyin Pu, Xianglin Zhang, Wei Zhang, Qiuping Hu, Genfeng Zhu, Jun Wang, Jun Yu, Jian Wang, Huanming Yang, Zemin Ning, Matthew Beriman, Chia-Lin Wei, Yijun Ruan, Guoping Zhao, Shengyue Wang, Feng Liu, Yan Zhou, Zhi-Qin Wang, Gang Lu, Huajun Zheng, Paul J Brindley, Donald P McManus, David Blair, Qin-hua Zhang, Yang Zhong, Shengyue Wang, Ze-Guang Han, Zhu Chen, Shengyue Wang, Ze-Guang Han, Zhu Chen,
Collapse
|
36
|
Sunter JD, Patel SP, Skilton RA, Githaka N, Knowles DP, Scoles GA, Nene V, de Villiers E, Bishop RP. A novel SINE family occurs frequently in both genomic DNA and transcribed sequences in ixodid ticks of the arthropod sub-phylum Chelicerata. Gene 2008; 415:13-22. [PMID: 18394826 DOI: 10.1016/j.gene.2008.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 01/14/2008] [Accepted: 01/30/2008] [Indexed: 11/18/2022]
Abstract
Reassociation kinetics and flow cytometry data indicate that ixodid tick genomes are large, relative to most arthropods, containing>or=10(9) base pairs. The molecular basis for this is unknown. We have identified a novel small interspersed element with features of a tRNA-derived SINE, designated Ruka, in genomic sequences of Rhipicephalus appendiculatus and Boophilus (Rhipicephalus) microplus ticks. The SINE was also identified in expressed sequence tag (EST) databases derived from several tissues in four species of ixodid ticks, namely R. appendiculatus, B. (R.) microplus, Amblyomma variegatum and also the more distantly related Ixodes scapularis. Secondary structure predictions indicated that Ruka could adopt a tRNA structure that was, atypically, most similar to a serine tRNA. By extrapolation the frequency of occurrence in the randomly selected BAC clone sequences is consistent with approximately 65,000 copies of Ruka in the R. appendiculatus genome. Real time PCR analyses on genomic DNA indicate copy numbers for specific Ruka subsets between 5800 and 38,000. Several putative conserved Ruka insertion sites were identified in EST sequences of three ixodid tick species based on the flanking sequences associated with the SINEs, indicating that some Ruka transpositions probably occurred prior to speciation within the metastriate division of the Ixodidae. The data strongly suggest that Class I transposable elements form a significant component of tick genomes and may partially account for the large genome sizes observed.
Collapse
Affiliation(s)
- Jack D Sunter
- The International Livestock Research Institute (ILRI), PO Box 30709, Nairobi, Kenya
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Macas J, Neumann P, Navrátilová A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 2007; 8:427. [PMID: 18031571 PMCID: PMC2206039 DOI: 10.1186/1471-2164-8-427] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 11/21/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum). RESULTS Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. CONCLUSION We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35-48% of the genome. These data provide a starting point for further investigations of legume plant genomes based on their global comparative analysis and for the development of more sophisticated approaches for data mining.
Collapse
Affiliation(s)
- Jiří Macas
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Pavel Neumann
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Alice Navrátilová
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| |
Collapse
|
38
|
Macas J, Neumann P, Navrátilová A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 2007. [PMID: 18031571 DOI: 10.1186/1471‐2164‐8‐427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum). RESULTS Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. CONCLUSION We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35-48% of the genome. These data provide a starting point for further investigations of legume plant genomes based on their global comparative analysis and for the development of more sophisticated approaches for data mining.
Collapse
Affiliation(s)
- Jirí Macas
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branisovská 31, Ceské Budejovice, CZ-37005, Czech Republic.
| | | | | |
Collapse
|
39
|
Sharma PC, Grover A, Kahl G. Mining microsatellites in eukaryotic genomes. Trends Biotechnol 2007; 25:490-8. [PMID: 17945369 DOI: 10.1016/j.tibtech.2007.07.013] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 07/12/2007] [Accepted: 07/31/2007] [Indexed: 12/13/2022]
Abstract
During recent decades, microsatellites have become the most popular source of genetic markers. More recently, the availability of enormous sequence data for a large number of eukaryotic genomes has accelerated research aimed at understanding the origin and functions of microsatellites and searching for new applications. This review presents recent developments of in silico mining of microsatellites to reveal various facets of the distribution and dynamics of microsatellites in eukaryotic genomes. Two aspects of microsatellite search strategies--using a suitable search tool and accessing a relevant microsatellite database--have been explored. Judicious microsatellite mining not only helps in addressing biological questions but also facilitates better exploitation of microsatellites for diverse applications.
Collapse
Affiliation(s)
- Prakash C Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi 110 006, India.
| | | | | |
Collapse
|
40
|
Ling KH, Rajandream MA, Rivailler P, Ivens A, Yap SJ, Madeira AM, Mungall K, Billington K, Yee WY, Bankier AT, Carroll F, Durham AM, Peters N, Loo SS, Mat Isa MN, Novaes J, Quail M, Rosli R, Nor Shamsudin M, Sobreira TJ, Tivey AR, Wai SF, White S, Wu X, Kerhornou A, Blake D, Mohamed R, Shirley M, Gruber A, Berriman M, Tomley F, Dear PH, Wan KL. Sequencing and analysis of chromosome 1 of Eimeria tenella reveals a unique segmental organization. Genome Res 2007; 17:311-9. [PMID: 17284678 PMCID: PMC1800922 DOI: 10.1101/gr.5823007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 01/03/2007] [Indexed: 11/25/2022]
Abstract
Eimeria tenella is an intracellular protozoan parasite that infects the intestinal tracts of domestic fowl and causes coccidiosis, a serious and sometimes lethal enteritis. Eimeria falls in the same phylum (Apicomplexa) as several human and animal parasites such as Cryptosporidium, Toxoplasma, and the malaria parasite, Plasmodium. Here we report the sequencing and analysis of the first chromosome of E. tenella, a chromosome believed to carry loci associated with drug resistance and known to differ between virulent and attenuated strains of the parasite. The chromosome--which appears to be representative of the genome--is gene-dense and rich in simple-sequence repeats, many of which appear to give rise to repetitive amino acid tracts in the predicted proteins. Most striking is the segmentation of the chromosome into repeat-rich regions peppered with transposon-like elements and telomere-like repeats, alternating with repeat-free regions. Predicted genes differ in character between the two types of segment, and the repeat-rich regions appear to be associated with strain-to-strain variation.
Collapse
Affiliation(s)
- King-Hwa Ling
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
- Molecular Genetics Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor DE, Malaysia
| | - Marie-Adele Rajandream
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Pierre Rivailler
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Near Newbury, Berkshire, RG20 7NN, United Kingdom
| | - Alasdair Ivens
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Soon-Joo Yap
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| | - Alda M.B.N. Madeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP, 05508-000, Brazil
| | - Karen Mungall
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Karen Billington
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Near Newbury, Berkshire, RG20 7NN, United Kingdom
| | - Wai-Yan Yee
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| | - Alan T. Bankier
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Fionnadh Carroll
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Near Newbury, Berkshire, RG20 7NN, United Kingdom
| | - Alan M. Durham
- Departamento de Ciências da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo SP, 05508-000, Brazil
| | - Nicholas Peters
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Shu-San Loo
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| | - Mohd Noor Mat Isa
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| | - Jeniffer Novaes
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP, 05508-000, Brazil
| | - Michael Quail
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Rozita Rosli
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
- Molecular Genetics Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor DE, Malaysia
| | - Mariana Nor Shamsudin
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor DE, Malaysia
| | - Tiago J.P. Sobreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP, 05508-000, Brazil
| | - Adrian R. Tivey
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Siew-Fun Wai
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| | - Sarah White
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Near Newbury, Berkshire, RG20 7NN, United Kingdom
| | - Xikun Wu
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Near Newbury, Berkshire, RG20 7NN, United Kingdom
| | - Arnaud Kerhornou
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Damer Blake
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Near Newbury, Berkshire, RG20 7NN, United Kingdom
| | - Rahmah Mohamed
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| | - Martin Shirley
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Near Newbury, Berkshire, RG20 7NN, United Kingdom
| | - Arthur Gruber
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP, 05508-000, Brazil
| | - Matthew Berriman
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Fiona Tomley
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Near Newbury, Berkshire, RG20 7NN, United Kingdom
| | - Paul H. Dear
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Kiew-Lian Wan
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| |
Collapse
|