1
|
Pilapitiya AU, Hor L, Pan J, Wijeyewickrema LC, Pike RN, Leyton DL, Paxman JJ, Heras B. The crystal structure of the toxin EspC from enteropathogenic Escherichia coli reveals the mechanism that governs host cell entry and cytotoxicity. Gut Microbes 2025; 17:2483777. [PMID: 40164999 PMCID: PMC11970781 DOI: 10.1080/19490976.2025.2483777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/18/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
Enteropathogenic E. coli (EPEC) is a significant cause of diarrhea, leading to high infant mortality rates. A key toxin produced by EPEC is the EspC autotransporter, which is regulated alongside genes from the locus of enterocyte effacement (LEE), which collectively result in the characteristic attaching and effacing lesions on the intestinal epithelium. In this study, we present the crystal structure of the EspC passenger domain (αEspC) revealing a toxin comprised a serine protease attached to a large β-helix with additional subdomains. Using various modified EspC expression constructs, alongside type III secretion system-mediated cell internalization assays, we dissect how the αEspC structural features enable toxin entry into the intestinal epithelium to cause cell cytotoxicity.
Collapse
Affiliation(s)
- Akila U. Pilapitiya
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - Jing Pan
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - Lakshmi C. Wijeyewickrema
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - Robert N. Pike
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - Denisse L. Leyton
- Research School of Biology, Australian National University, Canberra, Australia
| | - Jason J Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| |
Collapse
|
2
|
Faure G, Saito M, Wilkinson ME, Quinones-Olvera N, Xu P, Flam-Shepherd D, Kim S, Reddy N, Zhu S, Evgeniou L, Koonin EV, Macrae RK, Zhang F. TIGR-Tas: A family of modular RNA-guided DNA-targeting systems in prokaryotes and their viruses. Science 2025; 388:eadv9789. [PMID: 40014690 PMCID: PMC12045711 DOI: 10.1126/science.adv9789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
RNA-guided systems provide remarkable versatility, enabling diverse biological functions. Through iterative structural and sequence homology-based mining starting with a guide RNA-interaction domain of Cas9, we identified a family of RNA-guided DNA-targeting proteins in phage and parasitic bacteria. Each system consists of a tandem interspaced guide RNA (TIGR) array and a TIGR-associated (Tas) protein containing a nucleolar protein (Nop) domain, sometimes fused to HNH (TasH)- or RuvC (TasR)-nuclease domains. We show that TIGR arrays are processed into 36-nucleotide RNAs (tigRNAs) that direct sequence-specific DNA binding through a tandem-spacer targeting mechanism. TasR can be reprogrammed for precise DNA cleavage, including in human cells. The structure of TasR reveals striking similarities to box C/D small nucleolar ribonucleoproteins and IS110 RNA-guided transposases, providing insights into the evolution of diverse RNA-guided systems.
Collapse
Affiliation(s)
- Guilhem Faure
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Makoto Saito
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Max E. Wilkinson
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Natalia Quinones-Olvera
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Peiyu Xu
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Daniel Flam-Shepherd
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Stephanie Kim
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Nishith Reddy
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Shiyou Zhu
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Lilia Evgeniou
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
- Department of Systems Biology, Harvard University; Boston, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Rhiannon K. Macrae
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| |
Collapse
|
3
|
Wang Z, Li L, Yang M, Li B, Hu S. From Skeletal Muscle to Myocardium: Molecular Mechanisms of Exercise-Induced Irisin Regulation of Cardiac Fibrosis. Int J Mol Sci 2025; 26:3550. [PMID: 40332022 PMCID: PMC12026460 DOI: 10.3390/ijms26083550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
This study systematically elucidates the regulatory mechanisms and potential therapeutic value of the exercise-induced hormone Irisin in the pathological progression of cardiac fibrosis. Through comprehensive analysis and multidimensional data integration, we constructed a complete regulatory network of Irisin within the cardiovascular system, spanning its secretion, signal transduction, and precise regulatory control. Our findings demonstrate that exercise intervention significantly elevates circulating Irisin levels via the skeletal muscle-peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)-fibronectin type III domain-containing protein 5 (FNDC5) signaling axis. Irisin establishes a multidimensional molecular barrier against cardiac fibrosis by targeting Sirtuin 1 (Sirt1) activation, inhibiting the transforming growth factor-beta (TGF-β)/Smad3 signaling pathway, and modulating the transcriptional activity of the mitochondrial biogenesis core factors PGC-1α and nuclear respiratory factor 1 (NRF-1). Moreover, the dual regulatory mechanism of the exercise-skeletal muscle-heart axis not only effectively suppresses the aberrant activation of cardiac fibroblasts but also significantly reduces collagen deposition, oxidative stress, and inflammatory infiltration by restoring mitochondrial dynamics balance. Taken together, this study reveals a novel exercise-mediated cardioprotective mechanism at the molecular interaction network level, thereby providing a theoretical basis for the development of non-pharmacological bio-intervention strategies targeting the Irisin signaling pathway and laying a translational foundation for precise exercise prescriptions in cardiovascular diseases.
Collapse
Affiliation(s)
- Zhao Wang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (Z.W.); (L.L.); (M.Y.)
| | - Lin Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (Z.W.); (L.L.); (M.Y.)
| | - Meng Yang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (Z.W.); (L.L.); (M.Y.)
| | - Biao Li
- School of Physical Science, Hefei Normal University, Hefei 230061, China
| | - Siyuan Hu
- School of Sports & Arts, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
4
|
Motiwala T, Nyide B, Khoza T. Molecular dynamic simulations to assess the structural variability of ClpV from Enterobacter cloacae. FRONTIERS IN BIOINFORMATICS 2025; 5:1498916. [PMID: 40201065 PMCID: PMC11975955 DOI: 10.3389/fbinf.2025.1498916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
The Enterobacter cloacae complex (ECC) consists of six Enterobacter species (E. cloacae, hormaechei, kobei, ludwigii, nimipressuralis and asburiae) that have emerged as nosocomial pathogens of interest, with E. cloacae and Enterobacter hormachei being the most frequently isolated ECC species in human clinical specimens and intensive care unit (ICU) patients. Many nosocomial outbreaks of E. cloacae have been related to transmission through contaminated surgical equipment and operative cleaning solutions. As this pathogen evades the action of antibiotics, it is important to find alternative targets to limit the devastating effects of these pathogens. ClpV is a Clp ATPase which dissociates and recycles the contracted sheath of the bacterial type VI secretion system (T6SS), thereby regulating bacterial populations and facilitating environmental colonization. Seventy-one Enterobacter strains were mined for Clp ATPase proteins. All the investigated strains contained ClpA, ClpB, ClpX and ClpV while only 20% contained ClpK. All the investigated strains contained more than one ClpV protein, and the ClpV proteins showed significant variations. Three ClpV proteins from E. cloacae strain E3442 were then investigated to determine the structural difference between each protein. Homology modelling showed the proteins to be structurally similar to each other, however the physicochemical characteristics of the proteins vary. Additionally, physicochemical analysis and molecular dynamic simulations showed that the proteins were highly dynamic and not significantly different from each other. Further investigation of the proteins in silico and in vitro in the presence and absence of various ligands and proteins could be performed to determine whether the proteins all interact with their surroundings in the same manner. This would allow one to determine why multiple homologs of the same protein are expressed by pathogens.
Collapse
Affiliation(s)
| | | | - Thandeka Khoza
- Department of Biochemistry, School of Life Sciences, Pietermaritzburg Campus, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
5
|
Harihar B, Saravanan KM, Gromiha MM, Selvaraj S. Importance of Inter-residue Contacts for Understanding Protein Folding and Unfolding Rates, Remote Homology, and Drug Design. Mol Biotechnol 2025; 67:862-884. [PMID: 38498284 DOI: 10.1007/s12033-024-01119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Inter-residue interactions in protein structures provide valuable insights into protein folding and stability. Understanding these interactions can be helpful in many crucial applications, including rational design of therapeutic small molecules and biologics, locating functional protein sites, and predicting protein-protein and protein-ligand interactions. The process of developing machine learning models incorporating inter-residue interactions has been improved recently. This review highlights the theoretical models incorporating inter-residue interactions in predicting folding and unfolding rates of proteins. Utilizing contact maps to depict inter-residue interactions aids researchers in developing computer models for detecting remote homologs and interface residues within protein-protein complexes which, in turn, enhances our knowledge of the relationship between sequence and structure of proteins. Further, the application of contact maps derived from inter-residue interactions is highlighted in the field of drug discovery. Overall, this review presents an extensive assessment of the significant models that use inter-residue interactions to investigate folding rates, unfolding rates, remote homology, and drug development, providing potential future advancements in constructing efficient computational models in structural biology.
Collapse
Affiliation(s)
- Balasubramanian Harihar
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Konda Mani Saravanan
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India
| | - Michael M Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Samuel Selvaraj
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
6
|
Galeva AV, Zhao D, Syutkin AS, Topilina MY, Shchyogolev SY, Pavlova EY, Selivanova OM, Kireev II, Surin AK, Burygin GL, Liu J, Xiang H, Pyatibratov MG. Tat-fimbriae ("tafi"): An unusual type of haloarchaeal surface structure depending on the twin-arginine translocation pathway. iScience 2025; 28:111793. [PMID: 39949959 PMCID: PMC11821415 DOI: 10.1016/j.isci.2025.111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/13/2023] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
The surface structures of archaeal cells, many of which exist at high temperatures, high salinity, and non-physiological pH, are key factors for their adaptation to extreme living conditions. In the haloarchaeon Haloarcula hispanica, we have discovered a thin filamentous surface appendage called tat-fimbriae ("tafi"), which were identified to be composed of three protein subunits, TafA, TafC, and TafE, among which TafA is the major fimbrial subunit. Molecular genetic evidence demonstrates TafA was transported through the twin-arginine translocation pathway (Tat-pathway). Based on protein structure prediction (including AlphaFold 3), tafi exhibits a linear structure: TafC at the tip, TafE acting as an adapter, TafA forming the core filament, and they link the fourth subunit TafF, anchoring tafi to the cell wall. To our knowledge, this is the first case that the Tat-pathway has been linked to the secretion of protein subunits forming prokaryotic filamentous structures.
Collapse
Affiliation(s)
- Anna V. Galeva
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Alexey S. Syutkin
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Marina Yu Topilina
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Sergei Yu Shchyogolev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov 410049, Russia
| | - Elena Yu Pavlova
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Olga M. Selivanova
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Igor I. Kireev
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gori 1, Bldg 40, Moscow 119234, Russia
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
- Branch of the Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, Moscow Region 142290, Russia
- State Research Center for Applied Microbiology & Biotechnology, Obolensk, Serpukhov District, Moscow Region 142279, Russia
| | - Gennady L. Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov 410049, Russia
- Vavilov Saratov State Agrarian University, 1 Teatralnaya Ploshchad, Saratov 410012, Russia
| | - Jingfang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Mikhail G. Pyatibratov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
7
|
Naz Z, Rathore I, Saleem M, Rahman M, Wlodawer A, Rashid N. A Bifunctional Phosphoglucomutase/Phosphomannomutase from Thermococcus kodakarensis: Biophysical Analysis and Cryo-EM Structure. Biomolecules 2025; 15:319. [PMID: 40149855 PMCID: PMC11940775 DOI: 10.3390/biom15030319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Phosphoglucomutase (EC 5.4.2.2., PGM), a key enzyme of glycogenolysis and glycogenesis, catalyzes the interconversion of glucose 1-phosphate and glucose 6-phosphate, whereas phosphomannomutase (EC 5.4.2.8., PMM) transfers the phosphate group from the 1' to the 6', or from the 6' to the 1' position in mannose phosphate. However, in the hyperthermophilic archaeon Thermococcus kodakarensis, a single gene, Tk1108, encodes a protein with both PGM and PMM activities. Here, we report biophysical analysis and the 2.45 Å resolution cryo-EM structure of this novel enzyme. Our results demonstrate a specific arrangement of the four subunits in the quaternary structure, displaying a distinct catalytic cleft required for the bifunctional activity at extremely high temperatures. To the best of our knowledge, this is the first biophysical characterization and cryo-EM structure elucidation of a thermostable, bifunctional PGM/PMM.
Collapse
Affiliation(s)
- Zahra Naz
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan; (Z.N.); (M.S.); (M.R.)
- Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Ishan Rathore
- Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Muhammad Saleem
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan; (Z.N.); (M.S.); (M.R.)
| | - Moazur Rahman
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan; (Z.N.); (M.S.); (M.R.)
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan; (Z.N.); (M.S.); (M.R.)
| |
Collapse
|
8
|
Akram M, Hauser D, Dietl A, Steigleder M, Ullmann GM, Barends TRM. Redox potential tuning by calcium ions in a novel c-type cytochrome from an anammox organism. J Biol Chem 2025; 301:108082. [PMID: 39675707 PMCID: PMC11791136 DOI: 10.1016/j.jbc.2024.108082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
The electrochemical potentials of redox-active proteins need to be tuned accurately to the correct values for proper biological function. Here, we describe a diheme cytochrome c with high heme redox potentials of about +350 mV, despite having a large overall negative charge, which typically reduces redox potentials. High-resolution crystal structures, spectroelectrochemical measurements, and high-end computational methods show how this is achieved: each heme iron has a calcium cation positioned next to it at a distance of only 6.9 Å, raising their redox potentials by several hundred millivolts through electrostatic interaction. We suggest that this has evolved to provide the protein with a high redox potential despite its large negative surface charge, which it likely requires for interactions with redox partners.
Collapse
Affiliation(s)
- Mohd Akram
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - David Hauser
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Andreas Dietl
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Matthias Steigleder
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - G Matthias Ullmann
- Computational Biochemistry Group, Fakultät für Chemie, Biologie und Geowissenschaften, Bayreuth, Germany.
| | - Thomas R M Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
9
|
Bheemireddy S, Sowdhamini R, Srinivasan N. Computational analysis of the effect of a binding protein (RbpA) on the dynamics of Mycobacterium tuberculosis RNA polymerase assembly. PLoS One 2025; 20:e0317187. [PMID: 39883746 PMCID: PMC11781615 DOI: 10.1371/journal.pone.0317187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND RNA polymerase-binding protein A (RbpA) is an actinomycetes-specific protein crucial for the growth and survival of the pathogen Mycobacterium tuberculosis. Its role is essential and influences the transcription and antibiotic responses. However, the regulatory mechanisms underlying RbpA-mediated transcription remain unknown. In this study, we employed various computational techniques to investigate the role of RbpA in the formation and dynamics of the RNA polymerase complex. RESULTS Our analysis reveals significant structural rearrangements in RNA polymerase happen upon interaction with RbpA. Hotspot residues, crucial amino acids in the RbpA-mediated transcriptional regulation, were identified through our examination. The study elucidates the dynamic behavior within the complex, providing insights into the flexibility and functional dynamics of the RbpA-RNA polymerase interaction. Notably, potential allosteric mechanisms, involving the interface of subunits α1 and α2 were uncovered, shedding light on how RbpA modulates transcriptional activity. CONCLUSIONS Finally, potential ligands meant for the α1-α2 binding site were identified through virtual screening. The outcomes of our computational study serve as a foundation for experimental investigations into inhibitors targeting the RbpA-regulated dynamics in RNA polymerase. Overall, this research contributes valuable information for understanding the intricate regulatory networks of RbpA in the context of transcription and suggests potential avenues for the development of RbpA-targeted therapeutics.
Collapse
Affiliation(s)
- Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bengaluru, Karnataka, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bengaluru, Karnataka, India
| | | |
Collapse
|
10
|
Ilyina V, Gatina A, Trizna E, Siniagina M, Yadykova L, Ivannikova A, Ozhegov G, Zhuravleva D, Fedorova M, Gorshkova A, Evseev P, Drucker V, Bogachev M, Validov S, Kharitonova M, Kayumov A. New Bacteriophage Pseudomonas Phage Ka2 from a Tributary Stream of Lake Baikal. Viruses 2025; 17:189. [PMID: 40006944 PMCID: PMC11861027 DOI: 10.3390/v17020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen, causes various biofilm-associated infections like pneumonia, infections in cystic fibrosis patients, and urinary tract and burn infections with high morbidity and mortality, as well as low treatment efficacy due to the extremely wide spread of isolates with multidrug resistance. Here, we report the new bacteriophage Pseudomonas phage Ka2 isolated from a tributary stream of Lake Baikal and belonging to the Pbunavirus genus. Transmission electron microscopy resolved that Pseudomonas phage Ka2 has a capsid of 57 ± 9 nm and a contractile and inflexible tail of 115 ± 10 nm in the non-contracted state. The genome consists of 66,310 bp with a GC content of 55% and contains 96 coding sequences. Among them, 52 encode proteins have known functions, and none of them are potentially associated with lysogeny. The bacteriophage lyses 21 of 30 P. aeruginosa clinical isolates and decreases the MIC of amikacin, gentamicin, and cefepime up to 16-fold and the MIC of colistin up to 32-fold. When treating the biofilms with Ka2, the biomass was reduced by twice, and up to a 32-fold decrease in the antibiotics MBC against biofilm-embedded cells was achieved by the combination of Ka2 with cefepime for the PAO1 strain, along with a decrease of up to 16-fold with either amikacin or colistin for clinical isolates. Taken together, these data characterize the new Pseudomonas phage Ka2 as a promising tool for the combined treatment of infections associated with P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Valeriya Ilyina
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Alina Gatina
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Elena Trizna
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Maria Siniagina
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Liudmila Yadykova
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Anastasiya Ivannikova
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Georgiy Ozhegov
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Daria Zhuravleva
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Marina Fedorova
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Anna Gorshkova
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.G.); (V.D.)
| | - Peter Evseev
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Valentin Drucker
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.G.); (V.D.)
| | - Mikhail Bogachev
- Biomedical Engineering Research Centre, St. Petersburg Electrotechnical University, 197022 St. Petersburg, Russia;
| | - Shamil Validov
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia;
| | - Maya Kharitonova
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| | - Airat Kayumov
- Institute of Fundamental Biology and Medicine, Kazan Federal University, 420012 Kazan, Russia; (V.I.); (A.G.); (E.T.); (M.S.); (L.Y.); (A.I.); (G.O.); (D.Z.); (M.F.); (M.K.)
| |
Collapse
|
11
|
Yoo R, Haji-Ghassemi O, Bader M, Xu J, McFarlane C, Van Petegem F. Crystallographic, kinetic, and calorimetric investigation of PKA interactions with L-type calcium channels and Rad GTPase. J Biol Chem 2025; 301:108039. [PMID: 39615689 PMCID: PMC11728977 DOI: 10.1016/j.jbc.2024.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/22/2024] Open
Abstract
β-Adrenergic signaling activates cAMP-dependent PKA, which regulates the activity of L-type voltage-gated calcium channels such as CaV1.2. Several PKA target sites in the C-terminal tail of CaV1.2 have been identified, and their phosphorylation has been suggested to increase currents in specific tissues or heterologous expression systems. However, augmentation of CaV1.2 currents in the heart is instead mediated by phosphorylation of Rad, a small GTPase that can inhibit CaV1.2. It is unclear how each of the proposed target sites in CaV1.2 and Rad rank toward their recognition by PKA, which could reveal a preferential phosphorylation. Here, we used quantitative assays on three CaV1.2 and four Rad sites. Isothermal titration calorimetry and enzyme kinetics show that there are two Tiers of targets, with CaV1.2 residue Ser1981 and Rad residues Ser25 and Ser272 forming tier one substrates for PKA. These share a common feature with two Arginine residues at specific positions that can anchor the peptide into the substrate binding cleft of PKA. In contrast, PKA shows minimal activity for the other, tier two substrates, characterized by low kcat values and undetectable binding via isothermal titration calorimetry. The existence of two tiers suggests that PKA regulation of the CaV1.2 complex may occur in a graded fashion. We report crystal structures of the PKA catalytic subunit with and without a CaV1.2 and test the importance of several anchoring residues via mutagenesis. Different target sites utilize different anchors, highlighting the plasticity of PKAc to recognize substrates.
Collapse
Affiliation(s)
- Randy Yoo
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Omid Haji-Ghassemi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada.
| | - Marvin Bader
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Jiaming Xu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Ciaran McFarlane
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
12
|
Naz Z, Lubkowski J, Saleem M, Aslam M, Rahman M, Wlodawer A, Rashid N. Biophysical Characterization of a Novel Phosphopentomutase from the Hyperthermophilic Archaeon Thermococcus kodakarensis. Int J Mol Sci 2024; 25:12893. [PMID: 39684607 DOI: 10.3390/ijms252312893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Phosphopentomutases catalyze the isomerization of ribose 1-phosphate and ribose 5-phosphate. Thermococcus kodakarensis, a hyperthermophilic archaeon, harbors a novel enzyme (PPMTk) that exhibits high homology with phosphohexomutases but has no significant phosphohexomutase activity. Instead, PPMTk catalyzes the interconversion of ribose 1-phosphate and ribose 5-phosphate. Here, we report biophysical analysis, crystallization, and three-dimensional structure determination of PPMTk by X-ray diffraction at 2.39 Å resolution. The solved structure revealed a novel catalytic motif, unique to PPMTk, which makes this enzyme distinct from the homologous counterparts. We postulate that this novel catalytic motif may enable PPMTk to isomerize phosphopentose instead of phosphohexose. To the best of our knowledge, this is the first biophysical and structural analysis of a phosphopentomutase from hyperthermophilic archaea.
Collapse
Affiliation(s)
- Zahra Naz
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
- Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederic, MD 21702, USA
| | - Jacek Lubkowski
- Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederic, MD 21702, USA
| | - Muhammad Saleem
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Moazur Rahman
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederic, MD 21702, USA
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
13
|
Büttiker P, Boukherissa A, Weissenberger S, Ptacek R, Anders M, Raboch J, Stefano GB. Cognitive Impact of Neurotropic Pathogens: Investigating Molecular Mimicry through Computational Methods. Cell Mol Neurobiol 2024; 44:72. [PMID: 39467848 PMCID: PMC11519248 DOI: 10.1007/s10571-024-01509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Neurotropic pathogens, notably, herpesviruses, have been associated with significant neuropsychiatric effects. As a group, these pathogens can exploit molecular mimicry mechanisms to manipulate the host central nervous system to their advantage. Here, we present a systematic computational approach that may ultimately be used to unravel protein-protein interactions and molecular mimicry processes that have not yet been solved experimentally. Toward this end, we validate this approach by replicating a set of pre-existing experimental findings that document the structural and functional similarities shared by the human cytomegalovirus-encoded UL144 glycoprotein and human tumor necrosis factor receptor superfamily member 14 (TNFRSF14). We began with a thorough exploration of the Homo sapiens protein database using the Basic Local Alignment Search Tool (BLASTx) to identify proteins sharing sequence homology with UL144. Subsequently, we used AlphaFold2 to predict the independent three-dimensional structures of UL144 and TNFRSF14. This was followed by a comprehensive structural comparison facilitated by Distance-Matrix Alignment and Foldseek. Finally, we used AlphaFold-multimer and PPIscreenML to elucidate potential protein complexes and confirm the predicted binding activities of both UL144 and TNFRSF14. We then used our in silico approach to replicate the experimental finding that revealed TNFRSF14 binding to both B- and T-lymphocyte attenuator (BTLA) and glycoprotein domain and UL144 binding to BTLA alone. This computational framework offers promise in identifying structural similarities and interactions between pathogen-encoded proteins and their host counterparts. This information will provide valuable insights into the cognitive mechanisms underlying the neuropsychiatric effects of viral infections.
Collapse
Affiliation(s)
- Pascal Büttiker
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Amira Boukherissa
- Institute for Integrative Biology of the Cell (I2BC), UMR91918, CNRS, CEA, Paris-Saclay University, Gif-Sur-Yvette, France
- Ecology Systematics Evolution (ESE), CNRS, AgroParisTech, Paris-Saclay University, Orsay, France
| | - Simon Weissenberger
- Department of Psychology, University of New York in Prague, Prague, Czech Republic
| | - Radek Ptacek
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Anders
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiri Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - George B Stefano
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
14
|
Evseev P, Gutnik D, Evpak A, Kasimova A, Miroshnikov K. Origin, Evolution and Diversity of φ29-like Phages-Review and Bioinformatic Analysis. Int J Mol Sci 2024; 25:10838. [PMID: 39409167 PMCID: PMC11476376 DOI: 10.3390/ijms251910838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Phage φ29 and related bacteriophages are currently the smallest known tailed viruses infecting various representatives of both Gram-positive and Gram-negative bacteria. They are characterised by genomic content features and distinctive properties that are unique among known tailed phages; their characteristics include protein primer-driven replication and a packaging process characteristic of this group. Searches conducted using public genomic databases revealed in excess of 2000 entries, including bacteriophages, phage plasmids and sequences identified as being archaeal that share the characteristic features of phage φ29. An analysis of predicted proteins, however, indicated that the metagenomic sequences attributed as archaeal appear to be misclassified and belong to bacteriophages. An analysis of the translated polypeptides of major capsid proteins (MCPs) of φ29-related phages indicated the dissimilarity of MCP sequences to those of almost all other known Caudoviricetes groups and a possible distant relationship to MCPs of T7-like (Autographiviridae) phages. Sequence searches conducted using HMM revealed the relatedness between the main structural proteins of φ29-like phages and an unusual lactococcal phage, KSY1 (Chopinvirus KSY1), whose genome contains two genes of RNA polymerase that are similar to the RNA polymerases of phages of the Autographiviridae and Schitoviridae (N4-like) families. An analysis of the tail tube proteins of φ29-like phages indicated their dissimilarity of the lower collar protein to tail proteins of all other viral groups, but revealed its possible distant relatedness with proteins of toxin translocation complexes. The combination of the unique features and distinctive origin of φ29-related phages suggests the categorisation of this vast group in a new order or as a new taxon of a higher rank.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russia
| | - Daria Gutnik
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorsakaya Street, 3, 664033 Irkutsk, Russia
| | - Alena Evpak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| | - Anastasia Kasimova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt, 47, 119991 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| |
Collapse
|
15
|
Kim B, Hwang J, Im S, Do H, Shim YS, Lee JH. First crystal structure of the DUF2436 domain of virulence proteins from Porphyromonas gingivalis. Acta Crystallogr F Struct Biol Commun 2024; 80:252-262. [PMID: 39325582 PMCID: PMC11448926 DOI: 10.1107/s2053230x24008185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/17/2024] [Indexed: 09/28/2024] Open
Abstract
Porphyromonas gingivalis is a major pathogenic oral bacterium that is responsible for periodontal disease. It is linked to chronic periodontitis, gingivitis and aggressive periodontitis. P. gingivalis exerts its pathogenic effects through mechanisms such as immune evasion and tissue destruction, primarily by secreting various factors, including cysteine proteases such as gingipain K (Kgp), gingipain R (RgpA and RgpB) and PrtH (UniProtKB ID P46071). Virulence proteins comprise multiple domains, including the pro-peptide region, catalytic domain, K domain, R domain and DUF2436 domain. While there is a growing database of knowledge on virulence proteins and domains, there was no prior evidence or information regarding the structure and biological function of the well conserved DUF2436 domain. In this study, the DUF2436 domain of PrtH from P. gingivalis (PgDUF2436) was determined at 2.21 Å resolution, revealing a noncanonical β-jelly-roll sandwich topology with two antiparallel β-sheets and one short α-helix. Although the structure of PgDUF2436 was determined by the molecular-replacement method using an AlphaFold model structure as a template, there were significant differences in the positions of β1 between the AlphaFold model and the experimentally determined PgDUF2436 structure. The Basic Local Alignment Search Tool sequence-similarity search program showed no sequentially similar proteins in the Protein Data Bank. However, DaliLite search results using structure-based alignment revealed that the PgDUF2436 structure has structural similarity Z-scores of 5.9-5.4 with the C-terminal domain of AlgF, the D4 domain of cytolysin, IglE and the extracellular domain structure of PepT2. This study has elucidated the structure of the DUF2436 domain for the first time and a comparative analysis with similar structures has been performed.
Collapse
Affiliation(s)
- Bogeun Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jisub Hwang
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sehyeok Im
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Hackwon Do
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Youn Soo Shim
- Department of Dental Hygiene, Sunmoon University, Asan 31460, Republic of Korea
| | - Jun Hyuck Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| |
Collapse
|
16
|
Jamontas R, Laurynėnas A, Povilaitytė D, Meškys R, Aučynaitė A. RudS: bacterial desulfidase responsible for tRNA 4-thiouridine de-modification. Nucleic Acids Res 2024; 52:10543-10562. [PMID: 39166491 PMCID: PMC11417400 DOI: 10.1093/nar/gkae716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
In this study, we present an extensive analysis of a widespread group of bacterial tRNA de-modifying enzymes, dubbed RudS, which consist of a TudS desulfidase fused to a Domain of Unknown Function 1722 (DUF1722). RudS enzymes exhibit specific de-modification activity towards the 4-thiouridine modification (s4U) in tRNA molecules, as indicated by our experimental findings. The heterologous overexpression of RudS genes in Escherichia coli significantly reduces the tRNA 4-thiouridine content and diminishes UVA-induced growth delay, indicating the enzyme's role in regulating photosensitive tRNA s4U modification. Through a combination of protein modeling, docking studies, and molecular dynamics simulations, we have identified amino acid residues involved in catalysis and tRNA binding. Experimental validation through targeted mutagenesis confirms the TudS domain as the catalytic core of RudS, with the DUF1722 domain facilitating tRNA binding in the anticodon region. Our results suggest that RudS tRNA modification eraser proteins may play a role in regulating tRNA during prokaryotic stress responses.
Collapse
Affiliation(s)
- Rapolas Jamontas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Audrius Laurynėnas
- Department of Bioanalysis, Institute of Biochemistry, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Deimantė Povilaitytė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Agota Aučynaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| |
Collapse
|
17
|
Ruiz-Cruz S, Erazo Garzon A, Cambillau C, Ortiz Charneco G, Lugli GA, Ventura M, Mahony J, van Sinderen D. The tal gene of lactococcal bacteriophage TP901-1 is involved in DNA release following host adsorption. Appl Environ Microbiol 2024; 90:e0069424. [PMID: 39132999 PMCID: PMC11409707 DOI: 10.1128/aem.00694-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Temperate P335 phage TP901-1 represents one of the best-characterized Gram-positive phages regarding its structure and host interactions. Following its reversible adsorption to the polysaccharidic side-chain of the cell wall polysaccharide of its host Lactococcus cremoris 3107, TP901-1 requires a glucosylated cell envelope moiety to trigger its genome delivery into the host cytoplasm. Here, we demonstrate that three distinct single amino acid substitutions in the Tal protein of TP901-1 baseplate are sufficient to overcome the TP901-1 resistance of three L. cremoris 3107 derivatives, whose resistance is due to impaired DNA release of the phage. All of these Tal alterations are located in the N-terminally located gp27-like domain of the protein, conserved in many tailed phages. AlphaFold2 predictions of the Tal mutant proteins suggest that these mutations favor conformational changes necessary to reposition the Tal fiber and thus facilitate release of the tape measure protein from the tail tube and subsequent DNA ejection in the absence of the trigger otherwise required for phage genome release. IMPORTANCE Understanding the molecular mechanisms involved in phage-host interactions is essential to develop phage-based applications in the food and probiotic industries, yet also to reduce the risk of phage infections in fermentations. Lactococcus, extensively used in dairy fermentations, has been widely employed to unravel such interactions. Phage infection commences with the recognition of a suitable host followed by the release of its DNA into the bacterial cytoplasm. Details on this latter, irreversible step are still very scarce in lactococci and other Gram-positive bacteria. We demonstrate that a component of the baseplate of the lactococcal phage TP901-1, the tail-associated lysin (Tal), is involved in the DNA delivery into its host, L. cremoris 3107. Specifically, we have found that three amino acid changes in Tal appear to facilitate structural rearrangements in the baseplate necessary for the DNA release process, even in the absence of an otherwise required host trigger.
Collapse
Affiliation(s)
- Sofía Ruiz-Cruz
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Andrea Erazo Garzon
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Christian Cambillau
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université—CNRS, Marseille, France
| | | | - Gabriele Andrea Lugli
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parma, Italy
| | - Marco Ventura
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parma, Italy
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Florek LC, Lin X, Lin YC, Lin MH, Chakraborty A, Price-Whelan A, Tong L, Rahme L, Dietrich LEP. The L-lactate dehydrogenases of Pseudomonas aeruginosa are conditionally regulated but both contribute to survival during macrophage infection. mBio 2024; 15:e0085224. [PMID: 39162563 PMCID: PMC11389411 DOI: 10.1128/mbio.00852-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that thrives in environments associated with human activity, including soil and water altered by agriculture or pollution. Because L-lactate is a significant product of plant and animal metabolism, it can serve as a carbon source for P. aeruginosa in the diverse settings that it inhabits. In this study, we evaluate the production and use of two redundant P. aeruginosa L-lactate dehydrogenases, termed LldD and LldA. We confirm that the protein LldR represses lldD and identify a new transcription factor, called LldS, that activates lldA; these distinct regulators and the genomic contexts of lldD and lldA contribute to their differential expression. We demonstrate that the lldD and lldA genes are conditionally controlled in response to lactate isomers as well as to glycolate and ɑ-hydroxybutyrate, which, like lactate, are ɑ-hydroxycarboxylates. We also show that lldA is induced when iron availability is low. Our examination of lldD and lldA expression across depth in biofilms indicates a complex pattern that is consistent with the effects of glycolate production, iron availability, and cross-regulation on enzyme preference. Finally, macrophage infection assays reveal that both lldD and lldA contribute to persistence within host cells, underscoring the potential role of L-lactate as a carbon source during P. aeruginosa-eukaryote interactions. Together, these findings help us understand the metabolism of a key resource that may promote P. aeruginosa's success as a resident of contaminated environments and animal hosts.IMPORTANCEPseudomonas aeruginosa is a major cause of lung infections in people with cystic fibrosis, of hospital-acquired infections, and of wound infections. It consumes L-lactate, which is found at substantial levels in human blood and tissues. In this study, we investigated the spatial regulation of two redundant enzymes, called LldD and LldA, which enable L-lactate metabolism in P. aeruginosa biofilms. We uncovered mechanisms and identified compounds that control the preference of P. aeruginosa for LldD versus LldA. We also showed that both enzymes contribute to its ability to survive within macrophages, a behavior that is thought to augment the chronicity and recalcitrance of infections. Our findings shed light on a key metabolic strategy used by P. aeruginosa and have the potential to inform the development of therapies targeting bacterial metabolism during infection.
Collapse
Affiliation(s)
- Lindsey C. Florek
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Xi Lin
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Yu-Cheng Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Min-Han Lin
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Arijit Chakraborty
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Laurence Rahme
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, USA
| |
Collapse
|
19
|
Golisch B, Cordeiro RL, Fraser ASC, Briggs J, Stewart WA, Van Petegem F, Brumer H. The molecular basis of cereal mixed-linkage β-glucan utilization by the human gut bacterium Segatella copri. J Biol Chem 2024; 300:107625. [PMID: 39122003 PMCID: PMC11418011 DOI: 10.1016/j.jbc.2024.107625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Mixed-linkage β(1,3)/β(1,4)-glucan (MLG) is abundant in the human diet through the ingestion of cereal grains and is widely associated with healthful effects on metabolism and cholesterol levels. MLG is also a major source of fermentable glucose for the human gut microbiota (HGM). Bacteria from the family Prevotellaceae are highly represented in the HGM of individuals who eat plant-rich diets, including certain indigenous people and vegetarians in postindustrial societies. Here, we have defined and functionally characterized an exemplar Prevotellaceae MLG polysaccharide utilization locus (MLG-PUL) in the type-strain Segatella copri (syn. Prevotella copri) DSM 18205 through transcriptomic, biochemical, and structural biological approaches. In particular, structure-function analysis of the cell-surface glycan-binding proteins and glycoside hydrolases of the S. copri MLG-PUL revealed the molecular basis for glycan capture and saccharification. Notably, syntenic MLG-PULs from human gut, human oral, and ruminant gut Prevotellaceae are distinguished from their counterparts in Bacteroidaceae by the presence of a β(1,3)-specific endo-glucanase from glycoside hydrolase family 5, subfamily 4 (GH5_4) that initiates MLG backbone cleavage. The definition of a family of homologous MLG-PULs in individual species enabled a survey of nearly 2000 human fecal microbiomes using these genes as molecular markers, which revealed global population-specific distributions of Bacteroidaceae- and Prevotellaceae-mediated MLG utilization. Altogether, the data presented here provide new insight into the molecular basis of β-glucan metabolism in the HGM, as a basis for informing the development of approaches to improve the nutrition and health of humans and other animals.
Collapse
Affiliation(s)
- Benedikt Golisch
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rosa Lorizolla Cordeiro
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander S C Fraser
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathon Briggs
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - William A Stewart
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
20
|
Warren GM, Shuman S. Structure and in vivo psoralen DNA crosslink repair activity of mycobacterial Nei2. mBio 2024; 15:e0124824. [PMID: 39012146 PMCID: PMC11323726 DOI: 10.1128/mbio.01248-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 07/17/2024] Open
Abstract
Mycobacterium smegmatis Nei2 is a monomeric enzyme with AP β-lyase activity on single-stranded DNA. Expression of Nei2, and its operonic neighbor Lhr (a tetrameric 3'-to-5' helicase), is induced in mycobacteria exposed to DNA damaging agents. Here, we find that nei2 deletion sensitizes M. smegmatis to killing by DNA inter-strand crosslinker trimethylpsoralen but not to crosslinkers mitomycin C and cisplatin. By contrast, deletion of lhr sensitizes to killing by all three crosslinking agents. We report a 1.45 Å crystal structure of recombinant Nei2, which is composed of N and C terminal lobes flanking a central groove suitable for DNA binding. The C lobe includes a tetracysteine zinc complex. Mutational analysis identifies the N-terminal proline residue (Pro2 of the ORF) and Lys51, but not Glu3, as essential for AP lyase activity. We find that Nei2 has 5-hydroxyuracil glycosylase activity on single-stranded DNA that is effaced by alanine mutations of Glu3 and Lys51 but not Pro2. Testing complementation of psoralen sensitivity by expression of wild-type and mutant nei2 alleles in ∆nei2 cells established that AP lyase activity is neither sufficient nor essential for crosslink repair. By contrast, complementation of psoralen sensitivity of ∆lhr cells by mutant lhr alleles depended on Lhr's ATPase/helicase activities and its tetrameric quaternary structure. The lhr-nei2 operon comprises a unique bacterial system to rectify inter-strand crosslinks.IMPORTANCEThe DNA inter-strand crosslinking agents mitomycin C, cisplatin, and psoralen-UVA are used clinically for the treatment of cancers and skin diseases; they have been invaluable in elucidating the pathways of inter-strand crosslink repair in eukaryal systems. Whereas DNA crosslinkers are known to trigger a DNA damage response in bacteria, the roster of bacterial crosslink repair factors is incomplete and likely to vary among taxa. This study implicates the DNA damage-inducible mycobacterial lhr-nei2 gene operon in protecting Mycobacterium smegmatis from killing by inter-strand crosslinkers. Whereas interdicting the activity of the Lhr helicase sensitizes mycobacteria to mitomycin C, cisplatin, and psoralen-UVA, the Nei2 glycosylase functions uniquely in evasion of damage caused by psoralen-UVA.
Collapse
Affiliation(s)
- Garrett M. Warren
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
21
|
Lin MH, Jensen MK, Elrod ND, Chu HF, Haseley M, Beam AC, Huang KL, Chiang W, Russell WK, Williams K, Pröschel C, Wagner EJ, Tong L. Cytoplasmic binding partners of the Integrator endonuclease INTS11 and its paralog CPSF73 are required for their nuclear function. Mol Cell 2024; 84:2900-2917.e10. [PMID: 39032490 PMCID: PMC11316654 DOI: 10.1016/j.molcel.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Abstract
INTS11 and CPSF73 are metal-dependent endonucleases for Integrator and pre-mRNA 3'-end processing, respectively. Here, we show that the INTS11 binding partner BRAT1/CG7044, a factor important for neuronal fitness, stabilizes INTS11 in the cytoplasm and is required for Integrator function in the nucleus. Loss of BRAT1 in neural organoids leads to transcriptomic disruption and precocious expression of neurogenesis-driving transcription factors. The structures of the human INTS9-INTS11-BRAT1 and Drosophila dIntS11-CG7044 complexes reveal that the conserved C terminus of BRAT1/CG7044 is captured in the active site of INTS11, with a cysteine residue directly coordinating the metal ions. Inspired by these observations, we find that UBE3D is a binding partner for CPSF73, and UBE3D likely also uses a conserved cysteine residue to directly coordinate the active site metal ions. Our studies have revealed binding partners for INTS11 and CPSF73 that behave like cytoplasmic chaperones with a conserved impact on the nuclear functions of these enzymes.
Collapse
Affiliation(s)
- Min-Han Lin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Madeline K Jensen
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Hsu-Feng Chu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - MaryClaire Haseley
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Alissa C Beam
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Wesley Chiang
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Kelsey Williams
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Eric J Wagner
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77550, USA.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
22
|
Evseev PV, Sukhova AS, Tkachenko NA, Skryabin YP, Popova AV. Lytic Capsule-Specific Acinetobacter Bacteriophages Encoding Polysaccharide-Degrading Enzymes. Viruses 2024; 16:771. [PMID: 38793652 PMCID: PMC11126041 DOI: 10.3390/v16050771] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a variety of structurally diverse capsular polysaccharides (CPSs), which surround the bacterial cells with a thick protective layer. These surface structures are primary receptors for capsule-specific bacteriophages, that is, phages carrying tailspikes with CPS-depolymerizing/modifying activities. Phage tailspike proteins (TSPs) exhibit hydrolase, lyase, or esterase activities toward the corresponding CPSs of a certain structure. In this study, the data on all lytic capsule-specific phages infecting Acinetobacter spp. with genomes deposited in the NCBI GenBank database by January 2024 were summarized. Among the 149 identified TSPs encoded in the genomes of 143 phages, the capsular specificity (K specificity) of 46 proteins has been experimentally determined or predicted previously. The specificity of 63 TSPs toward CPSs, produced by various Acinetobacter K types, was predicted in this study using a bioinformatic analysis. A comprehensive phylogenetic analysis confirmed the prediction and revealed the possibility of the genetic exchange of gene regions corresponding to the CPS-recognizing/degrading parts of different TSPs between morphologically and taxonomically distant groups of capsule-specific Acinetobacter phages.
Collapse
Affiliation(s)
- Peter V. Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasia S. Sukhova
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
| | - Nikolay A. Tkachenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Yuriy P. Skryabin
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
| | - Anastasia V. Popova
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
| |
Collapse
|
23
|
Brangulis K, Akopjana I, Drunka L, Matisone S, Zelencova-Gopejenko D, Bhattacharya S, Bogans J, Tars K. Members of the paralogous gene family 12 from the Lyme disease agent Borrelia burgdorferi are non-specific DNA-binding proteins. PLoS One 2024; 19:e0296127. [PMID: 38626020 PMCID: PMC11020477 DOI: 10.1371/journal.pone.0296127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/06/2023] [Indexed: 04/18/2024] Open
Abstract
Lyme disease is the most prevalent vector-borne infectious disease in Europe and the USA. Borrelia burgdorferi, as the causative agent of Lyme disease, is transmitted to the mammalian host during the tick blood meal. To adapt to the different encountered environments, Borrelia has adjusted the expression pattern of various, mostly outer surface proteins. The function of most B. burgdorferi outer surface proteins remains unknown. We determined the crystal structure of a previously uncharacterized B. burgdorferi outer surface protein BBK01, known to belong to the paralogous gene family 12 (PFam12) as one of its five members. PFam12 members are shown to be upregulated as the tick starts its blood meal. Structural analysis of BBK01 revealed similarity to the coiled coil domain of structural maintenance of chromosomes (SMC) protein family members, while functional studies indicated that all PFam12 members are non-specific DNA-binding proteins. The residues involved in DNA binding were identified and probed by site-directed mutagenesis. The combination of SMC-like proteins being attached to the outer membrane and exposed to the environment or located in the periplasm, as observed in the case of PFam12 members, and displaying the ability to bind DNA, represents a unique feature previously not observed in bacteria.
Collapse
Affiliation(s)
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Laura Drunka
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | - Janis Bogans
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
24
|
Vela‐Rodríguez C, Yang C, Alanen HI, Eki R, Abbas TA, Maksimainen MM, Glumoff T, Duman R, Wagner A, Paschal BM, Lehtiö L. Oligomerization mediated by the D2 domain of DTX3L is critical for DTX3L-PARP9 reading function of mono-ADP-ribosylated androgen receptor. Protein Sci 2024; 33:e4945. [PMID: 38511494 PMCID: PMC10955461 DOI: 10.1002/pro.4945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 03/22/2024]
Abstract
Deltex proteins are a family of E3 ubiquitin ligases that encode C-terminal RING and DTC domains that mediate interactions with E2 ubiquitin-conjugating enzymes and recognize ubiquitination substrates. DTX3L is unique among the Deltex proteins based on its N-terminal domain architecture. The N-terminal D1 and D2 domains of DTX3L mediate homo-oligomerization, and the D3 domain interacts with PARP9, a protein that contains tandem macrodomains with ADP-ribose reader function. While DTX3L and PARP9 are known to heterodimerize, and assemble into a high molecular weight oligomeric complex, the nature of the oligomeric structure, including whether this contributes to the ADP-ribose reader function is unknown. Here, we report a crystal structure of the DTX3L N-terminal D2 domain and show that it forms a tetramer with, conveniently, D2 symmetry. We identified two interfaces in the structure: a major, conserved interface with a surface of 973 Å2 and a smaller one of 415 Å2. Using native mass spectrometry, we observed molecular species that correspond to monomers, dimers and tetramers of the D2 domain. Reconstitution of DTX3L knockout cells with a D1-D2 deletion mutant showed the domain is dispensable for DTX3L-PARP9 heterodimer formation, but necessary to assemble an oligomeric complex with efficient reader function for ADP-ribosylated androgen receptor. Our results suggest that homo-oligomerization of DTX3L is important for the DTX3L-PARP9 complex to read mono-ADP-ribosylation on a ligand-regulated transcription factor.
Collapse
Affiliation(s)
- Carlos Vela‐Rodríguez
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuluUniversity of OuluOuluFinland
| | - Chunsong Yang
- Department of Biochemistry and Molecular GeneticsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Heli I. Alanen
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuluUniversity of OuluOuluFinland
| | - Rebeka Eki
- Department of Radiation OncologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Tarek A. Abbas
- Department of Radiation OncologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Mirko M. Maksimainen
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuluUniversity of OuluOuluFinland
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuluUniversity of OuluOuluFinland
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation CampusDidcotUK
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation CampusDidcotUK
| | - Bryce M. Paschal
- Department of Biochemistry and Molecular GeneticsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuluUniversity of OuluOuluFinland
| |
Collapse
|
25
|
Florek LC, Lin X, Lin YC, Lin MH, Chakraborty A, Price-Whelan A, Tong L, Rahme L, Dietrich LE. The L-lactate dehydrogenases of Pseudomonas aeruginosa are conditionally regulated but both contribute to survival during macrophage infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586142. [PMID: 38562866 PMCID: PMC10983889 DOI: 10.1101/2024.03.21.586142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that thrives in environments associated with human activity, including soil and water altered by agriculture or pollution. Because L-lactate is a significant product of plant and animal metabolism, it is available to serve as a carbon source for P. aeruginosa in the diverse settings it inhabits. Here, we evaluate P. aeruginosa's production and use of its redundant L-lactate dehydrogenases, termed LldD and LldA. We confirm that the protein LldR represses lldD and identify a new transcription factor, called LldS, that activates lldA; these distinct regulators and the genomic contexts of lldD and lldA contribute to their differential expression. We demonstrate that the lldD and lldA genes are conditionally controlled in response to lactate isomers as well as to glycolate and - hydroxybutyrate, which, like lactate, are -hydroxycarboxylates. We also show that lldA is induced when iron availability is low. Our examination of lldD and lldA expression across depth in biofilms indicates a complex pattern that is consistent with the effects of glycolate production, iron availability, and cross-regulation on enzyme preference. Finally, macrophage infection assays revealed that both lldD and lldA contribute to persistence within host cells, underscoring the potential role of L-lactate as a carbon source during P. aeruginosa-eukaryote interactions. Together, these findings help us understand the metabolism of a key resource that may promote P. aeruginosa's success as a resident of contaminated environments and animal hosts.
Collapse
Affiliation(s)
- Lindsey C. Florek
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Xi Lin
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Yu-Cheng Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan 112
| | - Min-Han Lin
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Arijit Chakraborty
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Laurence Rahme
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
26
|
Schaeffer RD, Zhang J, Medvedev KE, Kinch LN, Cong Q, Grishin NV. ECOD domain classification of 48 whole proteomes from AlphaFold Structure Database using DPAM2. PLoS Comput Biol 2024; 20:e1011586. [PMID: 38416793 PMCID: PMC10927120 DOI: 10.1371/journal.pcbi.1011586] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/11/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
Protein structure prediction has now been deployed widely across several different large protein sets. Large-scale domain annotation of these predictions can aid in the development of biological insights. Using our Evolutionary Classification of Protein Domains (ECOD) from experimental structures as a basis for classification, we describe the detection and cataloging of domains from 48 whole proteomes deposited in the AlphaFold Database. On average, we can provide positive classification (either of domains or other identifiable non-domain regions) for 90% of residues in all proteomes. We classified 746,349 domains from 536,808 proteins comprised of over 226,424,000 amino acid residues. We examine the varying populations of homologous groups in both eukaryotes and bacteria. In addition to containing a higher fraction of disordered regions and unassigned domains, eukaryotes show a higher proportion of repeated proteins, both globular and small repeats. We enumerate those highly populated domains that are shared in both eukaryotes and bacteria, such as the Rossmann domains, TIM barrels, and P-loop domains. Additionally, we compare the sampling of homologous groups from this whole proteome set against our stable ECOD reference and discuss groups that have been enriched by structure predictions. Finally, we discuss the implication of these results for protein target selection for future classification strategies for very large protein sets.
Collapse
Affiliation(s)
- R. Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jing Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kirill E. Medvedev
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Lisa N. Kinch
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qian Cong
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nick V. Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
27
|
da Silva Vaz Junior I, Lu S, Pinto AFM, Diedrich JK, Yates JR, Mulenga A, Termignoni C, Ribeiro JM, Tirloni L. Changes in saliva protein profile throughout Rhipicephalus microplus blood feeding. Parasit Vectors 2024; 17:36. [PMID: 38281054 PMCID: PMC10821567 DOI: 10.1186/s13071-024-06136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND When feeding on a vertebrate host, ticks secrete saliva, which is a complex mixture of proteins, lipids, and other molecules. Tick saliva assists the vector in modulating host hemostasis, immunity, and tissue repair mechanisms. While helping the vector to feed, its saliva modifies the site where pathogens are inoculated and often facilitates the infection process. The objective of this study is to uncover the variation in protein composition of Rhipicephalus microplus saliva during blood feeding. METHODS Ticks were fed on calves, and adult females were collected, weighed, and divided in nine weight groups, representing the slow and rapid feeding phases of blood feeding. Tick saliva was collected, and mass spectrometry analyses were used to identify differentially secreted proteins. Bioinformatic tools were employed to predict the structural and functional features of the salivary proteins. Reciprocal best hit analyses were used to identify conserved families of salivary proteins secreted by other tick species. RESULTS Changes in the protein secretion profiles of R. microplus adult female saliva during the blood feeding were observed, characterizing the phenomenon known as "sialome switching." This observation validates the idea that the switch in protein expression may serve as a mechanism for evading host responses against tick feeding. Cattle tick saliva is predominantly rich in heme-binding proteins, secreted conserved proteins, lipocalins, and protease inhibitors, many of which are conserved and present in the saliva of other tick species. Additionally, another remarkable observation was the identification of host-derived proteins as a component of tick saliva. CONCLUSIONS Overall, this study brings new insights to understanding the dynamics of the proteomic profile of tick saliva, which is an important component of tick feeding biology. The results presented here, along with the disclosed sequences, contribute to our understanding of tick feeding biology and might aid in the identification of new targets for the development of novel anti-tick methods.
Collapse
Affiliation(s)
- Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Antônio F M Pinto
- Clayton Foundation Peptide Biology Lab, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Marcos Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA.
| |
Collapse
|
28
|
Mahony J, Goulet A, van Sinderen D, Cambillau C. Partial Atomic Model of the Tailed Lactococcal Phage TP901-1 as Predicted by AlphaFold2: Revelations and Limitations. Viruses 2023; 15:2440. [PMID: 38140681 PMCID: PMC10747895 DOI: 10.3390/v15122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Bacteria are engaged in a constant battle against preying viruses, called bacteriophages (or phages). These remarkable nano-machines pack and store their genomes in a capsid and inject it into the cytoplasm of their bacterial prey following specific adhesion to the host cell surface. Tailed phages possessing dsDNA genomes are the most abundant phages in the bacterial virosphere, particularly those with long, non-contractile tails. All tailed phages possess a nano-device at their tail tip that specifically recognizes and adheres to a suitable host cell surface receptor, being proteinaceous and/or saccharidic. Adhesion devices of tailed phages infecting Gram-positive bacteria are highly diverse and, for the majority, remain poorly understood. Their long, flexible, multi-domain-encompassing tail limits experimental approaches to determine their complete structure. We have previously shown that the recently developed protein structure prediction program AlphaFold2 can overcome this limitation by predicting the structures of phage adhesion devices with confidence. Here, we extend this approach and employ AlphaFold2 to determine the structure of a complete phage, the lactococcal P335 phage TP901-1. Herein we report the structures of its capsid and neck, its extended tail, and the complete adhesion device, the baseplate, which was previously partially determined using X-ray crystallography.
Collapse
Affiliation(s)
- Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland;
| | - Adeline Goulet
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université—CNRS, UMR 7255, 13009 Marseille, France;
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland;
| | - Christian Cambillau
- School of Microbiology & APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland;
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université—CNRS, UMR 7255, 13009 Marseille, France;
| |
Collapse
|
29
|
Vela-Rodríguez C, Yang C, Alanen HI, Eki R, Abbas TA, Maksimainen MM, Glumoff T, Duman R, Wagner A, Paschal BM, Lehtiö L. Oligomerisation mediated by the D2 domain of DTX3L is critical for DTX3L-PARP9 reading function of mono-ADP-ribosylated androgen receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569193. [PMID: 38076829 PMCID: PMC10705365 DOI: 10.1101/2023.11.29.569193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Deltex proteins are a family of E3 ubiquitin ligases that encode C-terminal RING and DTC domains that mediate interactions with E2 ubiquitin-conjugating enzymes and recognise ubiquitination substrates. DTX3L is unique among the Deltex proteins based on its N-terminal domain architecture. The N-terminal D1 and D2 domains of DTX3L mediate homo-oligomerisation, and the D3 domain interacts with PARP9, a protein that contains tandem macrodomains with ADP-ribose reader function. While DTX3L and PARP9 are known to heterodimerize, they assemble into a high molecular weight oligomeric complex, but the nature of the oligomeric structure, including whether this contributes to the ADP-ribose reader function is unknown. Here, we report a crystal structure of the DTX3L N-terminal D2 domain and show that it forms a tetramer with, conveniently, D2 symmetry. We identified two interfaces in the structure: a major, conserved interface with a surface of 973 Å2 and a smaller one of 415 Å2. Using native mass spectrometry, we observed molecular species that correspond to monomers, dimers and tetramers of the D2 domain. Reconstitution of DTX3L knockout cells with a D1-D2 deletion mutant showed the domain is dispensable for DTX3L-PARP9 heterodimer formation, but necessary to assemble an oligomeric complex with efficient reader function for ADP-ribosylated androgen receptor. Our results suggest that homo-oligomerisation of DTX3L is important for mono-ADP-ribosylation reading by the DTX3L-PARP9 complex and to a ligand-regulated transcription factor.
Collapse
Affiliation(s)
- Carlos Vela-Rodríguez
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Chunsong Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia, USA
| | - Heli I. Alanen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Rebeka Eki
- Department of Radiation Oncology, University of Virginia, USA
| | - Tarek A. Abbas
- Department of Radiation Oncology, University of Virginia, USA
| | - Mirko M. Maksimainen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Bryce M. Paschal
- Department of Biochemistry and Molecular Genetics, University of Virginia, USA
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| |
Collapse
|
30
|
Oh H, Koo J, An SY, Hong SH, Suh JY, Bae E. Structural and functional investigation of GajB protein in Gabija anti-phage defense. Nucleic Acids Res 2023; 51:11941-11951. [PMID: 37897358 PMCID: PMC10681800 DOI: 10.1093/nar/gkad951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
Bacteriophages (phages) are viruses that infect bacteria and archaea. To fend off invading phages, the hosts have evolved a variety of anti-phage defense mechanisms. Gabija is one of the most abundant prokaryotic antiviral systems and consists of two proteins, GajA and GajB. GajA has been characterized experimentally as a sequence-specific DNA endonuclease. Although GajB was previously predicted to be a UvrD-like helicase, its function is unclear. Here, we report the results of structural and functional analyses of GajB. The crystal structure of GajB revealed a UvrD-like domain architecture, including two RecA-like core and two accessory subdomains. However, local structural elements that are important for the helicase function of UvrD are not conserved in GajB. In functional assays, GajB did not unwind or bind various types of DNA substrates. We demonstrated that GajB interacts with GajA to form a heterooctameric Gabija complex, but GajB did not exhibit helicase activity when bound to GajA. These results advance our understanding of the molecular mechanism underlying Gabija anti-phage defense and highlight the role of GajB as a component of a multi-subunit antiviral complex in bacteria.
Collapse
Affiliation(s)
- Hyejin Oh
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jasung Koo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - So Young An
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sung-Hyun Hong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
31
|
Himmel NJ, Moi D, Benton R. Remote homolog detection places insect chemoreceptors in a cryptic protein superfamily spanning the tree of life. Curr Biol 2023; 33:5023-5033.e4. [PMID: 37913770 DOI: 10.1016/j.cub.2023.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Many proteins exist in the so-called "twilight zone" of sequence alignment, where low pairwise sequence identity makes it difficult to determine homology and phylogeny.1,2 As protein tertiary structure is often more conserved,3 recent advances in ab initio protein folding have made structure-based identification of putative homologs feasible.4,5,6 We present a pipeline for the identification and characterization of distant homologs and apply it to 7-transmembrane-domain ion channels (7TMICs), a protein group founded by insect odorant and gustatory receptors. Previous sequence and limited structure-based searches identified putatively related proteins, mainly in other animals and plants.7,8,9,10 However, very few 7TMICs have been identified in non-animal, non-plant taxa. Moreover, these proteins' remarkable sequence dissimilarity made it uncertain whether disparate 7TMIC types (Gr/Or, Grl, GRL, DUF3537, PHTF, and GrlHz) are homologous or convergent, leaving their evolutionary history unresolved. Our pipeline identified thousands of new 7TMICs in archaea, bacteria, and unicellular eukaryotes. Using graph-based analyses and protein language models to extract family-wide signatures, we demonstrate that 7TMICs have structure and sequence similarity, supporting homology. Through sequence- and structure-based phylogenetics, we classify eukaryotic 7TMICs into two families (Class-A and Class-B), which are the result of a gene duplication predating the split(s) leading to Amorphea (animals, fungi, and allies) and Diaphoretickes (plants and allies). Our work reveals 7TMICs as a cryptic superfamily, with origins close to the evolution of cellular life. More generally, this study serves as a methodological proof of principle for the identification of extremely distant protein homologs.
Collapse
Affiliation(s)
- Nathaniel J Himmel
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland.
| | - David Moi
- Department of Computational Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
32
|
Varshney N, Murmu S, Baral B, Kashyap D, Singh S, Kandpal M, Bhandari V, Chaurasia A, Kumar S, Jha HC. Unraveling the Aurora kinase A and Epstein-Barr nuclear antigen 1 axis in Epstein Barr virus associated gastric cancer. Virology 2023; 588:109901. [PMID: 37839162 DOI: 10.1016/j.virol.2023.109901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Aurora kinase A (AURKA) is one of the crucial cell cycle regulators associated with gastric cancer. Here, we explored Epstein Barr Virus-induced gastric cancer progression through EBV protein EBNA1 with AURKA. We found that EBV infection enhanced cell proliferation and migration of AGS cells and upregulation of AURKA levels. AURKA knockdown markedly reduced the proliferation and migration of the AGS cells even with EBV infection. Moreover, MD-simulation data deciphered the probable connection between EBNA1 and AURKA. The in-vitro analysis through the transcript and protein expression showed that AURKA knockdown reduces the expression of EBNA1. Moreover, EBNA1 alone can enhance AURKA protein expression in AGS cells. Co-immunoprecipitation and NMR analysis between AURKA and EBNA1 depicts the interaction between two proteins. In addition, AURKA knockdown promotes apoptosis in EBV-infected AGS cells through cleavage of Caspase-3, -9, and PARP1. This study demonstrates that EBV oncogenic modulators EBNA1 possibly modulate AURKA in EBV-mediated gastric cancer progression.
Collapse
Affiliation(s)
- Nidhi Varshney
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Sneha Murmu
- Division of Agricultural Bioinformatics (DABin), ICAR-Indian Agricultural Statistics Research Institute (IASRI), India
| | - Budhadev Baral
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Dharmendra Kashyap
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Siddharth Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Meenakshi Kandpal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | | | - Sunil Kumar
- Division of Agricultural Bioinformatics (DABin), ICAR-Indian Agricultural Statistics Research Institute (IASRI), India.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| |
Collapse
|
33
|
Krishna R, Ajmal Ali M, Lee J. Molecular docking analysis of HSV-1 proteins models with synthetic and plant derived compounds. Bioinformation 2023; 19:981-986. [PMID: 37928488 PMCID: PMC10625359 DOI: 10.6026/97320630019981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
The atomic resolution model of US9, UL20, and gH protein of HSV is known. Hence, the ligand protein interaction of the US9, UL20, and gH protein models were carried out with synthetic drugs like acyclovir, bexarotene, vinorelbine, foscarnet, famciclovir, cidofovir and two plant derived natural drug acacetin and anthraquinone. Based on structure and docking study, it is predicted that protein US20 and gH binds with particular anti-HSV drug i.e. acyclovir, cidofovir, acacetin and famciclovir, acacetin respectively, while interaction of different protein is different with drugs.
Collapse
Affiliation(s)
- Ram Krishna
- />ICAR-Indian Institute of Vegetable Research, Varanasi-221005, Uttar Pradesh, India
| | - Mohammad Ajmal Ali
- />Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joongku Lee
- />Department of Environment and Forest Resources, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
34
|
Navarrete KM, Bumba L, Prudnikova T, Malcova I, Allsop TR, Sebo P, Kamanova J. BopN is a Gatekeeper of the Bordetella Type III Secretion System. Microbiol Spectr 2023; 11:e0411222. [PMID: 37036369 PMCID: PMC10269732 DOI: 10.1128/spectrum.04112-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Abstract
The classical Bordetella species infect the respiratory tract of mammals. While B. bronchiseptica causes rather chronic respiratory infections in a variety of mammals, the human-adapted species B. pertussis and B. parapertussisHU cause an acute respiratory disease known as whooping cough or pertussis. The virulence factors include a type III secretion system (T3SS) that translocates effectors BteA and BopN into host cells. However, the regulatory mechanisms underlying the secretion and translocation activity of T3SS in bordetellae are largely unknown. We have solved the crystal structure of BopN of B. pertussis and show that it is similar to the structures of gatekeepers that control access to the T3SS channel from the bacterial cytoplasm. We further found that BopN accumulates at the cell periphery at physiological concentrations of calcium ions (2 mM) that inhibit the secretion of BteA and BopN. Deletion of the bopN gene in B. bronchiseptica increased secretion of the BteA effector into calcium-rich medium but had no effect on secretion of the T3SS translocon components BopD and BopB. Moreover, the ΔbopN mutant secreted approximately 10-fold higher amounts of BteA into the medium of infected cells than the wild-type bacteria, but it translocated lower amounts of BteA into the host cell cytoplasm. These data demonstrate that BopN is a Bordetella T3SS gatekeeper required for regulated and targeted translocation of the BteA effector through the T3SS injectisome into host cells. IMPORTANCE The T3SS is utilized by many Gram-negative bacteria to deliver effector proteins from bacterial cytosol directly into infected host cell cytoplasm in a regulated and targeted manner. Pathogenic bordetellae use the T3SS to inject the BteA and BopN proteins into infected cells and upregulate the production of the anti-inflammatory cytokine interleukin-10 (IL-10) to evade host immunity. Previous studies proposed that BopN acted as an effector in host cells. In this study, we report that BopN is a T3SS gatekeeper that regulates the secretion and translocation activity of Bordetella T3SS.
Collapse
Affiliation(s)
- Kevin Munoz Navarrete
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Bumba
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tatyana Prudnikova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Ivana Malcova
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tania Romero Allsop
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Kamanova
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
35
|
Sun B, Kim H, Mello CC, Priess JR. The CERV protein of Cer1, a C. elegans LTR retrotransposon, is required for nuclear export of viral genomic RNA and can form giant nuclear rods. PLoS Genet 2023; 19:e1010804. [PMID: 37384599 PMCID: PMC10309623 DOI: 10.1371/journal.pgen.1010804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Retroviruses and closely related LTR retrotransposons export full-length, unspliced genomic RNA (gRNA) for packaging into virions and to serve as the mRNA encoding GAG and POL polyproteins. Because gRNA often includes splice acceptor and donor sequences used to splice viral mRNAs, retroelements must overcome host mechanisms that retain intron-containing RNAs in the nucleus. Here we examine gRNA expression in Cer1, an LTR retrotransposon in C. elegans which somehow avoids silencing and is highly expressed in germ cells. Newly exported Cer1 gRNA associates rapidly with the Cer1 GAG protein, which has structural similarity with retroviral GAG proteins. gRNA export requires CERV (C. elegans regulator of viral expression), a novel protein encoded by a spliced Cer1 mRNA. CERV phosphorylation at S214 is essential for gRNA export, and phosphorylated CERV colocalizes with nuclear gRNA at presumptive sites of transcription. By electron microscopy, tagged CERV proteins surround clusters of distinct, linear fibrils that likely represent gRNA molecules. Single fibrils, or groups of aligned fibrils, also localize near nuclear pores. During the C. elegans self-fertile period, when hermaphrodites fertilize oocytes with their own sperm, CERV concentrates in two nuclear foci that are coincident with gRNA. However, as hermaphrodites cease self-fertilization, and can only produce cross-progeny, CERV undergoes a remarkable transition to form giant nuclear rods or cylinders that can be up to 5 microns in length. We propose a novel mechanism of rod formation, in which stage-specific changes in the nucleolus induce CERV to localize to the nucleolar periphery in flattened streaks of protein and gRNA; these streaks then roll up into cylinders. The rods are a widespread feature of Cer1 in wild strains of C. elegans, but their function is not known and might be limited to cross-progeny. We speculate that the adaptive strategy Cer1 uses for the identical self-progeny of a host hermaphrodite might differ for heterozygous cross-progeny sired by males. For example, mating introduces male chromosomes which can have different, or no, Cer1 elements.
Collapse
Affiliation(s)
- Bing Sun
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester,United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Haram Kim
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Craig C. Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester,United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
36
|
Kümpornsin K, Kochakarn T, Yeo T, Okombo J, Luth MR, Hoshizaki J, Rawat M, Pearson RD, Schindler KA, Mok S, Park H, Uhlemann AC, Jana GP, Maity BC, Laleu B, Chenu E, Duffy J, Moliner Cubel S, Franco V, Gomez-Lorenzo MG, Gamo FJ, Winzeler EA, Fidock DA, Chookajorn T, Lee MCS. Generation of a mutator parasite to drive resistome discovery in Plasmodium falciparum. Nat Commun 2023; 14:3059. [PMID: 37244916 DOI: 10.1038/s41467-023-38774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/12/2023] [Indexed: 05/29/2023] Open
Abstract
In vitro evolution of drug resistance is a powerful approach for identifying antimalarial targets, however, key obstacles to eliciting resistance are the parasite inoculum size and mutation rate. Here we sought to increase parasite genetic diversity to potentiate resistance selections by editing catalytic residues of Plasmodium falciparum DNA polymerase δ. Mutation accumulation assays reveal a ~5-8 fold elevation in the mutation rate, with an increase of 13-28 fold in drug-pressured lines. Upon challenge with the spiroindolone PfATP4-inhibitor KAE609, high-level resistance is obtained more rapidly and at lower inocula than wild-type parasites. Selections also yield mutants with resistance to an "irresistible" compound, MMV665794 that failed to yield resistance with other strains. We validate mutations in a previously uncharacterised gene, PF3D7_1359900, which we term quinoxaline resistance protein (QRP1), as causal for resistance to MMV665794 and a panel of quinoxaline analogues. The increased genetic repertoire available to this "mutator" parasite can be leveraged to drive P. falciparum resistome discovery.
Collapse
Affiliation(s)
- Krittikorn Kümpornsin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Calibr, Division of the Scripps Research Institute, La Jolla, CA, USA
| | - Theerarat Kochakarn
- The Laboratory for Molecular Infection Medicine Sweden and Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Madeline R Luth
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Mukul Rawat
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Kyra A Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Gouranga P Jana
- TCG Lifesciences Private Limited, Salt-lake Electronics Complex, Kolkata, India
| | - Bikash C Maity
- TCG Lifesciences Private Limited, Salt-lake Electronics Complex, Kolkata, India
| | - Benoît Laleu
- Medicines for Malaria Venture, International Centre Cointrin, Geneva, Switzerland
| | - Elodie Chenu
- Medicines for Malaria Venture, International Centre Cointrin, Geneva, Switzerland
| | - James Duffy
- Medicines for Malaria Venture, International Centre Cointrin, Geneva, Switzerland
| | | | - Virginia Franco
- Global Health Medicines R&D, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | | | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Thanat Chookajorn
- The Laboratory for Molecular Infection Medicine Sweden and Department of Molecular Biology, Umeå University, Umeå, Sweden
- Genomics and Evolutionary Medicine Unit, Centre of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK.
| |
Collapse
|
37
|
Fang J, Chai Z, Huang R, Huang C, Ming Z, Chen B, Yao W, Zhang M. Receptor-like cytoplasmic kinase ScRIPK in sugarcane regulates disease resistance and drought tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1191449. [PMID: 37304725 PMCID: PMC10248867 DOI: 10.3389/fpls.2023.1191449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 06/13/2023]
Abstract
Introduction Receptor-like cytoplastic kinases (RLCKs) are known in many plants to be involved in various processes of plant growth and development and regulate plant immunity to pathogen infection. Environmental stimuli such as pathogen infection and drought restrict the crop yield and interfere with plant growth. However, the function of RLCKs in sugarcane remains unclear. Methods and results In this study, a member of the RLCK VII subfamily, ScRIPK, was identified in sugarcane based on sequence similarity to the rice and Arabidopsis RLCKs. ScRIPK was localized to the plasma membrane, as predicted, and the expression of ScRIPK was responsive to polyethylene glycol treatment and Fusarium sacchari infection. Overexpression of ScRIPK in Arabidopsis enhanced drought tolerance and disease susceptibility of seedlings. Moreover, the crystal structure of the ScRIPK kinase domain (ScRIPK KD) and the mutant proteins (ScRIPK-KD K124R and ScRIPK-KD S253A|T254A) were characterized in order to determine the activation mechanism. We also identified ScRIN4 as the interacting protein of ScRIPK. Discussion Our work identified a RLCK in sugarcane, providing a potential target for sugarcane responses to disease infection and drought, and a structural basis for kinase activation mechanisms.
Collapse
Affiliation(s)
- Jinlan Fang
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Zhe Chai
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Run Huang
- College of Agricultural, Guangxi University, Nanning, China
| | - Cuilin Huang
- College of Agricultural, Guangxi University, Nanning, China
| | - Zhenhua Ming
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Wei Yao
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Muqing Zhang
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| |
Collapse
|
38
|
Rozano L, Mukuka YM, Hane JK, Mancera RL. Ab Initio Modelling of the Structure of ToxA-like and MAX Fungal Effector Proteins. Int J Mol Sci 2023; 24:ijms24076262. [PMID: 37047233 PMCID: PMC10094246 DOI: 10.3390/ijms24076262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Pathogenic fungal diseases in crops are mediated by the release of effector proteins that facilitate infection. Characterising the structure of these fungal effectors is vital to understanding their virulence mechanisms and interactions with their hosts, which is crucial in the breeding of plant cultivars for disease resistance. Several effectors have been identified and validated experimentally; however, their lack of sequence conservation often impedes the identification and prediction of their structure using sequence similarity approaches. Structural similarity has, nonetheless, been observed within fungal effector protein families, creating interest in validating the use of computational methods to predict their tertiary structure from their sequence. We used Rosetta ab initio modelling to predict the structures of members of the ToxA-like and MAX effector families for which experimental structures are known to validate this method. An optimised approach was then used to predict the structures of phenotypically validated effectors lacking known structures. Rosetta was found to successfully predict the structure of fungal effectors in the ToxA-like and MAX families, as well as phenotypically validated but structurally unconfirmed effector sequences. Interestingly, potential new effector structural families were identified on the basis of comparisons with structural homologues and the identification of associated protein domains.
Collapse
|
39
|
Schaeffer RD, Zhang J, Kinch LN, Pei J, Cong Q, Grishin NV. Classification of domains in predicted structures of the human proteome. Proc Natl Acad Sci U S A 2023; 120:e2214069120. [PMID: 36917664 PMCID: PMC10041065 DOI: 10.1073/pnas.2214069120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023] Open
Abstract
Recent advances in protein structure prediction have generated accurate structures of previously uncharacterized human proteins. Identifying domains in these predicted structures and classifying them into an evolutionary hierarchy can reveal biological insights. Here, we describe the detection and classification of domains from the human proteome. Our classification indicates that only 62% of residues are located in globular domains. We further classify these globular domains and observe that the majority (65%) can be classified among known folds by sequence, with a smaller fraction (33%) requiring structural data to refine the domain boundaries and/or to support their homology. A relatively small number (966 domains) cannot be confidently assigned using our automatic pipelines, thus demanding manual inspection. We classify 47,576 domains, of which only 23% have been included in experimental structures. A portion (6.3%) of these classified globular domains lack sequence-based annotation in InterPro. A quarter (23%) have not been structurally modeled by homology, and they contain 2,540 known disease-causing single amino acid variations whose pathogenesis can now be inferred using AF models. A comparison of classified domains from a series of model organisms revealed expansions of several immune response-related domains in humans and a depletion of olfactory receptors. Finally, we use this classification to expand well-known protein families of biological significance. These classifications are presented on the ECOD website (http://prodata.swmed.edu/ecod/index_human.php).
Collapse
Affiliation(s)
- R. Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jing Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Lisa N. Kinch
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jimin Pei
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Qian Cong
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Nick V. Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
40
|
Dowling NV, Naumann TA, Price NPJ, Rose DR. Crystal structure of a polyglycine hydrolase determined using a RoseTTAFold model. Acta Crystallogr D Struct Biol 2023; 79:168-176. [PMID: 36762862 PMCID: PMC9912923 DOI: 10.1107/s2059798323000311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Polyglycine hydrolases (PGHs) are secreted fungal proteases that cleave the polyglycine linker of Zea mays ChitA, a defensive chitinase, thus overcoming one mechanism of plant resistance to infection. Despite their importance in agriculture, there has been no previous structural characterization of this family of proteases. The objective of this research was to investigate the proteolytic mechanism and other characteristics by structural and biochemical means. Here, the first atomic structure of a polyglycine hydrolase was identified. It was solved by X-ray crystallography using a RoseTTAFold model, taking advantage of recent technical advances in structure prediction. PGHs are composed of two domains: the N- and C-domains. The N-domain is a novel tertiary fold with an as-yet unknown function that is found across all kingdoms of life. The C-domain shares structural similarities with class C β-lactamases, including a common catalytic nucleophilic serine. In addition to insights into the PGH family and its relationship to β-lactamases, the results demonstrate the power of complementing experimental structure determination with new computational techniques.
Collapse
Affiliation(s)
- Nicole V. Dowling
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Todd A. Naumann
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, IL 61604, USA
| | - Neil P. J. Price
- Renewable Product Technology Research Unit, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, IL 61604, USA
| | - David R. Rose
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
41
|
Evseev P, Gutnik D, Shneider M, Miroshnikov K. Use of an Integrated Approach Involving AlphaFold Predictions for the Evolutionary Taxonomy of Duplodnaviria Viruses. Biomolecules 2023; 13:biom13010110. [PMID: 36671495 PMCID: PMC9855967 DOI: 10.3390/biom13010110] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
The evaluation of the evolutionary relationships is exceptionally important for the taxonomy of viruses, which is a rapidly expanding area of research. The classification of viral groups belonging to the realm Duplodnaviria, which include tailed bacteriophages, head-tailed archaeal viruses and herpesviruses, has undergone many changes in recent years and continues to improve. One of the challenging tasks of Duplodnaviria taxonomy is the classification of high-ranked taxa, including families and orders. At the moment, only 17 of 50 families have been assigned to orders. The evaluation of the evolutionary relationships between viruses is complicated by the high level of divergence of viral proteins. However, the development of structure prediction algorithms, including the award-winning AlphaFold, encourages the use of the results of structural predictions to clarify the evolutionary history of viral proteins. In this study, the evolutionary relationships of two conserved viral proteins, the major capsid protein and terminase, representing different viruses, including all classified Duplodnaviria families, have been analysed using AlphaFold modelling. This analysis has been undertaken using structural comparisons and different phylogenetic methods. The results of the analyses mainly indicated the high quality of AlphaFold modelling and the possibility of using the AlphaFold predictions, together with other methods, for the reconstruction of the evolutionary relationships between distant viral groups. Based on the results of this integrated approach, assumptions have been made about refining the taxonomic classification of bacterial and archaeal Duplodnaviria groups, and problems relating to the taxonomic classification of Duplodnaviria have been discussed.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
- Correspondence: (P.E.); (K.M.)
| | - Daria Gutnik
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Mikhail Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
- Correspondence: (P.E.); (K.M.)
| |
Collapse
|
42
|
Sathiyamani B, Daniel EA, Ansar S, Esakialraj BH, Hassan S, Revanasiddappa PD, Keshavamurthy A, Roy S, Vetrivel U, Hanna LE. Structural analysis and molecular dynamics simulation studies of HIV-1 antisense protein predict its potential role in HIV replication and pathogenesis. Front Microbiol 2023; 14:1152206. [PMID: 37020719 PMCID: PMC10067880 DOI: 10.3389/fmicb.2023.1152206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Abstract
The functional significance of the HIV-1 Antisense Protein (ASP) has been a paradox since its discovery. The expression of this protein in HIV-1-infected cells and its involvement in autophagy, transcriptional regulation, and viral latency have sporadically been reported in various studies. Yet, the definite role of this protein in HIV-1 infection remains unclear. Deciphering the 3D structure of HIV-1 ASP would throw light on its potential role in HIV lifecycle and host-virus interaction. Hence, using extensive molecular modeling and dynamics simulation for 200 ns, we predicted the plausible 3D-structures of ASP from two reference strains of HIV-1 namely, Indie-C1 (subtype-C) and NL4-3 (subtype-B) so as to derive its functional implication through structural domain analysis. In spite of sequence and structural differences in subtype B and C ASP, both structures appear to share common domains like the Von Willebrand Factor Domain-A (VWFA), Integrin subunit alpha-X (ITGSX), and ETV6-Transcriptional repressor, thereby reiterating the potential role of HIV-1 ASP in transcriptional repression and autophagy, as reported in earlier studies. Gromos-based cluster analysis of the centroid structures also reassured the accuracy of the prediction. This is the first study to elucidate a highly plausible structure for HIV-1 ASP which could serve as a feeder for further experimental validation studies.
Collapse
Affiliation(s)
- Balakumaran Sathiyamani
- Department of Virology and Biotechnology, National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
- University of Madras, Chennai, India
| | - Evangeline Ann Daniel
- Department of Virology and Biotechnology, National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
- University of Madras, Chennai, India
| | - Samdani Ansar
- Center for Bioinformatics, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Bennett Henzeler Esakialraj
- Department of Virology and Biotechnology, National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
| | - Sameer Hassan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Amrutha Keshavamurthy
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, India
| | - Sujata Roy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamil Nadu, India
| | - Umashankar Vetrivel
- Department of Virology and Biotechnology, National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
- *Correspondence: Luke Elizabeth Hanna, ; Umashankar Vetrivel,
| | - Luke Elizabeth Hanna
- Department of Virology and Biotechnology, National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
- *Correspondence: Luke Elizabeth Hanna, ; Umashankar Vetrivel,
| |
Collapse
|
43
|
Benjamin B, Goldgur Y, Jork N, Jessen HJ, Schwer B, Shuman S. Structures of Fission Yeast Inositol Pyrophosphate Kinase Asp1 in Ligand-Free, Substrate-Bound, and Product-Bound States. mBio 2022; 13:e0308722. [PMID: 36468882 PMCID: PMC9765450 DOI: 10.1128/mbio.03087-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Expression of the fission yeast Schizosaccharomyces pombe phosphate regulon is sensitive to the intracellular level of the inositol pyrophosphate signaling molecule 1,5-IP8. IP8 dynamics are determined by Asp1, a bifunctional enzyme consisting of an N-terminal kinase domain and a C-terminal pyrophosphatase domain that catalyze IP8 synthesis and catabolism, respectively. Here, we report structures of the Asp1 kinase domain, crystallized with two protomers in the asymmetric unit, one of which was complexed with ligands (ADPNP, ADP, or ATP; Mg2+ or Mn2+; IP6, 5-IP7, or 1,5-IP8) and the other which was ligand-free. The ligand-free enzyme adopts an "open" conformation that allows ingress of substrates and egress of products. ADPNP, ADP, and ATP and associated metal ions occupy a deep phospho-donor pocket in the active site. IP6 or 5-IP7 engagement above the nucleotide favors adoption of a "closed" conformation, in which surface protein segments undergo movement and a disordered-to-ordered transition to form an inositol polyphosphate-binding site. In a structure mimetic of the kinase Michaelis complex, the anionic 5-IP7 phosphates are encaged by an ensemble of nine cationic amino acids: Lys43, Arg223, Lys224, Lys260, Arg274, Arg285, Lys290, Arg293, and Lys341. Alanine mutagenesis of amino acids that contact the adenosine nucleoside of the ATP donor underscored the contributions of Asp258 interaction with the ribose 3'-OH and of Glu248 with adenine-N6. Changing Glu248 to Gln elicited a gain of function whereby the kinase became adept at using GTP as phosphate donor. Wild-type Asp1 kinase can utilize N6-benzyl-ATP as phosphate donor. IMPORTANCE The inositol pyrophosphate signaling molecule 1,5-IP8 modulates fission yeast phosphate homeostasis via its action as an agonist of RNA 3'-processing and transcription termination. Cellular IP8 levels are determined by Asp1, a bifunctional enzyme composed of an N-terminal kinase and a C-terminal pyrophosphatase domain. Here, we present a series of crystal structures of the Asp1 kinase domain, in a ligand-free state and in complexes with nucleotides ADPNP, ADP, and ATP, divalent cations magnesium and manganese, and inositol polyphosphates IP6, 5-IP7, and 1,5-IP8. Substrate binding elicits a switch from open to closed conformations, entailing a disordered-to-ordered transition and a rearrangement or movement of two peptide segments that form a binding site for the phospho-acceptor. Our structures, along with structure-guided mutagenesis, fortify understanding of the mechanism and substrate specificity of Asp1 kinase, and they extend and complement structural and functional studies of the orthologous human kinase PPIP5K2.
Collapse
Affiliation(s)
- Bradley Benjamin
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, USA
| | - Yehuda Goldgur
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nikolaus Jork
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
44
|
A Deeper Insight into the Tick Salivary Protein Families under the Light of Alphafold2 and Dali: Introducing the TickSialoFam 2.0 Database. Int J Mol Sci 2022; 23:ijms232415613. [PMID: 36555254 PMCID: PMC9779611 DOI: 10.3390/ijms232415613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Hard ticks feed for several days or weeks on their hosts and their saliva contains thousands of polypeptides belonging to dozens of families, as identified by salivary transcriptomes. Comparison of the coding sequences to protein databases helps to identify putative secreted proteins and their potential functions, directing and focusing future studies, usually done with recombinant proteins that are tested in different bioassays. However, many families of putative secreted peptides have a unique character, not providing significant matches to known sequences. The availability of the Alphafold2 program, which provides in silico predictions of the 3D polypeptide structure, coupled with the Dali program which uses the atomic coordinates of a structural model to search the Protein Data Bank (PDB) allows another layer of investigation to annotate and ascribe a functional role to proteins having so far being characterized as "unique". In this study, we analyzed the classification of tick salivary proteins under the light of the Alphafold2/Dali programs, detecting novel protein families and gaining new insights relating the structure and function of tick salivary proteins.
Collapse
|
45
|
|
46
|
Schmidt H, Mauer K, Glaser M, Dezfuli BS, Hellmann SL, Silva Gomes AL, Butter F, Wade RC, Hankeln T, Herlyn H. Identification of antiparasitic drug targets using a multi-omics workflow in the acanthocephalan model. BMC Genomics 2022; 23:677. [PMID: 36180835 PMCID: PMC9523657 DOI: 10.1186/s12864-022-08882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/12/2022] [Indexed: 08/30/2023] Open
Abstract
Background With the expansion of animal production, parasitic helminths are gaining increasing economic importance. However, application of several established deworming agents can harm treated hosts and environment due to their low specificity. Furthermore, the number of parasite strains showing resistance is growing, while hardly any new anthelminthics are being developed. Here, we present a bioinformatics workflow designed to reduce the time and cost in the development of new strategies against parasites. The workflow includes quantitative transcriptomics and proteomics, 3D structure modeling, binding site prediction, and virtual ligand screening. Its use is demonstrated for Acanthocephala (thorny-headed worms) which are an emerging pest in fish aquaculture. We included three acanthocephalans (Pomphorhynchus laevis, Neoechinorhynchus agilis, Neoechinorhynchus buttnerae) from four fish species (common barbel, European eel, thinlip mullet, tambaqui). Results The workflow led to eleven highly specific candidate targets in acanthocephalans. The candidate targets showed constant and elevated transcript abundances across definitive and accidental hosts, suggestive of constitutive expression and functional importance. Hence, the impairment of the corresponding proteins should enable specific and effective killing of acanthocephalans. Candidate targets were also highly abundant in the acanthocephalan body wall, through which these gutless parasites take up nutrients. Thus, the candidate targets are likely to be accessible to compounds that are orally administered to fish. Virtual ligand screening led to ten compounds, of which five appeared to be especially promising according to ADMET, GHS, and RO5 criteria: tadalafil, pranazepide, piketoprofen, heliomycin, and the nematicide derquantel. Conclusions The combination of genomics, transcriptomics, and proteomics led to a broadly applicable procedure for the cost- and time-saving identification of candidate target proteins in parasites. The ligands predicted to bind can now be further evaluated for their suitability in the control of acanthocephalans. The workflow has been deposited at the Galaxy workflow server under the URL tinyurl.com/yx72rda7. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08882-1.
Collapse
Affiliation(s)
- Hanno Schmidt
- Institute of Organismic and Molecular Evolution (iomE), Anthropology, Johannes Gutenberg University Mainz, Mainz, Germany. .,Present address: Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Katharina Mauer
- Institute of Organismic and Molecular Evolution (iomE), Anthropology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manuel Glaser
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | | | - Sören Lukas Hellmann
- Institute of Organismic and Molecular Evolution (iomE), Molecular Genetics and Genomic Analysis, Johannes Gutenberg University Mainz, Mainz, Germany.,Present address: Nucleic Acids Core Facility, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.,Center for Molecular Biology (ZMBH) and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution (iomE), Molecular Genetics and Genomic Analysis, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Holger Herlyn
- Institute of Organismic and Molecular Evolution (iomE), Anthropology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
47
|
Ting TY, Baharin A, Ramzi AB, Ng CL, Goh HH. Neprosin belongs to a new family of glutamic peptidase based on in silico evidence. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:23-35. [PMID: 35537348 DOI: 10.1016/j.plaphy.2022.04.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Neprosin was first discovered in the insectivorous tropical pitcher plants of Nepenthes species as a novel protease with prolyl endopeptidase (PEP) activity. Neprosin has two uncharacterized domains of neprosin activation peptide and neprosin. A previous study has shown neprosin activity in hydrolyzing proline-rich gliadin, a gluten component that triggers celiac disease. In this study, we performed in silico structure-function analysis to investigate the catalytic mechanism of neprosin. Neprosin sequences lack the catalytic triad and motifs of PEP family S9. Protein structures of neprosins from Nepenthes × ventrata (NvNpr) and N. rafflesiana (NrNpr1) were generated by ab initio methods and comparatively assessed to obtain high-quality models. Structural alignment of models to experimental structures in the Protein Data Bank (PDB) found a high structural similarity to glutamic peptidases. Further investigations reveal other resemblances to the glutamic peptidases with low optimum pH that activates the enzyme via autoproteolysis for maturation. Two highly conserved glutamic acid residues, which are stable according to the molecular dynamics simulation, can be found at the active site of the substrate cleft. Protein docking demonstrated that mature neprosins bind well with potent antigen αI-gliadin at the putative active site. Taken together, neprosins represent a new glutamic peptidase family, with a putative catalytic dyad of two glutamic acids. This study illustrates a hypothetical enzymatic mechanism of the neprosin family and demonstrates the useful application of an accurate ab initio protein structure prediction in the structure-function study of a novel protein family.
Collapse
Affiliation(s)
- Tiew-Yik Ting
- Institute of Systems Biology, University Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Anis Baharin
- Institute of Systems Biology, University Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology, University Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Chyan-Leong Ng
- Institute of Systems Biology, University Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, University Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia.
| |
Collapse
|
48
|
Holm L. Dali server: structural unification of protein families. Nucleic Acids Res 2022; 50:W210-W215. [PMID: 35610055 PMCID: PMC9252788 DOI: 10.1093/nar/gkac387] [Citation(s) in RCA: 512] [Impact Index Per Article: 170.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 12/26/2022] Open
Abstract
Protein structure is key to understanding biological function. Structure comparison deciphers deep phylogenies, providing insight into functional conservation and functional shifts during evolution. Until recently, structural coverage of the protein universe was limited by the cost and labour involved in experimental structure determination. Recent breakthroughs in deep learning revolutionized structural bioinformatics by providing accurate structural models of numerous protein families for which no structural information existed. The Dali server for 3D protein structure comparison is widely used by crystallographers to relate new structures to pre-existing ones. Here, we report two most recent upgrades to the web server: (i) the foldomes of key organisms in the AlphaFold Database (version 1) are searchable by Dali, (ii) structural alignments are annotated with protein families. Using these new features, we discovered a novel functionally diverse subgroup within the WRKY/GCM1 clan. This was accomplished by linking the structurally characterized SWI/SNF and NAM families as well as the structural models of the CG-1 family and uncharacterized proteins to the structure of Gti1/Pac2, a previously known member of the WRKY/GCM1 clan. The Dali server is available at http://ekhidna2.biocenter.helsinki.fi/dali. This website is free and open to all users and there is no login requirement.
Collapse
Affiliation(s)
- Liisa Holm
- Institute of Biotechnology, Helsinki Institute of Life Sciences, and Organismal and Evolutionary Biology Research Program, Faculty of Biosciences, University of Helsinki, Finland
| |
Collapse
|
49
|
Guarino SR, Di Bello A, Palamini M, Capillo MC, Forneris F. Crystal structure of the kringle domain of human receptor tyrosine kinase-like orphan receptor 1 (hROR1). Acta Crystallogr F Struct Biol Commun 2022; 78:185-192. [PMID: 35506763 PMCID: PMC9067376 DOI: 10.1107/s2053230x22003855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Receptor tyrosine kinase-like orphan receptors (RORs) are monotopic membrane proteins belonging to the receptor tyrosine kinase (RTK) family. RTKs play a role in the control of most basic cellular processes, including cell proliferation, differentiation, migration and metabolism. New emerging roles for RORs in cancer progression have recently been proposed: RORs have been shown to be overexpressed in various malignancies but not in normal tissues, and moreover an abnormal expression level of RORs on the cellular surface is correlated with high levels of cytotoxicity in primary cancer cells. Monoclonal antibodies against the extracellular part of RTKs might be of importance to prevent tumor cell growth: targeting extracellular kringle domain molecules induces the internalization of RORs and decreases cell toxicity. Here, the recombinant production and crystallization of the isolated KRD of ROR1 and its high-resolution X-ray crystal structure in a P3121 crystal form at 1.4 Å resolution are reported. The crystal structure is compared with previously solved three-dimensional structures of kringle domains of human ROR1 and ROR2, their complexes with antibody fragments and structures of other kringle domains from homologous proteins.
Collapse
Affiliation(s)
- Salvatore R. Guarino
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Antonella Di Bello
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Martina Palamini
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Maria Chiara Capillo
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| |
Collapse
|
50
|
Luebben AV, Bender D, Becker S, Crowther LM, Erven I, Hofmann K, Söding J, Klemp H, Bellotti C, Stäuble A, Qiu T, Kathayat RS, Dickinson BC, Gärtner J, Sheldrick GM, Krätzner R, Steinfeld R. Cln5 represents a new type of cysteine-based S-depalmitoylase linked to neurodegeneration. SCIENCE ADVANCES 2022; 8:eabj8633. [PMID: 35427157 PMCID: PMC9012467 DOI: 10.1126/sciadv.abj8633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 03/01/2022] [Indexed: 05/26/2023]
Abstract
Genetic CLN5 variants are associated with childhood neurodegeneration and Alzheimer's disease; however, the molecular function of ceroid lipofuscinosis neuronal protein 5 (Cln5) is unknown. We solved the Cln5 crystal structure and identified a region homologous to the catalytic domain of members of the N1pC/P60 superfamily of papain-like enzymes. However, we observed no protease activity for Cln5; and instead, we discovered that Cln5 and structurally related PPPDE1 and PPPDE2 have efficient cysteine palmitoyl thioesterase (S-depalmitoylation) activity using fluorescent substrates. Mutational analysis revealed that the predicted catalytic residues histidine-166 and cysteine-280 are critical for Cln5 thioesterase activity, uncovering a new cysteine-based catalytic mechanism for S-depalmitoylation enzymes. Last, we found that Cln5-deficient neuronal progenitor cells showed reduced thioesterase activity, confirming live cell function of Cln5 in setting S-depalmitoylation levels. Our results provide new insight into the function of Cln5, emphasize the importance of S-depalmitoylation in neuronal homeostasis, and disclose a new, unexpected enzymatic function for the N1pC/P60 superfamily of proteins.
Collapse
Affiliation(s)
- Anna V. Luebben
- Institute of Inorganic Chemistry, University of
Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Daniel Bender
- Department of Pediatric Neurology, University
Children’s Hospital Zürich, University of Zurich,
Steinwiesstrasse 75, 8032 Zürich, Switzerland
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max
Planck Institute for Biophysical Chemistry, Fassberg 11, 37077
Göttingen, Germany
| | - Lisa M. Crowther
- Department of Pediatric Neurology, University
Children’s Hospital Zürich, University of Zurich,
Steinwiesstrasse 75, 8032 Zürich, Switzerland
| | - Ilka Erven
- Institute for Genetics, University of Cologne,
Zülpicher Str.47a, 50674 Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne,
Zülpicher Str.47a, 50674 Cologne, Germany
| | - Johannes Söding
- Quantitative Biology and Bioinformatics and
Department of Molecular Biology, Max-Planck Institute for Biophysical Chemistry,
Am Fassberg 11, 37077 Göttingen, Germany
| | - Henry Klemp
- Department of Pediatrics and Adolescent Medicine,
Division of Pediatric Neurology, University of Göttingen,
Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Cristina Bellotti
- Department of Pediatric Neurology, University
Children’s Hospital Zürich, University of Zurich,
Steinwiesstrasse 75, 8032 Zürich, Switzerland
| | - Andreas Stäuble
- Department of Pediatric Neurology, University
Children’s Hospital Zürich, University of Zurich,
Steinwiesstrasse 75, 8032 Zürich, Switzerland
| | - Tian Qiu
- Department of Chemistry, University of Chicago,
Chicago, IL, USA
| | | | | | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine,
Division of Pediatric Neurology, University of Göttingen,
Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - George M. Sheldrick
- Institute of Inorganic Chemistry, University of
Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Ralph Krätzner
- Department of Pediatrics and Adolescent Medicine,
Division of Pediatric Neurology, University of Göttingen,
Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Robert Steinfeld
- Department of Pediatric Neurology, University
Children’s Hospital Zürich, University of Zurich,
Steinwiesstrasse 75, 8032 Zürich, Switzerland
- Department of Pediatrics and Adolescent Medicine,
Division of Pediatric Neurology, University of Göttingen,
Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| |
Collapse
|