1
|
Pak S, Ryu H, Lim S, Nguyen TL, Yang S, Kang S, Yu YG, Woo J, Kim C, Fenollar-Ferrer C, Wood JN, Lee MO, Hong GS, Han K, Kim TS, Oh U. Tentonin 3 is a pore-forming subunit of a slow inactivation mechanosensitive channel. Cell Rep 2024; 43:114334. [PMID: 38850532 PMCID: PMC11310380 DOI: 10.1016/j.celrep.2024.114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024] Open
Abstract
Mechanically activating (MA) channels transduce numerous physiological functions. Tentonin 3/TMEM150C (TTN3) confers MA currents with slow inactivation kinetics in somato- and barosensory neurons. However, questions were raised about its role as a Piezo1 regulator and its potential as a channel pore. Here, we demonstrate that purified TTN3 proteins incorporated into the lipid bilayer displayed spontaneous and pressure-sensitive channel currents. These MA currents were conserved across vertebrates and differ from Piezo1 in activation threshold and pharmacological response. Deep neural network structure prediction programs coupled with mutagenetic analysis predicted a rectangular-shaped, tetrameric structure with six transmembrane helices and a pore at the inter-subunit center. The putative pore aligned with two helices of each subunit and had constriction sites whose mutations changed the MA currents. These findings suggest that TTN3 is a pore-forming subunit of a distinct slow inactivation MA channel, potentially possessing a tetrameric structure.
Collapse
Affiliation(s)
- Sungmin Pak
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hyunil Ryu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Sujin Lim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
| | - Thien-Luan Nguyen
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Sungwook Yang
- Artificial Intelligence and Robotics Institute, KIST, Seoul 02792, Korea
| | - Sumin Kang
- Department of Chemistry, Kookmin University, Seoul 02707, Korea
| | - Yeon Gyu Yu
- Department of Chemistry, Kookmin University, Seoul 02707, Korea
| | - Junhyuk Woo
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Chanjin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Cristina Fenollar-Ferrer
- Stiles-Nicholson Brain Institute at Florida Atlantic University, Jupiter, FL 33458, USA; Laboratory of Molecular Genetics, NIDCD, NIH, Bethesda, MD 20892, USA
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Gyu-Sang Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea.
| | - Kyungreem Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea.
| | - Tae Song Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
| | - Uhtaek Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
2
|
Kołodziej P, Wujec M, Doligalska M, Makuch-Kocka A, Khylyuk D, Bogucki J, Demkowska-Kutrzepa M, Roczeń-Karczmarz M, Studzińska M, Tomczuk K, Kocki M, Reszka-Kocka P, Granica S, Typek R, Dawidowicz AL, Kocki J, Bogucka-Kocka A. Synthesis and anthelmintic activity of novel thiosemicarbazide and 1,2,4-triazole derivatives: In vitro, in vivo, and in silico study. J Adv Res 2024; 60:57-73. [PMID: 37467960 PMCID: PMC11156610 DOI: 10.1016/j.jare.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
INTRODUCTION Intestinal parasitic infections are neglected diseases and, due to the increasing resistance of parasites to available drugs, they pose an increasing therapeutic challenge. Therefore, there is a great need for finding new compounds with antiparasitic activity. OBJECTIVES In this work, new thiosemicarbazide and 1,2,4-triazole derivatives were synthesized and tested for their anthelmintic activity. METHODS The synthesis was carried out by classical methods of organic chemistry. Anthelmintic activity tests were carried out in vitro (Rhabditis sp., Haemonchus contortus, Strongylidae sp.) in vivo (Heligmosomoides polygyrus/bakeri), and in silico analysis was performed. RESULTS Quinoline-6-carboxylic acid derivative compounds were designed and synthesized. The highest activity in the screening tests in the Rhabditis model was demonstrated by compound II-1 with a methoxyphenyl substituent LC50 = 0.3 mg/mL. In the next stage of the research, compound II-1 was analyzed in the H. contortus model. The results showed that compound II-1 was active and had ovicidal (percentage of dead eggs > 45 %) and larvicidal (percentage of dead larvae > 75 %) properties. Studies in the Strongylidae sp. model confirmed the ovicidal activity of compound II-1 (percentage of dead eggs ≥ 55 %). In vivo studies conducted in the H. polygyrus/bakeri nematode model showed that the number of nematodes decreased by an average of 30 % under the influence of compound II-1. In silico studies have shown two possible modes of action of compound II-1, i.e. inhibition of tubulin polymerization and SDH. The test compound did not show any systemic toxic effects. Its influence on drug metabolism related to the activity of cytochrome CYP450 enzymes was also investigated. CONCLUSION The results obtained in the in vitro, in vivo, and in silico studies indicate that the test compound can be described as a HIT, which in the future may be used in the treatment of parasitic diseases in humans and animals.
Collapse
Affiliation(s)
- Przemysław Kołodziej
- Laboratory of Diagnostic Parasitology, Chair and Department of Biology and Genetics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland.
| | - Monika Wujec
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| | - Maria Doligalska
- Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1 Street, 02-096 Warsaw, Poland
| | - Anna Makuch-Kocka
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, Radziwiłłowska 11 Street, 20-080 Lublin, Poland
| | - Dmytro Khylyuk
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| | - Jacek Bogucki
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| | - Marta Demkowska-Kutrzepa
- Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12 Street, 20-033 Lublin, Poland
| | - Monika Roczeń-Karczmarz
- Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12 Street, 20-033 Lublin, Poland
| | - Maria Studzińska
- Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12 Street, 20-033 Lublin, Poland
| | - Krzysztof Tomczuk
- Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12 Street, 20-033 Lublin, Poland
| | - Marcin Kocki
- Chair and Department of Biology and Genetics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| | - Patrycja Reszka-Kocka
- Chair and Department of Biology and Genetics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland
| | - Rafał Typek
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Marii Curie Sklodowskiej 3 Square, 20-031 Lublin, Poland
| | - Andrzej L Dawidowicz
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Marii Curie Sklodowskiej 3 Square, 20-031 Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Faculty of Medicine, Medical University of Lublin, Radziwiłłowska 11 Street, 20-080 Lublin, Poland
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
3
|
Kiani YS, Jabeen I. Challenges of Protein-Protein Docking of the Membrane Proteins. Methods Mol Biol 2024; 2780:203-255. [PMID: 38987471 DOI: 10.1007/978-1-0716-3985-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Despite the recent advances in the determination of high-resolution membrane protein (MP) structures, the structural and functional characterization of MPs remains extremely challenging, mainly due to the hydrophobic nature, low abundance, poor expression, purification, and crystallization difficulties associated with MPs. Whereby the major challenges/hurdles for MP structure determination are associated with the expression, purification, and crystallization procedures. Although there have been significant advances in the experimental determination of MP structures, only a limited number of MP structures (approximately less than 1% of all) are available in the Protein Data Bank (PDB). Therefore, the structures of a large number of MPs still remain unresolved, which leads to the availability of widely unplumbed structural and functional information related to MPs. As a result, recent developments in the drug discovery realm and the significant biological contemplation have led to the development of several novel, low-cost, and time-efficient computational methods that overcome the limitations of experimental approaches, supplement experiments, and provide alternatives for the characterization of MPs. Whereby the fine tuning and optimizations of these computational approaches remains an ongoing endeavor.Computational methods offer a potential way for the elucidation of structural features and the augmentation of currently available MP information. However, the use of computational modeling can be extremely challenging for MPs mainly due to insufficient knowledge of (or gaps in) atomic structures of MPs. Despite the availability of numerous in silico methods for 3D structure determination the applicability of these methods to MPs remains relatively low since all methods are not well-suited or adequate for MPs. However, sophisticated methods for MP structure predictions are constantly being developed and updated to integrate the modifications required for MPs. Currently, different computational methods for (1) MP structure prediction, (2) stability analysis of MPs through molecular dynamics simulations, (3) modeling of MP complexes through docking, (4) prediction of interactions between MPs, and (5) MP interactions with its soluble partner are extensively used. Towards this end, MP docking is widely used. It is notable that the MP docking methods yet few in number might show greater potential in terms of filling the knowledge gap. In this chapter, MP docking methods and associated challenges have been reviewed to improve the applicability, accuracy, and the ability to model macromolecular complexes.
Collapse
Affiliation(s)
- Yusra Sajid Kiani
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ishrat Jabeen
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
4
|
Donovan E, Avila C, Klausner S, Parikh V, Fenollar-Ferrer C, Blakely RD, Sarter M. Disrupted Choline Clearance and Sustained Acetylcholine Release In Vivo by a Common Choline Transporter Coding Variant Associated with Poor Attentional Control in Humans. J Neurosci 2022; 42:3426-3444. [PMID: 35232764 PMCID: PMC9034784 DOI: 10.1523/jneurosci.1334-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Transport of choline via the neuronal high-affinity choline transporter (CHT; SLC5A7) is essential for cholinergic terminals to synthesize and release acetylcholine (ACh). In humans, we previously demonstrated an association between a common CHT coding substitution (rs1013940; Ile89Val) and reduced attentional control as well as attenuated frontal cortex activation. Here, we used a CRISPR/Cas9 approach to generate mice expressing the I89V substitution and assessed, in vivo, CHT-mediated choline transport, and ACh release. Relative to wild-type (WT) mice, CHT-mediated clearance of choline in male and female mice expressing one or two Val89 alleles was reduced by over 80% in cortex and over 50% in striatum. Choline clearance in CHT Val89 mice was further reduced by neuronal inactivation. Deficits in ACh release, 5 and 10 min after repeated depolarization at a low, behaviorally relevant frequency, support an attenuated reloading capacity of cholinergic neurons in mutant mice. The density of CHTs in total synaptosomal lysates and neuronal plasma-membrane-enriched fractions was not impacted by the Val89 variant, indicating a selective impact on CHT function. When challenged with a visual disruptor to reveal attentional control mechanisms, Val89 mice failed to adopt a more conservative response bias. Structural modeling revealed that Val89 may attenuate choline transport by altering conformational changes of CHT that support normal transport rates. Our findings support the view that diminished sustained cholinergic signaling capacity underlies perturbed attentional performance in individuals expressing CHT Val89. The CHT Val89 mouse serves as a valuable model to study heritable risk for cognitive disorders arising from cholinergic dysfunction.SIGNIFICANCE STATEMENT Acetylcholine (ACh) signaling depends on the functional capacity of the neuronal choline transporter (CHT). Previous research demonstrated that humans expressing the common CHT coding variant Val89 exhibit attentional vulnerabilities and attenuated fronto-cortical activation during attention. Here, we find that mice engineered to express the Val89 variant exhibit reduced CHT-mediated choline clearance and a diminished capacity to sustain ACh release. Additionally, Val89 mice lack cognitive flexibility in response to an attentional challenge. These findings provide a mechanistic and cognitive framework for interpreting the attentional phenotype associated with the human Val89 variant and establish a model that permits a more invasive interrogation of CNS effects as well as the development of therapeutic strategies for those, including Val89 carriers, with presynaptic cholinergic perturbations.
Collapse
Affiliation(s)
- Eryn Donovan
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Cassandra Avila
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sarah Klausner
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Vinay Parikh
- Department of Psychology & Neuroscience Program, Temple University, Philadelphia, Pennsylvania 19122
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, Section of Human Genetics, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892
| | - Randy D Blakely
- Stiles-Nicholson Brain Institute and Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida 33458
| | - Martin Sarter
- Department of Psychology, Neuroscience Program and Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
5
|
Peña-Varas C, Kanstrup C, Vergara-Jaque A, González-Avendaño M, Crocoll C, Mirza O, Dreyer I, Nour-Eldin H, Ramírez D. Structural Insights into the Substrate Transport Mechanisms in GTR Transporters through Ensemble Docking. Int J Mol Sci 2022; 23:ijms23031595. [PMID: 35163519 PMCID: PMC8836200 DOI: 10.3390/ijms23031595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Glucosinolate transporters (GTRs) are part of the nitrate/peptide transporter (NPF) family, members of which also transport specialized secondary metabolites as substrates. Glucosinolates are defense compounds derived from amino acids. We selected 4-methylthiobutyl (4MTB) and indol-3-ylmethyl (I3M) glucosinolates to study how GTR1 from Arabidopsis thaliana transports these substrates in computational simulation approaches. The designed pipeline reported here includes massive docking of 4MTB and I3M in an ensemble of GTR1 conformations (in both inward and outward conformations) extracted from molecular dynamics simulations, followed by clustered and substrate–protein interactions profiling. The identified key residues were mutated, and their role in substrate transport was tested. We were able to identify key residues that integrate a major binding site of these substrates, which is critical for transport activity. In silico approaches employed here represent a breakthrough in the plant transportomics field, as the identification of key residues usually takes a long time if performed from a purely wet-lab experimental perspective. The inclusion of structural bioinformatics in the analyses of plant transporters significantly speeds up the knowledge-gaining process and optimizes valuable time and resources.
Collapse
Affiliation(s)
- Carlos Peña-Varas
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Llano Subercaseaux 2801-piso 6, Santiago 8900000, Chile;
| | - Christa Kanstrup
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; (C.K.); (C.C.); (H.N.-E.)
| | - Ariela Vergara-Jaque
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Campus Talca, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca 3460000, Chile; (A.V.-J.); (M.G.-A.); (I.D.)
| | - Mariela González-Avendaño
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Campus Talca, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca 3460000, Chile; (A.V.-J.); (M.G.-A.); (I.D.)
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; (C.K.); (C.C.); (H.N.-E.)
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Ingo Dreyer
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Campus Talca, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca 3460000, Chile; (A.V.-J.); (M.G.-A.); (I.D.)
| | - Hussam Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; (C.K.); (C.C.); (H.N.-E.)
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Llano Subercaseaux 2801-piso 6, Santiago 8900000, Chile;
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8900000, Chile
- Correspondence: ; Tel.: +56-(22)-3036667
| |
Collapse
|
6
|
Chloride-dependent conformational changes in the GlyT1 glycine transporter. Proc Natl Acad Sci U S A 2021; 118:2017431118. [PMID: 33658361 DOI: 10.1073/pnas.2017431118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human GlyT1 glycine transporter requires chloride for its function. However, the mechanism by which Cl- exerts its influence is unknown. To examine the role that Cl- plays in the transport cycle, we measured the effect of Cl- on both glycine binding and conformational changes. The ability of glycine to displace the high-affinity radioligand [3H]CHIBA-3007 required Na+ and was potentiated over 1,000-fold by Cl- We generated GlyT1b mutants containing reactive cysteine residues in either the extracellular or cytoplasmic permeation pathways and measured changes in the reactivity of those cysteine residues as indicators of conformational changes in response to ions and substrate. Na+ increased accessibility in the extracellular pathway and decreased it in the cytoplasmic pathway, consistent with stabilizing an outward-open conformation as observed in other members of this transporter family. In the presence of Na+, both glycine and Cl- independently shifted the conformation of GlyT1b toward an outward-closed conformation. Together, Na+, glycine, and Cl- stabilized an inward-open conformation of GlyT1b. We then examined whether Cl- acts by interacting with a conserved glutamine to allow formation of an ion pair that stabilizes the closed state of the extracellular pathway. Molecular dynamics simulations of a GlyT1 homolog indicated that this ion pair is formed more frequently as that pathway closes. Mutation of the glutamine blocked the effect of Cl-, and substituting it with glutamate or lysine resulted in outward- or inward-facing transporter conformations, respectively. These results provide an unexpected insight into the role of Cl- in this family of transporters.
Collapse
|
7
|
Rojas G, Orellana I, Rosales-Rojas R, García-Olivares J, Comer J, Vergara-Jaque A. Structural Determinants of the Dopamine Transporter Regulation Mediated by G Proteins. J Chem Inf Model 2020; 60:3577-3586. [PMID: 32525311 DOI: 10.1021/acs.jcim.0c00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dopamine clearance in the brain is controlled by the dopamine transporter (DAT), a protein residing in the plasma membrane, which drives reuptake of extracellular dopamine into presynaptic neurons. Studies have revealed that the βγ subunits of heterotrimeric G proteins modulate DAT function through a physical association with the C-terminal region of the transporter. Regulation of neurotransmitter transporters by Gβγ subunits is unprecedented in the literature; therefore, it is interesting to investigate the structural details of this particular protein-protein interaction. Here, we refined the crystal structure of the Drosophila melanogaster DAT (dDAT), modeling de novo the N- and C-terminal domains; subsequently, we used the full-length dDAT structure to generate a comparative model of human DAT (hDAT). Both proteins were assembled with Gβ1γ2 subunits employing protein-protein docking, and subsequent molecular dynamics simulations were run to identify the specific interactions governing the formation of the hDAT:Gβγ and dDAT:Gβγ complexes. A [L/F]R[Q/E]R sequence motif containing the residues R588 in hDAT and R587 in dDAT was found as key to bind the Gβγ subunits through electrostatic interactions with a cluster of negatively charged residues located at the top face of the Gβ subunit. Alterations of DAT function have been associated with multiple devastating neuropathological conditions; therefore, this work represents a step toward better understanding DAT regulation by signaling proteins, allowing us to predict therapeutic target regions.
Collapse
Affiliation(s)
- Genoveva Rojas
- Center for Bioinformatics and Molecular Simulation, Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Ivana Orellana
- Center for Bioinformatics and Molecular Simulation, Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Roberto Rosales-Rojas
- Center for Bioinformatics and Molecular Simulation, Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Jennie García-Olivares
- Supernus Pharmaceuticals, 9715 Key West Avenue, Rockville, Maryland 20850, United States
| | - Jeffrey Comer
- Institute of Computational Comparative Medicine, Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas 66506, United States
| | - Ariela Vergara-Jaque
- Center for Bioinformatics and Molecular Simulation, Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile.,Millennium Nucleus of Ion Channels-associated Diseases (MiNICAD), Santiago, Chile
| |
Collapse
|
8
|
Studies of structural determinants of substrate binding in the Creatine Transporter (CreaT, SLC6A8) using molecular models. Sci Rep 2020; 10:6241. [PMID: 32277128 PMCID: PMC7148354 DOI: 10.1038/s41598-020-63189-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/26/2020] [Indexed: 01/17/2023] Open
Abstract
Creatine is a crucial metabolite that plays a fundamental role in ATP homeostasis in tissues with high-energy demands. The creatine transporter (CreaT, SLC6A8) belongs to the solute carrier 6 (SLC6) transporters family, and more particularly to the GABA transporters (GATs) subfamily. Understanding the molecular determinants of specificity within the SLC6 transporters in general, and the GATs in particular is very challenging due to the high similarity of these proteins. In the study presented here, our efforts focused on finding key structural features involved in binding selectivity for CreaT using structure-based computational methods. Due to the lack of three-dimensional structures of SLC6A8, our approach was based on the realization of two reliable homology models of CreaT using the structures of two templates, i.e. the human serotonin transporter (hSERT) and the prokaryotic leucine transporter (LeuT). Our models reveal that an optimal complementarity between the shape of the binding site and the size of the ligands is necessary for transport. These findings provide a framework for a deeper understanding of substrate selectivity of the SLC6 family and other LeuT fold transporters.
Collapse
|
9
|
Grazhdankin E, Stepniewski M, Xhaard H. Modeling membrane proteins: The importance of cysteine amino-acids. J Struct Biol 2020; 209:107400. [DOI: 10.1016/j.jsb.2019.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
|
10
|
Robin J, Gueroult M, Cheikhrouhou R, Guicherd M, Borsenberger V, Marty A, Bordes F. Identification of a crucial amino acid implicated in the hydroxylation/desaturation ratio of CpFAH12 bifunctional hydroxylase. Biotechnol Bioeng 2019; 116:2451-2462. [PMID: 31282998 PMCID: PMC6771796 DOI: 10.1002/bit.27102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 12/12/2022]
Abstract
Claviceps purpurea bifunctional Δ12-hydroxylase/desaturase, CpFAH12, and monofunctional desaturase CpFAD2, share 86% of sequence identity. To identify the underlying determinants of the hydroxylation/desaturation specificity, chimeras of these two enzymes were tested for their fatty acid production in an engineered Yarrowia lipolytica strain. It reveals that transmembrane helices are not involved in the hydroxylation/desaturation specificity whereas all cytosolic domains have an impact on it. Especially, replacing the CpFAH12 cytosolic part near the second histidine-box by the corresponding CpFAD2 part annihilates all hydroxylation activity. Further mutagenesis experiments within this domain identified isoleucine 198 as the crucial element for the hydroxylation activity of CpFAH12. Monofunctional variants performing the only desaturation were obtained when this position was exchanged by the threonine of CpFAD2. Saturation mutagenesis at this position showed modulation in the hydroxylation/desaturation specificity in the different variants. The WT enzyme was demonstrated as the most efficient for ricinoleic acid production and some variants showed a better desaturation activity. A model based on the recently discovered membrane desaturase structures indicate that these changes in specificity are more likely due to modifications in the di-iron center geometry rather than changes in the substrate binding mode.
Collapse
Affiliation(s)
- Julien Robin
- LISBP, CNRS, INRA, INSAUniversité de ToulouseToulouseFrance
| | - Marc Gueroult
- UMR URCA/CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC)Université de Reims Champagne‐ArdenneFrance
| | | | - Marie Guicherd
- LISBP, CNRS, INRA, INSAUniversité de ToulouseToulouseFrance
| | | | - Alain Marty
- LISBP, CNRS, INRA, INSAUniversité de ToulouseToulouseFrance
| | | |
Collapse
|
11
|
Hellsberg E, Ecker GF, Stary-Weinzinger A, Forrest LR. A structural model of the human serotonin transporter in an outward-occluded state. PLoS One 2019; 14:e0217377. [PMID: 31251747 PMCID: PMC6599148 DOI: 10.1371/journal.pone.0217377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
The human serotonin transporter hSERT facilitates the reuptake of its endogenous substrate serotonin from the synaptic cleft into presynaptic neurons after signaling. Reuptake regulates the availability of this neurotransmitter and therefore hSERT plays an important role in balancing human mood conditions. In 2016, the first 3D structures of this membrane transporter were reported in an inhibitor-bound, outward-open conformation. These structures revealed valuable information about interactions of hSERT with antidepressant drugs. Nevertheless, the question remains how serotonin facilitates the specific conformational changes that open and close pathways from the synapse and to the cytoplasm as required for transport. Here, we present a serotonin-bound homology model of hSERT in an outward-occluded state, a key intermediate in the physiological cycle, in which the interactions with the substrate are likely to be optimal. Our approach uses two template structures and includes careful refinement and comprehensive computational validation. According to microsecond-long molecular dynamics simulations, this model exhibits interactions between the gating residues in the extracellular pathway, and these interactions differ from those in an outward-open conformation of hSERT bound to serotonin. Moreover, we predict several features of this state by monitoring the intracellular gating residues, the extent of hydration, and, most importantly, protein-ligand interactions in the central binding site. The results illustrate common and distinct characteristics of these two transporter states and provide a starting point for future investigations of the transport mechanism in hSERT.
Collapse
Affiliation(s)
- Eva Hellsberg
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Gerhard F. Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | | | - Lucy R. Forrest
- Computational Structural Biology Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
12
|
A Structural Model of the Inactivation Gate of Voltage-Activated Potassium Channels. Biophys J 2019; 117:377-387. [PMID: 31278002 DOI: 10.1016/j.bpj.2019.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/21/2019] [Accepted: 06/07/2019] [Indexed: 11/24/2022] Open
Abstract
After opening, the Shaker voltage-gated potassium (KV) channel rapidly inactivates when one of its four N-termini enters and occludes the channel pore. Although it is known that the tip of the N-terminus reaches deep into the central cavity, the conformation adopted by this domain during inactivation and the nature of its interactions with the rest of the channel remain unclear. Here, we use molecular dynamics simulations coupled with electrophysiology experiments to reveal the atomic-scale mechanisms of inactivation. We find that the first six amino acids of the N-terminus spontaneously enter the central cavity in an extended conformation, establishing hydrophobic contacts with residues lining the pore. A second portion of the N-terminus, consisting of a long 24 amino acid α-helix, forms numerous polar contacts with residues in the intracellular entryway of the T1 domain. Double mutant cycle analysis revealed a strong relationship between predicted interatomic distances and empirically observed thermodynamic coupling, establishing a plausible model of the transition of KV channels to the inactivated state.
Collapse
|
13
|
Türková A, Zdrazil B. Current Advances in Studying Clinically Relevant Transporters of the Solute Carrier (SLC) Family by Connecting Computational Modeling and Data Science. Comput Struct Biotechnol J 2019; 17:390-405. [PMID: 30976382 PMCID: PMC6438991 DOI: 10.1016/j.csbj.2019.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/18/2023] Open
Abstract
Organic anion and cation transporting proteins (OATs, OATPs, and OCTs), as well as the Multidrug and Toxin Extrusion (MATE) transporters of the Solute Carrier (SLC) family are playing a pivotal role in the discovery and development of new drugs due to their involvement in drug disposition, drug-drug interactions, adverse drug effects and related toxicity. Computational methods to understand and predict clinically relevant transporter interactions can provide useful guidance at early stages in drug discovery and design, especially if they include contemporary data science approaches. In this review, we summarize the current state-of-the-art of computational approaches for exploring ligand interactions and selectivity for these drug (uptake) transporters. The computational methods discussed here by highlighting interesting examples from the current literature are ranging from semiautomatic data mining and integration, to ligand-based methods (such as quantitative structure-activity relationships, and combinatorial pharmacophore modeling), and finally structure-based methods (such as comparative modeling, molecular docking, and molecular dynamics simulations). We are focusing on promising computational techniques such as fold-recognition methods, proteochemometric modeling or techniques for enhanced sampling of protein conformations used in the context of these ADMET-relevant SLC transporters with a special focus on methods useful for studying ligand selectivity.
Collapse
Affiliation(s)
- Alžběta Türková
- Department of Pharmaceutical Chemistry, Divison of Drug Design and Medicinal Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Barbara Zdrazil
- Department of Pharmaceutical Chemistry, Divison of Drug Design and Medicinal Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
14
|
Wang Z, Jumper JM, Wang S, Freed KF, Sosnick TR. A Membrane Burial Potential with H-Bonds and Applications to Curved Membranes and Fast Simulations. Biophys J 2018; 115:1872-1884. [PMID: 30413241 DOI: 10.1016/j.bpj.2018.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022] Open
Abstract
We use the statistics of a large and curated training set of transmembrane helical proteins to develop a knowledge-based potential that accounts for the dependence on both the depth of burial of the protein in the membrane and the degree of side-chain exposure. Additionally, the statistical potential includes depth-dependent energies for unsatisfied backbone hydrogen bond donors and acceptors, which are found to be relatively small, ∼2 RT. Our potential accurately places known proteins within the bilayer. The potential is applied to the mechanosensing MscL channel in membranes of varying thickness and curvature, as well as to the prediction of protein structure. The potential is incorporated into our new Upside molecular dynamics algorithm. Notably, we account for the exchange of protein-lipid interactions for protein-protein interactions as helices contact each other, thereby avoiding overestimating the energetics of helix association within the membrane. Simulations of most multimeric complexes find that isolated monomers and the oligomers retain the same orientation in the membrane, suggesting that the assembly of prepositioned monomers presents a viable mechanism of oligomerization.
Collapse
Affiliation(s)
- Zongan Wang
- Department of Chemistry, The University of Chicago, Chicago, Illinois; James Franck Institute, The University of Chicago, Chicago, Illinois
| | - John M Jumper
- Department of Chemistry, The University of Chicago, Chicago, Illinois; James Franck Institute, The University of Chicago, Chicago, Illinois; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Sheng Wang
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; Toyota Technological Institute at Chicago, Chicago, Illinois
| | - Karl F Freed
- Department of Chemistry, The University of Chicago, Chicago, Illinois; James Franck Institute, The University of Chicago, Chicago, Illinois.
| | - Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois; Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
15
|
Structural models of the NaPi-II sodium-phosphate cotransporters. Pflugers Arch 2018; 471:43-52. [PMID: 30175376 PMCID: PMC6325988 DOI: 10.1007/s00424-018-2197-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 01/25/2023]
Abstract
Progress towards understanding the molecular mechanisms of phosphate homeostasis through sodium-dependent transmembrane uptake has long been stymied by the absence of structural information about the NaPi-II sodium-phosphate transporters. For many other coupled transporters, even those unrelated to NaPi-II, internal repeated elements have been revealed as a key feature that is inherent to their function. Here, we review recent structure prediction studies for NaPi-II transporters. Attempts to identify structural templates for NaPi-II transporters have leveraged the structural repeat perspective to uncover an otherwise obscured relationship with the dicarboxylate-sodium symporters (DASS). This revelation allowed the prediction of three-dimensional structural models of human NaPi-IIa and flounder NaPi-IIb, whose folds were evaluated by comparison with available biochemical data outlining the transmembrane topology and solvent accessibility of various regions of the protein. Using these structural models, binding sites for sodium and phosphate were proposed. The predicted sites were tested and refined based on detailed electrophysiological and biochemical studies and were validated by comparison with subsequently reported structures of transporters belonging to the AbgT family. Comparison with the DASS transporter VcINDY suggested a conformational mechanism involving a large, two-domain structural change, known as an elevator-like mechanism. These structural models provide a foundation for further studies into substrate binding, conformational change, kinetics, and energetics of sodium-phosphate transport. We discuss future opportunities, as well as the challenges that remain.
Collapse
|
16
|
Ballesteros A, Fenollar-Ferrer C, Swartz KJ. Structural relationship between the putative hair cell mechanotransduction channel TMC1 and TMEM16 proteins. eLife 2018; 7:38433. [PMID: 30063209 PMCID: PMC6067890 DOI: 10.7554/elife.38433] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/09/2018] [Indexed: 02/03/2023] Open
Abstract
The hair cell mechanotransduction (MET) channel complex is essential for hearing, yet it's molecular identity and structure remain elusive. The transmembrane channel-like 1 (TMC1) protein localizes to the site of the MET channel, interacts with the tip-link responsible for mechanical gating, and genetic alterations in TMC1 alter MET channel properties and cause deafness, supporting the hypothesis that TMC1 forms the MET channel. We generated a model of TMC1 based on X-ray and cryo-EM structures of TMEM16 proteins, revealing the presence of a large cavity near the protein-lipid interface that also harbors the Beethoven mutation, suggesting that it could function as a permeation pathway. We also find that hair cells are permeable to 3 kDa dextrans, and that dextran permeation requires TMC1/2 proteins and functional MET channels, supporting the presence of a large permeation pathway and the hypothesis that TMC1 is a pore forming subunit of the MET channel complex.
Collapse
Affiliation(s)
- Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular & Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States.,Laboratory of Molecular Genetics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States.,Molecular Biology and Genetics Section, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Kenton Jon Swartz
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
17
|
Yaffe D, Forrest LR, Schuldiner S. The ins and outs of vesicular monoamine transporters. J Gen Physiol 2018; 150:671-682. [PMID: 29666153 PMCID: PMC5940252 DOI: 10.1085/jgp.201711980] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/26/2018] [Indexed: 01/31/2023] Open
Abstract
Yaffe et al. review structure-guided studies that have provided insight into the mechanism of proton-monoamine antiport by VMATs. The H+-coupled vesicular monoamine transporter (VMAT) is a transporter essential for life. VMAT mediates packaging of the monoamines serotonin, dopamine, norepinephrine, and histamine from the neuronal cytoplasm into presynaptic vesicles, which is a key step in the regulated release of neurotransmitters. However, a detailed understanding of the mechanism of VMAT function has been limited by the lack of availability of high-resolution structural data. In recent years, a series of studies guided by homology models has revealed significant insights into VMAT function, identifying residues that contribute to the binding site and to specific steps in the transport cycle. Moreover, to characterize the conformational transitions that occur upon binding of the substrate and coupling ion, we have taken advantage of the unique and powerful pharmacology of VMAT as well as of mutants that affect the conformational equilibrium of the protein and shift it toward defined conformations. This has allowed us to identify an important role for the proton gradient in driving a shift from lumen-facing to cytoplasm-facing conformations.
Collapse
Affiliation(s)
- Dana Yaffe
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Shimon Schuldiner
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| |
Collapse
|
18
|
Giovanola M, Vollero A, Cinquetti R, Bossi E, Forrest LR, Di Cairano ES, Castagna M. Threonine 67 is a key component in the coupling of the NSS amino acid transporter KAAT1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1179-1186. [PMID: 29409909 DOI: 10.1016/j.bbamem.2018.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 01/30/2023]
Affiliation(s)
- M Giovanola
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, 20134, Milano, Italy
| | - A Vollero
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - R Cinquetti
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - E Bossi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - L R Forrest
- Computational Structural Biology Section, NIH NINDS, 35 Convent Drive, Bethesda, MD 20892-3761, USA
| | - E S Di Cairano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, 20134, Milano, Italy
| | - M Castagna
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, 20134, Milano, Italy.
| |
Collapse
|
19
|
Abstract
![]()
Several apical iodide translocation
pathways have been proposed
for iodide efflux out of thyroid follicular cells, including a pathway
mediated by the sodium-coupled monocarboxylate transporter 1 (SMCT1),
which remains controversial. Herein, we evaluate structural and functional
similarities between SMCT1 and the well-studied sodium-iodide symporter
(NIS) that mediates the first step of iodide entry into the thyroid.
Free-energy calculations using a force field with electronic polarizability
verify the presence of a conserved iodide-binding pocket between the
TM2, TM3, and TM7 segments in hNIS, where iodide is coordinated by
Phe67, Gln72, Cys91, and Gln94. We demonstrate the mutation of residue
Gly93 of hNIS to a larger amino acid expels the side chain of a critical
tryptophan residue (Trp255) into the interior of the binding pocket,
partially occluding the iodide binding site and reducing iodide affinity,
which is consistent with previous reports associating mutation of
this residue with iodide uptake deficiency and hypothyroidism. Furthermore,
we find that the position of Trp255 in this hNIS mutant mirrors that
of Trp253 in wild-type hSMCT1, where a threonine (Thr91) occupies
the position homologous to that occupied by glycine in wild-type hNIS
(Gly93). Correspondingly, mutation of Thr91 to glycine in hSMCT1 makes
the pocket structure more like that of wild-type hNIS, increasing
its iodide affinity. These results suggest that wild-type hSMCT1 in
the inward-facing conformation may bind iodide only very weakly, which
may have implications for its ability to transport iodide.
Collapse
Affiliation(s)
- Ariela Vergara-Jaque
- Center for Bioinformatics and Molecular Simulation, Universidad de Talca , 2 Norte 685, Talca 3460000, Chile.,Institute of Computational Comparative Medicine, Nanotechnology Innovation Center of Kansas State, Kansas State University , Manhattan, Kansas 66506, United States
| | - Peying Fong
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine , Manhattan, Kansas 66506, United States
| | - Jeffrey Comer
- Institute of Computational Comparative Medicine, Nanotechnology Innovation Center of Kansas State, Kansas State University , Manhattan, Kansas 66506, United States.,Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine , Manhattan, Kansas 66506, United States
| |
Collapse
|
20
|
Jørgensen L, Al-Khawaja A, Kickinger S, Vogensen SB, Skovgaard-Petersen J, Rosenthal E, Borkar N, Löffler R, Madsen KK, Bräuner-Osborne H, Schousboe A, Ecker GF, Wellendorph P, Clausen RP. Structure–Activity Relationship, Pharmacological Characterization, and Molecular Modeling of Noncompetitive Inhibitors of the Betaine/γ-Aminobutyric Acid Transporter 1 (BGT1). J Med Chem 2017; 60:8834-8846. [DOI: 10.1021/acs.jmedchem.7b00924] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lars Jørgensen
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anas Al-Khawaja
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Stefanie Kickinger
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Stine B. Vogensen
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jonas Skovgaard-Petersen
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Emil Rosenthal
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Nrupa Borkar
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rebekka Löffler
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Karsten K. Madsen
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Gerhard F. Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Petrine Wellendorph
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rasmus P. Clausen
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
21
|
Cation Interactions and Membrane Potential Induce Conformational Changes in NaPi-IIb. Biophys J 2017; 111:973-88. [PMID: 27602725 DOI: 10.1016/j.bpj.2016.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/16/2016] [Accepted: 07/14/2016] [Indexed: 12/25/2022] Open
Abstract
Voltage-dependence of Na(+)-coupled phosphate cotransporters of the SLC34 family arises from displacement of charges intrinsic to the protein and the binding/release of one Na(+) ion in response to changes in the transmembrane electric field. Candidate coordination residues for the cation at the Na1 site were previously predicted by structural modeling using the x-ray structure of dicarboxylate transporter VcINDY as template and confirmed by functional studies. Mutations at Na1 resulted in altered steady-state and presteady-state characteristics that should be mirrored in the conformational changes induced by membrane potential changes. To test this hypothesis by functional analysis, double mutants of the flounder SLC34A2 protein were constructed that contain one of the Na1-site perturbing mutations together with a substituted cysteine for fluorophore labeling, as expressed in Xenopus oocytes. The locations of the mutations were mapped onto a homology model of the flounder protein. The effects of the mutagenesis were characterized by steady-state, presteady-state, and fluorometric assays. Changes in fluorescence intensity (ΔF) in response to membrane potential steps were resolved at three previously identified positions. These fluorescence data corroborated the altered presteady-state kinetics upon perturbation of Na1, and furthermore indicated concomitant changes in the microenvironment of the respective fluorophores, as evidenced by changes in the voltage dependence and time course of ΔF. Moreover, iodide quenching experiments indicated that the aqueous nature of the fluorophore microenvironment depended on the membrane potential. These findings provide compelling evidence that membrane potential and cation interactions induce significant large-scale structural rearrangements of the protein.
Collapse
|
22
|
Ferreira RJ, Bonito CA, Ferreira MJU, dos Santos DJ. About P-glycoprotein: a new drugable domain is emerging from structural data. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ricardo J. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Cátia A. Bonito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| | - Maria José U. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Daniel J.V.A. dos Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| |
Collapse
|
23
|
Ahrendt SR, Medina EM, Chang CEA, Stajich JE. Exploring the binding properties and structural stability of an opsin in the chytrid Spizellomyces punctatus using comparative and molecular modeling. PeerJ 2017; 5:e3206. [PMID: 28462022 PMCID: PMC5410147 DOI: 10.7717/peerj.3206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/20/2017] [Indexed: 01/16/2023] Open
Abstract
Background Opsin proteins are seven transmembrane receptor proteins which detect light. Opsins can be classified into two types and share little sequence identity: type 1, typically found in bacteria, and type 2, primarily characterized in metazoa. The type 2 opsins (Rhodopsins) are a subfamily of G-protein coupled receptors (GPCRs), a large and diverse class of seven transmembrane proteins and are generally restricted to metazoan lineages. Fungi use light receptors including opsins to sense the environment and transduce signals for developmental or metabolic changes. Opsins characterized in the Dikarya (Ascomycetes and Basidiomycetes) are of the type 1 bacteriorhodopsin family but the early diverging fungal lineages have not been as well surveyed. We identified by sequence similarity a rhodopsin-like GPCR in genomes of early diverging chytrids and examined the structural characteristics of this protein to assess its likelihood to be homologous to animal rhodopsins and bind similar chromophores. Methods We used template-based structure modeling, automated ligand docking, and molecular modeling to assess the structural and binding properties of an identified opsin-like protein found in Spizellomyces punctatus, a unicellular, flagellated species belonging to Chytridiomycota, one of the earliest diverging fungal lineages. We tested if the sequence and inferred structure were consistent with a solved crystal structure of a type 2 rhodopsin from the squid Todarodes pacificus. Results Our results indicate that the Spizellomyces opsin has structural characteristics consistent with functional animal type 2 rhodopsins and is capable of maintaining a stable structure when associated with the retinaldehyde chromophore, specifically the 9-cis-retinal isomer. Together, these results support further the homology of Spizellomyces opsins to animal type 2 rhodopsins. Discussion This represents the first test of structure/function relationship of a type 2 rhodopsin identified in early branching fungal lineages, and provides a foundation for future work exploring pathways and components of photoreception in early fungi.
Collapse
Affiliation(s)
- Steven R Ahrendt
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA, USA.,Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.,Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, CA, USA
| | - Edgar Mauricio Medina
- Department of Biology, Duke University, Durham, NC, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Chia-En A Chang
- Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.,Department of Chemistry, University of California, Riverside, CA, USA
| | - Jason E Stajich
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA, USA.,Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| |
Collapse
|
24
|
Dayan O, Nagarajan A, Shah R, Ben-Yona A, Forrest LR, Kanner BI. An Extra Amino Acid Residue in Transmembrane Domain 10 of the γ-Aminobutyric Acid (GABA) Transporter GAT-1 Is Required for Efficient Ion-coupled Transport. J Biol Chem 2017; 292:5418-5428. [PMID: 28213519 DOI: 10.1074/jbc.m117.775189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/09/2017] [Indexed: 11/06/2022] Open
Abstract
The GABA transporter GAT-1 mediates electrogenic transport of its substrate together with sodium and chloride. It is a member of the neurotransmitter:sodium:symporters, which are crucial for synaptic transmission. Compared with all other neurotransmitter:sodium:symporters, GAT-1 and other members of the GABA transporter subfamily all contain an extra amino acid residue at or near a conserved glycine in transmembrane segment 10. Therefore, we studied the functional impact of deletion and replacement mutants of Gly-457 and its two adjacent residues in GAT-1. The glycine replacement mutants were devoid of transport activity, but remarkably the deletion mutant was active, as were mutants obtained by deleting positions on either side of Gly-457. However, the inward rectification of GABA-induced transport currents by all three deletion mutants was diminished, and the charge-to-flux ratio was increased by more than 2.5-fold, both of which indicate substantial uncoupled transport. These observations suggest that the deletions render the transporters less tightly packed. Consistent with this interpretation, the inactive G457A mutant was partially rescued by removing the adjacent serine residue. Moreover, the activity of several gating mutants was also partially rescued upon deletion of Gly-457. Structural modeling showed that the stretch surrounding Gly-457 is likely to form a π-helix. Our data indicate that the "extra" residue in transmembrane domain 10 of the GABA transporter GAT-1 provides extra bulk, probably in the form of a π-helix, which is required for stringent gating and tight coupling of ion and substrate fluxes in the GABA transporter family.
Collapse
Affiliation(s)
- Oshrat Dayan
- From the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel and
| | - Anu Nagarajan
- the Computational Structural Biology Section, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | - Raven Shah
- the Computational Structural Biology Section, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | - Assaf Ben-Yona
- From the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel and
| | - Lucy R Forrest
- the Computational Structural Biology Section, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | - Baruch I Kanner
- From the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel and
| |
Collapse
|
25
|
Wawrzycka D, Markowska K, Maciaszczyk-Dziubinska E, Migocka M, Wysocki R. Transmembrane topology of the arsenite permease Acr3 from Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:117-125. [PMID: 27836640 DOI: 10.1016/j.bbamem.2016.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/03/2016] [Accepted: 11/06/2016] [Indexed: 10/20/2022]
Abstract
Acr3 is a plasma membrane transporter, a member of the bile/arsenite/riboflavin transporter (BART) superfamily, which confers high-level resistance to arsenicals in the yeast Saccharomyces cerevisiae. We have previously shown that the yeast Acr3 acts as a low affinity As(III)/H+ and Sb(III)/H+ antiporter. We have also identified several amino acid residues that are localized in putative transmembrane helices (TM) and appeared to be critical for the Acr3 activity. In the present study, the topology of Acr3 was investigated by insertion of glycosylation and factor Xa protease cleavage sites at predicted hydrophilic regions. The analysis of the glycosylation pattern and factor Xa cleavage products of resulting Acr3 fusion constructs provide evidence supporting a topological model of Acr3 with 10 TM segments and cytoplasmically oriented N- and C-terminal domains. Next, we investigated the role of the hydrophilic loop connecting TM8 and TM9, the large size of which is unique to members of the yeast Acr3 family of metalloid transporters. We found that a 28 amino acid deletion in this region does not affect Acr3 folding, trafficking substrate binding, or transport activity. Finally, we constructed a homology-based structural model of Acr3 using the crystal structure of the Yersinia frederiksenii homologue of the human bile acid sodium symporter ASBT.
Collapse
Affiliation(s)
- Donata Wawrzycka
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Katarzyna Markowska
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | | | - Magdalena Migocka
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| |
Collapse
|
26
|
Emulating proton-induced conformational changes in the vesicular monoamine transporter VMAT2 by mutagenesis. Proc Natl Acad Sci U S A 2016; 113:E7390-E7398. [PMID: 27821772 DOI: 10.1073/pnas.1605162113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurotransporters located in synaptic vesicles are essential for communication between nerve cells in a process mediated by neurotransmitters. Vesicular monoamine transporter (VMAT), a member of the largest superfamily of transporters, mediates transport of monoamines to synaptic vesicles and storage organelles in a process that involves exchange of two H+ per substrate. VMAT transport is inhibited by the competitive inhibitor reserpine, a second-line agent to treat hypertension, and by the noncompetitive inhibitor tetrabenazine, presently in use for symptomatic treatment of hyperkinetic disorders. During the transport cycle, VMAT is expected to occupy at least three different conformations: cytoplasm-facing, occluded, and lumen-facing. The lumen- to cytoplasm-facing transition, facilitated by protonation of at least one of the essential membrane-embedded carboxyls, generates a binding site for reserpine. Here we have identified residues in the cytoplasmic gate and show that mutations that disrupt the interactions in this gate also shift the equilibrium toward the cytoplasm-facing conformation, emulating the effect of protonation. These experiments provide significant insight into the role of proton translocation in the conformational dynamics of a mammalian H+-coupled antiporter, and also identify key aspects of the mode of action and binding of two potent inhibitors of VMAT2: reserpine binds the cytoplasm-facing conformation, and tetrabenazine binds the lumen-facing conformation.
Collapse
|
27
|
Colas C, Ung PMU, Schlessinger A. SLC Transporters: Structure, Function, and Drug Discovery. MEDCHEMCOMM 2016; 7:1069-1081. [PMID: 27672436 PMCID: PMC5034948 DOI: 10.1039/c6md00005c] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human Solute Carrier (SLC) transporters are important targets for drug development. Structure-based drug discovery for SLC transporters requires the description of their structure, dynamics, and mechanism of interaction with small molecule ligands and ions. The recent determination of atomic structures of human SLC transporters and their homologs, combined with improved computational power and prediction methods have led to an increased applicability of structure-based drug design methods for human SLC members. In this review, we provide an overview of the SLC transporters' structures and transport mechanisms. We then describe computational techniques, such as homology modeling and virtual screening that are emerging as key tools to discover chemical probes for human SLC members. We illustrate the utility of these methods by presenting case studies in which rational integration of computation and experiment was used to characterize SLC members that transport key nutrients and metabolites, including the amino acid transporters LAT-1 and ASCT2, the SLC13 family of citric acid cycle intermediate transporters, and the glucose transporter GLUT1. We conclude with a brief discussion about future directions in structure-based drug discovery for the human SLC superfamily, one of the most structurally and functionally diverse protein families in human.
Collapse
Affiliation(s)
- Claire Colas
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter Man-Un Ung
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avner Schlessinger
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
28
|
Davis BA, Nagarajan A, Forrest LR, Singh SK. Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter. Sci Rep 2016; 6:23789. [PMID: 27032980 PMCID: PMC4817154 DOI: 10.1038/srep23789] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/15/2016] [Indexed: 11/11/2022] Open
Abstract
The serotonin transporter (SERT) is an integral membrane protein that exploits preexisting sodium-, chloride-, and potassium ion gradients to catalyze the thermodynamically unfavorable movement of synaptic serotonin into the presynaptic neuron. SERT has garnered significant clinical attention partly because it is the target of multiple psychoactive agents, including the antidepressant paroxetine (Paxil), the most potent selective serotonin reuptake inhibitor known. However, the binding site and orientation of paroxetine in SERT remain controversial. To provide molecular insight, we constructed SERT homology models based on the Drosophila melanogaster dopamine transporter and docked paroxetine to these models. We tested the predicted binding configurations with a combination of radioligand binding and flux assays on wild-type and mutant SERTs. Our data suggest that the orientation of paroxetine, specifically its fluorophenyl ring, in SERT’s substrate binding site directly depends on this pocket’s charge distribution, and thereby provide an avenue toward understanding and enhancing high-affinity antidepressant activity.
Collapse
Affiliation(s)
- Bruce A Davis
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520 USA
| | - Anu Nagarajan
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Bethesda, MD 20892 USA
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Bethesda, MD 20892 USA
| | - Satinder K Singh
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520 USA
| |
Collapse
|
29
|
Singh K, Senthil V, Arokiaraj AWR, Leprince J, Lefranc B, Vaudry D, Allam AA, Ajarem J, Chow BKC. Structure-Activity Relationship Studies of N- and C-Terminally Modified Secretin Analogs for the Human Secretin Receptor. PLoS One 2016; 11:e0149359. [PMID: 26930505 PMCID: PMC4773067 DOI: 10.1371/journal.pone.0149359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/03/2016] [Indexed: 11/18/2022] Open
Abstract
The pleiotropic role of human secretin (hSCT) validates its potential use as a therapeutic agent. Nevertheless, the structure of secretin in complex with its receptor is necessary to develop a suitable therapeutic agent. Therefore, in an effort to design a three-dimensional virtual homology model and identify a peptide agonist and/or antagonist for the human secretin receptor (hSR), the significance of the primary sequence of secretin peptides in allosteric binding and activation was elucidated using virtual docking, FRET competitive binding and assessment of the cAMP response. Secretin analogs containing various N- or C-terminal modifications were prepared based on previous findings of the role of these domains in receptor binding and activation. These analogs exhibited very low or no binding affinity in a virtual model, and were found to neither exhibit in vitro binding nor agonistic or antagonistic properties. A parallel analysis of the analogs in the virtual model and in vitro studies revealed instability of these peptide analogs to bind and activate the receptor.
Collapse
Affiliation(s)
- Kailash Singh
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Vijayalakshmi Senthil
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | | | - Jérôme Leprince
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Neurotrophic Factors and Neuronal Differentiation Team, Inserm U982, Associated International Laboratory Samuel de Champlain, Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), University of Rouen, Mont-Saint-Aignan, France
| | - Benjamin Lefranc
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Neurotrophic Factors and Neuronal Differentiation Team, Inserm U982, Associated International Laboratory Samuel de Champlain, Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), University of Rouen, Mont-Saint-Aignan, France
| | - David Vaudry
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Neurotrophic Factors and Neuronal Differentiation Team, Inserm U982, Associated International Laboratory Samuel de Champlain, Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), University of Rouen, Mont-Saint-Aignan, France
| | - Ahmed A. Allam
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Jamaan Ajarem
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
30
|
Identification of the first sodium binding site of the phosphate cotransporter NaPi-IIa (SLC34A1). Biophys J 2016; 108:2465-2480. [PMID: 25992725 DOI: 10.1016/j.bpj.2015.03.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/20/2015] [Accepted: 03/17/2015] [Indexed: 01/08/2023] Open
Abstract
Transporters of the SLC34 family (NaPi-IIa,b,c) catalyze uptake of inorganic phosphate (Pi) in renal and intestinal epithelia. The transport cycle requires three Na(+) ions and one divalent Pi to bind before a conformational change enables translocation, intracellular release of the substrates, and reorientation of the empty carrier. The electrogenic interaction of the first Na(+) ion with NaPi-IIa/b at a postulated Na1 site is accompanied by charge displacement, and Na1 occupancy subsequently facilitates binding of a second Na(+) ion at Na2. The voltage dependence of cotransport and presteady-state charge displacements (in the absence of a complete transport cycle) are directly related to the molecular architecture of the Na1 site. The fact that Li(+) ions substitute for Na(+) at Na1, but not at the other sites (Na2 and Na3), provides an additional tool for investigating Na1 site-specific events. We recently proposed a three-dimensional model of human SLC34a1 (NaPi-IIa) including the binding sites Na2, Na3, and Pi based on the crystal structure of the dicarboxylate transporter VcINDY. Here, we propose nine residues in transmembrane helices (TM2, TM3, and TM5) that potentially contribute to Na1. To verify their roles experimentally, we made single alanine substitutions in the human NaPi-IIa isoform and investigated the kinetic properties of the mutants by voltage clamp and (32)P uptake. Substitutions at five positions in TM2 and one in TM5 resulted in relatively small changes in the substrate apparent affinities, yet at several of these positions, we observed significant hyperpolarizing shifts in the voltage dependence. Importantly, the ability of Li(+) ions to substitute for Na(+) ions was increased compared with the wild-type. Based on these findings, we adjusted the regions containing Na1 and Na3, resulting in a refined NaPi-IIa model in which five positions (T200, Q206, D209, N227, and S447) contribute directly to cation coordination at Na1.
Collapse
|
31
|
Bae C, Anselmi C, Kalia J, Jara-Oseguera A, Schwieters CD, Krepkiy D, Won Lee C, Kim EH, Kim JI, Faraldo-Gómez JD, Swartz KJ. Structural insights into the mechanism of activation of the TRPV1 channel by a membrane-bound tarantula toxin. eLife 2016; 5. [PMID: 26880553 PMCID: PMC4764579 DOI: 10.7554/elife.11273] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/24/2015] [Indexed: 12/26/2022] Open
Abstract
Venom toxins are invaluable tools for exploring the structure and mechanisms of ion channels. Here, we solve the structure of double-knot toxin (DkTx), a tarantula toxin that activates the heat-activated TRPV1 channel. We also provide improved structures of TRPV1 with and without the toxin bound, and investigate the interactions of DkTx with the channel and membranes. We find that DkTx binds to the outer edge of the external pore of TRPV1 in a counterclockwise configuration, using a limited protein-protein interface and inserting hydrophobic residues into the bilayer. We also show that DkTx partitions naturally into membranes, with the two lobes exhibiting opposing energetics for membrane partitioning and channel activation. Finally, we find that the toxin disrupts a cluster of hydrophobic residues behind the selectivity filter that are critical for channel activation. Collectively, our findings reveal a novel mode of toxin-channel recognition that has important implications for the mechanism of thermosensation.
Collapse
Affiliation(s)
- Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States.,Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Claudio Anselmi
- Theoretical Molecular Biophysics Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Jeet Kalia
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States.,Indian Institute of Science Education and Research, Pune, Pune, India
| | - Andres Jara-Oseguera
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Charles D Schwieters
- Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, United States
| | - Dmitriy Krepkiy
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwanju, Republic of Korea
| | - Eun-Hee Kim
- Protein Structure Research Group, Korea Basic Science Institute, Ochang, Republic of Korea
| | - Jae Il Kim
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
32
|
The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism. Nat Struct Mol Biol 2016; 23:256-63. [PMID: 26828963 PMCID: PMC5215794 DOI: 10.1038/nsmb.3166] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/30/2015] [Indexed: 11/11/2022]
Abstract
Secondary transporters use alternating access mechanisms to couple uphill substrate movement to downhill ion flux. Most known transporters utilize a “rocking bundle” motion, where the protein moves around an immobile substrate binding site. However, the glutamate transporter homolog, GltPh, translocates its substrate binding site vertically across the membrane, an “elevator” mechanism. Here, we used the “repeat swap” approach to computationally predict the outward-facing state of the Na+/succinate transporter VcINDY, from Vibrio cholerae. Our model predicts a substantial “elevator”-like movement of vcINDY’s substrate binding site, with a vertical translation of ~15 Å and a rotation of ~43°; multiple disulfide crosslinks which completely inhibit transport provide experimental confirmation and demonstrate that such movement is essential. In contrast, crosslinks across the VcINDY dimer interface preserve transport, revealing an absence of large scale coupling between protomers.
Collapse
|
33
|
Obrępalska-Stęplowska A, Czerwoniec A, Wieczorek P, Wrzesińska B. Insight into the Meligethes aeneus voltage-sensitive sodium channel structure and an attempt to select the best pyrethroid ligands. PEST MANAGEMENT SCIENCE 2016; 72:162-171. [PMID: 25652001 DOI: 10.1002/ps.3984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/12/2015] [Accepted: 01/22/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The voltage-sensitive sodium channel (VSSC) is a target for the pharmacological action of pyrethroids which are used in controlling pests, including those of agricultural importance. Among these is the pollen beetle (Meligethes aeneus F.) - the most serious pest of Brassica napus. Owing to the heavy use of pyrethroids, a widespread build-up of resistance has occurred. The main cause of pyrethroid insensitivity in M. aeneus is considered to be an increased oxidative metabolism; however, the additional mechanism of resistance associated with mutations in the VSSC might contribute to this phenomenon. RESULTS We generated a VSSC 3D model to study the docking affinities of pyrethroids to their target site within the channel. Our goal was to identify the pyrethroids for which docking affinity scores were high and not affected by potential mutations in the VSSC. We found that the docking scores of cypermethrin are hardly influenced by the appearance of point mutations. Additionally, tau-fluvalinate, deltamethrin and bifenthrin are VSSC ligands with high affinity scores. CONCLUSIONS Our docking models suggest that point mutations in the VSSC binding pocket might affect the stability of ligand interactions and change the pattern of ligand docking locations, which might have a potential effect on VSSC gating properties.
Collapse
Affiliation(s)
| | - Anna Czerwoniec
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Przemysław Wieczorek
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection - National Research Institute, Poznań, Poland
| | - Barbara Wrzesińska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection - National Research Institute, Poznań, Poland
| |
Collapse
|
34
|
Vergara-Jaque A, Fenollar-Ferrer C, Kaufmann D, Forrest LR. Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms. Front Pharmacol 2015; 6:183. [PMID: 26388773 PMCID: PMC4560100 DOI: 10.3389/fphar.2015.00183] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/13/2015] [Indexed: 12/04/2022] Open
Abstract
Secondary active transporters are critical for neurotransmitter clearance and recycling during synaptic transmission and uptake of nutrients. These proteins mediate the movement of solutes against their concentration gradients, by using the energy released in the movement of ions down pre-existing concentration gradients. To achieve this, transporters conform to the so-called alternating-access hypothesis, whereby the protein adopts at least two conformations in which the substrate binding sites are exposed to one or other side of the membrane, but not both simultaneously. Structures of a bacterial homolog of neuronal glutamate transporters, GltPh, in several different conformational states have revealed that the protein structure is asymmetric in the outward- and inward-open states, and that the conformational change connecting them involves a elevator-like movement of a substrate binding domain across the membrane. The structural asymmetry is created by inverted-topology repeats, i.e., structural repeats with similar overall folds whose transmembrane topologies are related to each other by two-fold pseudo-symmetry around an axis parallel to the membrane plane. Inverted repeats have been found in around three-quarters of secondary transporter folds. Moreover, the (a)symmetry of these systems has been successfully used as a bioinformatic tool, called “repeat-swap modeling” to predict structural models of a transporter in one conformation using the known structure of the transporter in the complementary conformation as a template. Here, we describe an updated repeat-swap homology modeling protocol, and calibrate the accuracy of the method using GltPh, for which both inward- and outward-facing conformations are known. We then apply this repeat-swap homology modeling procedure to a concentrative nucleoside transporter, VcCNT, which has a three-dimensional arrangement related to that of GltPh. The repeat-swapped model of VcCNT predicts that nucleoside transport also occurs via an elevator-like mechanism.
Collapse
Affiliation(s)
- Ariela Vergara-Jaque
- Computational Structural Biology Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke - National Institutes of Health, Bethesda, MD USA
| | - Cristina Fenollar-Ferrer
- Computational Structural Biology Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke - National Institutes of Health, Bethesda, MD USA
| | - Desirée Kaufmann
- Computational Structural Biology Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke - National Institutes of Health, Bethesda, MD USA
| | - Lucy R Forrest
- Computational Structural Biology Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke - National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
35
|
An empirical energy function for structural assessment of protein transmembrane domains. Biochimie 2015; 115:155-61. [DOI: 10.1016/j.biochi.2015.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/21/2015] [Indexed: 11/19/2022]
|
36
|
Kozma D, Tusnády GE. TMFoldRec: a statistical potential-based transmembrane protein fold recognition tool. BMC Bioinformatics 2015; 16:201. [PMID: 26123059 PMCID: PMC4486421 DOI: 10.1186/s12859-015-0638-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/06/2015] [Indexed: 12/26/2022] Open
Abstract
Background Transmembrane proteins (TMPs) are the key components of signal transduction, cell-cell adhesion and energy and material transport into and out from the cells. For the deep understanding of these processes, structure determination of transmembrane proteins is indispensable. However, due to technical difficulties, only a few transmembrane protein structures have been determined experimentally. Large-scale genomic sequencing provides increasing amounts of sequence information on the proteins and whole proteomes of living organisms resulting in the challenge of bioinformatics; how the structural information should be gained from a sequence. Results Here, we present a novel method, TMFoldRec, for fold prediction of membrane segments in transmembrane proteins. TMFoldRec based on statistical potentials was tested on a benchmark set containing 124 TMP chains from the PDBTM database. Using a 10-fold jackknife method, the native folds were correctly identified in 77 % of the cases. This accuracy overcomes the state-of-the-art methods. In addition, a key feature of TMFoldRec algorithm is the ability to estimate the reliability of the prediction and to decide with an accuracy of 70 %, whether the obtained, lowest energy structure is the native one. Conclusion These results imply that the membrane embedded parts of TMPs dictate the TM structures rather than the soluble parts. Moreover, predictions with reliability scores make in this way our algorithm applicable for proteome-wide analyses. Availability The program is available upon request for academic use. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0638-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dániel Kozma
- "Momentum" Membrane Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, PO Box 7, , H 1518, Budapest, Hungary.
| | - Gábor E Tusnády
- "Momentum" Membrane Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, PO Box 7, , H 1518, Budapest, Hungary.
| |
Collapse
|
37
|
Esque J, Urbain A, Etchebest C, de Brevern AG. Sequence-structure relationship study in all-α transmembrane proteins using an unsupervised learning approach. Amino Acids 2015; 47:2303-22. [PMID: 26043903 DOI: 10.1007/s00726-015-2010-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/15/2015] [Indexed: 01/28/2023]
Abstract
Transmembrane proteins (TMPs) are major drug targets, but the knowledge of their precise topology structure remains highly limited compared with globular proteins. In spite of the difficulties in obtaining their structures, an important effort has been made these last years to increase their number from an experimental and computational point of view. In view of this emerging challenge, the development of computational methods to extract knowledge from these data is crucial for the better understanding of their functions and in improving the quality of structural models. Here, we revisit an efficient unsupervised learning procedure, called Hybrid Protein Model (HPM), which is applied to the analysis of transmembrane proteins belonging to the all-α structural class. HPM method is an original classification procedure that efficiently combines sequence and structure learning. The procedure was initially applied to the analysis of globular proteins. In the present case, HPM classifies a set of overlapping protein fragments, extracted from a non-redundant databank of TMP 3D structure. After fine-tuning of the learning parameters, the optimal classification results in 65 clusters. They represent at best similar relationships between sequence and local structure properties of TMPs. Interestingly, HPM distinguishes among the resulting clusters two helical regions with distinct hydrophobic patterns. This underlines the complexity of the topology of these proteins. The HPM classification enlightens unusual relationship between amino acids in TMP fragments, which can be useful to elaborate new amino acids substitution matrices. Finally, two challenging applications are described: the first one aims at annotating protein functions (channel or not), the second one intends to assess the quality of the structures (X-ray or models) via a new scoring function deduced from the HPM classification.
Collapse
Affiliation(s)
- Jérémy Esque
- INSERM, U 1134, DSIMB, 75739, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité UMR-S 1134, 75739, Paris, France.,Institut National de la Transfusion Sanguine (INTS), 75739, Paris, France.,Laboratoire d'Excellence GR-Ex, 75739, Paris, France.,Laboratoire d'Ingénierie des Fonctions Moléculaire (IFM), ISIS, UMR 7006, 67000, Strasbourg, France.,Department of Integrative Structural Biology, INSERM U964, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), 67404, Illkirch, France.,Université de Strasbourg, 67404, Illkirch, France
| | - Aurélie Urbain
- Institut Jean-Pierre Bourgin, INRA, UMR 1318, 78026, Versailles, France
| | - Catherine Etchebest
- INSERM, U 1134, DSIMB, 75739, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité UMR-S 1134, 75739, Paris, France.,Institut National de la Transfusion Sanguine (INTS), 75739, Paris, France.,Laboratoire d'Excellence GR-Ex, 75739, Paris, France
| | - Alexandre G de Brevern
- INSERM, U 1134, DSIMB, 75739, Paris, France. .,Univ. Paris Diderot, Sorbonne Paris Cité UMR-S 1134, 75739, Paris, France. .,Institut National de la Transfusion Sanguine (INTS), 75739, Paris, France. .,Laboratoire d'Excellence GR-Ex, 75739, Paris, France.
| |
Collapse
|
38
|
Vogensen SB, Jørgensen L, Madsen KK, Jurik A, Borkar N, Rosatelli E, Nielsen B, Ecker GF, Schousboe A, Clausen RP. Structure activity relationship of selective GABA uptake inhibitors. Bioorg Med Chem 2015; 23:2480-8. [DOI: 10.1016/j.bmc.2015.03.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/12/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
|
39
|
Studer G, Biasini M, Schwede T. Assessing the local structural quality of transmembrane protein models using statistical potentials (QMEANBrane). ACTA ACUST UNITED AC 2015; 30:i505-11. [PMID: 25161240 PMCID: PMC4147910 DOI: 10.1093/bioinformatics/btu457] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Motivation: Membrane proteins are an important class of biological macromolecules involved in many cellular key processes including signalling and transport. They account for one third of genes in the human genome and >50% of current drug targets. Despite their importance, experimental structural data are sparse, resulting in high expectations for computational modelling tools to help fill this gap. However, as many empirical methods have been trained on experimental structural data, which is biased towards soluble globular proteins, their accuracy for transmembrane proteins is often limited. Results: We developed a local model quality estimation method for membrane proteins (‘QMEANBrane’) by combining statistical potentials trained on membrane protein structures with a per-residue weighting scheme. The increasing number of available experimental membrane protein structures allowed us to train membrane-specific statistical potentials that approach statistical saturation. We show that reliable local quality estimation of membrane protein models is possible, thereby extending local quality estimation to these biologically relevant molecules. Availability and implementation: Source code and datasets are available on request. Contact:torsten.schwede@unibas.ch Supplementary Information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gabriel Studer
- Biozentrum, University of Basel, Basel, 4056, Switzerland and SIB Swiss Institute of Bioinformatics, Basel, 4056, Switzerland Biozentrum, University of Basel, Basel, 4056, Switzerland and SIB Swiss Institute of Bioinformatics, Basel, 4056, Switzerland
| | - Marco Biasini
- Biozentrum, University of Basel, Basel, 4056, Switzerland and SIB Swiss Institute of Bioinformatics, Basel, 4056, Switzerland Biozentrum, University of Basel, Basel, 4056, Switzerland and SIB Swiss Institute of Bioinformatics, Basel, 4056, Switzerland
| | - Torsten Schwede
- Biozentrum, University of Basel, Basel, 4056, Switzerland and SIB Swiss Institute of Bioinformatics, Basel, 4056, Switzerland Biozentrum, University of Basel, Basel, 4056, Switzerland and SIB Swiss Institute of Bioinformatics, Basel, 4056, Switzerland
| |
Collapse
|
40
|
Leman JK, Ulmschneider MB, Gray JJ. Computational modeling of membrane proteins. Proteins 2015; 83:1-24. [PMID: 25355688 PMCID: PMC4270820 DOI: 10.1002/prot.24703] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/01/2014] [Accepted: 10/18/2014] [Indexed: 02/06/2023]
Abstract
The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug-specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α-helical MPs as well as β-barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge-based scoring functions. Moreover, de novo methods have benefited from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade.
Collapse
Affiliation(s)
- Julia Koehler Leman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Martin B. Ulmschneider
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
41
|
Chaudhari R, Heim AJ, Li Z. Improving homology modeling of G-protein coupled receptors through multiple-template derived conserved inter-residue interactions. J Comput Aided Mol Des 2014; 29:413-20. [PMID: 25503850 DOI: 10.1007/s10822-014-9823-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 12/06/2014] [Indexed: 01/19/2023]
Abstract
Evidenced by the three-rounds of G-protein coupled receptors (GPCR) Dock competitions, improving homology modeling methods of helical transmembrane proteins including the GPCRs, based on templates of low sequence identity, remains an eminent challenge. Current approaches addressing this challenge adopt the philosophy of "modeling first, refinement next". In the present work, we developed an alternative modeling approach through the novel application of available multiple templates. First, conserved inter-residue interactions are derived from each additional template through conservation analysis of each template-target pairwise alignment. Then, these interactions are converted into distance restraints and incorporated in the homology modeling process. This approach was applied to modeling of the human β2 adrenergic receptor using the bovin rhodopsin and the human protease-activated receptor 1 as templates and improved model quality was demonstrated compared to the homology model generated by standard single-template and multiple-template methods. This method of "refined restraints first, modeling next", provides a fast and complementary way to the current modeling approaches. It allows rational identification and implementation of additional conserved distance restraints extracted from multiple templates and/or experimental data, and has the potential to be applicable to modeling of all helical transmembrane proteins.
Collapse
Affiliation(s)
- Rajan Chaudhari
- Department of Chemistry & Biochemistry, University of the Sciences in Philadelphia, Box 48, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|
42
|
Yaffe D, Vergara-Jaque A, Shuster Y, Listov D, Meena S, Singh SK, Forrest LR, Schuldiner S. Functionally important carboxyls in a bacterial homologue of the vesicular monoamine transporter (VMAT). J Biol Chem 2014; 289:34229-40. [PMID: 25336661 PMCID: PMC4256354 DOI: 10.1074/jbc.m114.607366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 09/30/2014] [Indexed: 11/06/2022] Open
Abstract
Transporters essential for neurotransmission in mammalian organisms and bacterial multidrug transporters involved in antibiotic resistance are evolutionarily related. To understand in more detail the evolutionary aspects of the transformation of a bacterial multidrug transporter to a mammalian neurotransporter and to learn about mechanisms in a milieu amenable for structural and biochemical studies, we identified, cloned, and partially characterized bacterial homologues of the rat vesicular monoamine transporter (rVMAT2). We performed preliminary biochemical characterization of one of them, Brevibacillus brevis monoamine transporter (BbMAT), from the bacterium B. brevis. BbMAT shares substrates with rVMAT2 and transports them in exchange with >1H(+), like the mammalian transporter. Here we present a homology model of BbMAT that has the standard major facilitator superfamily fold; that is, with two domains of six transmembrane helices each, related by 2-fold pseudosymmetry whose axis runs normal to the membrane and between the two halves. The model predicts that four carboxyl residues, a histidine, and an arginine are located in the transmembrane segments. We show here that two of the carboxyls are conserved, equivalent to the corresponding ones in rVMAT2, and are essential for H(+)-coupled transport. We conclude that BbMAT provides an excellent experimental paradigm for the study of its mammalian counterparts and bacterial multidrug transporters.
Collapse
Affiliation(s)
- Dana Yaffe
- From the Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, 91904 Jerusalem, Israel
| | - Ariela Vergara-Jaque
- the Computational Structural Biology Section, NINDS, National Institutes of Health, Bethesda, Maryland 20852, and
| | - Yonatan Shuster
- From the Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, 91904 Jerusalem, Israel
| | - Dina Listov
- From the Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, 91904 Jerusalem, Israel
| | - Sitaram Meena
- the Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Satinder K Singh
- the Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Lucy R Forrest
- the Computational Structural Biology Section, NINDS, National Institutes of Health, Bethesda, Maryland 20852, and
| | - Shimon Schuldiner
- From the Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, 91904 Jerusalem, Israel,
| |
Collapse
|
43
|
Fenollar-Ferrer C, Patti M, Knöpfel T, Werner A, Forster IC, Forrest LR. Structural fold and binding sites of the human Na⁺-phosphate cotransporter NaPi-II. Biophys J 2014; 106:1268-79. [PMID: 24655502 DOI: 10.1016/j.bpj.2014.01.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 12/17/2022] Open
Abstract
Phosphate plays essential biological roles and its plasma level in humans requires tight control to avoid bone loss (insufficiency) or vascular calcification (excess). Intestinal absorption and renal reabsorption of phosphate are mediated by members of the SLC34 family of sodium-coupled transporters (NaPi-IIa,b,c) whose membrane expression is regulated by various hormones, circulating proteins, and phosphate itself. Consequently, NaPi-II proteins are also potentially important pharmaceutical targets for controlling phosphate levels. Their crucial role in Pi homeostasis is underscored by pathologies resulting from naturally occurring SLC34 mutations and SLC34 knockout animals. SLC34 isoforms have been extensively studied with respect to transport mechanism and structure-function relationships; however, the three-dimensional structure is unknown. All SLC34 transporters share a duplicated motif comprising a glutamine followed by a stretch of threonine or serine residues, suggesting the presence of structural repeats as found in other transporter families. Nevertheless, standard bioinformatic approaches fail to clearly identify a suitable template for molecular modeling. Here, we used hydrophobicity profiles and hidden Markov models to define a structural repeat common to all SLC34 isoforms. Similar approaches identify a relationship with the core regions in a crystal structure of Vibrio cholerae Na(+)-dicarboxylate transporter VcINDY, from which we generated a homology model of human NaPi-IIa. The aforementioned SLC34 motifs in each repeat localize to the center of the model, and were predicted to form Na(+) and Pi coordination sites. Functional relevance of key amino acids was confirmed by biochemical and electrophysiological analysis of expressed, mutated transporters. Moreover, the validity of the predicted architecture is corroborated by extensive published structure-function studies. The model provides key information for elucidating the transport mechanism and predicts candidate substrate binding sites.
Collapse
Affiliation(s)
- Cristina Fenollar-Ferrer
- Computational Structural Biology Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Monica Patti
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Thomas Knöpfel
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Andreas Werner
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Ian C Forster
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland.
| | - Lucy R Forrest
- Computational Structural Biology Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
44
|
Pawlowski M, Saraswathi S, Motawea HKB, Chotani MA, Kloczkowski A. In silico modeling of human α2C-adrenoreceptor interaction with filamin-2. PLoS One 2014; 9:e103099. [PMID: 25110951 PMCID: PMC4128582 DOI: 10.1371/journal.pone.0103099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/19/2014] [Indexed: 12/19/2022] Open
Abstract
Vascular smooth muscle α2C-adrenoceptors (α2C-ARs) mediate vasoconstriction of small blood vessels, especially arterioles. Studies of endogenous receptors in human arteriolar smooth muscle cells (referred to as microVSM) and transiently transfected receptors in heterologous HEK293 cells show that the α2C-ARs are perinuclear receptors that translocate to the cell surface under cellular stress and elicit a biological response. Recent studies in microVSM unraveled a crucial role of Rap1A-Rho-ROCK-F-actin pathways in receptor translocation, and identified protein-protein interaction of α2C-ARs with the actin binding protein filamin-2 as an essential step in the process. To better understand the molecular nature and specificity of this interaction, in this study, we constructed comparative models of human α2C-AR and human filamin-2 proteins. Finally, we performed in silico protein-protein docking to provide a structural platform for the investigation of human α2C-AR and filamin-2 interactions. We found that electrostatic interactions seem to play a key role in this complex formation which manifests in interactions between the C-terminal arginines of α2C-ARs (particularly R454 and R456) and negatively charged residues from filamin-2 region between residues 1979 and 2206. Phylogenetic and sequence analysis showed that these interactions have evolved in warm-blooded animals.
Collapse
Affiliation(s)
- Marcin Pawlowski
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Saras Saraswathi
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Hanaa K. B. Motawea
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pharmacology & Toxicology, Helwan University, Helwan, Egypt
| | - Maqsood A. Chotani
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Andrzej Kloczkowski
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
45
|
Gazos-Lopes F, Oliveira MM, Hoelz LVB, Vieira DP, Marques AF, Nakayasu ES, Gomes MT, Salloum NG, Pascutti PG, Souto-Padrón T, Monteiro RQ, Lopes AH, Almeida IC. Structural and functional analysis of a platelet-activating lysophosphatidylcholine of Trypanosoma cruzi. PLoS Negl Trop Dis 2014; 8:e3077. [PMID: 25101628 PMCID: PMC4125143 DOI: 10.1371/journal.pntd.0003077] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/13/2014] [Indexed: 12/15/2022] Open
Abstract
Background Trypanosoma cruzi is the causative agent of the life-threatening Chagas disease, in which increased platelet aggregation related to myocarditis is observed. Platelet-activating factor (PAF) is a potent intercellular lipid mediator and second messenger that exerts its activity through a PAF-specific receptor (PAFR). Previous data from our group suggested that T. cruzi synthesizes a phospholipid with PAF-like activity. The structure of T. cruzi PAF-like molecule, however, remains elusive. Methodology/Principal findings Here, we have purified and structurally characterized the putative T. cruzi PAF-like molecule by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Our ESI-MS/MS data demonstrated that the T. cruzi PAF-like molecule is actually a lysophosphatidylcholine (LPC), namely sn-1 C18:1(delta 9)-LPC. Similar to PAF, the platelet-aggregating activity of C18:1-LPC was abrogated by the PAFR antagonist, WEB 2086. Other major LPC species, i.e., C16:0-, C18:0-, and C18:2-LPC, were also characterized in all T. cruzi stages. These LPC species, however, failed to induce platelet aggregation. Quantification of T. cruzi LPC species by ESI-MS revealed that intracellular amastigote and trypomastigote forms have much higher levels of C18:1-LPC than epimastigote and metacyclic trypomastigote forms. C18:1-LPC was also found to be secreted by the parasite in extracellular vesicles (EV) and an EV-free fraction. A three-dimensional model of PAFR was constructed and a molecular docking study was performed to predict the interactions between the PAFR model and PAF, and each LPC species. Molecular docking data suggested that, contrary to other LPC species analyzed, C18:1-LPC is predicted to interact with the PAFR model in a fashion similar to PAF. Conclusions/Significance Taken together, our data indicate that T. cruzi synthesizes a bioactive C18:1-LPC, which aggregates platelets via PAFR. We propose that C18:1-LPC might be an important lipid mediator in the progression of Chagas disease and its biosynthesis could eventually be exploited as a potential target for new therapeutic interventions. Chagas disease, caused by the parasite Trypanosoma cruzi, was exclusively confined to Latin America but it has recently spread to other regions of the world. Chagas disease affects 8–10 million people and kills thousands of them every year. Lysophosphatidylcholine (LPC) is a major bioactive phospholipid of human plasma low-density lipoproteins (LDL). Platelet-activating factor (PAF) is a phospholipid similar to LPC and a potent intercellular mediator. Both PAF and LPC have been reported to act on mammalian cells through PAF receptor (PAFR). Previous data from our group suggested that T. cruzi produces a phospholipid with PAF activity. Here, we describe the structural and functional analysis of different species of LPC from T. cruzi, including a LPC with a fatty acid chain of 18 carbon atoms and one double bond (C18:1-LPC). We also show that C18:1-LPC is able to induce rabbit platelet aggregation, which is abrogated by a PAFR antagonist. In addition, a three-dimensional model of human PAFR was constructed. Contrary to other T. cruzi LPC molecules, C18:1-LPC is predicted to interact with the PAFR model in a fashion similar to PAF. Further studies are needed to validate the biosynthesis of T. cruzi C18:1-LPC as a potential drug target in Chagas disease.
Collapse
Affiliation(s)
- Felipe Gazos-Lopes
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
| | - Mauricio M. Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas V. B. Hoelz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco G, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle P. Vieira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre F. Marques
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ernesto S. Nakayasu
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
| | - Marta T. Gomes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco H, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nasim G. Salloum
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
| | - Pedro G. Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco G, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaïs Souto-Padrón
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Q. Monteiro
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco H, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela H. Lopes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (AHL); (ICA)
| | - Igor C. Almeida
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
- * E-mail: (AHL); (ICA)
| |
Collapse
|
46
|
Wallner B. ProQM-resample: improved model quality assessment for membrane proteins by limited conformational sampling. ACTA ACUST UNITED AC 2014; 30:2221-3. [PMID: 24713439 PMCID: PMC4103597 DOI: 10.1093/bioinformatics/btu187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Summary: Model Quality Assessment Programs (MQAPs) are used to predict the quality of modeled protein structures. These usually use two approaches: methods using consensus of many alternative models and methods requiring only a single model to do its prediction. The consensus methods are useful to improve overall accuracy; however, they frequently fail to pick out the best possible model and cannot be used to generate and score new structures. Single-model methods, on the other hand, do not have these inherent shortcomings and can be used to both sample new structures and improve existing consensus methods. Here, we present ProQM-resample, a membrane protein-specific single-model MQAP, that couples side-chain resampling with MQAP rescoring by ProQM to improve model selection. The side-chain resampling is able to improve side-chain packing for 96% of all models, and improve model selection by 24% as measured by the sum of the Z-score for the first-ranked model (from 25.0 to 31.1), even better than the state-of-the-art consensus method Pcons. The improved model selection can be attributed to the improved side-chain quality, which enables the MQAP to rescue good backbone models with poor side-chain packing. Availability and implementation:http://proqm.wallnerlab.org/download/. Contact:bjornw@ifm.liu.se Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Björn Wallner
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping and Swedish e-Science Research Center, Stockholm, SwedenDepartment of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping and Swedish e-Science Research Center, Stockholm, Sweden
| |
Collapse
|
47
|
Azouzi S, Gueroult M, Ripoche P, Genetet S, Colin Aronovicz Y, Le Van Kim C, Etchebest C, Mouro-Chanteloup I. Energetic and molecular water permeation mechanisms of the human red blood cell urea transporter B. PLoS One 2013; 8:e82338. [PMID: 24376529 PMCID: PMC3869693 DOI: 10.1371/journal.pone.0082338] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/31/2013] [Indexed: 12/19/2022] Open
Abstract
Urea transporter B (UT-B) is a passive membrane channel that facilitates highly efficient permeation of urea. In red blood cells (RBC), while the major function of UT-B is to transport urea, it is assumed that this protein is able to conduct water. Here, we have revisited this last issue by studying RBCs and ghosts from human variants with defects of aquaporin 1 (AQP1) or UT-B. We found that UT-B's osmotic water unit permeability (pfunit) is similar to that of AQP1. The determination of diffusional permeability coefficient (Pd) allowed the calculation of the Pf/Pd ratio, which is consistent with a single-file water transport. Molecular dynamic simulations of water conduction through human UT-B confirmed the experimental finding. From these results, we propose an atomistic description of water-protein interactions involved in this permeation. Inside the UT-B pore, five water molecules were found to form a single-file and move rapidly along a channel by hydrogen bond exchange involving two critical threonines. We further show that the energy barrier for water located in the central region coincides with a water dipole reorientation, which can be related to the proton exclusion observed experimentally. In conclusion, our results indicate that UT-B should be considered as a new member of the water channel family.
Collapse
Affiliation(s)
- Slim Azouzi
- Institut National de la Transfusion Sanguine, Paris, France
- Inserm, UMR_S665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Laboratory of Excellence GR-Ex., Paris, France
| | - Marc Gueroult
- Institut National de la Transfusion Sanguine, Paris, France
- Inserm, UMR_S665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Laboratory of Excellence GR-Ex., Paris, France
| | - Pierre Ripoche
- Institut National de la Transfusion Sanguine, Paris, France
- Inserm, UMR_S665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Laboratory of Excellence GR-Ex., Paris, France
| | - Sandrine Genetet
- Institut National de la Transfusion Sanguine, Paris, France
- Inserm, UMR_S665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Laboratory of Excellence GR-Ex., Paris, France
| | - Yves Colin Aronovicz
- Institut National de la Transfusion Sanguine, Paris, France
- Inserm, UMR_S665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Laboratory of Excellence GR-Ex., Paris, France
| | - Caroline Le Van Kim
- Institut National de la Transfusion Sanguine, Paris, France
- Inserm, UMR_S665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Laboratory of Excellence GR-Ex., Paris, France
| | - Catherine Etchebest
- Institut National de la Transfusion Sanguine, Paris, France
- Inserm, UMR_S665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Laboratory of Excellence GR-Ex., Paris, France
| | - Isabelle Mouro-Chanteloup
- Institut National de la Transfusion Sanguine, Paris, France
- Inserm, UMR_S665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Laboratory of Excellence GR-Ex., Paris, France
| |
Collapse
|
48
|
Werner T, Church WB. Kink Characterization and Modeling in Transmembrane Protein Structures. J Chem Inf Model 2013; 53:2926-36. [DOI: 10.1021/ci400236s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tim Werner
- Group in
Biomolecular Structure
and Informatics, Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006, Australia
| | - W. Bret Church
- Group in
Biomolecular Structure
and Informatics, Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
49
|
Ray A, Lindahl E, Wallner B. Improved model quality assessment using ProQ2. BMC Bioinformatics 2012; 13:224. [PMID: 22963006 PMCID: PMC3584948 DOI: 10.1186/1471-2105-13-224] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/07/2012] [Indexed: 11/19/2022] Open
Abstract
Background Employing methods to assess the quality of modeled protein structures is now standard practice in bioinformatics. In a broad sense, the techniques can be divided into methods relying on consensus prediction on the one hand, and single-model methods on the other. Consensus methods frequently perform very well when there is a clear consensus, but this is not always the case. In particular, they frequently fail in selecting the best possible model in the hard cases (lacking consensus) or in the easy cases where models are very similar. In contrast, single-model methods do not suffer from these drawbacks and could potentially be applied on any protein of interest to assess quality or as a scoring function for sampling-based refinement. Results Here, we present a new single-model method, ProQ2, based on ideas from its predecessor, ProQ. ProQ2 is a model quality assessment algorithm that uses support vector machines to predict local as well as global quality of protein models. Improved performance is obtained by combining previously used features with updated structural and predicted features. The most important contribution can be attributed to the use of profile weighting of the residue specific features and the use features averaged over the whole model even though the prediction is still local. Conclusions ProQ2 is significantly better than its predecessors at detecting high quality models, improving the sum of Z-scores for the selected first-ranked models by 20% and 32% compared to the second-best single-model method in CASP8 and CASP9, respectively. The absolute quality assessment of the models at both local and global level is also improved. The Pearson’s correlation between the correct and local predicted score is improved from 0.59 to 0.70 on CASP8 and from 0.62 to 0.68 on CASP9; for global score to the correct GDT_TS from 0.75 to 0.80 and from 0.77 to 0.80 again compared to the second-best single methods in CASP8 and CASP9, respectively. ProQ2 is available at http://proq2.wallnerlab.org.
Collapse
Affiliation(s)
- Arjun Ray
- Department of Theoretical Physics & Swedish eScience Research Center, Royal Institute of Technology, Stockholm, Sweden
| | | | | |
Collapse
|
50
|
Nugent T, Jones DT. Membrane protein structural bioinformatics. J Struct Biol 2012; 179:327-37. [DOI: 10.1016/j.jsb.2011.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
|