1
|
Guo J, Shi G, Islam MM, Kariyawasam G, Moolhuijzen P, See PT, Zhong S, Aboukhaddour R, Faris JD, Friesen T, Liu Z. Identification of a novel genetic locus conferring virulence in the wheat tan spot pathogen Pyrenophora tritici-repentis. Fungal Genet Biol 2025; 179:104002. [PMID: 40383413 DOI: 10.1016/j.fgb.2025.104002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
The ascomycete Pyrenophora tritici-repentis (Ptr) is the causal agent of tan spot, a common and economically important wheat disease worldwide. Three necrotrophic effectors (NEs), known as Ptr ToxA, Ptr ToxB, and Ptr ToxC, have been identified from the fungal pathogen as major virulence factors. The race 2 isolate 86-124 which produces Ptr ToxA is capable of causing disease on wheat lines that is insensitive to Ptr ToxA, suggesting the use of additional NEs during the infection. To identify new NE gene(s) from 86-124, we developed a biparental fungal population from a cross between this isolate and the race 5 isolate DW5 using genetically modified heterothallic strains. The fungal population was genotyped with SNP and SSR markers as well as the ToxA gene, the mating type genes, and six ToxB loci. Each progeny was phenotyped onto the hard red spring wheat line CDC-Osler, which is insensitive to both Ptr ToxA and Ptr ToxB, but is highly susceptible to 86-124. The constructed genetic map consisted of 11 linkage groups that corresponded to the 11 chromosomes (chr) of the Ptr reference genome. ToxA and mating type genes mapped to the expected positions. Five of the six ToxB copies were tightly linked, residing at the distal end of chr 11, while the sixth copy was localized to the distal end of chr 5. Composite interval mapping revealed a major QTL on the distal end of chr 2 conferring virulence toward CDC-Osler by 86-124. This locus was designated as VirOsler1. Genomic sequence alignment at the locus showed a region of approximately 900 kb at the end of chr 2 absent in DW5. The identification of VirOsler1 locus provides clear evidence that the wheat tan spot pathogen uses additional virulence factors that interact with unidentified host factors for disease susceptibility.
Collapse
Affiliation(s)
- Jingwei Guo
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Md Mukul Islam
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Gayan Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA; Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Paula Moolhuijzen
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Pao-Theen See
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA; USDA-ARS Cereal Disease Laboratory, St. Paul, MN 55108, USA
| | - Reem Aboukhaddour
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, USA
| | - Timothy Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA; USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA.
| |
Collapse
|
2
|
Wang SS, Chang WB, Hsieh MC, Chen SY, Liao DJ, Liao CY, Shen WC, Chen HH, Chen CY, Chen YC, Lin YL, Tung CW, Chen RS, Chung CL. PtrA, Piz-t, and a novel minor-effect QTL (qBR12_3.3-4.4) collectively contribute to the durable blast-resistance of rice cultivar Tainung 84. BOTANICAL STUDIES 2024; 65:37. [PMID: 39692953 DOI: 10.1186/s40529-024-00444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/23/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Rice blast caused by Pyricularia oryzae is a major threat to rice production worldwide. Tainung 84 (TNG84) is an elite japonica rice cultivar developed through the traditional pedigree method. It has maintained superior blast resistance since its release in 2010. This study aimed to investigate the genetic factors underlying the durable resistance of TNG84 in Taiwan. RESULTS Quantitative trait locus (QTL) mapping was conducted using 122 F2 individuals and F2:3 families derived from the cross of TNG84 and a susceptible japonica cultivar Tainan 11 (TN11). Using 733 single nucleotide polymorphisms (SNPs) obtained through genotyping-by-sequencing and three P. oryzae isolates (D41-2, 12CY-MS1-2, and 12YL-TT4-1) belonging to different physiological races and Pot2 lineages, a major QTL was identified in the region of 52-54 cM (9.54-15.16 Mb) on chromosome 12. Fine-mapping using 21 F5:6 recombinants delimited the QTL to a 140.4-kb region (10.78 to 10.93 Mb) containing the known resistance gene Ptr. Sequencing analysis indicated that TNG84 carries the resistant PtrA allele and TN11 carries the susceptible PtrD allele. Investigation of the Ptr haplotypes in 41 local japonica rice cultivars revealed that eight PtrA-containing cultivars (19.5%) consistently exhibited good field resistance in Taiwan from 2008 to 2024. Subsequently, a few F5:6 lines (P026, P044, P092, and P167) lacking the resistant Ptr allele were observed to exhibit a resistant phenotype against P. oryzae 12YL-TT4-1-lab. Trait-marker association analyses using eight F6:7 homozygous recombinants, 378 BC1F2 from P044 backcrossed to TN11, and 180 BC1F2 from P092 backcrossed to TN11, identified Piz-t on chromosome 6 and a new QTL located between 3.3 Mb and 4.4 Mb on chromosome 12 (designated as qBR12_3.3-4.4). Analysis of 12 selected BC1F2:3 lines derived from P044 demonstrated that in the absence of Ptr and Piz-t, qBR12_3.3-4.4 alone reduced the disease severity index from approximately 6.3 to 3.9. CONCLUSIONS PtrA is likely the primary gene responsible for the broad-spectrum and durable resistance of TNG84. Piz-t confers narrow-spectrum resistance, while qBR12_3.3-4.4 contributes partial resistance. The discovery of qBR12_3.3-4.4 has provided a new source of blast resistance, and the markers developed in this study can be utilized in future breeding programs.
Collapse
Affiliation(s)
- Sheng-Shan Wang
- Tainan District Agricultural Research and Extension Station, Ministry of Agriculture, No. 70, Muchang, Xinhua, Tainan, 712009, Taiwan
| | - Wei-Bin Chang
- Tainan District Agricultural Research and Extension Station, Ministry of Agriculture, No. 70, Muchang, Xinhua, Tainan, 712009, Taiwan
| | - Ming-Chien Hsieh
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Szu-Yu Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Dah-Jing Liao
- Department of Agronomy, Chiayi Agricultural Experiment Branch, Agricultural Research Institute, Ministry of Agriculture, No. 2, Minquan Rd., Chiayi City, 600015, Taiwan
| | - Ching-Ying Liao
- Taitung District Agricultural Research and Extension Station, Ministry of Agriculture, No. 675, Chunghua Rd., Sec. 1, Taitung City, 950244, Taiwan
| | - Wei-Chiang Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Hong-Hua Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Chieh-Yi Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Yi-Chia Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Yueh-Lin Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Chih-Wei Tung
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Ruey-Shyang Chen
- Department of Biochemical Science and Technology, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 600355, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan.
| |
Collapse
|
3
|
Jayarathna SB, Chawla HS, Mira MM, Duncan RW, Stasolla C. Mapping of quantitative trait loci (QTL) in Brassica napus L. for tolerance to water stress. Genome 2024; 67:482-492. [PMID: 39417409 DOI: 10.1139/gen-2023-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Brassica napus L. plants are sensitive to water stress conditions throughout their life cycle from seed germination to seed setting. This study aims at identifying quantitative trait loci (QTL) linked to B. napus tolerance to water stress mimicked by applications of 10% polyethylene glycol-6000 (PEG-6000). Two doubled haploid populations, each consisting of 150 genotypes, were used for this research. Plants at the two true leaf stage of development were grown in the absence (control) or presence (stress) of PEG-6000 under controlled environmental conditions for 48 h, and the drought stress index was calculated for each genotype. All genotypes, along with their parents, were genotyped using the Brassica Infinium 90K SNP BeadChip Array. Inclusive composite interval mapping was used to identify QTL. Six QTL and 12 putative QTL associated with water stress tolerance were identified across six chromosomes (A2, A3, A4, A9, C3, and C7). Collectively, 2154 candidate genes for water stress tolerance were identified for all the identified QTL. Among them, 213 genes were identified as being directly associated with water stress (imposed by PEG-6000) tolerance based on nine functional annotations. These results can be incorporated into future breeding initiatives to select plant material with the ability to cope effectively with water stress.
Collapse
Affiliation(s)
- Samadhi B Jayarathna
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Harmeet S Chawla
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Robert W Duncan
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
4
|
Acharya K, Liu Z, Schachterle J, Kumari P, Manan F, Xu SS, Green AJ, Faris JD. Genetic mapping of QTLs for resistance to bacterial leaf streak in hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:265. [PMID: 39532716 DOI: 10.1007/s00122-024-04767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
KEY MESSAGE Robust QTLs conferring resistance to bacterial leaf streak in wheat were mapped on chromosomes 3B and 5A from the variety Boost and on chromosome 7D from the synthetic wheat line W-7984. Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa poses a significant threat to global wheat production. High levels of BLS resistance are rare in hexaploid wheat. Here, we screened 101 diverse wheat genotypes under greenhouse conditions to identify new sources of BLS resistance. Five lines showed good levels of resistance including the wheat variety Boost and the synthetic hexaploid wheat line W-7984. Recombinant inbred populations derived from the cross of Boost × ND830 (BoostND population) and W-7984 × Opata 85 (ITMI population) were subsequently evaluated in greenhouse and field experiments to investigate the genetic basis of resistance. QTLs on chromosomes 3B, 5A, and 5B were identified in the BoostND population. The 3B and 5A QTLs were significant in all environments, but the 3B QTL was the strongest under greenhouse conditions explaining 38% of the phenotypic variation, and the 5A QTL was the most significant in the field explaining up to 29% of the variation. In the ITMI population, a QTL on chromosome 7D explained as much as 46% of the phenotypic variation in the greenhouse and 18% in the field. BLS severity in both populations was negatively correlated with days to heading, and some QTLs for these traits overlapped, which explained the tendency of later maturing lines to have relatively higher levels of BLS resistance. Markers associated with the QTLs were converted to KASP markers, which will aid in the deployment of the QTLs into elite lines for the development of BLS-resistant wheat varieties.
Collapse
Affiliation(s)
- Krishna Acharya
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58105, USA
| | - Jeffrey Schachterle
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84604, USA
| | - Pooja Kumari
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Fazal Manan
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58105, USA
| | - Steven S Xu
- USDA-ARS, Crop Improvement and Genetics Research Unit, Western Regional Research Center, Albany, CA, 94710, USA
| | - Andrew J Green
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58105, USA.
| | - Justin D Faris
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA.
| |
Collapse
|
5
|
Li J, Wyatt NA, Skiba RM, Kariyawasam GK, Richards JK, Effertz K, Rehman S, Liu Z, Brueggeman RS, Friesen TL. Variability in Chromosome 1 of Select Moroccan Pyrenophora teres f. teres Isolates Overcomes a Highly Effective Barley Chromosome 6H Source of Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:676-687. [PMID: 38888557 DOI: 10.1094/mpmi-10-23-0159-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Barley net form net blotch (NFNB) is a destructive foliar disease caused by Pyrenophora teres f. teres. Barley line CIho5791, which harbors the broadly effective chromosome 6H resistance gene Rpt5, displays dominant resistance to P. teres f. teres. To genetically characterize P. teres f. teres avirulence/virulence on the barley line CIho5791, we generated a P. teres f. teres mapping population using a cross between the Moroccan CIho5791-virulent isolate MorSM40-3 and the avirulent reference isolate 0-1. Full genome sequences were generated for 103 progenies. Saturated chromosome-level genetic maps were generated, and quantitative trait locus (QTL) mapping identified two major QTL associated with P. teres f. teres avirulence/virulence on CIho5791. The most significant QTL mapped to chromosome (Ch) 1, where the virulent allele was contributed by MorSM40-3. A second QTL mapped to Ch8; however, this virulent allele was contributed by the avirulent parent 0-1. The Ch1 and Ch8 loci accounted for 27 and 15% of the disease variation, respectively, and the avirulent allele at the Ch1 locus was epistatic over the virulent allele at the Ch8 locus. As a validation, we used a natural P. teres f. teres population in a genome-wide association study that identified the same Ch1 and Ch8 loci. We then generated a new reference quality genome assembly of parental isolate MorSM40-3 with annotation supported by deep transcriptome sequencing of infection time points. The annotation identified candidate genes predicted to encode small, secreted proteins, one or more of which are likely responsible for overcoming the CIho5791 resistance. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Jinling Li
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Nathan A Wyatt
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
- Sugarbeet and Potato Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| | - Ryan M Skiba
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| | - Gayan K Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - Karl Effertz
- Department of Crop and Soil Science, Washington State University, Pullman, WA 99164, U.S.A
| | - Sajid Rehman
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10100, Morocco
- Field Crop Development Center of the Olds College, Lacombe, Alberta T4L1W8, Canada
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Robert S Brueggeman
- Department of Crop and Soil Science, Washington State University, Pullman, WA 99164, U.S.A
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| |
Collapse
|
6
|
Khunsanit P, Jitsamai N, Thongsima N, Chadchawan S, Pongpanich M, Henry IM, Comai L, Suriya-Arunroj D, Budjun I, Buaboocha T. QTL-Seq identified a genomic region on chromosome 1 for soil-salinity tolerance in F 2 progeny of Thai salt-tolerant rice donor line "Jao Khao". FRONTIERS IN PLANT SCIENCE 2024; 15:1424689. [PMID: 39258300 PMCID: PMC11385611 DOI: 10.3389/fpls.2024.1424689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024]
Abstract
Introduction Owing to advances in high-throughput genome sequencing, QTL-Seq mapping of salt tolerance traits is a major platform for identifying soil-salinity tolerance QTLs to accelerate marker-assisted selection for salt-tolerant rice varieties. We performed QTL-BSA-Seq in the seedling stage of rice from a genetic cross of the extreme salt-sensitive variety, IR29, and "Jao Khao" (JK), a Thai salt-tolerant variety. Methods A total of 462 F2 progeny grown in soil and treated with 160 mM NaCl were used as the QTL mapping population. Two high- and low-bulk sets, based on cell membrane stability (CMS) and tiller number at the recovery stage (TN), were equally sampled. The genomes of each pool were sequenced, and statistical significance of QTL was calculated using QTLseq and G prime (G') analysis, which is based on calculating the allele frequency differences or Δ(SNP index). Results Both methods detected the overlapping interval region, wherein CMS-bulk was mapped at two loci in the 38.41-38.85 Mb region with 336 SNPs on chromosome 1 (qCMS1) and the 26.13-26.80 Mb region with 1,011 SNPs on chromosome 3 (qCMS3); the Δ(SNP index) peaks were -0.2709 and 0.3127, respectively. TN-bulk was mapped at only one locus in the overlapping 38.26-38.95 Mb region on chromosome 1 with 575 SNPs (qTN1) and a Δ(SNP index) peak of -0.3544. These identified QTLs in two different genetic backgrounds of segregating populations derived from JK were validated. The results confirmed the colocalization of the qCMS1 and qTN1 traits on chromosome 1. Based on the CMS trait, qCMS1/qTN1 stably expressed 6%-18% of the phenotypic variance in the two validation populations, while qCMS1/qTN1 accounted for 16%-20% of the phenotypic variance in one validation population based on the TN trait. Conclusion The findings confirm that the CMS and TN traits are tightly linked to the long arm of chromosome 1 rather than to chromosome 3. The validated qCMS-TN1 QTL can be used for gene/QTL pyramiding in marker-assisted selection to expedite breeding for salt resistance in rice at the seedling stage.
Collapse
Affiliation(s)
- Prasit Khunsanit
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Navarit Jitsamai
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nattana Thongsima
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Monnat Pongpanich
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, United States
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, United States
| | | | - Itsarapong Budjun
- Rice Department, Ministry of Agriculture and Cooperation, Bangkok, Thailand
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Pérez-Moro C, Sáez C, Sifres A, López C, Dhillon NPS, Picó B, Pérez-de-Castro A. Genetic Dissection of ToLCNDV Resistance in Resistant Sources of Cucumis melo. Int J Mol Sci 2024; 25:8880. [PMID: 39201567 PMCID: PMC11354858 DOI: 10.3390/ijms25168880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is a begomovirus causing significant melon (Cucumis melo) crop losses globally. This study aims to map the ToLCNDV resistance in the PI 414723 melon accession, previously identified and characterized through phenotypic studies, thereby exploring shared genomic regions with the established resistant source WM-7. In the present study, WM-7 and PI 414723 were crossed with the susceptible accessions 'Rochet' and 'Blanco' respectively, to generate F1 hybrids. These hybrids were self-pollinated to generate the populations for mapping the ToLCNDV resistance region and designing markers for marker-assisted selection. Disease evaluation included visual symptom scoring, viral-load quantification and tissue printing. Genotyping-by-sequencing and SNP markers were used for quantitative trait loci (QTL) mapping. For genetic analysis, qPCR and bulked segregant RNA-seq (BSR-seq) were performed. Gene expression was assessed using RNA-seq, and qRT-PCR was used for confirmation. The research narrows the candidate region for resistance in WM-7 and identifies overlapping QTLs on chromosome 11 in PI 414723, found in the region of the DNA primase large subunit. BSR-seq and expression analyses highlight potential regulatory roles of chromosome 2 in conferring resistance. Differential expression was confirmed for six genes in the candidate region on chromosome 2. This study confirms the existence of common resistance genes in PI 414723 and WM-7.
Collapse
Affiliation(s)
- Clara Pérez-Moro
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.P.-M.); (C.S.); (A.S.); (C.L.)
| | - Cristina Sáez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.P.-M.); (C.S.); (A.S.); (C.L.)
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28031 Madrid, Spain
| | - Alicia Sifres
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.P.-M.); (C.S.); (A.S.); (C.L.)
| | - Carmelo López
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.P.-M.); (C.S.); (A.S.); (C.L.)
| | - Narinder P. S. Dhillon
- World Vegetable Center, East and Southeast Asia, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand;
| | - Belén Picó
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.P.-M.); (C.S.); (A.S.); (C.L.)
| | - Ana Pérez-de-Castro
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.P.-M.); (C.S.); (A.S.); (C.L.)
| |
Collapse
|
8
|
Huynh T, Van K, Mian MAR, McHale LK. Single- and multiple-trait quantitative trait locus analyses for seed oil and protein contents of soybean populations with advanced breeding line background. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:51. [PMID: 39118867 PMCID: PMC11306453 DOI: 10.1007/s11032-024-01489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Soybean seed oil and protein contents are negatively correlated, posing challenges to enhance both traits simultaneously. Previous studies have identified numerous oil and protein QTLs via single-trait QTL analysis. Multiple-trait QTL methods were shown to be superior but have not been applied to seed oil and protein contents. Our study aimed to evaluate the effectiveness of single- and multiple-trait multiple interval mapping (ST-MIM and MT-MIM, respectively) for these traits using three recombinant inbred line populations from advanced breeding line crosses tested in four environments. Using original and simulated data, we found that MT-MIM did not outperform ST-MIM for our traits with high heritability (H2 > 0.84). Empirically, MT-MIM confirmed only five out of the seven QTLs detected by ST-MIM, indicating single-trait analysis was sufficient for these traits. All QTLs exerted opposite effects on oil and protein contents with varying protein-to-oil additive effect ratios (-0.4 to -4.8). We calculated the economic impact of the allelic variations via estimated processed values (EPV) using the National Oilseed Processors Association (NOPA) and High Yield + Quality (HY + Q) methods. Oil-increasing alleles had positive effects on both EPVNOPA and EPVHY+Q when the protein-to-oil ratio was low (-0.4 to -0.7). However, when the ratio was high (-4.1 to -4.8), oil-increasing alleles increased EPVNOPA and decreased EPVHY+Q, which penalizes low protein meal. In conclusion, single-trait QTL analysis is adequately effective for high heritability traits like seed oil and protein contents. Additionally, the populations' elite pedigrees and varying protein-to-oil ratios provide potential lines for further yield assessment and direct integration into breeding programs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01489-2.
Collapse
Affiliation(s)
- Tu Huynh
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210 USA
| | - Kyujung Van
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210 USA
| | - M. A. Rouf Mian
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 270607 USA
- Soybean and Nitrogen Fixation Unit, USDA-ARS, Raleigh, NC 27607 USA
| | - Leah K. McHale
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210 USA
- Soybean Research Center, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
9
|
Dölfors F, Ilbäck J, Bejai S, Fogelqvist J, Dixelius C. Nitrate transporter protein NPF5.12 and major latex-like protein MLP6 are important defense factors against Verticillium longisporum. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4148-4164. [PMID: 38666306 PMCID: PMC11233413 DOI: 10.1093/jxb/erae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/23/2024] [Indexed: 07/11/2024]
Abstract
Plant defense responses to the soil-borne fungus Verticillium longisporum causing stem stripe disease on oilseed rape (Brassica napus) are poorly understood. In this study, a population of recombinant inbred lines (RILs) using the Arabidopsis accessions Sei-0 and Can-0 was established. Composite interval mapping, transcriptome data, and T-DNA mutant screening identified the NITRATE/PEPTIDE TRANSPORTER FAMILY 5.12 (AtNPF5.12) gene as being associated with disease susceptibility in Can-0. Co-immunoprecipitation revealed interaction between AtNPF5.12 and the MAJOR LATEX PROTEIN family member AtMLP6, and fluorescence microscopy confirmed this interaction in the plasma membrane and endoplasmic reticulum. CRISPR/Cas9 technology was applied to mutate the NPF5.12 and MLP6 genes in B. napus. Elevated fungal growth in the npf5.12 mlp6 double mutant of both oilseed rape and Arabidopsis demonstrated the importance of these genes in defense against V. longisporum. Colonization of this fungus depends also on available nitrates in the host root. Accordingly, the negative effect of nitrate depletion on fungal growth was less pronounced in Atnpf5.12 plants with impaired nitrate transport. In addition, suberin staining revealed involvement of the NPF5.12 and MLP6 genes in suberin barrier formation. Together, these results demonstrate a dependency on multiple plant factors that leads to successful V. longisporum root infection.
Collapse
Affiliation(s)
- Fredrik Dölfors
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Jonas Ilbäck
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Sarosh Bejai
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Johan Fogelqvist
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Christina Dixelius
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| |
Collapse
|
10
|
Clare SJ, Alhashel AF, Li M, Effertz KM, Poudel RS, Zhang J, Brueggeman RS. High resolution mapping of a novel non-transgressive hybrid susceptibility locus in barley exploited by P. teres f. maculata. BMC PLANT BIOLOGY 2024; 24:622. [PMID: 38951756 PMCID: PMC11218204 DOI: 10.1186/s12870-024-05303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
Hybrid genotypes can provide significant yield gains over conventional inbred varieties due to heterosis or hybrid vigor. However, hybrids can also display unintended negative attributes or phenotypes such as extreme pathogen susceptibility. The necrotrophic pathogen Pyrenophora teres f. maculata (Ptm) causes spot form net blotch, which has caused significant yield losses to barley worldwide. Here, we report on a non-transgressive hybrid susceptibility locus in barley identified between the three parental lines CI5791, Tifang and Golden Promise that are resistant to Ptm isolate 13IM.3. However, F2 progeny from CI5791 × Tifang and CI5791 × Golden Promise crosses exhibited extreme susceptibility. The susceptible phenotype segregated in a ratio of 1 resistant:1 susceptible representing a genetic segregation ratio of 1 parental (res):2 heterozygous (sus):1 parental (res) suggesting a single hybrid susceptibility locus. Genetic mapping using a total of 715 CI5791 × Tifang F2 individuals (1430 recombinant gametes) and 149 targeted SNPs delimited the hybrid susceptibility locus designated Susceptibility to Pyrenophora teres 2 (Spt2) to an ~ 198 kb region on chromosome 5H of the Morex V3 reference assembly. This single locus was independently mapped with 83 CI5791 × Golden Promise F2 individuals (166 recombinant gametes) and 180 genome wide SNPs that colocalized to the same Spt2 locus. The CI5791 genome was sequenced using PacBio Continuous Long Read technology and comparative analysis between CI5791 and the publicly available Golden Promise genome assembly determined that the delimited region contained a single high confidence Spt2 candidate gene predicted to encode a pentatricopeptide repeat-containing protein.
Collapse
Affiliation(s)
- Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Abdullah F Alhashel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mengyuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Karl M Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Dewey Scientific, Pullman, WA, 99163, USA
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
- Syngenta Seed Inc, Durham, NC, 27709, USA
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
11
|
Schafleitner R, Chen-Yu L, Laenoi S, Shu-Mei H, Srimat S, Gi-An L, Chatchawankanphanich O, Dhillon NPS. Molecular markers associated with resistance to squash leaf curl China virus and tomato leaf curl New Delhi virus in tropical pumpkin (Cucurbita moschata Duchesne ex Poir.) breeding line AVPU1426. Sci Rep 2024; 14:6793. [PMID: 38514827 PMCID: PMC10957999 DOI: 10.1038/s41598-024-57348-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Virus diseases are a major production constraint for pumpkin. Recessive resistance to squash leaf curl China virus and tomato leaf curl New Delhi virus has been mapped in Cucurbita moschata (Duchesne ex Poir.) breeding line AVPU1426 to chromosomes 7 and 8, respectively. Molecular markers tightly associated with the resistance loci have been developed and were able to correctly predict resistance and susceptibility with an accuracy of 99% for squash leaf curl China virus resistance and 94.34% for tomato leaf curl New Delhi virus in F2 and back cross populations derived from the original resistance source AVPU1426. The markers associated with resistance are recommended for use in marker-assisted breeding.
Collapse
Affiliation(s)
| | - Lin Chen-Yu
- World Vegetable Center, 60 Yi-Min Liao, Shanhua, 74151, Tainan, Taiwan
| | - Suwannee Laenoi
- World Vegetable Center, East and Southeast Asia, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Huang Shu-Mei
- World Vegetable Center, 60 Yi-Min Liao, Shanhua, 74151, Tainan, Taiwan
| | - Supornpun Srimat
- World Vegetable Center, 60 Yi-Min Liao, Shanhua, 74151, Tainan, Taiwan
| | - Lee Gi-An
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Orawan Chatchawankanphanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Narinder P S Dhillon
- World Vegetable Center, East and Southeast Asia, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| |
Collapse
|
12
|
Viteri DM, Linares-Ramírez AM, Shi A. Genome-Wide Association Study Reveals a QTL Region for Ashy Stem Blight Resistance in PRA154 Andean Common Bean. PLANT DISEASE 2024; 108:407-415. [PMID: 37578366 DOI: 10.1094/pdis-07-23-1275-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Ashy stem blight (ASB) caused by Macrophomina phaseolina (Tassi) Goidanich affects the common bean (Phaseolus vulgaris L.) at all growing stages. Higher levels of resistance were observed in Andean common beans, but specific resistant quantitative trait loci (QTLs) conferring resistance to this pathogen have not been reported in this gene pool. The objectives of this research were to: (i) conduct a genome-wide association study (GWAS) and QTL mapping for resistance in the Andean breeding line PRA154; and (ii) identify single nucleotide polymorphism (SNP) markers and candidate genes for ASB resistance. Phenotyping was conducted under greenhouse conditions by inoculating the 107 F6:7 recombinant inbred lines (RILs) derived from the cross between the susceptible cultivar 'Verano' and the partial-resistant breeding line PRA154 twice with the M. phaseolina isolate PRI21. Genotyping was performed with 109,040 SNPs distributed across all 11 P. vulgaris chromosomes. A novel major QTL was located between 28,761,668 and 31,263,845 bp, extending 2.5 Mbp on chromosome Pv07, and the highest significant SNP markers were Chr07_28761668_A_G, Chr07_29131720_G_A, and Chr07_31263845_C_T with the highest LOD (more than 10 in most of the cases) and R-squared values, explaining 40% of the phenotypic variance of the PRI21 isolate. The gene Phvul.007G173900 (methylcrotonyl-CoA carboxylase alpha chain and mitochondrial 3-methylcrotonyl-CoA carboxylase 1 [MCCA]) with a size of 10,891 bp, located between 29,131,591 and 29,142,481 bp on Pv07, was identified as one candidate for ASB resistance in PRA154, and it contained Chr07_29131720_G_A. The QTL and genetic marker information could be used to assist common bean breeders to develop germplasm and cultivars with ASB resistance through molecular breeding.
Collapse
Affiliation(s)
- Diego M Viteri
- Department of Agro-Environmental Sciences, University of Puerto Rico, Isabela Research Substation, Isabela, PR 00662
| | - Angela M Linares-Ramírez
- Department of Agro-Environmental Sciences, University of Puerto Rico, Lajas Research Substation, Lajas, PR 00667
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701
| |
Collapse
|
13
|
Sharma JS, Che M, Fetch T, McCallum BD, Xu SS, Hiebert CW. Identification of Sr67, a new gene for stem rust resistance in KU168-2 located close to the Sr13 locus in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:30. [PMID: 38265482 PMCID: PMC10808535 DOI: 10.1007/s00122-023-04530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
KEY MESSAGE Sr67 is a new stem rust resistance gene that represents a new resource for breeding stem rust resistant wheat cultivars Re-appearance of stem rust disease, caused by the fungal pathogen Puccinia graminis f. sp. tritici (Pgt), in different parts of Europe emphasized the need to develop wheat varieties with effective resistance to local Pgt populations and exotic threats. A Kyoto University wheat (Triticum aestivum L.) accession KU168-2 was reported to carry good resistance to leaf and stem rust. To identify the genomic region associated with the KU168-2 stem rust resistance, a genetic study was conducted using a doubled haploid (DH) population from the cross RL6071 × KU168-2. The DH population was phenotyped with three Pgt races (TTKSK, TPMKC, and QTHSF) and genotyped using the Illumina 90 K wheat SNP array. Linkage mapping showed the resistance to all three Pgt races was conferred by a single stem rust resistance (Sr) gene on chromosome arm 6AL, associated with Sr13. Presently, four Sr13 resistance alleles have been reported. Sr13 allele-specific KASP and STARP markers, and sequencing markers all showed null alleles in KU168-2. KU168-2 showed a unique combination of seedling infection types for five Pgt races (TTKSK, QTHSF, RCRSF, TMRTF, and TPMKC) compared to Sr13 alleles. The phenotypic uniqueness of the stem rust resistance gene in KU168-2 and null alleles for Sr13 allele-specific markers showed the resistance was conferred by a new gene, designated Sr67. Since Sr13 is less effective in hexaploid background, Sr67 will be a good source of stem rust resistance in bread wheat breeding programs.
Collapse
Affiliation(s)
- Jyoti Saini Sharma
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Mingzhe Che
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Thomas Fetch
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Brent D McCallum
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Steven S Xu
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Colin W Hiebert
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada.
| |
Collapse
|
14
|
García-Fernández C, Jurado M, Campa A, Bitocchi E, Papa R, Ferreira JJ. Genetic control of pod morphological traits and pod edibility in a common bean RIL population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:6. [PMID: 38091106 PMCID: PMC10719158 DOI: 10.1007/s00122-023-04516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
KEY MESSAGE QTL mapping, association analysis, and colocation study with previously reported QTL revealed three main regions controlling pod morphological traits and two loci for edible pod characteristics on the common bean chromosomes Pv01 and Pv06. Bean pod phenotype is a complex characteristic defined by the combination of different traits that determine the potential use of a genotype as a snap bean. In this study, the TUM RIL population derived from a cross between 'TU' (dry) and 'Musica' (snap) was used to investigate the genetic control of pod phenotype. The character was dissected into pod morphological traits (PMTs) and edible pod characteristics (EPC). The results revealed 35 QTL for PMTs located on seven chromosomes, suggesting a strong QTL colocation on chromosomes Pv01 and Pv06. Some QTL were colocated with previously reported QTL, leading to the mapping of 15 consensus regions associated with bean PMTs. Analysis of EPC of cooked beans revealed that two major loci with epistatic effect, located on chromosomes Pv01 and Pv06, are involved in the genetic control of this trait. An association study using a subset of the Spanish Diversity Panel (snap vs. non-snap) detected 23 genomic regions, with three regions being mapped at a position similar to those of two loci identified in the TUM population. The results demonstrated the relevant roles of Pv01 and Pv06 in the modulation of bean pod phenotype. Gene ontology enrichment analysis revealed a significant overrepresentation of genes regulating the phenylpropanoid metabolic process and auxin response in regions associated with PMTs and EPC, respectively. Both biological functions converged in the lignin biosynthetic pathway, suggesting the key role of the pathway in the genetic control of bean pod phenotype.
Collapse
Affiliation(s)
- Carmen García-Fernández
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain.
| | - Maria Jurado
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| | - Ana Campa
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| | - Elena Bitocchi
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy
| | - Roberto Papa
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy
| | - Juan Jose Ferreira
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| |
Collapse
|
15
|
Silva A, Montoya ME, Quintero C, Cuasquer J, Tohme J, Graterol E, Cruz M, Lorieux M. Genetic bases of resistance to the rice hoja blanca disease deciphered by a quantitative trait locus approach. G3 (BETHESDA, MD.) 2023; 13:jkad223. [PMID: 37766452 PMCID: PMC10700108 DOI: 10.1093/g3journal/jkad223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Rice hoja blanca (RHB) is one of the most serious diseases in rice-growing areas in tropical Americas. Its causal agent is RHB virus (RHBV), transmitted by the planthopper Tagosodes orizicolus Müir. Genetic resistance is the most effective and environment-friendly way of controlling the disease. So far, only 1 major quantitative trait locus (QTL) of Oryza sativa ssp. japonica origin, qHBV4.1, that alters the incidence of the virus symptoms in 2 Colombian cultivars has been reported. This resistance has already started to be broken, stressing the urgent need for diversifying the resistance sources. In the present study, we performed a search for new QTLs of O. sativa indica origin associated with RHB resistance. We used 4 F2:3-segregating populations derived from indica-resistant varieties crossed with a highly susceptible japonica pivot parent. Besides the standard method for measuring disease incidence, we developed a new method based on computer-assisted image processing to determine the affected leaf area (ALA) as a measure of symptom severity. Based on the disease severity and incidence scores in the F3 families under greenhouse conditions and SNP genotyping of the F2 individuals, we identified 4 new indica QTLs for RHB resistance on rice chromosomes 4, 6, and 11, namely, qHBV4.2WAS208, qHBV6.1PTB25, qHBV11.1, and qHBV11.2, respectively. We also confirmed the wide-range action of qHBV4.1. Among the 5 QTLs, qHBV4.1 and qHBV11.1 had the largest effects on incidence and severity, respectively. These results provide a more complete understanding of the genetic bases of RHBV resistance in the cultivated rice gene pool and can be used to develop marker-aided breeding strategies to improve RHB resistance. The power of joint- and meta-analyses allowed precise mapping and candidate gene identification, providing the basis for positional cloning of the 2 major QTLs qHBV4.1 and qHBV11.1.
Collapse
Affiliation(s)
- Alexander Silva
- Agrobiodiversity Unit, Alliance Bioversity-CIAT, Palmira, Valle del Cauca CP 763537, Colombia
| | - María Elker Montoya
- FLAR-The Latin American Fund for Irrigated Rice, Valle del Cauca CP 763537, Colombia
| | - Constanza Quintero
- Agrobiodiversity Unit, Alliance Bioversity-CIAT, Palmira, Valle del Cauca CP 763537, Colombia
| | - Juan Cuasquer
- Agrobiodiversity Unit, Alliance Bioversity-CIAT, Palmira, Valle del Cauca CP 763537, Colombia
| | - Joe Tohme
- Agrobiodiversity Unit, Alliance Bioversity-CIAT, Palmira, Valle del Cauca CP 763537, Colombia
| | - Eduardo Graterol
- FLAR-The Latin American Fund for Irrigated Rice, Valle del Cauca CP 763537, Colombia
| | - Maribel Cruz
- FLAR-The Latin American Fund for Irrigated Rice, Valle del Cauca CP 763537, Colombia
| | - Mathias Lorieux
- Agrobiodiversity Unit, Alliance Bioversity-CIAT, Palmira, Valle del Cauca CP 763537, Colombia
- DIADE, University of Montpellier, Cirad, IRD.IRD Occitanie, 911 Ave Agropolis, 34394 Montpellier Cedex 5, France
| |
Collapse
|
16
|
Malik N, Basu U, Srivastava R, Daware A, Ranjan R, Sharma A, Thakro V, Mohanty JK, Jha UC, Tripathi S, Tyagi AK, Parida SK. Natural alleles of Mediator subunit genes modulate plant height in chickpea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1271-1292. [PMID: 37671896 DOI: 10.1111/tpj.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023]
Abstract
SUMMARYPlant height (PH) is an important plant architectural trait targeted during Green Revolution to enhance crop yields. Identification of genes and natural alleles governing plant height without compromising agronomic performance can fill the lacuna of knowledge connecting ideal plant architecture with maximum achievable yield in chickpea. Through coherent strategy involving genome‐wide association study, QTL/fine mapping, map‐based cloning, molecular haplotyping, and downstream functional genomics, the current study identified two Mediator subunit genes namely, CaMED23 and CaMED5b and their derived natural alleles/haplotypes underlying the major QTLs and trans‐acting eQTLs regulating plant height in chickpea. Differential accumulation of haplotype‐specific transcripts of these two Mediator genes in corresponding haplotype‐introgressed near‐isogenic lines (NILs) correlates negatively with the plant height trait. Quantitative as well as qualitative estimation based on histology, scanning electron microscopy, and histochemical assay unraveled the reduced lengths and cell sizes of internodes along with compromised lignin levels in dwarf/semi‐dwarf chickpea NILs introgressed with superior CaMED23 and CaMED5b gene haplotypes. This observation, supported by global transcriptome profiling‐based diminished expression of various phenylpropanoid pathway genes upstream of lignin biosynthesis in dwarf/semi‐dwarf NILs, essentially links plant height with lignin accumulation. The identified molecular signatures in the Mediator subunit genes can be efficiently utilized to develop desirable dwarf/semi‐dwarf‐type chickpea cultivars without affecting their yield per plant via modulating lignin/phenylpropanoid biosynthesis.
Collapse
Affiliation(s)
- Naveen Malik
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Udita Basu
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rishi Srivastava
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Daware
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rajeev Ranjan
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Akash Sharma
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Virevol Thakro
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Mohanty
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | | | - Akhilesh K Tyagi
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Swarup K Parida
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
17
|
Talukder ZI, Underwood W, Misar CG, Li X, Seiler GJ, Cai X, Qi L. Genetic analysis of basal stalk rot resistance introgressed from wild Helianthus petiolaris into cultivated sunflower ( Helianthus annuus L.) using an advanced backcross population. FRONTIERS IN PLANT SCIENCE 2023; 14:1278048. [PMID: 37920712 PMCID: PMC10619160 DOI: 10.3389/fpls.2023.1278048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Introduction Sclerotinia sclerotiorum is a serious pathogen causing severe basal stalk rot (BSR) disease on cultivated sunflower (Helianthus annuus L.) that leads to significant yield losses due to insufficient resistance. The wild annual sunflower species H. petiolaris, commonly known as prairie sunflower is known for its resistance against this pathogen. Sunflower resistance to BSR is quantitative and determined by many genes with small effects on the resistance phenotype. The objective of this study was to identify loci governing BSR resistance derived from H. petiolaris using a quantitative trait loci (QTL) mapping approach. Methods BSR resistance among lines of an advanced backcross population (AB-QTL) with 174 lines developed from a cross of inbred line HA 89 with H. petiolaris PI 435843 was determined in the field during 2017-2019, and in the greenhouse in 2019. AB-QTL lines and the HA 89 parent were genotyped using genotyping-by-sequencing and a genetic linkage map was developed spanning 997.51 cM and using 1,150 SNP markers mapped on 17 sunflower chromosomes. Results and discussion Highly significant differences (p<0.001) for BSR response among AB-QTL lines were observed disease incidence (DI) in all field seasons, as well as disease rating (DR) and area under the disease progress curve (AUDPC) in the greenhouse with a moderately high broad-sense heritability (H 2) of 0.61 for the tested resistance parameters. A total of 14 QTL associated with BSR resistance were identified on nine chromosomes, each explaining a proportion of the phenotypic variation ranging from 3.5% to 28.1%. Of the 14 QTL, eight were detected for BSR resistance in the field and six were detected under greenhouse conditions. Alleles conferring increased BSR resistance were contributed by the H. petiolaris parent at 11 of the 14 QTL.
Collapse
Affiliation(s)
- Zahirul I. Talukder
- United States Department of Agriculture (USDA)-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - William Underwood
- United States Department of Agriculture (USDA)-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Christopher G. Misar
- United States Department of Agriculture (USDA)-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Gerald J. Seiler
- United States Department of Agriculture (USDA)-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Xiwen Cai
- Wheat, Sorghum and Forage Research Unit, United States Department of Agriculture (USDA)-Agricultural Research Service, Lincoln, NE, United States
| | - Lili Qi
- United States Department of Agriculture (USDA)-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| |
Collapse
|
18
|
Phan PDT, Nishimura A, Yamamoto C, Thanh PT, Niwa T, Amarasinghe YPJ, Ishikawa R, Ishii T. Wild and cultivated allele effects on rice phenotypic traits in reciprocal backcross populations between Oryza rufipogon and two cultivars, O. sativa Nipponbare and IR36. BREEDING SCIENCE 2023; 73:373-381. [PMID: 38106511 PMCID: PMC10722096 DOI: 10.1270/jsbbs.22095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/19/2023] [Indexed: 12/19/2023]
Abstract
A total of four populations of reciprocal backcross recombinant inbred lines were produced from a cross between a wild accession of Oryza rufipogon W630 and two major cultivars, O. sativa Japonica Nipponbare and Indica IR36. Using these populations, quantitative trait locus (QTL) analysis for eight morphological traits (culm length, panicle length, days to heading, panicle shape, pericarp color, hull color, seed shattering and seed awning) was carried out, and the putative QTL regions were compared among the populations. The QTLs with strong allele effects were commonly detected for culm length, panicle shape, pericarp color and hull color in all four populations, and their peak locations were close to the major genes of sd1, Spr3, Rc and Bh4, respectively. For panicle length and days to heading, some QTL regions overlapped between two or three populations. In the case of seed shattering and seed awning, strong wild allele effects at major loci were observed only in the populations with cultivated backgrounds. Since the wild and cultivated alleles have never been evaluated in the reciprocal genetic backgrounds, the present results provide new information on gene effects in breeding and domestication studies.
Collapse
Affiliation(s)
- Phuong Dang Thai Phan
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh, Vietnam
| | - Akinori Nishimura
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Chika Yamamoto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Pham Thien Thanh
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
- Food Crops Research Institute, Hai Duong, Vietnam
| | - Toshihiro Niwa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | | | - Ryo Ishikawa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Takashige Ishii
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
19
|
Dinh LT, Ueda Y, Gonzalez D, Tanaka JP, Takanashi H, Wissuwa M. Novel QTL for Lateral Root Density and Length Improve Phosphorus Uptake in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2023; 16:37. [PMID: 37615779 PMCID: PMC10449758 DOI: 10.1186/s12284-023-00654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
The rice root system consists of two types of lateral roots, indeterminate larger L-types capable of further branching, and determinate, short, unbranched S-types. L-type laterals correspond to the typical lateral roots of cereals whereas S-type laterals are unique to rice. Both types contribute to nutrient and water uptake and genotypic variation for density and length of these laterals could be exploited in rice improvement to enhance adaptations to nutrient and water-limited environments. Our objectives were to determine how best to screen for lateral root density and length and to identify markers linked to genotypic variation for these traits. Using different growing media showed that screening in nutrient solution exposed genotypic variation for S-type and L-type density, but only the lateral roots of soil-grown plants varied for their lengths. A QTL mapping population developed from parents contrasting for lateral root traits was grown in a low-P field, roots were sampled, scanned and density and length of lateral roots measured. One QTL each was detected for L-type density (LDC), S-type density on crown root (SDC), S-type density on L-type (SDL), S-type length on L-type (SLL), and crown root number (RNO). The QTL for LDC on chromosome 5 had a major effect, accounting for 46% of the phenotypic variation. This strong positive effect was confirmed in additional field experiments, showing that lines with the donor parent allele at qLDC5 had 50% higher LDC. Investigating the contribution of lateral root traits to P uptake using stepwise regressions indicated LDC and RNO were most influential, followed by SDL. Simulating effects of root trait differences conferred by the main QTL in a P uptake model confirmed that qLDC5 was most effective in improving P uptake followed by qRNO9 for RNO and qSDL9 for S-type lateral density on L-type laterals. Pyramiding qLDC5 with qRNO9 and qSDL9 would be possible given that trade-offs between traits were not detected. Phenotypic selection for the RNO trait during variety development would be feasible, however, the costs of doing so reliably for lateral root density traits is prohibitive and markers identified here therefore provide the first opportunity to incorporate such traits into a breeding program.
Collapse
Affiliation(s)
- Lam Thi Dinh
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
- Department of Plant protection, Institute of Agricultural Science for Southern Vietnam (IAS), Ho Chi Minh City, Vietnam
| | - Yoshiaki Ueda
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Daniel Gonzalez
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Juan Pariasca Tanaka
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Matthias Wissuwa
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan.
- PhenoRob Cluster and Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| |
Collapse
|
20
|
Maniruzzaman S, Rahman MA, Hasan M, Rasul MG, Molla AH, Khatun H, Iftekharuddaula KM, Kabir MS, Akter S. Molecular Mapping to Discover Reliable Salinity-Resilient QTLs from the Novel Landrace Akundi in Two Bi-Parental Populations Using SNP-Based Genome-Wide Analysis in Rice. Int J Mol Sci 2023; 24:11141. [PMID: 37446320 DOI: 10.3390/ijms241311141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Achieving high-yield potential is always the ultimate objective of any breeding program. However, various abiotic stresses such as salinity, drought, cold, flood, and heat hampered rice productivity tremendously. Salinity is one of the most important abiotic stresses that adversely affect rice grain yield. The present investigation was undertaken to dissect new genetic loci, which are responsible for salt tolerance at the early seedling stage in rice. A bi-parental mapping population (F2:3) was developed from the cross between BRRI dhan28/Akundi, where BRRI dhan28 (BR28) is a salt-sensitive irrigated (boro) rice mega variety and Akundi is a highly salinity-tolerant Bangladeshi origin indica rice landrace that is utilized as a donor parent. We report reliable and stable QTLs for salt tolerance from a common donor (Akundi) irrespective of two different genetic backgrounds (BRRI dhan49/Akundi and BRRI dhan28/Akundi). A robust 1k-Rice Custom Amplicon (1k-RiCA) SNP marker genotyping platform was used for genome-wide analysis of this bi-parental population. After eliminating markers with high segregation distortion, 886 polymorphic SNPs built a genetic linkage map covering 1526.5 cM of whole rice genome with an average SNP density of 1.72 cM for the 12 genetic linkage groups. A total of 12 QTLs for nine different salt tolerance-related traits were identified using QGene and inclusive composite interval mapping of additive and dominant QTL (ICIM-ADD) under salt stress on seven different chromosomes. All of these 12 new QTLs were found to be unique, as no other map from the previous study has reported these QTLs in the similar chromosomal location and found them different from extensively studied Saltol, SKC1, OsSalT, and salT locus. Twenty-eight significant digenic/epistatic interactions were identified between chromosomal regions linked to or unlinked to QTLs. Akundi acts like a new alternate donor source of salt tolerance except for other usually known donors such as Nona Bokra, Pokkali, Capsule, and Hasawi used in salt tolerance genetic analysis and breeding programs worldwide, including Bangladesh. Integration of the seven novel, reliable, stable, and background independent salinity-resilient QTLs (qSES1, qSL1, qRL1, qSUR1, qSL8, qK8, qK1) reported in this investigation will expedite the cultivar development that is highly tolerant to salt stress.
Collapse
Affiliation(s)
- Sheikh Maniruzzaman
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - M Akhlasur Rahman
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| | - Mehfuz Hasan
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Mohammad Golam Rasul
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Abul Hossain Molla
- Department of Environmental Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Hasina Khatun
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| | - K M Iftekharuddaula
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| | - Md Shahjahan Kabir
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| | - Salma Akter
- Plant Physiology Division, Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| |
Collapse
|
21
|
Nazareno ES, Fiedler JD, Ardayfio NK, Miller ME, Figueroa M, Kianian SF. Genetic Analysis and Physical Mapping of Oat Adult Plant Resistance Loci Against Puccinia coronata f. sp. avenae. PHYTOPATHOLOGY 2023; 113:1307-1316. [PMID: 36721375 DOI: 10.1094/phyto-10-22-0395-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Six quantitative trait loci (QTLs) for adult plant resistance against oat crown rust (Puccinia coronata f. sp. avenae) were identified from mapping three recombinant inbred populations. Using genotyping-by-sequencing with markers called against the OT3098 v1 reference genome, the QTLs were mapped on six different chromosomes: Chr1D, Chr4D, Chr5A, Chr5D, Chr7A, and Chr7C. Composite interval mapping with marker cofactor selection showed that the phenotypic variance explained by all identified QTLs for coefficient of infection range from 12.2 to 46.9%, whereas heritability estimates ranged from 0.11 to 0.38. The significant regions were narrowed down to intervals of 3.9 to 25 cM, equivalent to physical distances of 11 to 133 Mb. At least two flanking single-nucleotide polymorphism markers were identified within 10 cM of each QTL that could be used in marker-assisted introgression, pyramiding, and selection. The additive effects of the QTLs in each population were determined using single-nucleotide polymorphism haplotype data, which showed a significantly lower coefficient of infection in lines homozygous for the resistant alleles. Analysis of pairwise linkage disequilibrium also revealed high correlation of markers and presence of linkage blocks in the significant regions. To further facilitate marker-assisted breeding, polymerase chain reaction allelic competitive extension (PACE) markers for the adult plant resistance loci were developed. Putative candidate genes were also identified in each of the significant regions, which include resistance gene analogs that encode for kinases, ligases, and predicted receptors of avirulence proteins from pathogens.
Collapse
Affiliation(s)
- Eric S Nazareno
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, U.S.A
| | - Jason D Fiedler
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND, U.S.A
| | - Naa Korkoi Ardayfio
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND, U.S.A
| | - Marisa E Miller
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, U.S.A
- Pairwise Plants, LLC, 807 East Main Street, Suite 4-100, Durham, NC, U.S.A
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Shahryar F Kianian
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, U.S.A
| |
Collapse
|
22
|
Simko I, Hasegawa DK, Peng H, Zhao R. Genetic and physiological determinants of lettuce partial resistance to Impatiens necrotic spot virus. FRONTIERS IN PLANT SCIENCE 2023; 14:1163683. [PMID: 37360711 PMCID: PMC10285314 DOI: 10.3389/fpls.2023.1163683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Introduction Impatiens necrotic spot virus (INSV) is a major pathogen currently threatening lettuce (Lactuca sativa L.) production in the coastal areas of California. The virus is transmitted by the western flower thrips (Frankliniella occidentalis Pergande). Methods We have tested a diversity panel of almost 500 lettuce accessions for disease incidence (DI) in 12 field experiments performed over 7 years. This set of accessions was also assessed for thrips feeding damage (TFD), the rate of plant development (PD), and the content of chlorophyll (SPAD) and anthocyanins (ACI) to determine their effect on resistance to INSV. In addition, recombinant inbred lines from two biparental mapping populations were also evaluated for DI in field experiments. Results The mean DI in 14 field experiments ranged from 2.1% to 70.4%. A highly significant difference in DI was observed among the tested accessions, with the overall lowest DI detected in the red color cultivars, Outredgeous Selection, Red Splash Cos, Infantry, Sweet Valentine, Annapolis, and Velvet. Multiple linear regression models revealed a small but significant effect (p < 0.005) of the four analyzed determinants on DI. Accessions with lower DI values had slower plant development (PD, r = 0.352), higher ACI content (r = -0.284), lower TFD (r = 0.198), and lower SPAD content (r = 0.125). A genome-wide association study revealed 13 QTLs for DI located on eight out of the nine lettuce chromosomes (the exception was chr. 8). The most frequently detected QTL (qINSV2.1) was located on chr. 2. Several of the QTLs for DI were in the same genomic areas as QTLs for PD, ACI, and SPAD. Additional three QTLs for DI on chr. 5 and 8 were identified using linkage mapping performed on two biparental mapping populations. Conclusions The work highlights the genetic basis of partial resistance to INSV and reveals the relationship between resistance, the host physiology, and the thrips vector. Results of this study are an important steppingstone toward developing cultivars with increased resistance against INSV.
Collapse
Affiliation(s)
- Ivan Simko
- Crop Improvement and Protection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Salinas, CA, United States
| | - Daniel K. Hasegawa
- Crop Improvement and Protection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Salinas, CA, United States
| | - Hui Peng
- Horticultural Sciences Department, Everglades Research and Education Center, University of Florida, Belle Glade, FL, United States
| | - Rebecca Zhao
- Crop Improvement and Protection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Salinas, CA, United States
| |
Collapse
|
23
|
Chen MH, Pinson SRM, Jackson AK, Edwards JD. Genetic loci regulating the concentrations of anthocyanins and proanthocyanidins in the pericarps of purple and red rice. THE PLANT GENOME 2023:e20338. [PMID: 37177874 DOI: 10.1002/tpg2.20338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2022] [Accepted: 03/16/2023] [Indexed: 05/15/2023]
Abstract
The pigmented flavonoids, anthocyanins and proanthocyanidins, have health promoting properties. Previous work determined that the genes Pb and Rc turn on and off the biosynthesis of anthocyanins (purple) and proanthocyanidins (red), respectively. Not yet known is how the concentrations of these pigmented flavonoids are regulated in grain pericarps. Quantitative trait locus (QTL) analysis in a population of rice (Oryza sativa L.) F5 recombinant inbred lines from white pericarp "IR36ae" x red+purple pericarp "242" revealed three QTLs associated with grain concentrations of anthocyanins (TAC) or proanthocyanidins (PA). Both TAC and PA independently mapped to a 1.5 Mb QTL region on chromosome 3 between RM3400 (at 15.8 Mb) and RM15123 (17.3 Mb), named qPR3. Across 2 years, qPR3 explained 36.3% of variance in TAC and 35.8% in PA variance not attributable to Pb or Rc. The qPR3 region encompasses Kala3, a MYB transcription factor previously known to regulate purple grain characteristics. Study of PbPbRcrc progeny showed that TAC of RcRc near isogenic lines (NILs) was 2.1-4.5x that of rcrc. Similarly, study of PbPbRcRc NILs, which had 70% higher PA than pbpbRcRc NILs, revealed a mutual enhancement, not a trade-off between these compounds that share precursors. This suggests that Pb and Rc upregulate genes in a shared pathway as they activate TAC and PA synthesis, respectively. This study provides molecular markers for facilitating marker-assisted selection of qPR3, qPR5, and qPR7 to enhance grain concentrations of pigmented flavonoids and documented that stacking Rc and Pb genes further increases both flavonoid compounds.
Collapse
Affiliation(s)
- Ming-Hsuan Chen
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Service, Stuttgart, AR, USA
| | - Shannon R M Pinson
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Service, Stuttgart, AR, USA
| | - Aaron K Jackson
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Service, Stuttgart, AR, USA
| | - Jeremy D Edwards
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Service, Stuttgart, AR, USA
| |
Collapse
|
24
|
Çolak NG, Eken NT, Ülger M, Frary A, Doğanlar S. Mapping of quantitative trait loci for the nutritional value of fresh market tomato. Funct Integr Genomics 2023; 23:121. [PMID: 37039853 DOI: 10.1007/s10142-023-01045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
The incidence of many diseases, such as cancer, cardiovascular diseases, and diabetes, is associated with malnutrition and an unbalanced daily diet. Vegetables are an important source of vitamins and essential compounds for human health. As a result, such metabolites have increasingly become the focus of breeding programs. Tomato is one of the most popular components of our daily diet. Therefore, the improvement of tomato's nutritional quality is an important goal. In the present study, we performed targeted metabolic profiling of an interspecific Solanum pimpinellifolium × S. lycopersicum inbred backcross line (IBL) population and identified quantitative trait loci responsible for the nutritional value of tomato. Transgressive segregation was apparent for many of the nutritional compounds such that some IBLs had extremely high levels of various amino acids and vitamins compared to their parents. A total of 117 QTLs for nutritional traits including 62 QTLs for amino acids, 18 QTLs for fatty acids, 12 QTLs for water-soluble vitamins, and 25 QTLs for fat-soluble vitamins were identified. Moreover, almost 24% of identified QTLs were confirmed in previous studies, and 40 possible gene candidates were found for 18 identified QTLs. These findings can help breeders to improve the nutritional value of tomato.
Collapse
Affiliation(s)
- Nergiz Gürbüz Çolak
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey
- Plant Science and Technology Application and Research Center, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Neslihan Tek Eken
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Mehmet Ülger
- MULTI Tarım Seed Company, Antalya, 07112, Turkey
| | - Anne Frary
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Sami Doğanlar
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey.
- Plant Science and Technology Application and Research Center, Izmir Institute of Technology, İzmir, 35430, Turkey.
| |
Collapse
|
25
|
Viteri DM, Linares AM, Miranda Z, Shi A. Identification of a QTL region for ashy stem blight resistance using genome-wide association and linage analysis in common bean recombinant inbred lines derived from BAT 477 and NY6020-4. FRONTIERS IN PLANT SCIENCE 2022; 13:1019263. [PMID: 36479519 PMCID: PMC9721262 DOI: 10.3389/fpls.2022.1019263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/10/2022] [Indexed: 06/17/2023]
Abstract
Ashy stem blight (ASB), caused by the fungus Macrophomina phaseolina (Tassi) Goidanich is an important disease of the common bean (Phaseolus vulgaris L.). It is important to identify quantitative trait loci (QTL) for ASB resistance and introgress into susceptible cultivars of the common bean. The objective of this research was to identify QTL and single nucleotide polymorphism (SNP) markers associated with ASB resistance in recombinant inbred lines (RIL) derived from a cross between BAT 477 and NY6020-4 common bean. One hundred and twenty-six F6:7 RIL were phenotyped for ASB in the greenhouse. Disease severity was scored on a scale of 1-9. Genotyping was performed using whole genome resequencing with 2x common bean genome size coverage, and over six million SNPs were obtained. After being filtered, 72,017 SNPs distributed on 11 chromosomes were used to conduct the genome-wide association study (GWAS) and QTL mapping. A novel QTL region of ~4.28 Mbp from 35,546,329 bp to 39,826,434 bp on chromosome Pv03 was identified for ASB resistance. The two SNPs, Chr03_39824257 and Chr03_39824268 located at 39,824,257 bp and 39,824,268 bp on Pv03, respectively, were identified as the strongest markers associated with ASB resistance. The gene Phvul.003G175900 (drought sensitive, WD repeat-containing protein 76) located at 39,822,021 - 39,824,655 bp on Pv03 was recognized as one candidate for ASB resistance in the RIL, and the gene contained the two SNP markers. QTL and SNP markers may be used to select plants and lines for ASB resistance through marker-assisted selection (MAS) in common bean breeding.
Collapse
Affiliation(s)
- Diego M. Viteri
- Department of Agro-environmental Sciences, University of Puerto Rico, Isabela Research Substation, Isabela, PR, United States
| | - Angela M. Linares
- Department of Agro-environmental Sciences, University of Puerto Rico, Lajas Research Substation, Lajas, PR, United States
| | - Zoralys Miranda
- Department of Agro-environmental Sciences, University of Puerto Rico, Isabela Research Substation, Isabela, PR, United States
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
26
|
Skiba RM, Wyatt NA, Kariyawasam GK, Fiedler JD, Yang S, Brueggeman RS, Friesen TL. Host and pathogen genetics reveal an inverse gene-for-gene association in the P. teres f. maculata-barley pathosystem. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3597-3609. [PMID: 36065067 DOI: 10.1007/s00122-022-04204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/19/2022] [Indexed: 05/12/2023]
Abstract
Pathogen and host genetics were used to uncover an inverse gene-for-gene interaction where virulence genes from the pathogen Pyrenophora teres f. maculata target barley susceptibility genes, resulting in disease. Although models have been proposed to broadly explain how plants and pathogens interact and coevolve, each interaction evolves independently, resulting in various scenarios of host manipulation and plant defense. Spot form net blotch is a foliar disease of barley caused by Pyrenophora teres f. maculata. We developed a barley population (Hockett × PI 67381) segregating for resistance to a diverse set of P. teres f. maculata isolates. Quantitative trait locus analysis identified major loci on barley chromosomes (Chr) 2H and 7H associated with resistance/susceptibility. Subsequently, we used avirulent and virulent P. teres f. maculata isolates to develop a pathogen population, identifying two major virulence loci located on Chr1 and Chr2. To further characterize this host-pathogen interaction, progeny from the pathogen population harboring virulence alleles at either the Chr1 or Chr2 locus was phenotyped on the Hockett × PI 67381 population. Progeny harboring only the Chr1 virulence allele lost the barley Chr7H association but maintained the 2H association. Conversely, isolates harboring only the Chr2 virulence allele lost the barley Chr2H association but maintained the 7H association. Hockett × PI 67381 F2 individuals showed susceptible/resistant ratios not significantly different than 15:1 and results from F2 inoculations using the single virulence genotypes were not significantly different from a 3:1 (S:R) ratio, indicating two dominant susceptibility genes. Collectively, this work shows that P. teres f. maculata virulence alleles at the Chr1 and Chr2 loci are targeting the barley 2H and 7H susceptibility alleles in an inverse gene-for-gene manner to facilitate colonization.
Collapse
Affiliation(s)
- Ryan M Skiba
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schaffer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Nathan A Wyatt
- USDA-ARS, Sugar Beet and Potato Research Unit, Edward T. Schaffer Agricultural Research Center, Fargo, ND, 58102, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Gayan K Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Jason D Fiedler
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schaffer Agricultural Research Center, Fargo, ND, 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Shengming Yang
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schaffer Agricultural Research Center, Fargo, ND, 58102, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Timothy L Friesen
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schaffer Agricultural Research Center, Fargo, ND, 58102, USA.
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA.
| |
Collapse
|
27
|
Nazareno ES, Fiedler J, Miller ME, Figueroa M, Kianian SF. A reference-anchored oat linkage map reveals quantitative trait loci conferring adult plant resistance to crown rust (Puccinia coronata f. sp. avenae). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3307-3321. [PMID: 36029319 DOI: 10.1007/s00122-022-04128-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
We mapped three adult plant resistance (APR) loci on oat chromosomes 4D and 6C and developed flanking KASP/PACE markers for marker-assisted selection and gene pyramiding. Using sequence orthology search and the available oat genomic and transcriptomic data, we surveyed these genomic regions for genes that may control disease resistance. Sources of durable disease resistance are needed to minimize yield losses in cultivated oat caused by crown rust (Puccinia coronata f. sp. avenae). In this study, we developed five oat recombinant inbred line mapping populations to identify sources of adult plant resistance from crosses between five APR donors and Otana, a susceptible variety. The preliminary bulk segregant mapping based on allele frequencies showed two regions in linkage group Mrg21 (Chr4D) that are associated with the APR phenotype in all five populations. Six markers from these regions in Chr4D were converted to high-throughput allele specific PCR assays and were used to genotype all individuals in each population. Simple interval mapping showed two peaks in Chr4D, named QPc.APR-4D.1 and QPc.APR-4D.2, which were detected in the OtanaA/CI4706-2 and OtanaA/CI9416-2 and in the Otana/PI189733, OtanaD/PI260616, and OtanaA/CI8000-4 populations, respectively. These results were validated by mapping two entire populations, Otana/PI189733 and OtanaA/CI9416, genotyped using Illumina HiSeq, in which polymorphisms were called against the OT3098 oat reference genome. Composite interval mapping results confirmed the presence of the two quantitative trait loci (QTL) located on oat chromosome 4D and an additional QTL with a smaller effect located on chromosome 6C. This mapping approach also narrowed down the physical intervals to between 5 and 19 Mb, and indicated that QPc.APR-4D.1, QPc.APR-4D.2, and QPc.APR-6C explained 43.4%, 38.5%, and 21.5% of the phenotypic variation, respectively. In a survey of the gene content of each QTL, several clusters of disease resistance genes that may contribute to APR were found. The allele specific PCR markers developed for these QTL regions would be beneficial for marker-assisted breeding, gene pyramiding, and future cloning of resistance genes from oat.
Collapse
Affiliation(s)
- Eric S Nazareno
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Jason Fiedler
- US Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND, USA
| | - Marisa E Miller
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Pairwise Plants, LLC. 807 East Main Street, Suite 4-100, Durham, NC, USA
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Shahryar F Kianian
- US Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, USA.
| |
Collapse
|
28
|
Dahanayaka BA, Snyman L, Vaghefi N, Martin A. Using a Hybrid Mapping Population to Identify Genomic Regions of Pyrenophora teres Associated With Virulence. FRONTIERS IN PLANT SCIENCE 2022; 13:925107. [PMID: 35812984 PMCID: PMC9260246 DOI: 10.3389/fpls.2022.925107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 05/26/2023]
Abstract
Net blotches caused by Pyrenophora teres are important foliar fungal diseases of barley and result in significant yield losses of up to 40%. The two types of net blotch, net-form net blotch and spot-form net blotch, are caused by P. teres f. teres (Ptt) and P. teres f. maculata (Ptm), respectively. This study is the first to use a cross between Ptt and Ptm to identify quantitative trait loci (QTL) associated with virulence and leaf symptoms. A genetic map consisting of 1,965 Diversity Arrays Technology (DArT) markers was constructed using 351 progenies of the Ptt/Ptm cross. Eight barley cultivars showing differential reactions to the parental isolates were used to phenotype the hybrid progeny isolates. Five QTL associated with virulence and four QTL associated with leaf symptoms were identified across five linkage groups. Phenotypic variation explained by these QTL ranged from 6 to 16%. Further phenotyping of selected progeny isolates on 12 more barley cultivars revealed that three progeny isolates are moderately to highly virulent across these cultivars. The results of this study suggest that accumulation of QTL in hybrid isolates can result in enhanced virulence.
Collapse
Affiliation(s)
| | - Lislé Snyman
- Department of Agriculture and Fisheries Queensland, Hermitage Research Facility, Warwick, QLD, Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
- School of Agriculture and Food, University of Melbourne, Parkville, VIC, Australia
| | - Anke Martin
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
29
|
Giancaspro A, Giove SL, Marcotuli I, Gadaleta A. Datasets for grain protein content, yield-related traits, and candidate genes in a durum wheat RIL population derived from a “hexaploid × tetraploid” interspecific cross. Data Brief 2022; 42:108234. [PMID: 35599828 PMCID: PMC9118095 DOI: 10.1016/j.dib.2022.108234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 10/25/2022] Open
|
30
|
Genetic Mapping to Detect Stringent QTLs Using 1k-RiCA SNP Genotyping Platform from the New Landrace Associated with Salt Tolerance at the Seedling Stage in Rice. PLANTS 2022; 11:plants11111409. [PMID: 35684182 PMCID: PMC9183132 DOI: 10.3390/plants11111409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022]
Abstract
Rice is the world’s most important food crop, providing the daily calorie intake for more than half of the world’s population. Rice breeding has always been preoccupied with maximizing yield potential. However, numerous abiotic factors, such as salt, cold, drought, and heat, significantly reduce rice productivity. Salinity, one of the major abiotic stresses, reduces rice yield worldwide. This study was conducted to determine new quantitative trait loci (QTLs) that regulate salt tolerance in rice seedlings. One F2:3 mapping population was derived from a cross between BRRI dhan49 (a popular but sensitive rainfed rice variety) and Akundi (a salt-tolerant rice landrace in Bangladesh used as a donor parent). The 1k-Rice Custom Amplicon (1k-RiCA) single-nucleotide polymorphism (SNP) markers were used to genotype this mapping population. After removing segregation distortion and monomorphic markers, 884 SNPs generated a 1526.8 cM-long genetic linkage map with a mean marker density of 1.7 cM for the 12 linkage groups. By exploiting QGene and ICIM-ADD, a sum of 15 QTLs for nine traits was identified in salt stress on seven chromosomes. Four important genomic loci were identified (qSES1, qSL1, qSUR1 and qRL1) on chromosome 1. Out of these 15 QTLs, 14 QTLs are unique, as no other study has mapped in the same chromosomal location. We also detected 15 putative candidate genes and their functions. The ICIM-EPI approach identified 43 significant pairwise epistasis interactions between regions associated with and unassociated with QTLs. Apart from more well-known donors, Akundi serves as an important new donor source for global salt tolerance breeding initiatives, including Bangladesh. The introgression of the novel QTLs identified in this study will accelerate the development of new salt-tolerant varieties that are highly resistant to salt stress using marker-enabled breeding.
Collapse
|
31
|
Shi G, Kariyawasam G, Liu S, Leng Y, Zhong S, Ali S, Moolhuijzen P, Moffat CS, Rasmussen JB, Friesen TL, Faris JD, Liu Z. A Conserved Hypothetical Gene Is Required but Not Sufficient for Ptr ToxC Production in Pyrenophora tritici-repentis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:336-348. [PMID: 35100008 DOI: 10.1094/mpmi-12-21-0299-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fungus Pyrenophora tritici-repentis causes tan spot, an important foliar disease of wheat worldwide. The fungal pathogen produces three necrotrophic effectors, namely Ptr ToxA, Ptr ToxB, and Ptr ToxC to induce necrosis or chlorosis in wheat. Both Ptr ToxA and Ptr ToxB are proteins, and their encoding genes have been cloned. Ptr ToxC was characterized as a low-molecular weight molecule 20 years ago but the one or more genes controlling its production in P. tritici-repentis are unknown. Here, we report the genetic mapping, molecular cloning, and functional analysis of a fungal gene that is required for Ptr ToxC production. The genetic locus controlling the production of Ptr ToxC, termed ToxC, was mapped to a subtelomeric region using segregating biparental populations, genome sequencing, and association analysis. Additional marker analysis further delimited ToxC to a 173-kb region. The predicted genes in the region were examined for presence/absence polymorphism in different races and isolates leading to the identification of a single candidate gene. Functional validation showed that this gene was required but not sufficient for Ptr ToxC production, thus it is designated as ToxC1. ToxC1 encoded a conserved hypothetical protein likely located on the vacuole membrane. The gene was highly expressed during infection, and only one haplotype was identified among 120 isolates sequenced. Our work suggests that Ptr ToxC is not a protein and is likely produced through a cascade of biosynthetic pathway. The identification of ToxC1 is a major step toward revealing the Ptr ToxC biosynthetic pathway and studying its molecular interactions with host factors.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Gayan Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Yueqiang Leng
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Shaukat Ali
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University Brookings, SD 57006, U.S.A
| | - Paula Moolhuijzen
- Center for Crop Disease and Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Caroline S Moffat
- Center for Crop Disease and Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Jack B Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| |
Collapse
|
32
|
Origin and genetic analysis of stem rust resistance in wheat line Tr129. Sci Rep 2022; 12:4585. [PMID: 35301415 PMCID: PMC8931155 DOI: 10.1038/s41598-022-08681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Wheat line Tr129 is resistant to stem rust, caused by Puccinia graminis f. sp. tritici (Pgt). The resistance in Tr129 was reportedly derived from Aegilops triuncialis, but the origin and genetics of resistance have not been confirmed. Here, genomic in situ hybridization (GISH) showed that no Ae. triuncialis chromatin was present in Tr129. Genetic and phenotypic analysis was conducted on F2 and DH populations from the cross RL6071/Tr129. Seedlings were tested with six Pgt races and were genotyped using an Illumina iSelect 90 K SNP array and kompetitive allele specific PCR (KASP) markers. Mapping and phenotyping showed that Tr129 carried four stem rust resistance (Sr) genes on chromosome arms 2BL (Sr9b), 4AL (Sr7b), 6AS (Sr8a), and 6DS (SrTr129). SrTr129 co-segregated with markers for SrCad, however Tr129 has a unique haplotype suggesting the resistance could be new. Analysis of a RL6071/Peace population revealed that like SrTr129, SrCad is ineffective against three North American races. This new understanding of SrCad will guide its use in breeding. Tr129 and the DNA markers reported here are useful resources for improving stem rust resistance in cultivars.
Collapse
|
33
|
Novel and stable QTL regions conferring resistance to MYMV disease and its inheritance in blackgram (Vigna mungo (L.) Hepper). J Genet 2022. [DOI: 10.1007/s12041-022-01359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Maragal S, Nagesh GC, Reddy DCL, Rao ES. QTL mapping identifies novel loci and putative candidate genes for rind traits in watermelon. 3 Biotech 2022; 12:46. [PMID: 35127301 PMCID: PMC8782950 DOI: 10.1007/s13205-022-03112-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Rind color and pattern are important external fruit quality traits of watermelon influencing the consumer attention and market acceptance. Varying degrees of green and yellow colors in different combinations forming distinct patterns have been observed on watermelon rind. In the current experiment, an attempt has been made to map the QTLs/genes for four important rind traits, namely, stripe color, stripe pattern, interstripe color, and interstripe pattern. The experiment consisted of two mapping populations namely F2 (Pop I) and BC1F2 (Pop II) derived from two parental lines, viz., BIL-53 (characterized by medium green marbled rind pattern and yellowish white blotchy interstripe pattern) and IIHR-140-152 (characterized by dark green solid stripes and greenish wavy interstripe pattern). Linkage mapping identified consistent QTLs across populations on chromosome 9. Comparative genomic analysis of these regions revealed two genes, namely, Cla97C09G175170 and Cla97C09G175150 as potential candidates for stripe and interstripe color. Sequence analysis of Cla97C09G175170 gene in parents along with reference genotypes, viz., 97,103 and Charleston gray suggests a 3 bp deletion on 11th exon to be associated with stripe color polymorphism in watermelon. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03112-7.
Collapse
Affiliation(s)
- Siddharood Maragal
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | - G. C. Nagesh
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | - D. C. Lakshmana Reddy
- Division of Plant Molecular Biology and Biotechnology, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | - Eguru Sreenivasa Rao
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| |
Collapse
|
35
|
Poudel B, Mullins J, Puri KD, Leng Y, Karmacharya A, Liu Y, Hegstad J, Li X, Zhong S. Molecular Mapping of Quantitative Trait Loci for Fusarium Head Blight Resistance in the Brazilian Spring Wheat Cultivar "Surpresa". FRONTIERS IN PLANT SCIENCE 2022; 12:778472. [PMID: 35140729 PMCID: PMC8818699 DOI: 10.3389/fpls.2021.778472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Fusarium head blight (FHB) is a devastating disease in wheat. The use of resistant germplasm from diverse sources can significantly improve resistance to the disease. "Surpresa" is a Brazilian spring wheat cultivar with moderate FHB resistance, different from currently used sources. In this study, we aimed to identify and map the genetic loci for FHB resistance in Surpresa. A mapping population consisting of 187 recombinant inbred lines (RILs) was developed from a cross between Surpresa and a susceptible spring wheat cultivar, "Wheaton." The population was evaluated for FHB by the point-inoculation method in three greenhouse experiments and four field trials between 2016 and 2018. Mean disease severity for Surpresa and Wheaton was 41.2 and 84.9% across the 3 years of experiments, ranging from 30.3 to 59.1% and 74.3 to 91.4%, respectively. The mean FHB severity of the NILs was 57%, with an overall range from 7 to 100%, suggesting transgressive segregation in the population. The population was genotyped using a two-enzyme genotyping-by-sequencing approach, and a genetic map was constructed with 5,431 single nucleotide polymorphism (SNP) markers. Four QTL for type II resistance were detected on chromosomes 3A, 5A, 6A, and 7A, explaining 10.4-14.4% of the total phenotypic variation. The largest effect QTL was mapped on chromosome 7A and explained 14.4% of the phenotypic variation; however, it co-localized with a QTL governing the days to anthesis trait. A QTL for mycotoxin accumulation was also detected on chromosome 1B, explaining 18.8% of the total phenotypic variation. The QTL for FHB resistance identified in the study may diversify the FHB resistance gene pool and increase overall resistance to the disease in wheat.
Collapse
Affiliation(s)
- Bikash Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Joseph Mullins
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Krishna D. Puri
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Yueqiang Leng
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Anil Karmacharya
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Yuan Liu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Justin Hegstad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
36
|
Qin J, Wang F, Zhao Q, Shi A, Zhao T, Song Q, Ravelombola W, An H, Yan L, Yang C, Zhang M. Identification of Candidate Genes and Genomic Selection for Seed Protein in Soybean Breeding Pipeline. FRONTIERS IN PLANT SCIENCE 2022; 13:882732. [PMID: 35783963 PMCID: PMC9244705 DOI: 10.3389/fpls.2022.882732] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/16/2022] [Indexed: 05/13/2023]
Abstract
Soybean is a primary meal protein for human consumption, poultry, and livestock feed. In this study, quantitative trait locus (QTL) controlling protein content was explored via genome-wide association studies (GWAS) and linkage mapping approaches based on 284 soybean accessions and 180 recombinant inbred lines (RILs), respectively, which were evaluated for protein content for 4 years. A total of 22 single nucleotide polymorphisms (SNPs) associated with protein content were detected using mixed linear model (MLM) and general linear model (GLM) methods in Tassel and 5 QTLs using Bayesian interval mapping (IM), single-trait multiple interval mapping (SMIM), single-trait composite interval mapping maximum likelihood estimation (SMLE), and single marker regression (SMR) models in Q-Gene and IciMapping. Major QTLs were detected on chromosomes 6 and 20 in both populations. The new QTL genomic region on chromosome 6 (Chr6_18844283-19315351) included 7 candidate genes and the Hap.X AA at the Chr6_19172961 position was associated with high protein content. Genomic selection (GS) of protein content was performed using Bayesian Lasso (BL) and ridge regression best linear unbiased prediction (rrBULP) based on all the SNPs and the SNPs significantly associated with protein content resulted from GWAS. The results showed that BL and rrBLUP performed similarly; GS accuracy was dependent on the SNP set and training population size. GS efficiency was higher for the SNPs derived from GWAS than random SNPs and reached a plateau when the number of markers was >2,000. The SNP markers identified in this study and other information were essential in establishing an efficient marker-assisted selection (MAS) and GS pipelines for improving soybean protein content.
Collapse
Affiliation(s)
- Jun Qin
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Fengmin Wang
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Qingsong Zhao
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Ainong Shi,
| | - Tiantian Zhao
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Qijian Song
- Soybean Genomics and Improvement Lab, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Beltsville, MD, United States
| | - Waltram Ravelombola
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Hongzhou An
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Long Yan
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Chunyan Yang
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- Chunyan Yang,
| | - Mengchen Zhang
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- Mengchen Zhang,
| |
Collapse
|
37
|
Muszynska A, Guendel A, Melzer M, Tandron Moya YA, Röder MS, Rolletschek H, Rutten T, Munz E, Melz G, Ortleb S, Borisjuk L, Börner A. A mechanistic view on lodging resistance in rye and wheat: a multiscale comparative study. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2646-2661. [PMID: 34449959 PMCID: PMC8633492 DOI: 10.1111/pbi.13689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/10/2021] [Accepted: 08/22/2021] [Indexed: 05/12/2023]
Abstract
The development of crop varieties that are resistant to lodging is a top priority for breeding programmes. Herein, we characterize the rye mutant ´Stabilstroh' ('stable straw') possessing an exceptional combination of high lodging resistance, tall posture and high biomass production. Nuclear magnetic resonance imaging displayed the 3-dimensional assembly of vascular bundles in stem. A higher number of vascular bundles and a higher degree of their incline were the features of lodging-resistant versus lodging-prone lines. Histology and electron microscopy revealed that stems are fortified by a higher proportion of sclerenchyma and thickened cell walls, as well as some epidermal invaginations. Biochemical analysis using Fourier-transform infrared spectroscopy and inductively coupled plasma-optical emission spectrometry further identified elevated levels of lignin, xylan, zinc and silicon as features associated with high lodging resistance. Combined effects of above features caused superior culm stability. A simplistic mathematical model showed how mechanical forces distribute within the stem under stress. Main traits of the lodging-resistant parental line were heritable and could be traced back to the genetic structure of the mutant. Evaluation of lodging-resistant wheat 'Babax' ('Baviacora') versus contrasting, lodging-prone, genotype ´Pastor´ agreed with above findings on rye. Our findings on mechanical stability and extraordinary culm properties may be important for breeders for the improvement of lodging resistance of tall posture cereal crops.
Collapse
Affiliation(s)
- Aleksandra Muszynska
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | - Andre Guendel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | | | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | - Eberhard Munz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
- Institute of Experimental Physics 5University of WürzburgWürzburgGermany
| | | | - Stefan Ortleb
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| |
Collapse
|
38
|
Alhashel AF, Sharma Poudel R, Fiedler J, Carlson CH, Rasmussen J, Baldwin T, Friesen TL, Brueggeman RS, Yang S. Genetic mapping of host resistance to the Pyrenophora teres f. maculata isolate 13IM8.3. G3-GENES GENOMES GENETICS 2021; 11:6377783. [PMID: 34586371 DOI: 10.1093/g3journal/jkab341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/17/2021] [Indexed: 11/12/2022]
Abstract
Spot form net blotch (SFNB), caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata (Ptm), is a foliar disease of barley that results in significant yield losses in major growing regions worldwide. Understanding the host-parasite interactions between pathogen virulence/avirulence genes and the corresponding host susceptibility/resistance genes is important for the deployment of genetic resistance against SFNB. Two recombinant inbred mapping populations were developed to characterize genetic resistance/susceptibility to the Ptm isolate 13IM8.3, which was collected from Idaho (ID). An Illumina Infinium array was used to produce a genome wide marker set. Quantitative trait loci (QTL) analysis identified ten significant resistance/susceptibility loci, with two of the QTL being common to both populations. One of the QTL on 5H appears to be novel, while the remaining loci have been reported previously. Single nucleotide polymorphisms (SNPs) closely linked to or delimiting the significant QTL have been converted to user-friendly markers. Loci and associated molecular markers identified in this study will be useful in genetic mapping and deployment of the genetic resistance to SFNB in barley.
Collapse
Affiliation(s)
- Abdullah Fahad Alhashel
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Jason Fiedler
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| | - Craig H Carlson
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| | - Jack Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Thomas Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Shengming Yang
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| |
Collapse
|
39
|
Sharma JS, Overlander M, Faris JD, Klindworth DL, Rouse MN, Kang H, Long Y, Jin Y, Lagudah ES, Xu SS. Characterization of synthetic wheat line Largo for resistance to stem rust. G3 (BETHESDA, MD.) 2021; 11:6292116. [PMID: 34849816 PMCID: PMC8496286 DOI: 10.1093/g3journal/jkab193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022]
Abstract
Resistance breeding is an effective approach against wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt). The synthetic hexaploid wheat line Largo (pedigree: durum wheat “Langdon” × Aegilops tauschii PI 268210) was found to have resistance to a broad spectrum of Pgt races including the Ug99 race group. To identify the stem rust resistance (Sr) genes, we genotyped a population of 188 recombinant inbred lines developed from a cross between the susceptible wheat line ND495 and Largo using the wheat Infinium 90 K SNP iSelect array and evaluated the population for seedling resistance to the Pgt races TTKSK, TRTTF, and TTTTF in the greenhouse conditions. Based on genetic linkage analysis using the marker and rust data, we identified six quantitative trait loci (QTL) with effectiveness against different races. Three QTL on chromosome arms 6AL, 2BL, and 2BS corresponded to Sr genes Sr13c, Sr9e, and a likely new gene from Langdon, respectively. Two other QTL from PI 268210 on 2DS and 1DS were associated with a potentially new allele of Sr46 and a likely new Sr gene, respectively. In addition, Sr7a was identified as the underlying gene for the 4AL QTL from ND495. Knowledge of the Sr genes in Largo will help to design breeding experiments aimed to develop new stem rust-resistant wheat varieties. Largo and its derived lines are particularly useful for introducing two Ug99-effective genes Sr13c and Sr46 into modern bread wheat varieties. The 90 K SNP-based high-density map will be useful for identifying the other important genes in Largo.
Collapse
Affiliation(s)
- Jyoti Saini Sharma
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Megan Overlander
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND 58102, USA
| | - Justin D Faris
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND 58102, USA
| | - Daryl L Klindworth
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND 58102, USA
| | - Matthew N Rouse
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Houyang Kang
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.,Triticeae Research Institute, Sichuan Agricultural University, Sichuan 611130, China
| | - Yunming Long
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Yue Jin
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Evans S Lagudah
- Agriculture Flagship, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT 2601, Australia
| | - Steven S Xu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.,Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND 58102, USA
| |
Collapse
|
40
|
Li H, Hu X, Lovell JT, Grabowski PP, Mamidi S, Chen C, Amirebrahimi M, Kahanda I, Mumey B, Barry K, Kudrna D, Schmutz J, Lachowiec J, Lu C. Genetic dissection of natural variation in oilseed traits of camelina by whole-genome resequencing and QTL mapping. THE PLANT GENOME 2021; 14:e20110. [PMID: 34106529 DOI: 10.1002/tpg2.20110] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Camelina [Camelina sativa (L.) Crantz] is an oilseed crop in the Brassicaceae family that is currently being developed as a source of bioenergy and healthy fatty acids. To facilitate modern breeding efforts through marker-assisted selection and biotechnology, we evaluated genetic variation among a worldwide collection of 222 camelina accessions. We performed whole-genome resequencing to obtain single nucleotide polymorphism (SNP) markers and to analyze genomic diversity. We also conducted phenotypic field evaluations in two consecutive seasons for variations in key agronomic traits related to oilseed production such as seed size, oil content (OC), fatty acid composition, and flowering time. We determined the population structure of the camelina accessions using 161,301 SNPs. Further, we identified quantitative trait loci (QTL) and candidate genes controlling the above field-evaluated traits by genome-wide association studies (GWAS) complemented with linkage mapping using a recombinant inbred line (RIL) population. Characterization of the natural variation at the genome and phenotypic levels provides valuable resources to camelina genetic studies and crop improvement. The QTL and candidate genes should assist in breeding of advanced camelina varieties that can be integrated into the cropping systems for the production of high yield of oils of desired fatty acid composition.
Collapse
Affiliation(s)
- Huang Li
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Xiao Hu
- School of Computing, Montana State University, Bozeman, MT, 59717, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 38508, USA
| | - Paul P Grabowski
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 38508, USA
| | - Sujan Mamidi
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 38508, USA
| | - Cindy Chen
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mojgan Amirebrahimi
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Indika Kahanda
- School of Computing, Montana State University, Bozeman, MT, 59717, USA
| | - Brendan Mumey
- School of Computing, Montana State University, Bozeman, MT, 59717, USA
| | - Kerrie Barry
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - David Kudrna
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 38508, USA
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer Lachowiec
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
41
|
Gill BK, Klindworth DL, Rouse MN, Zhang J, Zhang Q, Sharma JS, Chu C, Long Y, Chao S, Olivera PD, Friesen TL, Zhong S, Jin Y, Faris JD, Fiedler JD, Elias EM, Liu S, Cai X, Xu SS. Function and evolution of allelic variations of Sr13 conferring resistance to stem rust in tetraploid wheat (Triticum turgidum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1674-1691. [PMID: 33825238 PMCID: PMC8362117 DOI: 10.1111/tpj.15263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/18/2021] [Indexed: 05/26/2023]
Abstract
The resistance gene Sr13 is one of the most important genes in durum wheat for controlling stem rust caused by Puccinia graminis f. sp. tritici (Pgt). The Sr13 functional gene CNL13 has haplotypes R1, R2 and R3. The R1/R3 and R2 haplotypes were originally designated as alleles Sr13a and Sr13b, respectively. To detect additional Sr13 alleles, we developed Kompetitive allele specific PCR (KASP™) marker KASPSr13 and four semi-thermal asymmetric reverse PCR markers, rwgsnp37-rwgsnp40, based on the CNL13 sequence. These markers were shown to detect R1, R2 and R3 haplotypes in a panel of diverse tetraploid wheat accessions. We also observed the presence of Sr13 in durum line CAT-A1, although it lacked any of the known haplotypes. Sequence analysis revealed that CNL13 of CAT-A1 differed from the susceptible haplotype S1 by a single nucleotide (C2200T) in the leucine-rich repeat region and differed from the other three R haplotypes by one or two additional nucleotides, confirming that CAT-A1 carries a new (R4) haplotype. Stem rust tests on the monogenic, transgenic and mutant lines showed that R1 differed from R3 in its susceptibility to races TCMJC and THTSC, whereas R4 differed from all other haplotypes for susceptibility to TTKSK, TPPKC and TCCJC. Based on these differences, we designate the R1, R3 and R4 haplotypes as alleles Sr13a, Sr13c and Sr13d, respectively. This study indicates that Sr13d may be the primitive functional allele originating from the S1 haplotype via a point mutation, with the other three R alleles probably being derived from Sr13d through one or two additional point mutations.
Collapse
Affiliation(s)
- Baljeet K. Gill
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | - Daryl L. Klindworth
- USDA‐ARSCereal Crops Research UnitEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | | | - Jinglun Zhang
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | - Qijun Zhang
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | - Jyoti S. Sharma
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | | | - Yunming Long
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | - Shiaoman Chao
- USDA‐ARSCereal Crops Research UnitEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | - Pablo D. Olivera
- Department of Plant PathologyUniversity of MinnesotaSt PaulMN55108USA
| | - Timothy L. Friesen
- USDA‐ARSCereal Crops Research UnitEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | - Shaobin Zhong
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108USA
| | - Yue Jin
- USDA‐ARSCereal Disease LaboratorySt PaulMN55108USA
| | - Justin D. Faris
- USDA‐ARSCereal Crops Research UnitEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | - Jason D. Fiedler
- USDA‐ARSCereal Crops Research UnitEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | - Elias M. Elias
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | - Shuyu Liu
- Texas A&M AgriLife ResearchAmarilloTX79106USA
| | - Xiwen Cai
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | - Steven S. Xu
- USDA‐ARSCereal Crops Research UnitEdward T. Schafer Agricultural Research CenterFargoND58102USA
| |
Collapse
|
42
|
Sáez C, Ambrosio LGM, Miguel SM, Valcárcel JV, Díez MJ, Picó B, López C. Resistant Sources and Genetic Control of Resistance to ToLCNDV in Cucumber. Microorganisms 2021; 9:microorganisms9050913. [PMID: 33923281 PMCID: PMC8146778 DOI: 10.3390/microorganisms9050913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is a severe threat for cucurbit production worldwide. Resistance has been reported in several crops, but at present, there are no described accessions with resistance to ToLCNDV in cucumber (Cucumis sativus). C. sativus var. sativus accessions were mechanically inoculated with ToLCNDV and screened for resistance, by scoring symptom severity, tissue printing, and PCR (conventional and quantitative). Severe symptoms and high load of viral DNA were found in plants of a nuclear collection of Spanish landraces and in accessions of C. sativus from different geographical origins. Three Indian accessions (CGN23089, CGN23423, and CGN23633) were highly resistant to the mechanical inoculation, as well as all plants of their progenies obtained by selfing. To study the inheritance of the resistance to ToLCNDV, plants of the CGN23089 accession were crossed with the susceptible accession BGV011742, and F1 hybrids were used to construct segregating populations (F2 and backcrosses), which were mechanically inoculated and evaluated for symptom development and viral load by qPCR. The analysis of the genetic control fit with a recessive monogenic inheritance model, and after genotyping with SNPs distributed along the C. sativus genome, a QTL associated with ToLCNDV resistance was identified in chromosome 2 of cucumber.
Collapse
|
43
|
Talukder ZI, Underwood W, Misar CG, Seiler GJ, Liu Y, Li X, Cai X, Qi L. Unraveling the Sclerotinia Basal Stalk Rot Resistance Derived From Wild Helianthus argophyllus Using a High-Density Single Nucleotide Polymorphism Linkage Map. FRONTIERS IN PLANT SCIENCE 2021; 11:617920. [PMID: 33613588 PMCID: PMC7886805 DOI: 10.3389/fpls.2020.617920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 05/30/2023]
Abstract
Basal stalk rot (BSR), caused by the fungus Sclerotinia sclerotiorum, is a serious disease of sunflower (Helianthus annuus L.) in the humid temperate growing areas of the world. BSR resistance is quantitative and conditioned by multiple genes. Our objective was to dissect the BSR resistance introduced from the wild annual species Helianthus argophyllus using a quantitative trait loci (QTL) mapping approach. An advanced backcross population (AB-QTL) with 134 lines derived from the cross of HA 89 with a H. argophyllus Torr. and Gray accession, PI 494573, was evaluated for BSR resistance in three field and one greenhouse growing seasons of 2017-2019. Highly significant genetic variations (p < 0.001) were observed for BSR disease incidence (DI) in all field screening tests and disease rating and area under the disease progress curve in the greenhouse. The AB-QTL population and its parental lines were genotyped using the genotyping-by-sequencing method. A genetic linkage map spanning 2,045.14 cM was constructed using 3,110 SNP markers mapped on 17 sunflower chromosomes. A total of 21 QTL associated with BSR resistance were detected on 11 chromosomes, each explaining a phenotypic variation ranging from 4.5 to 22.6%. Of the 21 QTL, eight were detected for BSR DI measured in the field, seven were detected for traits measured in the greenhouse, and six were detected from both field and greenhouse tests. Thirteen of the 21 QTL had favorable alleles from the H. argophyllus parent conferring increased BSR resistance.
Collapse
Affiliation(s)
- Zahirul I. Talukder
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - William Underwood
- United States Department of Agriculture – Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Christopher G. Misar
- United States Department of Agriculture – Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Gerald J. Seiler
- United States Department of Agriculture – Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Yuan Liu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Lili Qi
- United States Department of Agriculture – Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| |
Collapse
|
44
|
Tamang P, Richards JK, Solanki S, Ameen G, Sharma Poudel R, Deka P, Effertz K, Clare SJ, Hegstad J, Bezbaruah A, Li X, Horsley RD, Friesen TL, Brueggeman RS. The Barley HvWRKY6 Transcription Factor Is Required for Resistance Against Pyrenophora teres f. teres. Front Genet 2021; 11:601500. [PMID: 33519904 PMCID: PMC7844392 DOI: 10.3389/fgene.2020.601500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Barley is an important cereal crop worldwide because of its use in the brewing and distilling industry. However, adequate supplies of quality malting barley are threatened by global climate change due to drought in some regions and excess precipitation in others, which facilitates epidemics caused by fungal pathogens. The disease net form net blotch caused by the necrotrophic fungal pathogen Pyrenophora teres f. teres (Ptt) has emerged as a global threat to barley production and diverse populations of Ptt have shown a capacity to overcome deployed genetic resistances. The barley line CI5791 exhibits remarkably effective resistance to diverse Ptt isolates from around the world that maps to two major QTL on chromosomes 3H and 6H. To identify genes involved in this effective resistance, CI5791 seed were γ-irradiated and two mutants, designated CI5791-γ3 and CI5791-γ8, with compromised Ptt resistance were identified from an M2 population. Phenotyping of CI5791-γ3 and -γ8 × Heartland F2 populations showed three resistant to one susceptible segregation ratios and CI5791-γ3 × -γ8 F1 individuals were susceptible, thus these independent mutants are in a single allelic gene. Thirty-four homozygous mutant (susceptible) CI5791-γ3 × Heartland F2 individuals, representing 68 recombinant gametes, were genotyped via PCR genotype by sequencing. The data were used for single marker regression mapping placing the mutation on chromosome 3H within an approximate 75 cM interval encompassing the 3H CI5791 resistance QTL. Sequencing of the mutants and wild-type (WT) CI5791 genomic DNA following exome capture identified independent mutations of the HvWRKY6 transcription factor located on chromosome 3H at ∼50.7 cM, within the genetically delimited region. Post transcriptional gene silencing of HvWRKY6 in barley line CI5791 resulted in Ptt susceptibility, confirming that it functions in NFNB resistance, validating it as the gene underlying the mutant phenotypes. Allele analysis and transcript regulation of HvWRKY6 from resistant and susceptible lines revealed sequence identity and upregulation upon pathogen challenge in all genotypes analyzed, suggesting a conserved transcription factor is involved in the defense against the necrotrophic pathogen. We hypothesize that HvWRKY6 functions as a conserved signaling component of defense mechanisms that restricts Ptt growth in barley.
Collapse
Affiliation(s)
- Prabin Tamang
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA, United States
| | - Shyam Solanki
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Gazala Ameen
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Priyanka Deka
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, United States
| | - Karl Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Justin Hegstad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Achintya Bezbaruah
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, United States
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Richard D Horsley
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.,Cereal Crops Research Unit, United States Department of Argiculture - Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Robert S Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.,Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
45
|
Guo J, Shi G, Kalil A, Friskop A, Elias E, Xu SS, Faris JD, Liu Z. Pyrenophora tritici-repentis Race 4 Isolates Cause Disease on Tetraploid Wheat. PHYTOPATHOLOGY 2020; 110:1781-1790. [PMID: 32567977 DOI: 10.1094/phyto-05-20-0179-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ascomycete fungus Pyrenophora tritici-repentis is the causal agent of tan spot of wheat. The disease can occur on both common wheat (Triticum aestivum) and durum wheat (T. turgidum ssp. durum) and has potential to cause significant yield and quality losses. The fungal pathogen is known to produce necrotrophic effectors (NEs) that act as important virulence factors. Based on the NE production and virulence on a set of four differentials, P. tritici-repentis isolates have been classified into eight races. Race 4 produces no known NEs and is avirulent on the differentials. From a fungal collection in North Dakota, we identified several isolates that were classified as race 4. These isolates caused no or little disease on all common wheat lines including the differentials; however, they were virulent on some durum cultivars and tetraploid wheat accessions. Using two segregating tetraploid wheat populations and quantitative trait locus mapping, we identified several genomic regions significantly associated with disease caused by two of these isolates, some of which have not been previously reported. This is the first report that race 4 is virulent on tetraploid wheat, likely utilizing unidentified NEs. Our findings further highlight the insufficiency of the current race classification system for P. tritici-repentis.
Collapse
Affiliation(s)
- Jingwei Guo
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Audrey Kalil
- Williston Research Extension Center, North Dakota State University, Williston, ND 58801
| | - Andrew Friskop
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Elias Elias
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108
| | - Steven S Xu
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| |
Collapse
|
46
|
INNARK PAWINEE, PANYANITIKOON HADSAYA, KHANOBDEE CHANULAK, SAMIPAK SOMPID, JANTASURIYARAT CHATCHAWAN. QTL identification for downy mildew resistance in cucumber using genetic linkage map based on SSR markers. J Genet 2020. [DOI: 10.1007/s12041-020-01242-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Çolak NG, Eken NT, Ülger M, Frary A, Doğanlar S. Exploring wild alleles from Solanum pimpinellifolium with the potential to improve tomato flavor compounds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110567. [PMID: 32771168 DOI: 10.1016/j.plantsci.2020.110567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Most consumers complain about the flavor of current tomato cultivars and many pay a premium for alternatives such as heirloom varieties. Breeding for fruit flavor is difficult because it is a quantitatively inherited trait influenced by taste, aroma and environmental factors. A lack of genetic diversity in modern tomato cultivars also necessitates exploration of new sources for flavor alleles. Wild tomato S. pimpinellifolium and inbred backcross lines were assessed for individual sugars and organic acids which are two of the main components of tomato flavor. S. pimpinellifolium was found to harbor alleles that could be used to increase glucose and fructose content and adjust acidity by altering malic and citric acid levels. Single nucleotide polymorphism markers were used to detect 14 quantitative trait loci (QTLs) for sugars and 71 for organic acids. Confirmation was provided by comparing map locations with previously identified loci. Thus, seven (50 %) of the sugar QTLs and 22 (31 %) of the organic acids loci were supported by analyses in other tomato populations. Examination of the genomic sequence containing the QTLs allowed identification of potential candidate genes for several flavor components.
Collapse
Affiliation(s)
- Nergiz Gürbüz Çolak
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir 35433, Turkey.
| | - Neslihan Tek Eken
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir 35433, Turkey.
| | | | - Anne Frary
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir 35433, Turkey.
| | - Sami Doğanlar
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir 35433, Turkey.
| |
Collapse
|
48
|
Melon Genome Regions Associated with TGR-1551-Derived Resistance to Cucurbit yellow stunting disorder virus. Int J Mol Sci 2020; 21:ijms21175970. [PMID: 32825131 PMCID: PMC7504372 DOI: 10.3390/ijms21175970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 11/24/2022] Open
Abstract
Cucurbit yellow stunting disorder virus (CYSDV) is one of the main limiting factors of melon cultivation worldwide. To date, no commercial melon cultivars resistant to CYSDV are available. The African accession TGR-1551 is resistant to CYSDV. Two major quantitative trait loci (QTLs) have been previously reported, both located near each other in chromosome 5. With the objective of further mapping the gene or genes responsible of the resistance, a recombinant inbred line (RIL) population derived from the cross between TGR-1551 and the susceptible cultivar ‘Bola de Oro’ was evaluated for resistance to CYSDV in five different assays and genotyped in a genotyping by sequencing (GBS) analysis. The major effect of one of the two QTLs located on chromosome 5 was confirmed in the multienvironment RIL assay and additionally verified through the analysis of three segregating BC1S1 populations derived from three resistant RILs. Furthermore, progeny test using the offspring of selected BC3 plants allowed the narrowing of the candidate interval to a 700 kb region. The SNP markers identified in this work will be useful in marker-assisted selection in the context of introgression of CYSDV resistance in elite cultivars.
Collapse
|
49
|
Martínez-Alarcón D, Hagen W, Held C, Saborowski R. Molecular aspects of lipid metabolism in the midgut gland of the brown shrimp Crangon crangon. Comp Biochem Physiol B Biochem Mol Biol 2020; 248-249:110465. [PMID: 32621989 DOI: 10.1016/j.cbpb.2020.110465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 11/30/2022]
Abstract
The brown shrimp, Crangon crangon, is well adapted to the variable environmental conditions in the southern North Sea. It is very abundant, has high reproduction rates, and holds a key position in coastal ecosystems. This species has very low lipid deposits in the midgut gland, suggesting that the main function of the midgut gland is metabolic turnover rather than energy storage. Based on seasonal gene expression studies and established transcriptome data, we investigated key components of lipid metabolic pathways. Gene expression of triacylglycerol lipase, phospholipase, and fatty acid desaturase were analyzed and compared with that of other digestive enzymes involved in lipid, carbohydrate, and protein catabolism. Our results suggest that gene expression of digestive enzymes involved in lipid metabolism is modulated by the lipid content in the midgut gland and is related to food availability. Brown shrimp seem to be capable of using cellular phospholipids during periods of food paucity but high energetic (lipid) requirements. Two of three isoforms of fatty acid binding proteins (FABPs) from the midgut gland involved in fatty acid transport showed specific mutations of the binding site. We hypothesize that the mutations in FABPs and deficiencies in anabolic pathways limit lipid storage capacities in the midgut gland of C. crangon. In turn, food utilization, including lipid catabolism, has to be efficient to fulfill the energetic requirements of brown shrimp.
Collapse
Affiliation(s)
- Diana Martínez-Alarcón
- Bremen Marine Ecology (BreMarE), Marine Zoology, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Functional Ecology, P.O. Box 120161, 27515 Bremerhaven, Germany
| | - Wilhelm Hagen
- Bremen Marine Ecology (BreMarE), Marine Zoology, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany
| | - Christoph Held
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Functional Ecology, P.O. Box 120161, 27515 Bremerhaven, Germany
| | - Reinhard Saborowski
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Functional Ecology, P.O. Box 120161, 27515 Bremerhaven, Germany.
| |
Collapse
|
50
|
Sáez C, Martínez C, Montero-Pau J, Esteras C, Sifres A, Blanca J, Ferriol M, López C, Picó B. A Major QTL Located in Chromosome 8 of Cucurbita moschata Is Responsible for Resistance to Tomato Leaf Curl New Delhi Virus. FRONTIERS IN PLANT SCIENCE 2020; 11:207. [PMID: 32265946 PMCID: PMC7100279 DOI: 10.3389/fpls.2020.00207] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/11/2020] [Indexed: 05/25/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite whitefly transmitted begomovirus, responsible since 2013 of severe damages in cucurbit crops in Southeastern Spain. Zucchini (Cucurbita pepo) is the most affected species, but melon (Cucumis melo) and cucumber (Cucumis sativus) are also highly damaged by the infection. The virus has spread across Mediterranean basin and European countries, and integrated control measures are not being enough to reduce economic losses. The identification of resistance genes is required to develop resistant cultivars. In this assay, we studied the inheritance of the resistance to ToLCNDV previously identified in two Cucurbita moschata accessions. We generated segregating populations crossing both resistant pumpkins, an American improved cultivar Large Cheese (PI 604506) and an Indian landrace (PI 381814), with a susceptible C. moschata genotype (PI 419083). The analysis of symptoms and viral titers of all populations established the same monogenic recessive genetic control in both resistant accessions, and the allelism tests suggest the occurrence of alleles of the same locus. By genotyping with a single nucleotide polymorphism (SNP) collection evenly distributed along the C. moschata genome, a major quantitative trait locus (QTL) was identified in chromosome 8 controlling resistance to ToLCNDV. This major QTL was also confirmed in the interspecific C. moschata × C. pepo segregating populations, although C. pepo genetic background affected the resistance level. Molecular markers here identified, linked to the ToLCNDV resistance locus, are highly valuable for zucchini breeding programs, allowing the selection of improved commercial materials. The duplication of the candidate region within the C. moschata genome was studied, and genes with paralogs or single-copy genes were identified. Its synteny with the region of chromosome 17 of the susceptible C. pepo revealed an INDEL including interesting candidate genes. The chromosome 8 candidate region of C. moschata was also syntenic to the region in chromosome 11 of melon, previously described as responsible of ToLCNDV resistance. Common genes in the candidate regions of both cucurbits, with high- or moderate-impact polymorphic SNPs between resistant and susceptible C. moschata accessions, are interesting to study the mechanisms involved in this recessive resistance.
Collapse
Affiliation(s)
- Cristina Sáez
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Cecilia Martínez
- Agrifood Campus of International Excellence (ceiA3), Department of Biology and Geology, Universidad de Almería, Almería, Spain
| | - Javier Montero-Pau
- Department of Biochemistry and Molecular Biology, Universitat de València, Valencia, Spain
| | - Cristina Esteras
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | | | - José Blanca
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - María Ferriol
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, Spain
| | - Carmelo López
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|