1
|
Sondi I, Leonardi A, Križaj I, Kazazić S, Salopek-Sondi B, Škapin SD. Morphogenesis of Aragonite Biomineral Structures by the Nonclassical Colloidal Crystal Growth Mechanism Revisited on the Nanoscale: The Noah's Ark Shell ( Arca noae, L.) Case Study. ACS Biomater Sci Eng 2025; 11:866-874. [PMID: 39879641 PMCID: PMC11815636 DOI: 10.1021/acsbiomaterials.4c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell (Arca noae L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses. Proteins from the soluble organic matrix (SOM) were analyzed by Edman degradation. The results showed that the Noah's Ark shell exhibits several distinct biomineral structures characterized by complex morphologies and different forms of aragonite. The inner shell of the Ark is characterized by a combination of nanogranular surfaces and micron-sized, idiomorphically developed aragonite crystals indicative of orthorhombic symmetry. The formation of these structures is discussed in terms of the nonclassical crystal growth route considering the colloidally mediated mechanism based on the initial particle-particle interaction of the nanosized and metastable precursor aragonite phase and their dissolution and recrystallization processes. These structures contained a small amount of connecting organic material, SOM, assessed at 1.5% of the total mass. Edman degradation revealed the partial amino acid sequence that is present also in the tetratricopeptide repeat (TPR) protein 8 from diverse mussels. Bacterial TPR-containing protein was found to be involved in the biomineralization process, so we propose such a function for these proteins also in mussels.
Collapse
Affiliation(s)
- Ivan Sondi
- Faculty
of Mining, Geology and Petroleum Engineering, 10000 Zagreb, Croatia
| | - Adrijana Leonardi
- Department
of Molecular and Biomedical Sciences, Jožef
Stefan Institute, 1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department
of Molecular and Biomedical Sciences, Jožef
Stefan Institute, 1000 Ljubljana, Slovenia
| | - Saša Kazazić
- Division
of Physical Chemistry, Rud̵er Bošković
Institute, 10000 Zagreb, Croatia
| | | | - Srečo D. Škapin
- Advanced
Materials Department, Jožef Stefan
Institute, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Sołtys K, Tarczewska A, Bystranowska D. Modulation of biomolecular phase behavior by metal ions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119567. [PMID: 37582439 DOI: 10.1016/j.bbamcr.2023.119567] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Liquid-liquid phase separation (LLPS) appears to be a newly appreciated aspect of the cellular organization of biomolecules that leads to the formation of membraneless organelles (MLOs). MLOs generate distinct microenvironments where particular biomolecules are highly concentrated compared to those in the surrounding environment. Their thermodynamically driven formation is reversible, and their liquid nature allows them to fuse with each other. Dysfunctional biomolecular condensation is associated with human diseases. Pathological states of MLOs may originate from the mutation of proteins or may be induced by other factors. In most aberrant MLOs, transient interactions are replaced by stronger and more rigid interactions, preventing their dissolution, and causing their uncontrolled growth and dysfunction. For these reasons, there is great interest in identifying factors that modulate LLPS. In this review, we discuss an enigmatic and mostly unexplored aspect of this process, namely, the regulatory effects of metal ions on the phase behavior of biomolecules.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Aneta Tarczewska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
3
|
Völkle Nee Evgrafov E, Schulz F, Kanold JM, Michaelis M, Wissel K, Brümmer F, Schenk AS, Ludwigs S, Bill J, Rothenstein D. Functional mimicry of sea urchin biomineralization proteins with CaCO 3-binding peptides selected by phage display. J Mater Chem B 2023; 11:10174-10188. [PMID: 37850271 DOI: 10.1039/d3tb01584j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The intricate process of biomineralization, e.g. in sea urchins, involves the precise interplay of highly regulated mineralization proteins and the spatiotemporal coordination achieved through compartmentalization. However, the investigation of biomineralization effector molecules, e.g. proteins, is challenging, due to their very low abundance. Therefore, we investigate the functional mimicry in the bioinspired precipitation of calcium carbonate (CaCO3) with artificial peptides selected from a peptide library by phage display based on peptide-binding to calcite and aragonite, respectively. The structure-directing effects of the identified peptides were compared to those of natural protein mixes isolated from skeletal (test) structures of two sea urchin species (Arbacia lixula and Paracentrotus lividus). The calcium carbonate samples deposited in the absence or presence of peptides were analyzed with a set of complementary techniques with regard to morphology, polymorph, and nanostructural motifs. Remarkably, some of the CaCO3-binding peptides induced morphological features in calcite that appeared similar to those obtained in the presence of the natural protein mixes. Many of the peptides identified as most effective in exerting a structure-directing effect on calcium carbonate crystallization were rich in basic amino acid residues. Hence, our in vitro mineralization study further highlights the important, but often neglected, role of positively charged soluble organic matrices associated with biological and bioinspired CaCO3 deposition.
Collapse
Affiliation(s)
- Elke Völkle Nee Evgrafov
- Dept. Bioinspired Materials, Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, 70569 Stuttgart, Germany.
| | - Fabian Schulz
- Dept. Bioinspired Materials, Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, 70569 Stuttgart, Germany.
| | - Julia Maxi Kanold
- Institute for Biomaterials and Biomolecular Systems & Scientific Diving Group (WiTUS), University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Monika Michaelis
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Kerstin Wissel
- Dept. Chemical Materials Synthesis, Institute for Materials Science, University of Stuttgart, Heisenbergstraβe 3, 70569 Stuttgart, Germany
| | - Franz Brümmer
- Institute for Biomaterials and Biomolecular Systems & Scientific Diving Group (WiTUS), University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Anna S Schenk
- Physical Chemistry IV, Department of Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Sabine Ludwigs
- IPOC - Functional Polymers, Institute of Polymer Chemistry (IPOC), University of Stuttgart, Stuttgart 70569, Germany
| | - Joachim Bill
- Dept. Bioinspired Materials, Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, 70569 Stuttgart, Germany.
| | - Dirk Rothenstein
- Dept. Bioinspired Materials, Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, 70569 Stuttgart, Germany.
| |
Collapse
|
4
|
Carter MS, Tuttle MJ, Mancini JA, Martineau R, Hung CS, Gupta MK. Microbially Induced Calcium Carbonate Precipitation by Sporosarcina pasteurii: a Case Study in Optimizing Biological CaCO 3 Precipitation. Appl Environ Microbiol 2023; 89:e0179422. [PMID: 37439668 PMCID: PMC10467343 DOI: 10.1128/aem.01794-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
Current production of traditional concrete requires enormous energy investment that accounts for approximately 5 to 8% of the world's annual CO2 production. Biocement is a building material that is already in industrial use and has the potential to rival traditional concrete as a more convenient and more environmentally friendly alternative. Biocement relies on biological structures (enzymes, cells, and/or cellular superstructures) to mineralize and bind particles in aggregate materials (e.g., sand and soil particles). Sporosarcina pasteurii is a workhorse organism for biocementation, but most research to date has focused on S. pasteurii as a building material rather than a biological system. In this review, we synthesize available materials science, microbiology, biochemistry, and cell biology evidence regarding biological CaCO3 precipitation and the role of microbes in microbially induced calcium carbonate precipitation (MICP) with a focus on S. pasteurii. Based on the available information, we provide a model that describes the molecular and cellular processes involved in converting feedstock material (urea and Ca2+) into cement. The model provides a foundational framework that we use to highlight particular targets for researchers as they proceed into optimizing the biology of MICP for biocement production.
Collapse
Affiliation(s)
- Michael S. Carter
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Matthew J. Tuttle
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Joshua A. Mancini
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Rhett Martineau
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Maneesh K. Gupta
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| |
Collapse
|
5
|
Ling SY, Asis J, Musta B. Distribution of metals in coastal sediment from northwest sabah, Malaysia. Heliyon 2023; 9:e13271. [PMID: 36755600 PMCID: PMC9900272 DOI: 10.1016/j.heliyon.2023.e13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
The type of minerals in sediments control the geochemical distribution of metals which serve as an indicator of the pollution status to the marine environment. The type of minerals was determined from X-ray diffraction (XRD) and scanning electron microscope (SEM) which shows the dominance of carbonate (calcite, aragonite, dolomite), silicate (quartz) and minor clay (illite, kaolinite) minerals. The elemental concentrations were also determined using the Inductively Coupled Plasma (ICP-OES) analysis that shows the major elements Ca > Fe > Mg > Al > Mn for all locations, whereas the heavy metals differ as Ni > Cr > Zn > Co > Pb, Cr > Ni > Zn > Pb > Co and Zn > Pb > Cr > Ni, respectively. The correlation between the major elements and heavy metals were also performed using the Pearson Correlation analysis via IBM SPSS which showed the positive Al-Fe-Mn correlation with the heavy metals but negative correlation with Ca. The correlations between the elements were influenced by the adsorption and precipitation of the major minerals in the sediment. The objective of this study is to determine the geochemical distribution of metals due to the influence of minerals in the coastal sediment of Kota Belud, Kudat and Mantanani Island. Therefore, this study could serve as a geochemical baseline data to understand the abundance of metals from the coastal region of northwest Sabah, Malaysia.
Collapse
Affiliation(s)
- Sin Yi Ling
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Junaidi Asis
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Baba Musta
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia,Small Island Research Centre, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia,Corresponding author. Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
6
|
Different skeletal protein toolkits achieve similar structure and performance in the tropical coral Stylophora pistillata and the temperate Oculina patagonica. Sci Rep 2022; 12:16575. [PMID: 36195656 PMCID: PMC9532382 DOI: 10.1038/s41598-022-20744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/19/2022] [Indexed: 11/08/2022] Open
Abstract
Stony corals (order: Scleractinia) differ in growth form and structure. While stony corals have gained the ability to form their aragonite skeleton once in their evolution, the suite of proteins involved in skeletogenesis is different for different coral species. This led to the conclusion that the organic portion of their skeleton can undergo rapid evolutionary changes by independently evolving new biomineralization-related proteins. Here, we used liquid chromatography-tandem mass spectrometry to sequence skeletogenic proteins extracted from the encrusting temperate coral Oculina patagonica. We compare it to the previously published skeletal proteome of the branching subtropical corals Stylophora pistillata as both are regarded as highly resilient to environmental changes. We further characterized the skeletal organic matrix (OM) composition of both taxa and tested their effects on the mineral formation using a series of overgrowth experiments on calcite seeds. We found that each species utilizes a different set of proteins containing different amino acid compositions and achieve a different morphology modification capacity on calcite overgrowth. Our results further support the hypothesis that the different coral taxa utilize a species-specific protein set comprised of independent gene co-option to construct their own unique organic matrix framework. While the protein set differs between species, the specific predicted roles of the whole set appear to underline similar functional roles. They include assisting in forming the extracellular matrix, nucleation of the mineral and cell signaling. Nevertheless, the different composition might be the reason for the varying organization of the mineral growth in the presence of a particular skeletal OM, ultimately forming their distinct morphologies.
Collapse
|
7
|
Yi L, Zou B, Xie L, Zhang R. A novel bifunctional protein PNU7 in CaCO3 polymorph formation: Vaterite stabilization and surface energy minimization. Int J Biol Macromol 2022; 222:2796-2807. [DOI: 10.1016/j.ijbiomac.2022.10.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
8
|
Tarczewska A, Bielak K, Zoglowek A, Sołtys K, Dobryszycki P, Ożyhar A, Różycka M. The Role of Intrinsically Disordered Proteins in Liquid–Liquid Phase Separation during Calcium Carbonate Biomineralization. Biomolecules 2022; 12:biom12091266. [PMID: 36139105 PMCID: PMC9496343 DOI: 10.3390/biom12091266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Some animal organs contain mineralized tissues. These so-called hard tissues are mostly deposits of calcium salts, usually in the form of calcium phosphate or calcium carbonate. Examples of this include fish otoliths and mammalian otoconia, which are found in the inner ear, and they are an essential part of the sensory system that maintains body balance. The composition of ear stones is quite well known, but the role of individual components in the nucleation and growth of these biominerals is enigmatic. It is sure that intrinsically disordered proteins (IDPs) play an important role in this aspect. They have an impact on the shape and size of otoliths. It seems probable that IDPs, with their inherent ability to phase separate, also play a role in nucleation processes. This review discusses the major theories on the mechanisms of biomineral nucleation with a focus on the importance of protein-driven liquid–liquid phase separation (LLPS). It also presents the current understanding of the role of IDPs in the formation of calcium carbonate biominerals and predicts their potential ability to drive LLPS.
Collapse
|
9
|
Sun Q, Jiang Y, Yan X, Fan M, Zhang X, Xu H, Liao Z. Molecular Characterization of a Novel Shell Matrix Protein With PDZ Domain From Mytilus coruscus. Front Physiol 2020; 11:543758. [PMID: 33123020 PMCID: PMC7573561 DOI: 10.3389/fphys.2020.543758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
Mollusk shells are products of biomineralization and possess excellent mechanical properties, and shell matrix proteins (SMPs) have important functions in shell formation. A novel SMP with a PDZ domain (PDZ-domain-containing-protein-1, PDCP-1) was identified from the shell matrices of Mytilus coruscus. In this study, the gene expression, function, and location of PDCP-1 were analyzed. PDCP-1 was characterized as an ∼70 kDa protein with a PDZ (postsynaptic density/discs large/zonula occludes) domain and a ZM (ZASP-like motif) domain. The PDCP-1 gene has a high expression level and specific location in the foot, mantle and adductor muscle. Recombinantly expressed PDCP-1 (rPDCP-1) altered the morphology of calcite crystals, the polymorph of calcite crystals, binding with both calcite and aragonite crystals, and inhibition of the crystallization rate of calcite crystals. In addition, anti-rPDCP-1 antibody was prepared, and immunohistochemistry and immunofluorescence analyses revealed the specific location of PDCP-1 in the mantle, the adductor muscle, and the aragonite (nacre and myostracum) layer of the shell, suggesting multiple functions of PDCP-1 in biomineralization, muscle-shell attachment, and muscle attraction. Furthermore, pull-down analysis revealed 19 protein partners of PDCP-1 from the shell matrices, which accordingly provided a possible interaction network of PDCP-1 in the shell. These results expand the understanding of the functions of PDZ-domain-containing proteins (PDCPs) in biomineralization and the supramolecular chemistry that contributes to shell formation.
Collapse
|
10
|
Sakalauskaite J, Marin F, Pergolizzi B, Demarchi B. Shell palaeoproteomics: First application of peptide mass fingerprinting for the rapid identification of mollusc shells in archaeology. J Proteomics 2020; 227:103920. [PMID: 32712371 DOI: 10.1016/j.jprot.2020.103920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 01/31/2023]
Abstract
Molluscs were one of the most widely-used natural resources in the past, and their shells are abundant among archaeological findings. However, our knowledge of the variety of shells that were circulating in prehistoric times (and thus their socio-economic and cultural value) is scarce due to the difficulty of achieving taxonomic determination of fragmented and/or worked remains. This study aims to obtain molecular barcodes based on peptide mass fingerprints (PMFs) of intracrystalline proteins, in order to obtain shell identification. Palaeoproteomic applications on shells are challenging, due to low concentration of molluscan proteins and an incomplete understanding of their sequences. We explore different approaches for protein extraction from small-size samples (<20 mg), followed by MALDI-TOF-MS analysis. The SP3 (single-pot, solid-phase) sample preparation method was found to be the most successful in retrieving the intracrystalline protein fraction from seven molluscan shell taxa, which belong to different phylogenetic groups, possess distinct microstructures and are relevant for archaeology. Furthermore, all the shells analysed, including a 7000-year-old specimen of the freshwater bivalve Pseudunio, yielded good-quality distinctive spectra, demonstrating that PMFs can be used for shell taxon determination. Our work suggests good potential for large-scale screening of archaeological molluscan remains. SIGNIFICANCE: We characterise for the first time the peptide mass fingerprints of the intracrystalline shell protein fraction isolated from different molluscan taxa. We demonstrate that these proteins yield distinctive PMFs, even for shells that are phylogenetically related and/or that display similar microstructures. Furthermore, we extend the range of sample preparation approaches for "shellomics" by testing the SP3 method, which proved to be well-suited to shell protein extraction from small-size and protein-poor samples. This work thus lays the foundations for future large-scale applications for the identification of mollusc shells and other invertebrate remains from the archaeological and palaeontological records.
Collapse
Affiliation(s)
- Jorune Sakalauskaite
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; Biogéosciences, UMR CNRS 6282, University of Burgundy-Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France.
| | - Frédéric Marin
- Biogéosciences, UMR CNRS 6282, University of Burgundy-Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, 10043 Orbassano, TO, Italy
| | - Beatrice Demarchi
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy.
| |
Collapse
|
11
|
Sakalauskaite J, Plasseraud L, Thomas J, Albéric M, Thoury M, Perrin J, Jamme F, Broussard C, Demarchi B, Marin F. The shell matrix of the european thorny oyster, Spondylus gaederopus: microstructural and molecular characterization. J Struct Biol 2020; 211:107497. [PMID: 32220629 DOI: 10.1016/j.jsb.2020.107497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 11/18/2022]
Abstract
Molluscs, the largest marine phylum, display extraordinary shell diversity and sophisticated biomineral architectures. However, mineral-associated biomolecules involved in biomineralization are still poorly characterised. We report the first comprehensive structural and biomolecular study of Spondylus gaederopus, a pectinoid bivalve with a peculiar shell texture. Used since prehistoric times, this is the best-known shell of Europe's cultural heritage. We find that Spondylus microstructure is very poor in mineral-bound organics, which are mostly intercrystalline and concentrated at the interface between structural layers. Using high-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS) we characterized several shell protein fractions, isolated following different bleaching treatments. Several peptides were identified as well as six shell proteins, which display features and domains typically found in biomineralized tissues, including the prevalence of intrinsically disordered regions. It is very likely that these sequences only partially represent the full proteome of Spondylus, considering the lack of genomics data for this genus and the fact that most of the reconstructed peptides do not match with any known shell proteins, representing consequently lineage-specific sequences. This work sheds light onto the shell matrix involved in the biomineralization in spondylids. Our proteomics data suggest that Spondylus has evolved a shell-forming toolkit, distinct from that of other better studied pectinoids - fine-tuned to produce shell structures with high mechanical properties, while limited in organic content. This study therefore represents an important milestone for future studies on biomineralized skeletons and provides the first reference dataset for forthcoming molecular studies of Spondylus archaeological artifacts.
Collapse
Affiliation(s)
- Jorune Sakalauskaite
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; Biogeosciences, UMR CNRS 6282, University of Burgundy-Franche-Comté (UBFC), 6 Boulevard Gabriel, 21000 Dijon, France.
| | - Laurent Plasseraud
- Institute of Molecular Chemistry, ICMUB UMR CNRS 6302, University of Burgundy-Franche-Comté (UBFC), 9 Avenue Alain Savary, 21000 Dijon, France
| | - Jérôme Thomas
- Biogeosciences, UMR CNRS 6282, University of Burgundy-Franche-Comté (UBFC), 6 Boulevard Gabriel, 21000 Dijon, France
| | - Marie Albéric
- Laboratoire Chimie de la Matière Condensée de Paris, UMR, CNRS 7574, Sorbonne Université, Place Jussieu 4, 75252 Paris, France
| | - Mathieu Thoury
- IPANEMA, CNRS, ministère de la Culture, UVSQ, USR3461, Université Paris-Saclay, F-91192 Gif-sur-Yvette, France
| | - Jonathan Perrin
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
| | - Frédéric Jamme
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
| | - Cédric Broussard
- 3P5 Proteomic Platform, University of Paris, Cochin Institute, INSERM, U1016, CNRS, UMR8104, F-75014 Paris, France
| | - Beatrice Demarchi
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Frédéric Marin
- Biogeosciences, UMR CNRS 6282, University of Burgundy-Franche-Comté (UBFC), 6 Boulevard Gabriel, 21000 Dijon, France.
| |
Collapse
|
12
|
Skeletal development in the sea urchin relies upon protein families that contain intrinsic disorder, aggregation-prone, and conserved globular interactive domains. PLoS One 2019; 14:e0222068. [PMID: 31574084 PMCID: PMC6771980 DOI: 10.1371/journal.pone.0222068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/21/2019] [Indexed: 12/02/2022] Open
Abstract
The formation of the sea urchin spicule skeleton requires the participation of hydrogel-forming protein families that regulate mineral nucleation and nanoparticle assembly processes that give rise to the spicule. However, the structure and molecular behavior of these proteins is not well established, and thus our ability to understand this process is hampered. We embarked on a study of sea urchin spicule proteins using a combination of biophysical and bioinformatics techniques. Our biophysical findings indicate that recombinant variants of the two most studied spicule matrix proteins, SpSM50 and SpSM30B/C (S. purpuratus) have a conformational landscape that include a C-terminal random coil/intrinsically disordered MAPQG sequence coupled to a conserved, folded N-terminal C-type lectin-like (CTLL) domain, with SpSM50 > SpSM30B/C with regard to intrinsic disorder. Both proteins possess solvent-accessible unfolded MAQPG sequence regions where Asn, Gln, and Arg residues may be accessible for protein hydrogel interactions with water molecules. Our bioinformatics study included seven other spicule matrix proteins where we note similarities between these proteins and rare, unusual proteins that possess folded and unfolded traits. Moreover, spicule matrix proteins possess three types of sequences: intrinsically disordered, amyloid-like, and folded protein-protein interactive. Collectively these reactive domains would be capable of driving protein assembly and hydrogel formation. Interestingly, three types of global conformations are predicted for the nine member protein set, wherein we note variations in the arrangement of intrinsically disordered and interactive globular domains. These variations may reflect species-specific requirements for spiculogenesis. We conclude that the molecular landscape of spicule matrix protein families enables them to function as hydrogelators, nucleators, and assemblers of mineral nanoparticles.
Collapse
|
13
|
Evans JS. The Biomineralization Proteome: Protein Complexity for a Complex Bioceramic Assembly Process. Proteomics 2019; 19:e1900036. [DOI: 10.1002/pmic.201900036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/04/2019] [Indexed: 12/20/2022]
Affiliation(s)
- John Spencer Evans
- Laboratory for Chemical PhysicsDepartment of Skeletal and Craniofacial BiologyNew York University College of Dentistry New York NY 10010 USA
| |
Collapse
|
14
|
Evans JS. Composite Materials Design: Biomineralization Proteins and the Guided Assembly and Organization of Biomineral Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E581. [PMID: 30781347 PMCID: PMC6416723 DOI: 10.3390/ma12040581] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 12/11/2022]
Abstract
There has been much discussion of the role of proteins in the calcium carbonate biomineralization process, particularly with regard to nucleation, amorphous stabilization/transformation, and polymorph selection. However, there has been little if any discussion of the potential role that proteins might play in another important process: the guided assembly and organization of mineral nanoparticles into higher-ordered structures such as mesocrystals. This review discusses particle attachment theory and recent evidence of mineral-associated proteins forming hydrogels that assemble and organize mineral clusters into crystalline phase. From this discussion we postulate a mechanism by which biomineralization protein hydrogel aggregation assists in mineral nanoparticle assembly and organization within calcium carbonate skeletal elements and discuss potentials ways for harnessing this process in materials design.
Collapse
Affiliation(s)
- John Spencer Evans
- Laboratory for Chemical Physics, Center for Skeletal and Craniofacial Biology, New York University, 345 E. 24th Street, New York, NY 10010, USA.
| |
Collapse
|
15
|
Li L, Wang P, Hu K, Wang X, Cai W, Ai C, Liu S, Wang Z. PFMG1 promotes osteoblast differentiation and prevents osteoporotic bone loss. FASEB J 2018; 32:838-849. [PMID: 29021211 DOI: 10.1096/fj.201700422r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nacre is a widely used mineral medicine that has been reported to have beneficial effects in bone remodeling without an increase in inflammation. Water-soluble nacre matrix has been demonstrated to be responsible for the effect, yet core active ingredients are unknown. Pinctada fucata mantle gene 1 (PFMG1) was first discovered in the mantle tissue of Pinctada fucata. The protein has 2 EF-hands, a calcium-binding domain. PFMG1 protein can affect the growth of calcium carbonate crystals in vitro. Here, we demonstrate that PFMG1 affects cell-cycle distribution and promotes preosteoblast proliferation. PFMG1 accelerates preosteoblast differentiation and extracellular matrix mineralization. During the differentiation process, PFMG1 increases the expression level of osteoblastic marker genes and activates the Erk signaling pathway. PFMG1 also accelerates calcium crystal aggregation in culture medium and suppresses osteoclast formation. Moreover, PFMG1 prevents bone loss caused by ovariectomy. RNA sequencing analysis demonstrated that PFMG1 stimulates genes that are associated with tissue development and ossification, which indicated new genes that function in bone remodeling. Our findings demonstrate the therapeutic potential of PFMG1 from nacre as a novel medicine for osteoporosis.-Li, L., Wang, P., Hu, K., Wang, X., Cai, W., Ai, C., Liu, S., Wang, Z. PFMG1 promotes osteoblast differentiation and prevents osteoporotic bone loss.
Collapse
Affiliation(s)
- Liyuan Li
- Protein Science Key Laboratory, Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Pan Wang
- Protein Science Key Laboratory, Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Kaiqiang Hu
- Protein Science Key Laboratory, Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xiaoyan Wang
- Protein Science Key Laboratory, Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.,Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, China
| | - Wenping Cai
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Ai
- Protein Science Key Laboratory, Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.,Department of Pharmacy, Beijing Tsinghua Changgung Hospital, Tsinghua University Medical Center, Beijing, China
| | - Shangfeng Liu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhao Wang
- Protein Science Key Laboratory, Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Abstract
Osteoporosis is the most common bone metabolic disease with a very high morbidity, and women usually got a higher risk of osteoporosis than men. The high incidence rate of osteoporosis in women was mainly caused by (1) women having fewer skeletons and bone mass, (2) pregnancy consuming a large amount of calcium and other nutrients, and most importantly (3) the cease of estrogen secretion by ovaries after menopause. Along with ovarian aging, the follicle pool gradually declines and the oocyte quality reduced, accompanied with decline in serum estrogen. Estrogen deficiency plays an important role in the pathogenesis of postmenopausal osteoporosis; it is mainly a result of the recognition that estrogen regulates bone remodeling by modulating the production of cytokines and growth factors from bone marrow and bone cells. This review will summarize current knowledge concerning ovarian aging and postmenopause osteoporosis and also discuss clinical treatment and new ideas of drug development for osteoporosis.
Collapse
Affiliation(s)
- Liyuan Li
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Zhao Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
17
|
Harris J, Böhm CF, Wolf SE. Universal structure motifs in biominerals: a lesson from nature for the efficient design of bioinspired functional materials. Interface Focus 2017. [PMID: 28630670 DOI: 10.1166/jctn.2008.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Biominerals are typically indispensable structures for their host organism in which they serve varying functions, such as mechanical support and protection, mineral storage, detoxification site, or as a sensor or optical guide. In this perspective article, we highlight the occurrence of both structural diversity and uniformity within these biogenic ceramics. For the first time, we demonstrate that the universality-diversity paradigm, which was initially introduced for proteins by Buehler et al. (Cranford & Buehler 2012 Biomateriomics; Cranford et al. 2013 Adv. Mater.25, 802-824 (doi:10.1002/adma.201202553); Ackbarow & Buehler 2008 J. Comput. Theor. Nanosci.5, 1193-1204 (doi:10.1166/jctn.2008.001); Buehler & Yung 2009 Nat. Mater.8, 175-188 (doi:10.1038/nmat2387)), is also valid in the realm of biomineralization. A nanogranular composite structure is shared by most biominerals which rests on a common, non-classical crystal growth mechanism. The nanogranular composite structure affects various properties of the macroscale biogenic ceramic, a phenomenon we attribute to emergence. Emergence, in turn, is typical for hierarchically organized materials. This is a clear call to renew comparative studies of even distantly related biomineralizing organisms to identify further universal design motifs and their associated emergent properties. Such universal motifs with emergent macro-scale properties may represent an unparalleled toolbox for the efficient design of bioinspired functional materials.
Collapse
Affiliation(s)
- Joe Harris
- Department of Materials Science and Engineering, Institute of Glass and Ceramics (WW3), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Martensstrasse 5, 91058 Erlangen, Germany
| | - Corinna F Böhm
- Department of Materials Science and Engineering, Institute of Glass and Ceramics (WW3), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Martensstrasse 5, 91058 Erlangen, Germany
| | - Stephan E Wolf
- Department of Materials Science and Engineering, Institute of Glass and Ceramics (WW3), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Martensstrasse 5, 91058 Erlangen, Germany.,Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Haberstrasse 9a, 91058 Erlangen, Germany
| |
Collapse
|
18
|
Harris J, Böhm CF, Wolf SE. Universal structure motifs in biominerals: a lesson from nature for the efficient design of bioinspired functional materials. Interface Focus 2017; 7:20160120. [PMID: 28630670 PMCID: PMC5474032 DOI: 10.1098/rsfs.2016.0120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Biominerals are typically indispensable structures for their host organism in which they serve varying functions, such as mechanical support and protection, mineral storage, detoxification site, or as a sensor or optical guide. In this perspective article, we highlight the occurrence of both structural diversity and uniformity within these biogenic ceramics. For the first time, we demonstrate that the universality-diversity paradigm, which was initially introduced for proteins by Buehler et al. (Cranford & Buehler 2012 Biomateriomics; Cranford et al. 2013 Adv. Mater.25, 802-824 (doi:10.1002/adma.201202553); Ackbarow & Buehler 2008 J. Comput. Theor. Nanosci.5, 1193-1204 (doi:10.1166/jctn.2008.001); Buehler & Yung 2009 Nat. Mater.8, 175-188 (doi:10.1038/nmat2387)), is also valid in the realm of biomineralization. A nanogranular composite structure is shared by most biominerals which rests on a common, non-classical crystal growth mechanism. The nanogranular composite structure affects various properties of the macroscale biogenic ceramic, a phenomenon we attribute to emergence. Emergence, in turn, is typical for hierarchically organized materials. This is a clear call to renew comparative studies of even distantly related biomineralizing organisms to identify further universal design motifs and their associated emergent properties. Such universal motifs with emergent macro-scale properties may represent an unparalleled toolbox for the efficient design of bioinspired functional materials.
Collapse
Affiliation(s)
- Joe Harris
- Department of Materials Science and Engineering, Institute of Glass and Ceramics (WW3), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Martensstrasse 5, 91058 Erlangen, Germany
| | - Corinna F. Böhm
- Department of Materials Science and Engineering, Institute of Glass and Ceramics (WW3), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Martensstrasse 5, 91058 Erlangen, Germany
| | - Stephan E. Wolf
- Department of Materials Science and Engineering, Institute of Glass and Ceramics (WW3), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Martensstrasse 5, 91058 Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Haberstrasse 9a, 91058 Erlangen, Germany
| |
Collapse
|
19
|
Bahn SY, Jo BH, Choi YS, Cha HJ. Control of nacre biomineralization by Pif80 in pearl oyster. SCIENCE ADVANCES 2017; 3:e1700765. [PMID: 28782039 PMCID: PMC5540247 DOI: 10.1126/sciadv.1700765] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/28/2017] [Indexed: 05/12/2023]
Abstract
Molluscan nacre is a fascinating biomineral consisting of a highly organized calcium carbonate composite that provides unique fracture toughness and an iridescent color. Organisms elaborately control biomineralization using organic macromolecules. We propose the involvement of the matrix protein Pif80 from the pearl oyster Pinctada fucata in the development of the inorganic phase during nacre biomineralization, based on experiments using the recombinant form of Pif80. Through interactions with calcium ions, Pif80 participates in the formation of polymer-induced liquid precursor-like amorphous calcium carbonate granules and stabilizes these granules by forming calcium ion-induced coacervates. At the calcification site, the disruption of Pif80 coacervates destabilizes the amorphous mineral precursors, resulting in the growth of a crystalline structure. The redissolved Pif80 controls the growth of aragonite on the polysaccharide substrate, which contributes to the formation of polygonal tablet structure of nacre. Our findings provide insight into the use of organic macromolecules by living organisms in biomineralization.
Collapse
Affiliation(s)
- So Yeong Bahn
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Byung Hoon Jo
- Division of Life Science and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Yoo Seong Choi
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
- Corresponding author. (Y.S.C.); (H.J.C.)
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
- Corresponding author. (Y.S.C.); (H.J.C.)
| |
Collapse
|
20
|
Jain G, Pendola M, Huang YC, Juan Colas J, Gebauer D, Johnson S, Evans JS. Functional Prioritization and Hydrogel Regulation Phenomena Created by a Combinatorial Pearl-Associated Two-Protein Biomineralization Model System. Biochemistry 2017; 56:3607-3618. [PMID: 28649833 DOI: 10.1021/acs.biochem.7b00313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the nacre or aragonitic layer of an oyster pearl, there exists a 12-member proteome that regulates both the early stages of nucleation and nanoscale-to-mesoscale assembly of nacre tablets and calcitic crystals from mineral nanoparticle precursors. Several approaches to understanding protein-associated mechanisms of pearl nacre formation have been developed, yet we still lack insight into how protein ensembles or proteomes manage nucleation and crystal growth. To provide additional insights, we have created a proportionally defined combinatorial model consisting of two pearl nacre-associated proteins, PFMG1 and PFMG2 (shell oyster pearl nacre, Pinctada fucata) whose individual in vitro mineralization functionalities are distinct from one another. Using scanning electron microscopy, atomic force microscopy, Ca(II) potentiometric titrations, and quartz crystal microbalance with dissipation monitoring quantitative analyses, we find that at 1:1 molar ratios, rPFMG2 and rPFMG1 co-aggregate in specific molecular ratios to form hybrid hydrogels that affect both the early and later stages of in vitro calcium carbonate nucleation. Within these hybrid hydrogels, rPFMG2 plays a role in defining protein co-aggregation and hydrogel dimension, whereas rPFMG1 defines participation in nonclassical nucleation processes; both proteins exhibit synergy with regard to surface and subsurface modifications to existing crystals. The interactions between both proteins are enhanced by Ca(II) ions and may involve Ca(II)-induced conformational events within the EF-hand rPFMG1 protein, as well as putative interactions between the EF-hand domain of rPFMG1 and the calponin-like domain of rPFMG2. Thus, the pearl-associated PFMG1 and PFMG2 proteins interact and exhibit mineralization functionalities in specific ways, which may be relevant for pearl formation.
Collapse
Affiliation(s)
- Gaurav Jain
- Laboratory for Chemical Physics, Center for Skeletal and Craniofacial Biology, New York University , 345 East 24th Street, New York, New York 10010, United States
| | - Martin Pendola
- Laboratory for Chemical Physics, Center for Skeletal and Craniofacial Biology, New York University , 345 East 24th Street, New York, New York 10010, United States
| | - Yu-Chieh Huang
- Department of Chemistry, Physical Chemistry, Universität Konstanz , Universitätstrasse 10, Konstanz D-78457, Germany
| | - Jose Juan Colas
- Department of Physics, University of York , Heslington, York, United Kingdom
| | - Denis Gebauer
- Department of Chemistry, Physical Chemistry, Universität Konstanz , Universitätstrasse 10, Konstanz D-78457, Germany
| | - Steven Johnson
- Department of Electronics, University of York , Heslington, York, United Kingdom
| | - John Spencer Evans
- Laboratory for Chemical Physics, Center for Skeletal and Craniofacial Biology, New York University , 345 East 24th Street, New York, New York 10010, United States
| |
Collapse
|
21
|
Jain G, Pendola M, Huang YC, Gebauer D, Evans JS. A Model Sea Urchin Spicule Matrix Protein, rSpSM50, Is a Hydrogelator That Modifies and Organizes the Mineralization Process. Biochemistry 2017; 56:2663-2675. [DOI: 10.1021/acs.biochem.7b00083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Gaurav Jain
- Laboratory
for Chemical Physics, Center for Skeletal and Craniofacial Biology, New York University, 345 East 24th Street, New York, New York 10010, United States
| | - Martin Pendola
- Laboratory
for Chemical Physics, Center for Skeletal and Craniofacial Biology, New York University, 345 East 24th Street, New York, New York 10010, United States
| | - Yu-Chieh Huang
- Physical
Chemistry, Department of Chemistry, Universität Konstanz, Universitätstrasse
10, D-78457 Konstanz, Germany
| | - Denis Gebauer
- Physical
Chemistry, Department of Chemistry, Universität Konstanz, Universitätstrasse
10, D-78457 Konstanz, Germany
| | - John Spencer Evans
- Laboratory
for Chemical Physics, Center for Skeletal and Craniofacial Biology, New York University, 345 East 24th Street, New York, New York 10010, United States
| |
Collapse
|
22
|
|
23
|
Feng D, Li Q, Yu H, Kong L, Du S. Identification of conserved proteins from diverse shell matrix proteome in Crassostrea gigas: characterization of genetic bases regulating shell formation. Sci Rep 2017; 7:45754. [PMID: 28374770 PMCID: PMC5379566 DOI: 10.1038/srep45754] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/06/2017] [Indexed: 12/21/2022] Open
Abstract
The calcifying shell is an excellent model for studying biomineralization and evolution. However, the molecular mechanisms of shell formation are only beginning to be elucidated in Mollusca. It is known that shell matrix proteins (SMPs) play important roles in shell formation. With increasing data of shell matrix proteomes from various species, we carried out a BLASTp bioinformatics analysis using the shell matrix proteome from Crassostrea gigas against 443 SMPs from nine other species. The highly conserved tyrosinase and chitin related proteins were identified in bivalve. In addition, the relatively conserved proteins containing domains of carbonic anhydrase, Sushi, Von Willebrand factor type A, and chitin binding, were identified from all the ten species. Moreover, 25 genes encoding SMPs were annotated and characterized that are involved in CaCO3 crystallization and represent chitin related or ECM related proteins. Together, data from these analyses provide new knowledge underlying the molecular mechanism of shell formation in C.gigas, supporting a refined shell formation model including chitin and ECM-related proteins.
Collapse
Affiliation(s)
- Dandan Feng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
24
|
Aguilera F, McDougall C, Degnan BM. Co-Option and De Novo Gene Evolution Underlie Molluscan Shell Diversity. Mol Biol Evol 2017; 34:779-792. [PMID: 28053006 PMCID: PMC5400390 DOI: 10.1093/molbev/msw294] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Molluscs fabricate shells of incredible diversity and complexity by localized secretions from the dorsal epithelium of the mantle. Although distantly related molluscs express remarkably different secreted gene products, it remains unclear if the evolution of shell structure and pattern is underpinned by the differential co-option of conserved genes or the integration of lineage-specific genes into the mantle regulatory program. To address this, we compare the mantle transcriptomes of 11 bivalves and gastropods of varying relatedness. We find that each species, including four Pinctada (pearl oyster) species that diverged within the last 20 Ma, expresses a unique mantle secretome. Lineage- or species-specific genes comprise a large proportion of each species' mantle secretome. A majority of these secreted proteins have unique domain architectures that include repetitive, low complexity domains (RLCDs), which evolve rapidly, and have a proclivity to expand, contract and rearrange in the genome. There are also a large number of secretome genes expressed in the mantle that arose before the origin of gastropods and bivalves. Each species expresses a unique set of these more ancient genes consistent with their independent co-option into these mantle gene regulatory networks. From this analysis, we infer lineage-specific secretomes underlie shell diversity, and include both rapidly evolving RLCD-containing proteins, and the continual recruitment and loss of both ancient and recently evolved genes into the periphery of the regulatory network controlling gene expression in the mantle epithelium.
Collapse
Affiliation(s)
- Felipe Aguilera
- Centre for Marine Sciences, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Carmel McDougall
- Centre for Marine Sciences, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Bernard M. Degnan
- Centre for Marine Sciences, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
25
|
Cruz-Chú ER, Xiao S, Patil SP, Gkagkas K, Gräter F. Organic Filling Mitigates Flaw-Sensitivity of Nanoscale Aragonite. ACS Biomater Sci Eng 2017; 3:260-268. [PMID: 33465925 DOI: 10.1021/acsbiomaterials.6b00504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Engineering at nanoscale holds the promise of tuning materials with extraordinary properties. However, macroscopic approaches commonly used to predict mechanical properties do not fully apply at nanoscale level. A controversial feature is the presence of nanoflaws in aragonite nacre, as it is expected that flaws would weaken the material, whereas nacre still shows high toughness and rupture strength. Here, we performed molecular dynamics and finite element simulations emulating flaws found in aragonite nacre. Our simulations reveal two regimes for fracture: nacre remains flaw-insensitive only for flaws smaller than 1.2 nm depth, or flaws of a few atoms, whereas larger flaws follow a Griffith-like trend resembling macroscopic fracture. We tested an alternative mechanism for flaw-insensitivity in nacre, and investigated the mechanical effect of organic filling to mitigate fracture. We found that a single nacre protein, perlucin, decreases the stress concentration at the fracture point, producing enhancements of up to 15% in rupture strength. Our study reveals a more comprehensive understanding of mechanical stability at the nanoscale and offers new routes toward hybrid nanomaterials.
Collapse
Affiliation(s)
- Eduardo R Cruz-Chú
- Computational Science and Engineering Laboratory, ETH Zürich, Clausiusstrasse 33, Zürich 8092, Switzerland.,Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, Heidelberg 69118, Germany
| | - Shijun Xiao
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, Heidelberg 69118, Germany.,CAS-MPG Partner Institute and Key Laboratory for Computational Biology, Shanghai 200031, China
| | - Sandeep P Patil
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, Heidelberg 69118, Germany.,Institute of General Mechanics, RWTH Aachen University, Aachen 52062, Germany
| | - Konstantinos Gkagkas
- Advanced Technology Division, Toyota Motor Europe NV/SA, Technical Center, Zaventem 1930, Belgium
| | - Frauke Gräter
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, Heidelberg 69118, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg INF 368, Germany
| |
Collapse
|
26
|
Perovic I, Davidyants A, Evans JS. Aragonite-Associated Mollusk Shell Protein Aggregates To Form Mesoscale "Smart" Hydrogels. ACS OMEGA 2016; 1:886-893. [PMID: 30023493 PMCID: PMC6044582 DOI: 10.1021/acsomega.6b00236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/27/2016] [Indexed: 05/31/2023]
Abstract
In the mollusk shell there exists a framework silk fibroin-polysaccharide hydrogel coating around nacre aragonite tablets, and this coating facilitates the synthesis and organization of mineral nanoparticles into mesocrystals. In this report, we identify that a protein component of this coating, n16.3, is a hydrogelator. Due to the presence of intrinsic disorder, aggregation-prone regions, and nearly equal balance of anionic and cationic side chains, this protein assembles to form porous mesoscale hydrogel particles in solution and on mica surfaces. These hydrogel particles change their dimensionality, organization, and internal structure in response to pH and ions, particularly Ca(II), which indicates that these behave as ion-responsive or "smart" hydrogels. Thus, in addition to silk fibroins, the gel phase of the mollusk shell nacre framework layer may actually consist of several framework hydrogelator proteins, such as n16.3, which can promote mineral nanoparticle organization and assembly during the nacre biomineralization process and also serve as a model system for designing ion-responsive, composite, and smart hydrogels.
Collapse
|
27
|
Du YP, Chang HH, Yang SY, Huang SJ, Tsai YJ, Huang JJT, Chan JCC. Study of Binding Interaction between Pif80 Protein Fragment and Aragonite. Sci Rep 2016; 6:30883. [PMID: 27484975 PMCID: PMC4971512 DOI: 10.1038/srep30883] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/11/2016] [Indexed: 11/08/2022] Open
Abstract
Pif is a crucial protein for the formation of the nacreous layer in Pinctada fucata. Three non-acidic peptide fragments of the aragonite-binding domain (Pif80) are selected, which contain multiple copies of the repeat sequence DDRK, to study the interaction between non-acidic peptides and aragonite. The polypeptides DDRKDDRKGGK (Pif80-11) and DDRKDDRKGGKDDRKDDRKGGK (Pif80-22) have similar binding affinity to aragonite. Solid-state NMR data indicate that the backbones of Pif80-11 and Pif80-22 peptides bound on aragonite adopt a random-coil conformation. Pif80-11 is a lot more effective than Pif80-22 in promoting the nucleation of aragonite on the substrate of β-chitin. Our results suggest that the structural arrangement at a protein-mineral interface depends on the surface structure of the mineral substrate and the protein sequence. The side chains of the basic residues, which function as anchors to the aragonite surface, have uniform structures. The role of basic residues as anchors in protein-mineral interaction may play an important role in biomineralization.
Collapse
Affiliation(s)
- Yuan-Peng Du
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Hsun-Hui Chang
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Sheng-Yu Yang
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Yu-Ju Tsai
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan
| | - Joseph Jen-Tse Huang
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| |
Collapse
|
28
|
The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials. PLoS One 2016; 11:e0159128. [PMID: 27415783 PMCID: PMC4944945 DOI: 10.1371/journal.pone.0159128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/28/2016] [Indexed: 01/05/2023] Open
Abstract
In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of biological materials with diverse morphologies. The SilkSlider predictor software developed here is available at https://github.com/wwood/SilkSlider.
Collapse
|
29
|
Kocot KM, Aguilera F, McDougall C, Jackson DJ, Degnan BM. Sea shell diversity and rapidly evolving secretomes: insights into the evolution of biomineralization. Front Zool 2016; 13:23. [PMID: 27279892 PMCID: PMC4897951 DOI: 10.1186/s12983-016-0155-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022] Open
Abstract
An external skeleton is an essential part of the body plan of many animals and is thought to be one of the key factors that enabled the great expansion in animal diversity and disparity during the Cambrian explosion. Molluscs are considered ideal to study the evolution of biomineralization because of their diversity of highly complex, robust and patterned shells. The molluscan shell forms externally at the interface of animal and environment, and involves controlled deposition of calcium carbonate within a framework of macromolecules that are secreted from the dorsal mantle epithelium. Despite its deep conservation within Mollusca, the mantle is capable of producing an incredible diversity of shell patterns, and macro- and micro-architectures. Here we review recent developments within the field of molluscan biomineralization, focusing on the genes expressed in the mantle that encode secreted proteins. The so-called mantle secretome appears to regulate shell deposition and patterning and in some cases becomes part of the shell matrix. Recent transcriptomic and proteomic studies have revealed marked differences in the mantle secretomes of even closely-related molluscs; these typically exceed expected differences based on characteristics of the external shell. All mantle secretomes surveyed to date include novel genes encoding lineage-restricted proteins and unique combinations of co-opted ancient genes. A surprisingly large proportion of both ancient and novel secreted proteins containing simple repetitive motifs or domains that are often modular in construction. These repetitive low complexity domains (RLCDs) appear to further promote the evolvability of the mantle secretome, resulting in domain shuffling, expansion and loss. RLCD families further evolve via slippage and other mechanisms associated with repetitive sequences. As analogous types of secreted proteins are expressed in biomineralizing tissues in other animals, insights into the evolution of the genes underlying molluscan shell formation may be applied more broadly to understanding the evolution of metazoan biomineralization.
Collapse
Affiliation(s)
- Kevin M Kocot
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072 Australia.,Current address: Department of Biological Sciences and Alabama Museum of Natural History, The University of Alabama, Tuscaloosa, Alabama 35487 USA
| | - Felipe Aguilera
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072 Australia.,Current address: Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| | - Carmel McDougall
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072 Australia
| | - Daniel J Jackson
- Department of Geobiology, Goldschmidtstr.3, Georg-August University of Göttingen, 37077 Göttingen, Germany
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072 Australia
| |
Collapse
|
30
|
Recombinant production and biochemical characterization of a hypothetical acidic shell matrix protein in Escherichia coli for the preparation of protein-based CaCO3 biominerals. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0091-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Chang EP, Roncal-Herrero T, Morgan T, Dunn KE, Rao A, Kunitake JAMR, Lui S, Bilton M, Estroff LA, Kröger R, Johnson S, Cölfen H, Evans JS. Synergistic Biomineralization Phenomena Created by a Combinatorial Nacre Protein Model System. Biochemistry 2016; 55:2401-10. [PMID: 27072850 DOI: 10.1021/acs.biochem.6b00163] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the nacre or aragonite layer of the mollusk shell, proteomes that regulate both the early stages of nucleation and nano-to-mesoscale assembly of nacre tablets from mineral nanoparticle precursors exist. Several approaches have been developed to understand protein-associated mechanisms of nacre formation, yet we still lack insight into how protein ensembles or proteomes manage nucleation and crystal growth. To provide additional insights, we have created a proportionally defined combinatorial model consisting of two nacre-associated proteins, C-RING AP7 (shell nacre, Haliotis rufescens) and pseudo-EF hand PFMG1 (oyster pearl nacre, Pinctada fucata), whose individual in vitro mineralization functionalities are well-documented and distinct from one another. Using scanning electron microscopy, flow cell scanning transmission electron microscopy, atomic force microscopy, Ca(II) potentiometric titrations, and quartz crystal microbalance with dissipation monitoring quantitative analyses, we find that both nacre proteins are functionally active within the same mineralization environments and, at 1:1 molar ratios, synergistically create calcium carbonate mesoscale structures with ordered intracrystalline nanoporosities, extensively prolong nucleation times, and introduce an additional nucleation event. Further, these two proteins jointly create nanoscale protein aggregates or phases that under mineralization conditions further assemble into protein-mineral polymer-induced liquid precursor-like phases with enhanced ACC stabilization capabilities, and there is evidence of intermolecular interactions between AP7 and PFMG1 under these conditions. Thus, a combinatorial model system consisting of more than one defined biomineralization protein dramatically changes the outcome of the in vitro biomineralization process.
Collapse
Affiliation(s)
- Eric P Chang
- Center for Skeletal Biology, Laboratory for Chemical Physics, New York University College of Dentistry , New York, New York 10010, United States
| | | | - Tamara Morgan
- Department of Electronics, University of York , Heslington, York, United Kingdom
| | - Katherine E Dunn
- Department of Electronics, University of York , Heslington, York, United Kingdom
| | - Ashit Rao
- Department of Chemistry, Universitat Konstanz , Konstanz, Germany
| | - Jennie A M R Kunitake
- Department of Materials Science and Engineering, Cornell University , Ithaca, New York 14853-1501, United States
| | - Susan Lui
- Center for Skeletal Biology, Laboratory for Chemical Physics, New York University College of Dentistry , New York, New York 10010, United States
| | - Matthew Bilton
- Department of Physics, University of York , Heslington, York, United Kingdom
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University , Ithaca, New York 14853-1501, United States
| | - Roland Kröger
- Department of Physics, University of York , Heslington, York, United Kingdom
| | - Steven Johnson
- Department of Electronics, University of York , Heslington, York, United Kingdom
| | - Helmut Cölfen
- Department of Chemistry, Universitat Konstanz , Konstanz, Germany
| | - John Spencer Evans
- Center for Skeletal Biology, Laboratory for Chemical Physics, New York University College of Dentistry , New York, New York 10010, United States
| |
Collapse
|
32
|
Chang EP, Perovic I, Rao A, Cölfen H, Evans JS. Insect Cell Glycosylation and Its Impact on the Functionality of a Recombinant Intracrystalline Nacre Protein, AP24. Biochemistry 2016; 55:1024-35. [PMID: 26784838 DOI: 10.1021/acs.biochem.5b01186] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The impacts of glycosylation on biomineralization protein function are largely unknown. This is certainly true for the mollusk shell, where glycosylated intracrystalline proteins such as AP24 (Haliotis rufescens) exist but their functions and the role of glycosylation remain elusive. To assess the effect of glycosylation on protein function, we expressed two recombinant variants of AP24: an unglycosylated bacteria-expressed version (rAP24N) and a glycosylated insect cell-expressed version (rAP24G). Our findings indicate that rAP24G is expressed as a single polypeptide containing variations in glycosylation that create microheterogeneity in rAP24G molecular masses. These post-translational modifications incorporate O- and N-glycans and anionic monosialylated and bisialylated, and monosulfated and bisulfated monosaccharides on the protein molecules. AFM and DLS experiments confirm that both rAP24N and rAP24G aggregate to form protein phases, with rAP24N exhibiting a higher degree of aggregation, compared to rAP24G. With regard to functionality, we observe that both recombinant proteins exhibit similar behavior within in vitro calcium carbonate mineralization assays and potentiometric titrations. However, rAP24G modifies crystal growth directions and is a stronger nucleation inhibitor, whereas rAP24N exhibits higher mineral phase stabilization and nanoparticle containment. We believe that the post-translational addition of anionic groups (via sialylation and sulfation), along with modifications to the protein surface topology, may explain the changes in glycosylated rAP24G aggregation and mineralization behavior, relative to rAP24N.
Collapse
Affiliation(s)
- Eric P Chang
- Laboratory for Chemical Physics, Division of Basic Sciences and Center for Skeletal Biology, New York University , 345 E. 24th Street, New York, New York 10010, United States
| | - Iva Perovic
- Laboratory for Chemical Physics, Division of Basic Sciences and Center for Skeletal Biology, New York University , 345 E. 24th Street, New York, New York 10010, United States
| | - Ashit Rao
- Department of Chemistry, Physical Chemistry, Universität Konstanz , Universitätstrasse 10, Konstanz D-78457, Germany
| | - Helmut Cölfen
- Department of Chemistry, Physical Chemistry, Universität Konstanz , Universitätstrasse 10, Konstanz D-78457, Germany
| | - John Spencer Evans
- Laboratory for Chemical Physics, Division of Basic Sciences and Center for Skeletal Biology, New York University , 345 E. 24th Street, New York, New York 10010, United States
| |
Collapse
|
33
|
Sleight VA, Thorne MAS, Peck LS, Arivalagan J, Berland S, Marie A, Clark MS. Characterisation of the mantle transcriptome and biomineralisation genes in the blunt-gaper clam, Mya truncata. Mar Genomics 2016; 27:47-55. [PMID: 26777791 DOI: 10.1016/j.margen.2016.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/28/2015] [Accepted: 01/07/2016] [Indexed: 12/16/2022]
Abstract
Members of the Myidae family are ecologically and economically important, but there is currently very little molecular data on these species. The present study sequenced and assembled the mantle transcriptome of Mya truncata from the North West coast of Scotland and identified candidate biomineralisation genes. RNA-Seq reads were assembled to create 20,106 contigs in a de novo transciptome, 18.81% of which were assigned putative functions using BLAST sequence similarity searching (cuttoff E-value 1E-10). The most highly expressed genes were compared to the Antarctic clam (Laternula elliptica) and showed that many of the dominant biological functions (muscle contraction, energy production, biomineralisation) in the mantle were conserved. There were however, differences in the constitutive expression of heat shock proteins, which were possibly due to the M. truncata sampling location being at a relatively low latitude, and hence relatively warm, in terms of the global distribution of the species. Phylogenetic analyses of the Tyrosinase proteins from M. truncata showed a gene expansion which was absent in L. elliptica. The tissue distribution expression patterns of putative biomineralisation genes were investigated using quantitative PCR, all genes showed a mantle specific expression pattern supporting their hypothesised role in shell secretion. The present study provides some preliminary insights into how clams from different environments - temperate versus polar - build their shells. In addition, the transcriptome data provides a valuable resource for future comparative studies investigating biomineralisation.
Collapse
Affiliation(s)
- Victoria A Sleight
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK.
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Jaison Arivalagan
- UMR 7245 CNRS/MNHN Molécules de Communications et Adaptations des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris 75005, France; UMR 7208 CNRS/MNHN/UPMC/IRD Biologie des Organismes Aquatiques et Ecosystèmes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Sophie Berland
- UMR 7245 CNRS/MNHN Molécules de Communications et Adaptations des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Arul Marie
- UMR 7208 CNRS/MNHN/UPMC/IRD Biologie des Organismes Aquatiques et Ecosystèmes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| |
Collapse
|
34
|
Natural Composite Systems for Bioinspired Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:143-166. [PMID: 27677512 DOI: 10.1007/978-3-319-39196-0_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
From a relatively limited selection of base materials, nature has steered the development of truly remarkable materials. The simplest and often overlooked organisms have demonstrated the ability to manufacture multi-faceted, molecular-level hierarchical structures that combine mechanical properties rarely seen in synthetic materials. Indeed, these natural composite systems, composed of an array of intricately arranged and functionally relevant organic and inorganic substances serve as inspiration for materials design. A better understanding of these composite systems, specifically at the interface of the hetero-assemblies, would encourage faster development of environmentally friendly "green" materials with molecular level specificities.
Collapse
|
35
|
Weber E, Weiss IM, Cölfen H, Kellermeier M. Recombinant perlucin derivatives influence the nucleation of calcium carbonate. CrystEngComm 2016. [DOI: 10.1039/c6ce01878e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Heterogeneous distribution of dye-labelled biomineralizaiton proteins in calcite crystals. Sci Rep 2015; 5:18338. [PMID: 26675363 PMCID: PMC4682127 DOI: 10.1038/srep18338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/16/2015] [Indexed: 11/08/2022] Open
Abstract
Biominerals are highly ordered crystals mediated by organic matters especially proteins in organisms. However, how specific proteins are distributed inside biominerals are not well understood. In the present study, we use fluorescein isothiocyanate (FITC) to label extracted proteins from the shells of bivalve Pinctada fucata. By confocal laser scanning microscopy (CLSM), we observe a heterogeneous distribution of dye-labelled proteins inside synthetic calcite at the microscale. Proteins from the prismatic calcite layers accumulate at the edge of crystals while proteins from the nacreous aragonite layers accumulate at the center of crystals. Raman and X-ray powder diffraction show that both the proteins cannot alter the crystal phase. Scanning electron microscope demonstrates both proteins are able to affect the crystal morphology. This study may provide a direct approach for the visualization of protein distributions in crystals by small-molecule dye-labelled proteins as the additives in the crystallization process and improve our understanding of intracrystalline proteins distribution in biogenic calcites.
Collapse
|
37
|
In-depth proteomic analysis of shell matrix proteins of Pinctada fucata. Sci Rep 2015; 5:17269. [PMID: 26608573 PMCID: PMC4660305 DOI: 10.1038/srep17269] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/28/2015] [Indexed: 11/16/2022] Open
Abstract
The shells of pearl oysters, Pinctada fucata, are composed of calcite and aragonite and possess remarkable mechanical properties. These shells are formed under the regulation of macromolecules, especially shell matrix proteins (SMPs). Identification of diverse SMPs will lay a foundation for understanding biomineralization process. Here, we identified 72 unique SMPs using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of proteins extracted from the shells of P. fucata combined with a draft genome. Of 72 SMPs, 17 SMPs are related to both the prismatic and nacreous layers. Moreover, according to the diverse domains found in the SMPs, we hypothesize that in addition to controlling CaCO3 crystallization and crystal organization, these proteins may potentially regulate the extracellular microenvironment and communicate between cells and the extracellular matrix (ECM). Immunohistological localization techniques identify the SMPs in the mantle, shells and synthetic calcite. Together, these proteomic data increase the repertoires of the shell matrix proteins in P. fucata and suggest that shell formation in P. fucata may involve tight regulation of cellular activities and the extracellular microenvironment.
Collapse
|
38
|
Weber E, Pokroy B. Intracrystalline inclusions within single crystalline hosts: from biomineralization to bio-inspired crystal growth. CrystEngComm 2015. [DOI: 10.1039/c5ce00389j] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A review of the inclusion of organic matter within single crystalline hosts: from biogenic minerals to bio-inspired nanohybrid single crystal composites.
Collapse
Affiliation(s)
- Eva Weber
- Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute
- Technion Israel Institute of Technology
- , Israel
| | - Boaz Pokroy
- Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute
- Technion Israel Institute of Technology
- , Israel
| |
Collapse
|
39
|
Rutter GO, Brown AH, Quigley D, Walsh TR, Allen MP. Testing the transferability of a coarse-grained model to intrinsically disordered proteins. Phys Chem Chem Phys 2015; 17:31741-9. [DOI: 10.1039/c5cp05652g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The coarse-grained PLUM model is shown to capture structural and dimerization behaviour of the intrinsically disordered biomineralisation peptide n16N.
Collapse
Affiliation(s)
- Gil O. Rutter
- Department of Physics
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Aaron H. Brown
- Department of Chemistry and Centre for Scientific Computing
- University of Warwick
- Coventry
- UK
- Institute for Frontier Materials
| | - David Quigley
- Department of Physics and Centre for Scientific Computing
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Tiffany R. Walsh
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Michael P. Allen
- Department of Physics
- University of Warwick
- Coventry CV4 7AL
- UK
- H. H. Wills Physics Laboratory
| |
Collapse
|
40
|
Brown AH, Rodger PM, Evans JS, Walsh TR. Equilibrium Conformational Ensemble of the Intrinsically Disordered Peptide n16N: Linking Subdomain Structures and Function in Nacre. Biomacromolecules 2014; 15:4467-79. [DOI: 10.1021/bm501263s] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Aaron H. Brown
- Institute
for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | | | - John Spencer Evans
- Department
of Craniofacial Biology and Center for Skeletal Sciences, New York University, New York, New York 10010, United States
| | - Tiffany R. Walsh
- Institute
for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
41
|
Perovic I, Verch A, Chang EP, Rao A, Cölfen H, Kröger R, Evans JS. An Oligomeric C-RING Nacre Protein Influences Prenucleation Events and Organizes Mineral Nanoparticles. Biochemistry 2014; 53:7259-68. [DOI: 10.1021/bi5008854] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Iva Perovic
- Laboratory for
Chemical Physics,
Division of Basic Sciences, and Center for Skeletal Biology, New York University, 345 East 24th Street, New York, New York 10010, United States
| | - Andreas Verch
- Department
of Physics, University of York, Heslington, York YO10
5DD, U.K
| | - Eric P. Chang
- Laboratory for
Chemical Physics,
Division of Basic Sciences, and Center for Skeletal Biology, New York University, 345 East 24th Street, New York, New York 10010, United States
| | - Ashit Rao
- Department
of Chemistry, Physical Chemistry, Universität Konstanz, Universitätstrasse
10, D-78457 Konstanz, Germany
| | - Helmut Cölfen
- Department
of Chemistry, Physical Chemistry, Universität Konstanz, Universitätstrasse
10, D-78457 Konstanz, Germany
| | - Roland Kröger
- Department
of Physics, University of York, Heslington, York YO10
5DD, U.K
| | - John Spencer Evans
- Laboratory for
Chemical Physics,
Division of Basic Sciences, and Center for Skeletal Biology, New York University, 345 East 24th Street, New York, New York 10010, United States
| |
Collapse
|
42
|
Mann K, Edsinger E. The Lottia gigantea shell matrix proteome: re-analysis including MaxQuant iBAQ quantitation and phosphoproteome analysis. Proteome Sci 2014; 12:28. [PMID: 25018669 PMCID: PMC4094399 DOI: 10.1186/1477-5956-12-28] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/01/2014] [Indexed: 12/29/2022] Open
Abstract
Background Although the importance of proteins of the biomineral organic matrix and their posttranslational modifications for biomineralization is generally recognized, the number of published matrix proteomes is still small. This is mostly due to the lack of comprehensive sequence databases, usually derived from genomic sequencing projects. However, in-depth mass spectrometry-based proteomic analysis, which critically depends on high-quality sequence databases, is a very fast tool to identify candidates for functional biomineral matrix proteins and their posttranslational modifications. Identification of such candidate proteins is facilitated by at least approximate quantitation of the identified proteins, because the most abundant ones may also be the most interesting candidates for further functional analysis. Results Re-quantification of previously identified Lottia shell matrix proteins using the intensity-based absolute quantification (iBAQ) method as implemented in the MaxQuant identification and quantitation software showed that only 57 of the 382 accepted identifications constituted 98% of the total identified matrix proteome. This group of proteins did not contain obvious intracellular proteins, such as cytoskeletal components or ribosomal proteins, invariably identified as minor components of high-throughput biomineral matrix proteomes. Fourteen of these major proteins were phosphorylated to a variable extent. All together we identified 52 phospho sites in 20 of the 382 accepted proteins with high confidence. Conclusions We show that iBAQ quantitation may be a useful tool to narrow down the group of functional biomineral matrix protein candidates for further research in cell biology, genetics or materials research. Knowledge of posttranslational modifications in these major proteins could be a valuable addition to previously published proteomes. This is true especially for phosphorylation, because this modification was already shown to modify mineralization processes in some instances.
Collapse
Affiliation(s)
- Karlheinz Mann
- Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, Am Klopferspitz 18, Martinsried D-82152, Germany
| | - Eric Edsinger
- Rokhsar Department, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA ; Present address: Brenner Unit, Okinawa institute of Science and Technology, 1919-0 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|
43
|
Splice variants of perlucin from Haliotis laevigata modulate the crystallisation of CaCO3. PLoS One 2014; 9:e97126. [PMID: 24824517 PMCID: PMC4019660 DOI: 10.1371/journal.pone.0097126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/15/2014] [Indexed: 12/13/2022] Open
Abstract
Perlucin is one of the proteins of the organic matrix of nacre (mother of pearl) playing an important role in biomineralisation. This nacreous layer can be predominately found in the mollusc lineages and is most intensively studied as a compound of the shell of the marine Australian abalone Haliotis laevigata. A more detailed analysis of Perlucin will elucidate some of the still unknown processes in the complex interplay of the organic/inorganic compounds involved in the formation of nacre as a very interesting composite material not only from a life science-based point of view. Within this study we discovered three unknown Perlucin splice variants of the Australian abalone H. laevigata. The amplified cDNAs vary from 562 to 815 base pairs and the resulting translation products differ predominantly in the absence or presence of a varying number of a 10 mer peptide C-terminal repeat. The splice variants could further be confirmed by matrix-assisted laser desorption ionisation time of flight mass spectrometry (MALDI-ToF MS) analysis as endogenous Perlucin, purified from decalcified abalone shell. Interestingly, we observed that the different variants expressed as maltose-binding protein (MBP) fusion proteins in E. coli showed strong differences in their influence on precipitating CaCO3 and that these differences might be due to a splice variant-specific formation of large protein aggregates influenced by the number of the 10 mer peptide repeats. Our results are evidence for a more complex situation with respect to Perlucin functional regulation by demonstrating that Perlucin splice variants modulate the crystallisation of calcium carbonate. The identification of differentially behaving Perlucin variants may open a completely new perspective for the field of nacre biomineralisation.
Collapse
|
44
|
Perovic I, Chang EP, Lui M, Rao A, Cölfen H, Evans JS. A Nacre Protein, n16.3, Self-Assembles To Form Protein Oligomers That Dimensionally Limit and Organize Mineral Deposits. Biochemistry 2014; 53:2739-48. [DOI: 10.1021/bi401721z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Iva Perovic
- Laboratory
for Chemical Physics, Division of Basic Sciences and Craniofacial
Biology, New York University, 345 East 24th Street, New York, New York 10010, United States
| | - Eric P. Chang
- Laboratory
for Chemical Physics, Division of Basic Sciences and Craniofacial
Biology, New York University, 345 East 24th Street, New York, New York 10010, United States
| | - Michael Lui
- Laboratory
for Chemical Physics, Division of Basic Sciences and Craniofacial
Biology, New York University, 345 East 24th Street, New York, New York 10010, United States
| | - Ashit Rao
- Department
of Chemistry, Physical Chemistry, Universität Konstanz, Universitätstrasse
10, Konstanz D-78457, Germany
| | - Helmut Cölfen
- Department
of Chemistry, Physical Chemistry, Universität Konstanz, Universitätstrasse
10, Konstanz D-78457, Germany
| | - John Spencer Evans
- Laboratory
for Chemical Physics, Division of Basic Sciences and Craniofacial
Biology, New York University, 345 East 24th Street, New York, New York 10010, United States
| |
Collapse
|
45
|
Chang EP, Russ JA, Verch A, Kröger R, Estroff LA, Evans JS. Engineering of crystal surfaces and subsurfaces by framework biomineralization protein phases. CrystEngComm 2014. [DOI: 10.1039/c4ce00934g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A nacre protein, n16.3, forms phases that introduce textured mineral overgrowth and subsurface nanoporosities within calcite crystals.
Collapse
Affiliation(s)
- Eric P. Chang
- Laboratory for Chemical Physics
- Center for Skeletal Sciences
- New York University
- New York, USA
| | - Jennie A. Russ
- Department of Materials Science and Engineering
- Cornell University
- Ithaca, USA
| | | | | | - Lara A. Estroff
- Department of Materials Science and Engineering
- Cornell University
- Ithaca, USA
| | - John Spencer Evans
- Laboratory for Chemical Physics
- Center for Skeletal Sciences
- New York University
- New York, USA
| |
Collapse
|
46
|
Malho JM, Heinonen H, Kontro I, Mushi NE, Serimaa R, Hentze HP, Linder MB, Szilvay GR. Formation of ceramophilic chitin and biohybrid materials enabled by a genetically engineered bifunctional protein. Chem Commun (Camb) 2014; 50:7348-51. [DOI: 10.1039/c4cc02170c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An engineered bifunctional protein from an oyster shell protein and a chitin-binding domain enables the formation of mineralized biohybrid materials.
Collapse
Affiliation(s)
| | | | - Inkeri Kontro
- University of Helsinki
- Department of Physics
- , Finland
| | - Ngesa E. Mushi
- Royal Institute of Technology
- Fibre and Polymer Technology
- SE-100 44 Stockholm, Sweden
| | - Ritva Serimaa
- University of Helsinki
- Department of Physics
- , Finland
| | | | - Markus B. Linder
- VTT Technical Research Centre of Finland
- , Finland
- Aalto University
- Department of Biotechnology and Chemical Technology
- 00076 Aalto, Finland
| | | |
Collapse
|
47
|
Perovic I, Mandal T, Evans JS. A Pearl Protein Self-Assembles To Form Protein Complexes That Amplify Mineralization. Biochemistry 2013; 52:5696-703. [DOI: 10.1021/bi400808j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Iva Perovic
- Laboratory for Chemical Physics,
Division of Basic Sciences and Craniofacial Biology, New York University, 345 E. 24th Street, NY, New York
10010, United States
| | - Trinanjana Mandal
- Department
of Chemistry and
the Molecular Design Institute, New York University, 100 Washington Square East, New York, New York 10003-6688, United
States
| | - John Spencer Evans
- Laboratory for Chemical Physics,
Division of Basic Sciences and Craniofacial Biology, New York University, 345 E. 24th Street, NY, New York
10010, United States
| |
Collapse
|
48
|
Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization. J Struct Biol 2013; 183:205-15. [PMID: 23796503 DOI: 10.1016/j.jsb.2013.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/29/2013] [Accepted: 06/09/2013] [Indexed: 12/31/2022]
Abstract
The larval spicule matrix protein SM50 is the most abundant occluded matrix protein present in the mineralized larval sea urchin spicule. Recent evidence implicates SM50 in the stabilization of amorphous calcium carbonate (ACC). Here, we investigate the molecular interactions of SM50 and CaCO3 by investigating the function of three major domains of SM50 as small ubiquitin-like modifier (SUMO) fusion proteins - a C-type lectin domain (CTL), a glycine rich region (GRR) and a proline rich region (PRR). Under various mineralization conditions, we find that SUMO-CTL is monomeric and influences CaCO3 mineralization, SUMO-GRR aggregates into large protein superstructures and SUMO-PRR modifies the early CaCO3 mineralization stages as well as growth. The combination of these mineralization and self-assembly properties of the major domains synergistically enable the full-length SM50 to fulfill functions of constructing the organic spicule matrix as well as performing necessary mineralization activities such as Ca(2+) ion recruitment and organization to allow for proper growth and development of the mineralized larval sea urchin spicule.
Collapse
|
49
|
A novel method of predicting protein disordered regions based on sequence features. BIOMED RESEARCH INTERNATIONAL 2013; 2013:414327. [PMID: 23710446 PMCID: PMC3654632 DOI: 10.1155/2013/414327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/26/2013] [Indexed: 01/27/2023]
Abstract
With a large number of disordered proteins and their important functions discovered, it is highly desired to develop effective methods to computationally predict protein disordered regions. In this study, based on Random Forest (RF), Maximum Relevancy Minimum Redundancy (mRMR), and Incremental Feature Selection (IFS), we developed a new method to predict disordered regions in proteins. The mRMR criterion was used to rank the importance of all candidate features. Finally, top 128 features were selected from the ranked feature list to build the optimal model, including 92 Position Specific Scoring Matrix (PSSM) conservation score features and 36 secondary structure features. As a result, Matthews correlation coefficient (MCC) of 0.3895 was achieved on the training set by 10-fold cross-validation. On the basis of predicting results for each query sequence by using the method, we used the scanning and modification strategy to improve the performance. The accuracy (ACC) and MCC were increased by 4% and almost 0.2%, respectively, compared with other three popular predictors: DISOPRED, DISOclust, and OnD-CRF. The selected features may shed some light on the understanding of the formation mechanism of disordered structures, providing guidelines for experimental validation.
Collapse
|
50
|
Evans JS. “Liquid-like” biomineralization protein assemblies: a key to the regulation of non-classical nucleation. CrystEngComm 2013. [DOI: 10.1039/c3ce40803e] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|