1
|
Haq I, Anwar F, Tong Y. De Novo Design of Highly Stable Binders Targeting Dihydrofolate Reductase in Klebsiella pneumoniae. Proteins 2025. [PMID: 40371895 DOI: 10.1002/prot.26835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/17/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025]
Abstract
The study aims to design novel therapeutic inhibitors targeting the DHFR protein of Klebsiella pneumoniae. However, challenges like bacterial resistance to peptides and the limitations of computational models in predicting in vivo behavior must be addressed to refine the design process and improve therapeutic efficacy. This study employed deep learning-based bioinformatics techniques to tackle these issues. The study involved retrieving DHFR protein sequences from Klebsiella strains, aligning them to identify conserved regions, and using deep learning models (OmegaFold, ProteinMPNN) to design de novo inhibitors. Cell-penetrating peptide (CPP) motifs were added to enhance delivery, followed by allergenicity and thermal stability assessments. Molecular docking and dynamics simulations evaluated the binding affinity and stability of the inhibitors with DHFR. A conserved 60-residue region was identified, and 60 de novo binders were generated, resulting in 7200 sequences. After allergenicity prediction and stability testing, 10 sequences with melting points near 70°C were shortlisted. Strong binding affinities were observed, especially for complexes 4OR7-1787 and 4OR7-1811, which remained stable in molecular dynamics simulations, indicating their potential as therapeutic agents. This study designed stable de novo peptides with cell-penetrating properties and strong binding affinity to DHFR. Future steps include in vitro validation to assess their effectiveness in inhibiting DHFR, followed by in vivo studies to evaluate their therapeutic potential and stability. These peptides offer a promising strategy against Klebsiella pneumoniae infections, providing potential alternatives to current antibiotics. Experimental validation will be key to assessing their clinical relevance.
Collapse
Affiliation(s)
- Ihteshamul Haq
- College of Life Sciences and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Faheem Anwar
- Medical School, Tianjin University, Tianjin, China
| | - Yigang Tong
- College of Life Sciences and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
2
|
Chen J, Wei Y, Ni D, Zhu Y, Xu W, Zhang W, Mu W. Biochemical characterization and biocatalytic application of a hyperthermostable tagatose 4-epimerase from Infirmifilum uzonense. Int J Biol Macromol 2025; 305:141168. [PMID: 39965353 DOI: 10.1016/j.ijbiomac.2025.141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/15/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
D-Tagatose is a representative rare sugar with the physiochemical properties of low energy and high sweetness, as well as excellent physiological functions such as blood sugar regulation, enhancement of intestinal flora, and prevention of dental caries. At present, D-tagatose production involves lactose hydrolysis and D-galactose isomerization processes, resulting in high production costs that hinder its industrial advancement. Tagatose 4-epimerase (T4Ease) has the capability to directly convert d-fructose into D-tagatose through C-4 epimerization, providing a new approach for D-tagatose production. In this study, a hyperthermostable T4Ease from Infirmifilum uzonense (Inuz-TE4ase) was identified from the Foldseek clustered AlphaFold database and its biochemical properties were characterized in detail. Under the optimal reaction conditions of 90 °C and pH 8.5 (Tris-HCl) with the addition of 1 mM Ni2+, the maximum catalytic activity towards d-fructose was determined to be 0.680 U/mg. Inuz-TE4ase exhibited exceptional thermostability, with half-life (t1/2) values of 19.3 h at 85 °C and 8.9 h at 90 °C, respectively. Inuz-TE4ase was strictly metal-dependent, and its stability could be enhanced by Ni2+ with an increase in the melting temperature (Tm) value from 101.1 °C to 105.7 °C. When 100 g/L d-fructose was used as the substrate, Inuz-TE4ase could catalyze the production of 21.67 g/L D-tagatose, indicating its significant potential for D-tagatose bioproduction.
Collapse
Affiliation(s)
- Jiajun Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuhan Wei
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Deng M, Wang B, Zhou J, Dong J, Ni Y, Han R. Ancestral Sequence Reconstruction and Semirational Engineering of Glycosyltransferase for Efficient Synthesis of Rare Ginsenoside Rh1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7944-7953. [PMID: 40105367 DOI: 10.1021/acs.jafc.5c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Rare ginsenoside Rh1, exhibiting great potential in the food industry, is limited by its natural scarcity. This constraint has driven the development of biocatalytic synthesis approaches, yet robust enzymes capable of efficient production remain elusive. Here, we employed the ancestral sequence reconstruction (ASR) approach to create a thermostable UDP-dependent glycosyltransferase (UGT227) for Rh1 synthesis from 20(S)-protopanaxatriol (PPT). UGT227 exhibited enhanced thermostability (t1/2 = 44.2 h at 60 °C) but initially yielded only 15% Rh1. Semirational engineering generated the I83A/F285 M variant, increasing the yield to 92%. For economic viability, the I83A/F285 M variant was coexpressed with Arabidopsis thaliana sucrose synthase (AtSUS1), enabling the use of cost-effective sucrose for UDP-glucose regeneration. This integration achieved a 99.9% yield at a 1 mM PPT. Molecular dynamics simulations revealed that the enlarged binding pocket entrance of I83A/F285 M contributed to the enhanced Rh1 yield. Our findings offer strategies for efficient biosynthesis of Rh1 and pave the way for economically feasible production.
Collapse
Affiliation(s)
- Meijuan Deng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- Key laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Binhao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- Key laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jieyu Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- Key laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinjun Dong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- Key laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ye Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- Key laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ruizhi Han
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- Key laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Kurt H, Sever Kaya D, Akçok İ, Sarı C, Albayrak E, Velioğlu HM, Şamlı HE, Özdüven ML, Sürmeli Y. Discovery and In Silico Characterization of Anatolian Water Buffalo Rumen-Derived Bacterial Thermostable Xylanases: A Sequence-Based Metagenomic Approach. ACS OMEGA 2025; 10:12679-12698. [PMID: 40191290 PMCID: PMC11966585 DOI: 10.1021/acsomega.5c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 04/09/2025]
Abstract
This study involved shotgun sequencing of rumen metagenomes from three Anatolian water buffalos, an exploration of the relationship between microbial flora and xylanases, and in silico analyses of thermostable xylanases, focusing on their sequence, structure, and dynamic properties. For this purpose, the rumen metagenome of three Anatolian water buffalos was sequenced and bioinformatically analyzed to determine microbial diversity and full-length xylanases. Analyses of BLAST, biophysicochemical characteristics, phylogenetic tree, and multiple sequence alignment were performed with Blastp, ProtParam, MEGA11 software, and Clustal Omega, respectively. Three-dimensional homology models of three xylanases (AWBRMetXyn5, AWBRMetXyn10, and AWBRMetXyn19) were constructed by SWISS-MODEL and validated by ProSA, ProCheck, and Verify3D. Also, their 3D models were structurally analyzed by PyMOL, BANΔIT, thermostability predictor, What If, and Protein Interaction Calculator (PIC) software. Protein-ligand interactions were examined by docking and MD simulation. Shotgun sequence and Blastp analyses showed that Clostridium (Clostridiales bacterial order), Ruminococcus (Oscillospiraceae bacterial family), Prevotella (Bacteroidales bacterial order), and Butyrivibrio (Lachnospiraceae bacterial family) were found as dominant potential xylanase-producer genera in three rumen samples. Furthermore, the biophysicochemical analysis indicated that three xylanases exhibited an aliphatic index above 80, an instability index below 40, and melting temperatures (T m) surpassing 65 °C. Phylogenetic analysis placed three xylanases within the GH10 family, clustering them with thermophilic xylanases, while homology modeling identified the optimal template as a xylanase from a thermophilic bacterium. The structural analysis indicated that three xylanases possessed the number of salt bridges, hydrophobic interactions, and T m score higher than 50, 165, and 70 °C, respectively; however, the reference thermophilic XynAS9 had 43, 145, and 54.41 °C, respectively. BANΔIT analysis revealed that three xylanases exhibited lower B'-factor values in the β3-α1 loop/short-helix at the N-terminal site compared to the reference thermophilic XynAS9. In contrast, six residues (G79, M123, D150, T199, A329, and G377) possessed higher B'-factor values in AWBRMetXyn5 and their aligned positions in AWBRMetXyn10 and AWBRMetXyn19, relative to XynAS9 including Gln, Glu, Ile, Lys, Ser, and Val at these positions, respectively. MD simulation results showed that the β9-η5 loop including catalytic nucleophile glutamic acid in the RMSF plot of three xylanases had a higher fluctuation than the aligned region in XynAS9. The distance analysis from the MD simulation showed that the nucleophile residue in AWBRMetXyn5 and AWBRMetXyn10 remained closer to the ligand throughout the simulation compared with XynAS9 and AWBRMetXyn19. The most notable difference between AWBRMetXyn5 and AWBRMetXyn10 was the increased amino acid fluctuations in two specific regions, the η3 short-helix and the η3-α3 loop, despite a minimal sequence difference of only 1.24%, which included three key amino acid variations (N345, N396, and T397 in AWBRMetXyn5; D345, K396, and A397 in AWBRMetXyn10). Thus, this study provided computational insights into xylanase function and thermostability, which could inform future protein engineering efforts. Additionally, three xylanases, especially AWBRMetXyn5, are promising candidates for various high-temperature industrial applications. In a forthcoming study, three xylanases will be experimentally characterized and considered for potential industrial applications. In addition, the amino acid substitutions (G79Q, M123E, D150I, T199K, A329S, and G377V) and the residues in the β3-α1 loop will be targeted for thermostability improvement of AWBRMetXyn5. The amino acids (N345, N396, and T397) and the residues on the β9-η5 loop, η3 short-helix, and η3-α3 loop will also be focused on development of the catalytic efficiency.
Collapse
Affiliation(s)
- Halil Kurt
- Department of Medical Biology,
Hamidiye International School of Medicine, University of Health Sciences, Istanbul 34668, Turkey
| | - Dilek Sever Kaya
- Clinical Nutrition and Microbiota Research
Laboratory, Istanbul Faculty of Medicine, Istanbul University, İstanbul 34390, Turkey
| | - İsmail Akçok
- Department
of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
| | - Ceyhun Sarı
- Department
of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
| | - Ebru Albayrak
- Department of Agricultural Biotechnology,
Faculty of Agriculture, Tekirdag Namik Kemal
University, Tekirdag 59030, Turkey
| | - Hasan Murat Velioğlu
- Department of Agricultural Biotechnology,
Faculty of Agriculture, Tekirdag Namik Kemal
University, Tekirdag 59030, Turkey
| | - Hasan Ersin Şamlı
- Department
of Animal Science, Faculty of Agriculture, Tekirdag Namik Kemal University, Tekirdag 59030, Turkey
| | - Mehmet Levent Özdüven
- Department
of Animal Science, Faculty of Agriculture, Tekirdag Namik Kemal University, Tekirdag 59030, Turkey
| | - Yusuf Sürmeli
- Department of Agricultural Biotechnology,
Faculty of Agriculture, Tekirdag Namik Kemal
University, Tekirdag 59030, Turkey
| |
Collapse
|
5
|
Grassmann G, Di Rienzo L, Ruocco G, Miotto M, Milanetti E. Compact Assessment of Molecular Surface Complementarities Enhances Neural Network-Aided Prediction of Key Binding Residues. J Chem Inf Model 2025; 65:2695-2709. [PMID: 39982412 PMCID: PMC11898074 DOI: 10.1021/acs.jcim.4c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Predicting interactions between proteins is fundamental for understanding the mechanisms underlying cellular processes, since protein-protein complexes are crucial in physiological conditions but also in many diseases, for example by seeding aggregates formation. Despite the many advancements made so far, the performance of docking protocols is deeply dependent on their capability to identify binding regions. From this, the importance of developing low-cost and computationally efficient methods in this field. We present an integrated novel protocol mainly based on compact modeling of protein surface patches via sets of orthogonal polynomials to identify regions of high shape/electrostatic complementarity. By incorporating both hydrophilic and hydrophobic contributions, we define new binding matrices, which serve as effective inputs for training a neural network. In this work, we propose a new Neural Network (NN)-based architecture, Core Interacting Residues Network (CIRNet), which achieves a performance in terms of Area Under the Receiver Operating Characteristic Curve (ROC AUC) of approximately 0.87 in identifying pairs of core interacting residues on a balanced data set. In a blind search for core interacting residues, CIRNet distinguishes them from random decoys with an ROC AUC of 0.72. We test this protocol to enhance docking algorithms by filtering the proposed poses, addressing one of the still open problems in computational biology. Notably, when applied to the top ten models from three widely used docking servers, CIRNet improves docking outcomes, significantly reducing the average RMSD between the selected poses and the native state. Compared to another state-of-the-art tool for rescaling docking poses, CIRNet more efficiently identified the worst poses generated by the three docking servers under consideration and achieved superior rescaling performance in two cases.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, P.Le A. Moro 5, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
6
|
Ayodele T, Tijani A, Liadi M, Alarape K, Clementson C, Hammed A. Biomass-Based Microbial Protein Production: A Review of Processing and Properties. Front Biosci (Elite Ed) 2024; 16:40. [PMID: 39736011 DOI: 10.31083/j.fbe1604040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 12/31/2024]
Abstract
A rise in population and societal changes have increased pressure on resources required to meet the growing demand for food and changing dietary preferences. The increasing demand for animal protein is concerning and raises questions regarding sustainability due to its environmental impact. Subsequently, scientists seek alternative proteins, such as microbial proteins (MPs), as an environmentally friendly choice. The production of MPs promotes benefits, including reducing deforestation and CO2 emissions. Several microorganism types, such as bacteria, yeast, fungi, and algae, use a variety of substrates for MP production, from agricultural residues to lignocellulosic biomass. These complex substrates, including lignocellulosic biomass, are converted to fermentable sugar through either chemical, physical, or biological methods. Indeed, fermentation can occur through submerged cultures or other methods. However, this depends on the substrate and microorganisms being utilized. MPs have properties that make them versatile and useful ingredients in various applications. Using residues and lignocellulosic biomass as raw materials for producing MPs offers sustainability, cost-effectiveness, and waste reduction advantages. These properties are consistent with the principles established by green chemistry, which aims to conserve resources effectively and operate sustainably in all areas. This review highlights the importance of studying manufacturing aspects and the characteristics associated with MPs, which can be implemented to solve problems and encourage novel methods in the global food/feed industry.
Collapse
Affiliation(s)
- Tawakalt Ayodele
- Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Abodunrin Tijani
- Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Musiliu Liadi
- Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Kudirat Alarape
- Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Clairmont Clementson
- Agricultural and Biosystems Engineering, Faculty of Agriculture, North Dakota State University, Fargo, ND 58102, USA
| | - Ademola Hammed
- Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
- Agricultural and Biosystems Engineering, Faculty of Agriculture, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
7
|
Samal RR, Subudhi U. Modulation of antioxidant enzyme by light and heavy rare earth metals: A case study with catalase. Int J Biol Macromol 2024; 283:137820. [PMID: 39566800 DOI: 10.1016/j.ijbiomac.2024.137820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
The present study highlights the hazardous effect of heavy and light rare earth elements (REEs) on bovine liver catalase (BLC) using a combination of spectroscopic and computational methods. The presence of Praseodymium chloride (PrCl3) and Gadolinium chloride (GdCl3) resulted in a substantial reduction in catalytic efficiency of BLC by approximately 1.8 and 2.6 fold, respectively. The compromised activity was further accompanied by conformational rearrangements at the secondary and tertiary levels as evidenced by circular dichroism (CD) and fluorescence spectroscopy. These analyses revealed a significant decrease in α-helical content and a simultaneous increase in random coils, disrupting intramolecular hydrogen bonding. Furthermore, the zeta potential (ζ) of BLC demonstrated a reversal from negative to positive ζ values upon the addition of PrCl3 and GdCl3, indicating BLC-lanthanide complex formation. Isothermal titration calorimetry (ITC) supports spontaneous interaction with negative free energy favouring endothermic reaction. This was further supported by docking studies which revealed the binding of PrCl3 and GdCl3 within the active site of BLC thus interfering with the catalytic ability to degrade hydrogen peroxide (H2O2). Nevertheless, a significant decline in the melting temperature (Tm) of BLC was observed in the presence of lanthanides suggesting the thermal instability of the enzyme. Thus, a similar approach could be applied to evaluate the hazardous effects of lanthanides on structural and functional changes in other proteins or similar biomolecules.
Collapse
Affiliation(s)
- Rashmi R Samal
- Biochemistry & Biophysics Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Umakanta Subudhi
- Biochemistry & Biophysics Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Miotto M, Warner N, Ruocco G, Tartaglia GG, Scherman OA, Milanetti E. Osmolyte-induced protein stability changes explained by graph theory. Comput Struct Biotechnol J 2024; 23:4077-4087. [PMID: 39660214 PMCID: PMC11630646 DOI: 10.1016/j.csbj.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 12/12/2024] Open
Abstract
Enhanced stabilization of protein structures via the presence of inert osmolytes is a key mechanism adopted both by physiological systems and in biotechnological applications. While the intrinsic stability of proteins is ultimately fixed by their amino acid composition and organization, the interactions between osmolytes and proteins together with their concentrations introduce an additional layer of complexity and in turn, a method of modulating protein stability. Here, we combined experimental measurements with molecular dynamics simulations and graph-theory-based analyses to predict the stabilizing/destabilizing effects of different kinds of osmolytes on proteins during heat-mediated denaturation. We found that (i) proteins in solution with stability-enhancing osmolytes tend to have more compact interaction networks than those assumed in the presence of destabilizing osmolytes; (ii) a strong negative correlation (R = -0.85) characterizes the relationship between the melting temperatureT m and the preferential interaction coefficient defined by the radial distribution functions of osmolytes and water around the protein and (iii) a positive correlation exists between osmolyte-osmolyte clustering and the extent of preferential exclusion from the local domain of the protein, suggesting that exclusion may be driven by enhanced steric hindrance of aggregated osmolytes.
Collapse
Affiliation(s)
- Mattia Miotto
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Nina Warner
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Giancarlo Ruocco
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Gian Gaetano Tartaglia
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Biology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Oren A. Scherman
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Edoardo Milanetti
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
9
|
Barozi V, Chakraborty S, Govender S, Morgan E, Ramahala R, Graham SC, Bishop NT, Tastan Bishop Ö. Revealing SARS-CoV-2 M pro mutation cold and hot spots: Dynamic residue network analysis meets machine learning. Comput Struct Biotechnol J 2024; 23:3800-3816. [PMID: 39525081 PMCID: PMC11550722 DOI: 10.1016/j.csbj.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Deciphering the effect of evolutionary mutations of viruses and predicting future mutations is crucial for designing long-lasting and effective drugs. While understanding the impact of current mutations on protein drug targets is feasible, predicting future mutations due to natural evolution of viruses and environmental pressures remains challenging. Here, we leveraged existing mutation data during the evolution of the SARS-CoV-2 protein drug target main protease (Mpro) to test the predictive power of dynamic residue network (DRN) analysis in identifying mutation cold and hot spots. We conducted molecular dynamics simulations on the Mpro of SARS-CoV-2 (Wuhan strain) and calculated eight DRN metrics (averaged BC, CC, DC, EC, ECC, KC, L, PR), each of which identifies a unique network feature within the protein. The sets of residues with the highest and lowest values for each metric, comprising potential cold and hot spots, were compared to published biochemical analyses and per residue mutation frequencies observed across five SARS-CoV-2 lineages, encompassing a total of 191,878 sequences. Individual DRN metrics displayed only modest power to predict the mutation frequency of individual residues. However, integrating the eight DRN metrics with additional structural and sequence-derived metrics allowed us to develop machine learning models which significantly improved the prediction of residue mutation frequency. While further refinements should enhance accuracy, we demonstrated a robust method to understand pathogen evolution. This approach can also guide the development of long-lasting drugs by targeting functional residues located in and near active site, and allosteric sites, that are less prone to mutations.
Collapse
Affiliation(s)
- Victor Barozi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
| | - Shrestha Chakraborty
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Shaylyn Govender
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
| | - Emily Morgan
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
| | - Rabelani Ramahala
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
| | - Stephen C. Graham
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Nigel T. Bishop
- Department of Pure and Applied Mathematics, Rhodes University, Makhanda 6139, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), South Africa
| |
Collapse
|
10
|
Yehorova D, Di Geronimo B, Robinson M, Kasson PM, Kamerlin SCL. Using residue interaction networks to understand protein function and evolution and to engineer new proteins. Curr Opin Struct Biol 2024; 89:102922. [PMID: 39332048 DOI: 10.1016/j.sbi.2024.102922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024]
Abstract
Residue interaction networks (RINs) provide graph-based representations of interaction networks within proteins, providing important insight into the factors driving protein structure, function, and stability relationships. There exists a wide range of tools with which to perform RIN analysis, taking into account different types of interactions, input (crystal structures, simulation trajectories, single proteins, or comparative analysis across proteins), as well as formats, including standalone software, web server, and a web application programming interface (API). In particular, the ability to perform comparative RIN analysis across protein families using "metaRINs" provides a valuable tool with which to dissect protein evolution. This, in turn, highlights hotspots to avoid (or target) for in vitro evolutionary studies, providing a powerful framework that can be exploited to engineer new proteins.
Collapse
Affiliation(s)
- Dariia Yehorova
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA-30332, USA
| | - Bruno Di Geronimo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA-30332, USA
| | - Michael Robinson
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Peter M Kasson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA-30332, USA; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Fersht Dr NW, Atlanta GA 30332, USA; Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| | - Shina C L Kamerlin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA-30332, USA; Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden.
| |
Collapse
|
11
|
de La Bourdonnaye G, Ghazalova T, Fojtik P, Kutalkova K, Bednar D, Damborsky J, Rotrekl V, Stepankova V, Chaloupkova R. Computer-aided engineering of stabilized fibroblast growth factor 21. Comput Struct Biotechnol J 2024; 23:942-951. [PMID: 38379823 PMCID: PMC10877085 DOI: 10.1016/j.csbj.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/03/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024] Open
Abstract
FGF21 is an endocrine signaling protein belonging to the family of fibroblast growth factors (FGFs). It has emerged as a molecule of interest for treating various metabolic diseases due to its role in regulating glucogenesis and ketogenesis in the liver. However, FGF21 is prone to heat, proteolytic, and acid-mediated degradation, and its low molecular weight makes it susceptible to kidney clearance, significantly reducing its therapeutic potential. Protein engineering studies addressing these challenges have generally shown that increasing the thermostability of FGF21 led to improved pharmacokinetics. Here, we describe the computer-aided design and experimental characterization of FGF21 variants with enhanced melting temperature up to 15 °C, uncompromised efficacy at activation of MAPK/ERK signaling in Hep G2 cell culture, and ability to stimulate proliferation of Hep G2 and NIH 3T3 fibroblasts cells comparable with FGF21-WT. We propose that stabilizing the FGF21 molecule by rational design should be combined with other reported stabilization strategies to maximize the pharmaceutical potential of FGF21.
Collapse
Affiliation(s)
- Gabin de La Bourdonnaye
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Enantis Ltd., Biotechnology Incubator INBIT, Brno, Czech Republic
| | - Tereza Ghazalova
- Enantis Ltd., Biotechnology Incubator INBIT, Brno, Czech Republic
| | - Petr Fojtik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - David Bednar
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Jiri Damborsky
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | | | - Radka Chaloupkova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Enantis Ltd., Biotechnology Incubator INBIT, Brno, Czech Republic
| |
Collapse
|
12
|
Han J, Ullah M, Andoh V, Khan MN, Feng Y, Guo Z, Chen H. Engineering Bacterial Chitinases for Industrial Application: From Protein Engineering to Bacterial Strains Mutation! A Comprehensive Review of Physical, Molecular, and Computational Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23082-23096. [PMID: 39388625 DOI: 10.1021/acs.jafc.4c06856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Bacterial chitinases are integral in breaking down chitin, the natural polymer in crustacean and insect exoskeletons. Their increasing utilization across various sectors such as agriculture, waste management, biotechnology, food processing, and pharmaceutical industries highlights their significance as biocatalysts. The current review investigates various scientific strategies to maximize the efficiency and production of bacterial chitinases for industrial use. Our goal is to optimize the heterologous production process using physical, molecular, and computational tools. Physical methods focus on isolating, purifying, and characterizing chitinases from various sources to ensure optimal conditions for maximum enzyme activity. Molecular techniques involve gene cloning, site-directed mutation, and CRISPR-Cas9 gene editing as an approach for creating chitinases with improved catalytic activity, substrate specificity, and stability. Computational approaches use molecular modeling, docking, and simulation techniques to accurately predict enzyme-substrate interactions and enhance chitinase variants' design. Integrating multidisciplinary strategies enables the development of highly efficient chitinases tailored for specific industrial applications. This review summarizes current knowledge and advances in chitinase engineering to serve as an indispensable guideline for researchers and industrialists seeking to optimize chitinase production for various uses.
Collapse
Affiliation(s)
- Jianda Han
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Mati Ullah
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Vivian Andoh
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Muhammad Nadeem Khan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, P. R. China
| | - Yong Feng
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Zhongjian Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| |
Collapse
|
13
|
Li SS, Liu ZM, Li J, Ma YB, Dong ZY, Hou JW, Shen FJ, Wang WB, Li QM, Su JG. Prediction of mutation-induced protein stability changes based on the geometric representations learned by a self-supervised method. BMC Bioinformatics 2024; 25:282. [PMID: 39198740 PMCID: PMC11360314 DOI: 10.1186/s12859-024-05876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Thermostability is a fundamental property of proteins to maintain their biological functions. Predicting protein stability changes upon mutation is important for our understanding protein structure-function relationship, and is also of great interest in protein engineering and pharmaceutical design. RESULTS Here we present mutDDG-SSM, a deep learning-based framework that uses the geometric representations encoded in protein structure to predict the mutation-induced protein stability changes. mutDDG-SSM consists of two parts: a graph attention network-based protein structural feature extractor that is trained with a self-supervised learning scheme using large-scale high-resolution protein structures, and an eXtreme Gradient Boosting model-based stability change predictor with an advantage of alleviating overfitting problem. The performance of mutDDG-SSM was tested on several widely-used independent datasets. Then, myoglobin and p53 were used as case studies to illustrate the effectiveness of the model in predicting protein stability changes upon mutations. Our results show that mutDDG-SSM achieved high performance in estimating the effects of mutations on protein stability. In addition, mutDDG-SSM exhibited good unbiasedness, where the prediction accuracy on the inverse mutations is as well as that on the direct mutations. CONCLUSION Meaningful features can be extracted from our pre-trained model to build downstream tasks and our model may serve as a valuable tool for protein engineering and drug design.
Collapse
Affiliation(s)
- Shan Shan Li
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Zhao Ming Liu
- National Engineering Center for New Vaccine Research, Beijing, China
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
| | - Jiao Li
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Yi Bo Ma
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Ze Yuan Dong
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Jun Wei Hou
- National Engineering Center for New Vaccine Research, Beijing, China
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
| | - Fu Jie Shen
- National Engineering Center for New Vaccine Research, Beijing, China
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
| | - Wei Bu Wang
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Qi Ming Li
- National Engineering Center for New Vaccine Research, Beijing, China.
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China.
| | - Ji Guo Su
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China.
- National Engineering Center for New Vaccine Research, Beijing, China.
| |
Collapse
|
14
|
Kaur H, Singh S, Rode S, Chaudhary PK, Khan NA, Ramamurthy PC, Gupta DN, Kumar R, Das J, Sharma AK. Fabrication and characterization of polyvinyl alcohol-chitosan composite nanofibers for carboxylesterase immobilization to enhance the stability of the enzyme. Sci Rep 2024; 14:19615. [PMID: 39179653 PMCID: PMC11344031 DOI: 10.1038/s41598-024-67913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 08/26/2024] Open
Abstract
Electrospinning stands out as a flexible and viable method, presenting designed nanoscale materials with customized properties. This research demonstrates the immobilization of carboxylesterase protein Ha006a, reported for its adequacy in pesticide bioremediation by utilizing the electrospinning strategy. This strategy was utilized to create nanofibers by incorporating variable mixtures of biodegradable and cost-effective polyvinyl alcohol (PVA)-chitosan (CS) nanofiber solution (PVA100, PVA96, PVA94, PVA92 and PVA90). All the mixtures were electrospun at a reliable voltage of 21 kV, maintaining a gap of 12 cm from the nozzle. The Ha006a, sourced from Helicoverpa armigera, was consolidated into the optimized PVA90 polymer mixture. The electrospun nanofibers experienced comprehensive characterization utilizing distinctive microscopy and spectroscopy procedures counting FESEM, TGA, XRD and FTIR. The comparative investigation of the esterase property, ideal parameters and stability of the unbound and bound/immobilized Ha006a was scrutinized. The results uncovered an essential elevation in the ideal conditions of enzyme activity post-immobilization. The PVA-CS control nanofiber and Ha006a-PVA-CS showed a smooth structure, including an average breadth of around 170.5 ± 44.2 and 222.5 ± 66.5 nm, respectively. The enzyme-immobilized nanofibers displayed upgraded stability and comprehensive characterization of the nanofiber, which guaranteed genuineness and reproducibility, contributing to its potential as a potent device for bioremediation applications. This investigation opens the way for the manufacture of pesticide-resistant insect enzyme-based nanofibers, unlocking their potential for assorted applications, counting pesticide remediation and ensuring environmental sustainability.
Collapse
Affiliation(s)
- Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Pankaj Kumar Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Deena Nath Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Rakesh Kumar
- Division of Crop Improvement, ICAR-Central Institute for Cotton Research (ICAR-CICR), Nagpur, Maharashtra, 440010, India
| | - Joy Das
- Division of Crop Improvement, ICAR-Central Institute for Cotton Research (ICAR-CICR), Nagpur, Maharashtra, 440010, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
15
|
O'Neil PT, Swint‐Kruse L, Fenton AW. Rheostatic contributions to protein stability can obscure a position's functional role. Protein Sci 2024; 33:e5075. [PMID: 38895978 PMCID: PMC11187868 DOI: 10.1002/pro.5075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Rheostat positions, which can be substituted with various amino acids to tune protein function across a range of outcomes, are a developing area for advancing personalized medicine and bioengineering. Current methods cannot accurately predict which proteins contain rheostat positions or their substitution outcomes. To compare the prevalence of rheostat positions in homologs, we previously investigated their occurrence in two pyruvate kinase (PYK) isozymes. Human liver PYK contained numerous rheostat positions that tuned the apparent affinity for the substrate phosphoenolpyruvate (Kapp-PEP) across a wide range. In contrast, no functional rheostat positions were identified in Zymomonas mobilis PYK (ZmPYK). Further, the set of ZmPYK substitutions included an unusually large number that lacked measurable activity. We hypothesized that the inactive substitution variants had reduced protein stability, precluding detection of Kapp-PEP tuning. Using modified buffers, robust enzymatic activity was obtained for 19 previously-inactive ZmPYK substitution variants at three positions. Surprisingly, both previously-inactive and previously-active substitution variants all had Kapp-PEP values close to wild-type. Thus, none of the three positions were functional rheostat positions, and, unlike human liver PYK, ZmPYK's Kapp-PEP remained poorly tunable by single substitutions. To directly assess effects on stability, we performed thermal denaturation experiments for all ZmPYK substitution variants. Many diminished stability, two enhanced stability, and the three positions showed different thermal sensitivity to substitution, with one position acting as a "stability rheostat." The differences between the two PYK homologs raises interesting questions about the underlying mechanism(s) that permit functional tuning by single substitutions in some proteins but not in others.
Collapse
Affiliation(s)
- Pierce T. O'Neil
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansasUSA
| | - Liskin Swint‐Kruse
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansasUSA
| | - Aron W. Fenton
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansasUSA
| |
Collapse
|
16
|
Desantis F, Miotto M, Milanetti E, Ruocco G, Di Rienzo L. Computational evidences of a misfolding event in an aggregation-prone light chain preceding the formation of the non-native pathogenic dimer. Proteins 2024; 92:797-807. [PMID: 38314653 DOI: 10.1002/prot.26672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Antibody light chain amyloidosis is a disorder in which protein aggregates, mainly composed of immunoglobulin light chains, deposit in diverse tissues impairing the correct functioning of organs. Interestingly, due to the high susceptibility of antibodies to mutations, AL amyloidosis appears to be strongly patient-specific. Indeed, every patient will display their own mutations that will make the proteins involved prone to aggregation thus hindering the study of this disease on a wide scale. In this framework, determining the molecular mechanisms that drive the aggregation could pave the way to the development of patient-specific therapeutics. Here, we focus on a particular patient-derived light chain, which has been experimentally characterized. We investigated the early phases of the aggregation pathway through extensive full-atom molecular dynamics simulations, highlighting a structural rearrangement and the exposure of two hydrophobic regions in the aggregation-prone species. Next, we moved to consider the pathological dimerization process through docking and molecular dynamics simulations, proposing a dimeric structure as a candidate pathological first assembly. Overall, our results shed light on the first phases of the aggregation pathway for a light chain at an atomic level detail, offering new structural insights into the corresponding aggregation process.
Collapse
Affiliation(s)
- Fausta Desantis
- The Open University Affiliated Research Centre at Istituto Italiano di Tecnologia, Genova, Italy
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano & Neuro Science, Roma, Italy
| | - Mattia Miotto
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano & Neuro Science, Roma, Italy
| | - Edoardo Milanetti
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano & Neuro Science, Roma, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ruocco
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano & Neuro Science, Roma, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Di Rienzo
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano & Neuro Science, Roma, Italy
| |
Collapse
|
17
|
D’Ursi P, Rondina A, Zani A, Uggeri M, Messali S, Caruso A, Caccuri F. Molecular Mechanisms Involved in the B Cell Growth and Clonogenic Activity of HIV-1 Matrix Protein p17 Variants. Viruses 2024; 16:1048. [PMID: 39066211 PMCID: PMC11281387 DOI: 10.3390/v16071048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The human immunodeficiency virus (HIV-1) matrix protein p17 (p17) is released from infected cells as a protein capable of deregulating the biological activity of different cells. P17 variants (vp17s), more frequently detected in the plasma of HIV-1+ patients with rather than without lymphoma and characterized by amino acids insertions in their C-terminal region, were found to trigger B cell growth and clonogenicity. Vp17s endowed with B-cell-growth-promoting activity are drastically destabilized, whereas, in a properly folded state, reference p17 (refp17) does not exert any biological activity on B cell growth and clonogenicity. However, misfolding of refp17 is necessary to expose a masked functional epitope, interacting with the protease-activated receptor 1 (PAR-1), endowed with B cell clonogenicity. Indeed, it is worth noting that changes in the secondary structure can strongly impact the function of a protein. Here, we performed computational studies to show that the gain of function of vp17s is linked to dramatic conformational changes due to structural modification in the secondary-structure elements and in the rearrangement of the hydrogen bond (H-bond) network. In particular, all clonogenic vp17s showed the disengagement of two critical residues, namely Trp16 and Tyr29, from their hydrophobic core. Biological data showed that the mutation of Trp16 and Tyr29 to Ala in the refp17 backbone, alone or in combination, resulted in a protein endowed with B cell clonogenic activity. These data show the pivotal role of the hydrophobic component in maintaining refp17 stability and identify a novel potential therapeutic target to counteract vp17-driven lymphomagenesis in HIV-1+ patients.
Collapse
Affiliation(s)
- Pasqualina D’Ursi
- Institute of Technologies in Biomedicine, National Research Council, 20090 Segrate, Italy
| | - Alessandro Rondina
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy (M.U.)
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy (M.U.)
| | - Matteo Uggeri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy (M.U.)
- Lifescience Innovation Good Healthcare Technology—LIGHT s.c.ar.l., 25123 Brescia, Italy
| | - Serena Messali
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy (M.U.)
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy (M.U.)
- Centre for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy (M.U.)
- Centre for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| |
Collapse
|
18
|
Manav N, Jit BP, Kataria B, Sharma A. Cellular and epigenetic perspective of protein stability and its implications in the biological system. Epigenomics 2024; 16:879-900. [PMID: 38884355 PMCID: PMC11370918 DOI: 10.1080/17501911.2024.2351788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/30/2024] [Indexed: 06/18/2024] Open
Abstract
Protein stability is a fundamental prerequisite in both experimental and therapeutic applications. Current advancements in high throughput experimental techniques and functional ontology approaches have elucidated that impairment in the structure and stability of proteins is intricately associated with the cause and cure of several diseases. Therefore, it is paramount to deeply understand the physical and molecular confounding factors governing the stability of proteins. In this review article, we comprehensively investigated the evolution of protein stability, examining its emergence over time, its relationship with organizational aspects and the experimental methods used to understand it. Furthermore, we have also emphasized the role of Epigenetics and its interplay with post-translational modifications (PTMs) in regulating the stability of proteins.
Collapse
Affiliation(s)
- Nisha Manav
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, Ansari Nagar, 110029, India
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, Ansari Nagar, 110029, India
| | - Babita Kataria
- Department of Medical Oncology, National Cancer Institute, All India Institute of Medical Sciences, Jhajjar, 124105, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, Ansari Nagar, 110029, India
- Department of Biochemistry, National Cancer Institute, All India Institute of Medical Sciences, Jhajjar, 124105, India
| |
Collapse
|
19
|
Ito S, Matsunaga R, Nakakido M, Komura D, Katoh H, Ishikawa S, Tsumoto K. High-throughput system for the thermostability analysis of proteins. Protein Sci 2024; 33:e5029. [PMID: 38801228 PMCID: PMC11129621 DOI: 10.1002/pro.5029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Thermal stability of proteins is a primary metric for evaluating their physical properties. Although researchers attempted to predict it using machine learning frameworks, their performance has been dependent on the quality and quantity of published data. This is due to the technical limitation that thermodynamic characterization of protein denaturation by fluorescence or calorimetry in a high-throughput manner has been challenging. Obtaining a melting curve that derives solely from the target protein requires laborious purification, making it far from practical to prepare a hundred or more samples in a single workflow. Here, we aimed to overcome this throughput limitation by leveraging the high protein secretion efficacy of Brevibacillus and consecutive treatment with plate-scale purification methodologies. By handling the entire process of expression, purification, and analysis on a per-plate basis, we enabled the direct observation of protein denaturation in 384 samples within 4 days. To demonstrate a practical application of the system, we conducted a comprehensive analysis of 186 single mutants of a single-chain variable fragment of nivolumab, harvesting the melting temperature (Tm) ranging from -9.3 up to +10.8°C compared to the wild-type sequence. Our findings will allow for data-driven stabilization in protein design and streamlining the rational approaches.
Collapse
Affiliation(s)
- Sae Ito
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
| | - Ryo Matsunaga
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
| | - Makoto Nakakido
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
- The Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
20
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
21
|
Torres-Obreque K, Kleingesinds EK, Santos JHPM, Carretero G, Rabelo J, Converti A, Monteiro G, Pessoa A, Rangel-Yagui CO. PEGylation versus glycosylation: effect on the thermodynamics and thermostability of crisantaspase. Prep Biochem Biotechnol 2024; 54:503-513. [PMID: 37698175 DOI: 10.1080/10826068.2023.2249100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Thermostability is an important and desired feature of therapeutic proteins and is critical for the success or failure of protein drugs development. It can be increased by PEGylation-binding of poly(ethylene glycol) moieties-or glycosylation-post-translational modification to add glycans. Here, the thermostability and thermodynamic parameters of native, PEGylated, and glycosylated versions of the antileukemic enzyme crisantaspase were investigated. First-order kinetics was found to describe the irreversible deactivation process. Activation energy of the enzyme-catalyzed reaction (E*) was estimated for native, PEGylated, and glycosylated enzyme (10.2, 14.8, and 18.8 kJ mol-1 respectively). Half-life decreased progressively with increasing temperature, and longer half-life was observed for PEG-crisantaspase (87.74 min) at 50 °C compared to the native form (9.79 min). The activation energy of denaturation of PEG-crisantaspase (307.1 kJ mol-1) was higher than for crisantaspase (218.1 kJ mol-1) and Glyco-crisantaspase (120.0 kJ mol-1), which means that more energy is required to overcome the energy barrier of the unfolding process. According to our results, PEG-crisantaspase is more thermostable than its native form, while Glyco-crisantaspase is more thermosensitive.
Collapse
Affiliation(s)
- Karin Torres-Obreque
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | | | - João H P M Santos
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | - Gustavo Carretero
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jheniffer Rabelo
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Genoa, Italy
| | - Gisele Monteiro
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | - Carlota O Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Das D, Sen V, Chakraborty G, Pillai V, Tambade R, Jonnalagadda PN, Rao AVSSN, Chittela RK. Quinaldine Red as a fluorescent probe for determining the melting temperature ( Tm) of proteins: a simple, rapid and high-throughput assay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:950-956. [PMID: 38291911 DOI: 10.1039/d3ay01941a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Proteins play an important role in biological systems and several proteins are used in diagnosis, therapy, food industry etc. Thus, knowledge about the physical properties of the proteins is of utmost importance, which will aid in understanding their function and subsequent applications. The melting temperature (Tm) of a protein is one of the essential parameters which gives information about the stability of a protein under different conditions. In the present study, we have demonstrated a method for determining the Tm of proteins using the supramolecular interaction between Quinaldine Red (QR) and proteins. Using this method, we have determined the Tm of 5 proteins and compared our results with established protocols. Our results showed good agreement with the other methods and published values. The method developed in this study is inexpensive, quick, and devoid of complex instruments and pre/post-treatment of the samples. In addition, this method can be adopted for high throughput in multi-plate mode. Thus, this study projects a new methodology for Tm determination of various proteins with user friendly operation.
Collapse
Affiliation(s)
- Dhruv Das
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Vikram Sen
- UM-DAE Centre for Excellence in Basic Sciences, Vidyanagari, Mumbai-400098, India
| | - Goutam Chakraborty
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Mumbai-400085, India
| | - Vinayaki Pillai
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Rahul Tambade
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Padma Nilaya Jonnalagadda
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Mumbai-400085, India
| | | | - Rajani Kant Chittela
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
23
|
Farokhvand N, Shareghi B, Farhadian S. Evidence for paraquat-pepsin interaction: In vitro and silico study. CHEMOSPHERE 2024; 349:140714. [PMID: 38006922 DOI: 10.1016/j.chemosphere.2023.140714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/03/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
The use of the herbicide paraquat (PQ) has raised concerns about potential environmental consequences due to its toxicity and persistence in the environment. Considering the affinity of dangerous compounds to biological molecules, it is necessary to know their binding properties. This article focuses on the behavior of the pepsin enzyme following its contact with paraquat poison, and the interaction between paraquat and pepsin has been investigated in laboratory conditions and simulated physiological conditions using multispectral techniques. Fluorescence experiments showed that PQ uses a static method to quench pepsin's intrinsic fluorescence. By causing structural damage to pepsin, PQ may be detrimental as it alters its conformational function based on FT-IR spectroscopy. The coupling reaction is a spontaneous process caused by hydrogen bonding and van der Waals forces according to the analysis of the thermodynamic parameters of each system at three different temperatures. The molecular structure of pepsin changes when it binds to PQ. Also, the results showed that PQ is a pepsin inhibitor that changes the function of the enzyme.
Collapse
Affiliation(s)
- Najimeh Farokhvand
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
24
|
Richaud AD, Mandal S, Das A, Roche SP. Tunable CH/π Interactions within a Tryptophan Zipper Motif to Stabilize the Fold of Long β-Hairpin Peptides. ACS Chem Biol 2023; 18:2555-2563. [PMID: 37976523 PMCID: PMC11736618 DOI: 10.1021/acschembio.3c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The tryptophan zipper (Trpzip) is an iconic folding motif of β-hairpin peptides capitalizing on two pairs of cross-strand tryptophans, each stabilized by an aromatic-aromatic stacking in an edge-to-face (EtF) geometry. Yet, the origins and the contribution of this EtF packing to the unique Trpzip stability remain poorly understood. To address this question of structure-stability relationship, a library of Trpzip hairpins was developed by incorporating readily accessible nonproteinogenic tryptophans of varying electron densities. We found that each EtF geometry was, in fact, stabilized by an intricate combination of XH/π interactions. By tuning the π-electron density of Trpface rings, CH/π interactions are strengthened to gain additional stability. On the contrary, our DFT calculations support the notion that Trpedge modulations are challenging due to their simultaneous paradoxical engagement as H-bond donors in CH/π and acceptors in NH/π interactions.
Collapse
Affiliation(s)
- Alexis D. Richaud
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Sourav Mandal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pashan, Pune 411008, India
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pashan, Pune 411008, India
| | - Stéphane P. Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| |
Collapse
|
25
|
Ou Y, Xu L, Chen M, Lu X, Guo Z, Zheng B. Structure and Antidiabetic Activity of a Glycoprotein from Porphyra haitanensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16763-16776. [PMID: 37877414 DOI: 10.1021/acs.jafc.3c04276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
A novel antidiabetic glycoprotein (PG) was isolated and purified from Porphyra haitanensis, and its structure and inhibiting activity on α-amylase and α-glucosidase were analyzed. The purity of the PG was 95.29 ± 0.21%, and its molecular weight was 163.024 ± 5.55 kDa. The PG had a tetramer structure with α- and β-subunits, and it contained 54.12 ± 0.86% protein (with highly hydrophobic amino acids) and 41.19% ± 0.64% carbohydrate (composed of galactose). The PG was linked via an O-glycosidic bond, exhibiting an α-helical structure and high stability. In addition, the PG inhibited the activities of α-amylase and α-glucosidase, by changing the enzyme's structure toward the PG's structure in a noncompetitive inhibition mode. Molecular docking results showed that the PG inhibited α-amylase activity by hydrophobic interaction, whereas it inhibited α-glucosidase activity by hydrogen bonds and hydrophobic interaction. Overall, the PG was linked to polysaccharides via O-glycosidic bonds, showing an α-helical configuration and a hydrophobic effect, which altered the configuration of α-amylase and α-glucosidase and exerted hypoglycemic activity. This study provides insights into analyzing the structure and antidiabetic activity of glycoproteins.
Collapse
Affiliation(s)
- Yujia Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Lijingting Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingrong Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaodan Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|
26
|
Komp E, Alanzi HN, Francis R, Vuong C, Roberts L, Mosallanejad A, Beck DAC. Homologous Pairs of Low and High Temperature Originating Proteins Spanning the Known Prokaryotic Universe. Sci Data 2023; 10:682. [PMID: 37805601 PMCID: PMC10560248 DOI: 10.1038/s41597-023-02553-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
Stability of proteins at high temperature has been a topic of interest for many years, as this attribute is favourable for applications ranging from therapeutics to industrial chemical manufacturing. Our current understanding and methods for designing high-temperature stability into target proteins are inadequate. To drive innovation in this space, we have curated a large dataset, learn2thermDB, of protein-temperature examples, totalling 24 million instances, and paired proteins across temperatures based on homology, yielding 69 million protein pairs - orders of magnitude larger than the current largest. This important step of pairing allows for study of high-temperature stability in a sequence-dependent manner in the big data era. The data pipeline is parameterized and open, allowing it to be tuned by downstream users. We further show that the data contains signal for deep learning. This data offers a new doorway towards thermal stability design models.
Collapse
Affiliation(s)
- Evan Komp
- Department of Chemical Engineering, University of Washington, Seattle, USA.
| | - Humood N Alanzi
- Department of Chemical Engineering, University of Washington, Seattle, USA
| | - Ryan Francis
- Department of Chemical Engineering, University of Washington, Seattle, USA
| | - Chau Vuong
- Department of Biochemistry, University of Washington, Seattle, USA
| | - Logan Roberts
- Department of Chemical Engineering, University of Washington, Seattle, USA
| | - Amin Mosallanejad
- Department of Chemical Engineering, University of Washington, Seattle, USA
| | - David A C Beck
- Department of Chemical Engineering, University of Washington, Seattle, USA.
- eScience Institute, University of Washington, Seattle, USA.
- Paul G. Allen School of Computer Science, University of Washington, Seattle, USA.
| |
Collapse
|
27
|
Wendering P, Nikoloski Z. Model-driven insights into the effects of temperature on metabolism. Biotechnol Adv 2023; 67:108203. [PMID: 37348662 DOI: 10.1016/j.biotechadv.2023.108203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/22/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Temperature affects cellular processes at different spatiotemporal scales, and identifying the genetic and molecular mechanisms underlying temperature responses paves the way to develop approaches for mitigating the effects of future climate scenarios. A systems view of the effects of temperature on cellular physiology can be obtained by focusing on metabolism since: (i) its functions depend on transcription and translation and (ii) its outcomes support organisms' development, growth, and reproduction. Here we provide a systematic review of modelling efforts directed at investigating temperature effects on properties of single biochemical reactions, system-level traits, metabolic subsystems, and whole-cell metabolism across different prokaryotes and eukaryotes. We compare and contrast computational approaches and theories that facilitate modelling of temperature effects on key properties of enzymes and their consideration in constraint-based as well as kinetic models of metabolism. In addition, we provide a summary of insights from computational approaches, facilitating integration of omics data from temperature-modulated experiments with models of metabolic networks, and review the resulting biotechnological applications. Lastly, we provide a perspective on how different types of metabolic modelling can profit from developments in machine learning and models of different cellular layers to improve model-driven insights into the effects of temperature relevant for biotechnological applications.
Collapse
Affiliation(s)
- Philipp Wendering
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany.
| |
Collapse
|
28
|
Kalia M, Miotto M, Ness D, Opie-Martin S, Spargo TP, Di Rienzo L, Biagini T, Petrizzelli F, Al Khleifat A, Kabiljo R, Mazza T, Ruocco G, Milanetti E, Dobson RJB, Al-Chalabi A, Iacoangeli A. Molecular dynamics analysis of superoxide dismutase 1 mutations suggests decoupling between mechanisms underlying ALS onset and progression. Comput Struct Biotechnol J 2023; 21:5296-5308. [PMID: 37954145 PMCID: PMC10637862 DOI: 10.1016/j.csbj.2023.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 11/14/2023] Open
Abstract
Mutations in the superoxide dismutase 1 (SOD1) gene are the second most common known cause of ALS. SOD1 variants express high phenotypic variability and over 200 have been reported in people with ALS. It was previously proposed that variants can be broadly classified in two groups, 'wild-type like' (WTL) and 'metal binding region' (MBR) variants, based on their structural location and biophysical properties. MBR variants, but not WTL variants, were associated with a reduction of SOD1 enzymatic activity. In this study we used molecular dynamics and large clinical datasets to characterise the differences in the structural and dynamic behaviour of WTL and MBR variants with respect to the wild-type SOD1, and how such differences influence the ALS clinical phenotype. Our study identified marked structural differences, some of which are observed in both variant groups, while others are group specific. Moreover, collecting clinical data of approximately 500 SOD1 ALS patients carrying variants, we showed that the survival time of patients carrying an MBR variant is generally longer (∼6 years median difference, p < 0.001) with respect to patients with a WTL variant. In conclusion, our study highlighted key differences in the dynamic behaviour between WTL and MBR SOD1 variants, and between variants and wild-type SOD1 at an atomic and molecular level, that could be further investigated to explain the associated phenotypic variability. Our results support the hypothesis of a decoupling between mechanisms of onset and progression of SOD1 ALS, and an involvement of loss-of-function of SOD1 with the disease progression.
Collapse
Affiliation(s)
- Munishikha Kalia
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Mattia Miotto
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Deborah Ness
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Sarah Opie-Martin
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Thomas P. Spargo
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Tommaso Biagini
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Francesco Petrizzelli
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Renata Kabiljo
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | | | | | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Giancarlo Ruocco
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Richard JB Dobson
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust King’s College London, London, United Kingdom
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- Clinical Neurosciences, King’s College Hospital, Denmark Hill, London, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust King’s College London, London, United Kingdom
| |
Collapse
|
29
|
Weng Y, Yang G, Li Y, Xu L, Chen X, Song H, Zhao CX. Alginate-based materials for enzyme encapsulation. Adv Colloid Interface Sci 2023; 318:102957. [PMID: 37392664 DOI: 10.1016/j.cis.2023.102957] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Enzymes are widely used in industry due to their high efficiency and selectivity. However, their low stability during certain industrial processes can result in a significant loss of catalytic activity. Encapsulation is a promising technique that can stabilize enzymes by protecting them from environmental stresses such as extreme temperature and pH, mechanical force, organic solvents, and proteases. Alginate and alginate-based materials have emerged as effective carriers for enzyme encapsulation due to their biocompatibility, biodegradability, and ability to form gel beads through ionic gelation. This review presents various alginate-based encapsulation systems for enzyme stabilization and explores their applications in different industries. We discuss the preparation methods of alginate encapsulated enzymes and analyze the release mechanisms of enzymes from alginate materials. Additionally, we summarize the characterization techniques used for enzyme-alginate composites. This review provides insights into the use of alginate encapsulation as a means of stabilizing enzymes and highlights the potential benefits for various industrial applications.
Collapse
Affiliation(s)
- Yilun Weng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangze Yang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Letao Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
30
|
Wang G. Thermal Ring-Based Heat Switches in Hyperthermophilic Class II Bacterial Fructose Aldolase. ACS OMEGA 2023; 8:24624-24634. [PMID: 37457467 PMCID: PMC10339327 DOI: 10.1021/acsomega.3c03001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/24/2023] [Indexed: 07/18/2023]
Abstract
Both thermophilic and hyperthermophilic enzymes in bacterial and archaeal species are activated above a specific temperature threshold but inactivated at another higher temperature. However, the underlying structural basis for these two heat switches is still unresolved. Here, graph theory was used to test if the temperature-dependent noncovalent interactions and metal bridges as identified in a series of crystal structures of the class II bacterial fructose 1,6-bisphosphate aldolase homodimer or homotetramer with or without natural substrates and products bound could form systematic fluidic grid-like mesh networks with topological grids as thermal rings to regulate their structural thermostability and functional thermoactivity. The results indicated that the second biggest grid in the Thermus aquaticus fructose 1,6-diphosphate aldolase dimer may control the specific temperature threshold to release the swapping flexible active sites at the dimeric interface for heat-evoked activation. Meanwhile, the third biggest grid may serve as a necessary structural motif against heat inactivation. Finally, the smallest grid may act as a stiff thermostable anchor. Its dissociation at the maximal melting temperature threshold may stop the catalytic activity. Taken as a whole, this computational study may render the structural motifs for the optimal growth temperature and the extreme heat stability of hyperthermophiles.
Collapse
|
31
|
Miotto M, Di Rienzo L, Grassmann G, Desantis F, Cidonio G, Gosti G, Leonetti M, Ruocco G, Milanetti E. Differences in the organization of interface residues tunes the stability of the SARS-CoV-2 spike-ACE2 complex. Front Mol Biosci 2023; 10:1205919. [PMID: 37441163 PMCID: PMC10333926 DOI: 10.3389/fmolb.2023.1205919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The continuous emergence of novel variants represents one of the major problems in dealing with the SARS-CoV-2 virus. Indeed, also due to its prolonged circulation, more than ten variants of concern emerged, each time rapidly overgrowing the current viral version due to improved spreading features. As, up to now, all variants carry at least one mutation on the spike Receptor Binding Domain, the stability of the binding between the SARS-CoV-2 spike protein and the human ACE2 receptor seems one of the molecular determinants behind the viral spreading potential. In this framework, a better understanding of the interplay between spike mutations and complex stability can help to assess the impact of novel variants. Here, we characterize the peculiarities of the most representative variants of concern in terms of the molecular interactions taking place between the residues of the spike RBD and those of the ACE2 receptor. To do so, we performed molecular dynamics simulations of the RBD-ACE2 complexes of the seven variants of concern in comparison with a large set of complexes with different single mutations taking place on the RBD solvent-exposed residues and for which the experimental binding affinity was available. Analyzing the strength and spatial organization of the intermolecular interactions of the binding region residues, we found that (i) mutations producing an increase of the complex stability mainly rely on instaurating more favorable van der Waals optimization at the cost of Coulombic ones. In particular, (ii) an anti-correlation is observed between the shape and electrostatic complementarities of the binding regions. Finally, (iii) we showed that combining a set of dynamical descriptors is possible to estimate the outcome of point mutations on the complex binding region with a performance of 0.7. Overall, our results introduce a set of dynamical observables that can be rapidly evaluated to probe the effects of novel isolated variants or different molecular systems.
Collapse
Affiliation(s)
- Mattia Miotto
- Center for Life Nano-& Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nano-& Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Greta Grassmann
- Center for Life Nano-& Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Fausta Desantis
- Center for Life Nano-& Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- The Open University Affiliated Research Centre at Istituto Italiano di Tecnologia, Genova, Italy
| | - Gianluca Cidonio
- Center for Life Nano-& Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giorgio Gosti
- Center for Life Nano-& Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Soft and Living Matter Laboratory, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Marco Leonetti
- Center for Life Nano-& Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Soft and Living Matter Laboratory, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano-& Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nano-& Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
32
|
Grassmann G, Di Rienzo L, Gosti G, Leonetti M, Ruocco G, Miotto M, Milanetti E. Electrostatic complementarity at the interface drives transient protein-protein interactions. Sci Rep 2023; 13:10207. [PMID: 37353566 PMCID: PMC10290103 DOI: 10.1038/s41598-023-37130-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023] Open
Abstract
Understanding the mechanisms driving bio-molecules binding and determining the resulting complexes' stability is fundamental for the prediction of binding regions, which is the starting point for drug-ability and design. Characteristics like the preferentially hydrophobic composition of the binding interfaces, the role of van der Waals interactions, and the consequent shape complementarity between the interacting molecular surfaces are well established. However, no consensus has yet been reached on the role of electrostatic. Here, we perform extensive analyses on a large dataset of protein complexes for which both experimental binding affinity and pH data were available. Probing the amino acid composition, the disposition of the charges, and the electrostatic potential they generated on the protein molecular surfaces, we found that (i) although different classes of dimers do not present marked differences in the amino acid composition and charges disposition in the binding region, (ii) homodimers with identical binding region show higher electrostatic compatibility with respect to both homodimers with non-identical binding region and heterodimers. Interestingly, (iii) shape and electrostatic complementarity, for patches defined on short-range interactions, behave oppositely when one stratifies the complexes by their binding affinity: complexes with higher binding affinity present high values of shape complementarity (the role of the Lennard-Jones potential predominates) while electrostatic tends to be randomly distributed. Conversely, complexes with low values of binding affinity exploit Coulombic complementarity to acquire specificity, suggesting that electrostatic complementarity may play a greater role in transient (or less stable) complexes. In light of these results, (iv) we provide a novel, fast, and efficient method, based on the 2D Zernike polynomial formalism, to measure electrostatic complementarity without the need of knowing the complex structure. Expanding the electrostatic potential on a basis of 2D orthogonal polynomials, we can discriminate between transient and permanent protein complexes with an AUC of the ROC of [Formula: see text] 0.8. Ultimately, our work helps shedding light on the non-trivial relationship between the hydrophobic and electrostatic contributions in the binding interfaces, thus favoring the development of new predictive methods for binding affinity characterization.
Collapse
Affiliation(s)
- Greta Grassmann
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Giorgio Gosti
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Soft and Living Matter Laboratory, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, 00185, Rome, Italy
| | - Marco Leonetti
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Soft and Living Matter Laboratory, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, 00185, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Mattia Miotto
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Edoardo Milanetti
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
33
|
Högg E, Rauh C. Towards a Better Understanding of Texturization during High-Moisture Extrusion (HME)-Part I: Modeling the Texturability of Plant-Based Proteins. Foods 2023; 12:1955. [PMID: 37238773 PMCID: PMC10217560 DOI: 10.3390/foods12101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
This study focused on predicting high-moisture texturization of plant-based proteins (soy protein concentrate (SPC), soy protein isolate (SPI), pea protein isolate (PPI)) at different water contents (57.5%, 60%, 65%, 70%, and 72.5% (w/w db)) to optimize and guarantee the production of high-moisture meat analogs (HMMA). Therefore, high-moisture extrusion (HME) experiments were performed, and the texture of the obtained high-moisture extruded samples (HMES) was sensory evaluated and categorized into poorly-textured, textured, or well-textured. In parallel, data on heat capacity (cp) and phase transition behavior of the plant-based proteins were determined using differential scanning calorimetry (DSC). Based on the DSC data, a model for predicting cp of hydrated, but not extruded, plant-based proteins was developed. Furthermore, based on the aforementioned model for predicting cp and DSC data on phase transition behavior of the plant-based proteins in combination with conducted HME trials and the mentioned model for predicting cp, a texturization indicator was developed, which could be used to calculate the minimum threshold temperature required to texturize plant-based proteins during HME. The outcome of this study could help to minimize the resources of expensive extrusion trials in the industry to produce HMMA with defined textures.
Collapse
Affiliation(s)
| | - Cornelia Rauh
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin (TU Berlin), 14195 Berlin, Germany
| |
Collapse
|
34
|
Dzierżyńska M, Sawicka J, Deptuła M, Sosnowski P, Sass P, Peplińska B, Pietralik-Molińska Z, Fularczyk M, Kasprzykowski F, Zieliński J, Kozak M, Sachadyn P, Pikuła M, Rodziewicz-Motowidło S. Release systems based on self-assembling RADA16-I hydrogels with a signal sequence which improves wound healing processes. Sci Rep 2023; 13:6273. [PMID: 37072464 PMCID: PMC10113214 DOI: 10.1038/s41598-023-33464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Self-assembling peptides can be used for the regeneration of severely damaged skin. They can act as scaffolds for skin cells and as a reservoir of active compounds, to accelerate scarless wound healing. To overcome repeated administration of peptides which accelerate healing, we report development of three new peptide biomaterials based on the RADA16-I hydrogel functionalized with a sequence (AAPV) cleaved by human neutrophil elastase and short biologically active peptide motifs, namely GHK, KGHK and RDKVYR. The peptide hybrids were investigated for their structural aspects using circular dichroism, thioflavin T assay, transmission electron microscopy, and atomic force microscopy, as well as their rheological properties and stability in different fluids such as water or plasma, and their susceptibility to digestion by enzymes present in the wound environment. In addition, the morphology of the RADA-peptide hydrogels was examined with a unique technique called scanning electron cryomicroscopy. These experiments enabled us to verify if the designed peptides increased the bioactivity of the gel without disturbing its gelling processes. We demonstrate that the physicochemical properties of the designed hybrids were similar to those of the original RADA16-I. The materials behaved as expected, leaving the active motif free when treated with elastase. XTT and LDH tests on fibroblasts and keratinocytes were performed to assess the cytotoxicity of the RADA16-I hybrids, while the viability of cells treated with RADA16-I hybrids was evaluated in a model of human dermal fibroblasts. The hybrid peptides revealed no cytotoxicity; the cells grew and proliferated better than after treatment with RADA16-I alone. Improved wound healing following topical delivery of RADA-GHK and RADA-KGHK was demonstrated using a model of dorsal skin injury in mice and histological analyses. The presented results indicate further research is warranted into the engineered peptides as scaffolds for wound healing and tissue engineering.
Collapse
Affiliation(s)
- Maria Dzierżyńska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Justyna Sawicka
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Piotr Sass
- Laboratory for Regenerative Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | | | | | - Martyna Fularczyk
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | - Jacek Zieliński
- Department of Surgical Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
35
|
Weng Y, Li Y, Chen X, Song H, Zhao CX. Encapsulation of enzymes in food industry using spray drying: recent advances and process scale-ups. Crit Rev Food Sci Nutr 2023; 64:7941-7958. [PMID: 36971126 DOI: 10.1080/10408398.2023.2193982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Enzymes are widely used in the food industry due to their ability in improving the functional, sensory, and nutritional properties of food products. However, their poor stability under harsh industrial conditions and their compromised shelf-lives during long-term storage limit their applications. This review introduces typical enzymes and their functionality in the food industry and demonstrates spray drying as a promising approach for enzyme encapsulation. Recent studies on encapsulation of enzymes in the food industry using spray drying and the key achievements are summarized. The latest developments including the novel design of spray drying chambers, nozzle atomizers and advanced spray drying techniques are also analyzed and discussed in depth. In addition, the scale-up pathways connecting laboratory scale trials and industrial scale productions are illustrated, as most of the current studies have been limited to lab-scales. Enzyme encapsulation using spray drying is a versatile strategy to improve enzyme stability in an economical and industrial viable way. Various nozzle atomizers and drying chambers have recently been developed to increase process efficiency and product quality. A comprehensive understanding of the complex droplet-to-particle transformations during the drying process would be beneficial for both process optimization and scale-up design.
Collapse
Affiliation(s)
- Yilun Weng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
36
|
Hashemi-Shahraki F, Shareghi B, Farhadian S, Yadollahi E. A comprehensive insight into the effects of caffeic acid (CA) on pepsin: Multi-spectroscopy and MD simulations methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122240. [PMID: 36527971 DOI: 10.1016/j.saa.2022.122240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The interaction between caffeic acid (CA) and pepsin was investigated using multi-spectroscopy approaches and molecular dynamic simulations (MDS). The effects of CA on the structure, stability, and activity of pepsin were studied. Fluorescence emission spectra and UV-vis absorption peaks all represented the static quenching mechanism of pepsin by CA. Moreover, the fluorescence spectra displayed that the interaction of CA exposed the tryptophan chromophores of pepsin to a more hydrophilic micro-environment. Consistent with the simulation results, thermodynamic parameters revealed that CA was bound to pepsin with a high binding affinity. The Van der Waals force and Hydrogen bond interaction were the dominant driving forces during the binding process. The circular dichroism (CD) spectroscopy analysis showed that the CA binding to pepsin decreased the contents of α-Helix and Random Coil but increased the content of β-sheet in the pepsin structure. Accordingly, MD simulations confirmed all the experimental results. As a result, CA is considered an inhibitor with adverse effects on pepsin activity.
Collapse
Affiliation(s)
- Fatemeh Hashemi-Shahraki
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box.115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box.115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box.115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Elham Yadollahi
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box.115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
37
|
Wang G. The Network Basis for the Structural Thermostability and the Functional Thermoactivity of Aldolase B. Molecules 2023; 28:molecules28041850. [PMID: 36838836 PMCID: PMC9959246 DOI: 10.3390/molecules28041850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Thermostability is important for the thermoactivity of proteins including enzymes. However, it is still challenging to pinpoint the specific structural factors for different temperature thresholds to initiate their specific structural and functional perturbations. Here, graph theory was used to investigate how the temperature-dependent noncovalent interactions as identified in the structures of aldolase B and its prevalent A149P mutant could form a systematic fluidic grid-like mesh network with topological grids to regulate the structural thermostability and the functional thermoactivity upon cyclization against decyclization in an extended range of a subunit. The results showed that the biggest grid may determine the melting temperature thresholds for the changes in their secondary and tertiary structures and specific catalytic activities. Further, a highly conserved thermostable grid may serve as an anchor to secure the flexible active site to achieve the specific thermoactivity. Finally, higher grid-based systematic thermal instability may disfavor the thermoactivity. Thus, this computational study may provide critical clues for the structural thermostability and the functional thermoactivity of proteins including enzymes.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA 95616, USA;
- Department of Drug Research and Development, Institute of Biophysical Medico-Chemistry, Reno, NV 89523, USA
| |
Collapse
|
38
|
Hashemi-Shahraki F, Shareghi B, Farhadian S. Investigation of the interaction behavior between quercetin and pepsin by spectroscopy and MD simulation methods. Int J Biol Macromol 2023; 227:1151-1161. [PMID: 36464189 DOI: 10.1016/j.ijbiomac.2022.11.296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 10/23/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
The ability of a therapeutic compound to bind to proteins is critical for characterizing its therapeutic impacts. We have selected quercetin (Qu), a most common flavonoid found in plants and vegetables among therapeutic molecules that are known to have anti-inflammatory, antioxidant, anti-genotoxic, and anti-cancer effects. The current study aimed to see how quercetin interacts with pepsin in an aqueous environment under physiological conditions. Absorbance and emission spectroscopy, circular dichroism (CD), and kinetic methods, as well as molecular dynamic (MD) simulation and docking, were applied to study the effects of Qu on the structure, dynamics, and kinetics of pepsin. Stern-Volmer (Ksv) constants were computed for the pepsin-quercetin complex at three temperatures, showing that Qu reduces enzyme emission spectra using a static quenching. With Qu binding, the Vmax and the kcat/Km values decreased. UV-vis absorption spectra, fluorescence emission spectroscopy, and CD result indicated that Qu binding to pepsin leads to microenvironmental changes around the enzyme, which can alter the enzyme's secondary structure. Therefore, quercetin caused alterations in the function and structure of pepsin. Thermodynamic parameters, MD binding, and docking simulation analysis showed that non-covalent reactions, including the hydrophobic forces, played a key role in the interaction of Qu with pepsin. The findings conclude of spectroscopic experiments were supported by molecular dynamics simulations and molecular docking results.
Collapse
Affiliation(s)
- Fatemeh Hashemi-Shahraki
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
39
|
Housmans JAJ, Wu G, Schymkowitz J, Rousseau F. A guide to studying protein aggregation. FEBS J 2023; 290:554-583. [PMID: 34862849 DOI: 10.1111/febs.16312] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 02/04/2023]
Abstract
Disrupted protein folding or decreased protein stability can lead to the accumulation of (partially) un- or misfolded proteins, which ultimately cause the formation of protein aggregates. Much of the interest in protein aggregation is associated with its involvement in a wide range of human diseases and the challenges it poses for large-scale biopharmaceutical manufacturing and formulation of therapeutic proteins and peptides. On the other hand, protein aggregates can also be functional, as observed in nature, which triggered its use in the development of biomaterials or therapeutics as well as for the improvement of food characteristics. Thus, unmasking the various steps involved in protein aggregation is critical to obtain a better understanding of the underlying mechanism of amyloid formation. This knowledge will allow a more tailored development of diagnostic methods and treatments for amyloid-associated diseases, as well as applications in the fields of new (bio)materials, food technology and therapeutics. However, the complex and dynamic nature of the aggregation process makes the study of protein aggregation challenging. To provide guidance on how to analyse protein aggregation, in this review we summarize the most commonly investigated aspects of protein aggregation with some popular corresponding methods.
Collapse
Affiliation(s)
- Joëlle A J Housmans
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Kumar S, Duggineni VK, Singhania V, Misra SP, Deshpande PA. Unravelling and Quantifying the Biophysical– Biochemical Descriptors Governing Protein Thermostability by Machine Learning. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shashi Kumar
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Vinay Kumar Duggineni
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Vibhuti Singhania
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Swayam Prabha Misra
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Parag A. Deshpande
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
41
|
Rabbani G, Ahmad E, Ahmad A, Khan RH. Structural features, temperature adaptation and industrial applications of microbial lipases from psychrophilic, mesophilic and thermophilic origins. Int J Biol Macromol 2023; 225:822-839. [PMID: 36402388 DOI: 10.1016/j.ijbiomac.2022.11.146] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Microbial lipases are very prominent biocatalysts because of their ability to catalyze a wide variety of reactions in aqueous and non-aqueous media. Here microbial lipases from different origins (psychrophiles, mesophiles, and thermophiles) have been reviewed. This review emphasizes an update of structural diversity in temperature adaptation and industrial applications, of psychrophilic, mesophilic, and thermophilic lipases. The microbial origins of lipases are logically dynamic, proficient, and also have an extensive range of industrial uses with the manufacturing of altered molecules. It is therefore of interest to understand the molecular mechanisms of adaptation to temperature in occurring lipases. However, lipases from extremophiles (psychrophiles, and thermophiles) are widely used to design biotransformation reactions with higher yields, fewer byproducts, or useful side products and have been predicted to catalyze those reactions also, which otherwise are not possible with the mesophilic lipases. Lipases as a multipurpose biological catalyst have given a favorable vision in meeting the needs of several industries such as biodiesel, foods, and drinks, leather, textile, detergents, pharmaceuticals, and medicals.
Collapse
Affiliation(s)
- Gulam Rabbani
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202 002, India; Department of Medical Biotechnology, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Ejaz Ahmad
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202 002, India.
| |
Collapse
|
42
|
Engrola FSS, Paquete-Ferreira J, Santos-Silva T, Correia MAS, Leisico F, Santos MFA. Screening of Buffers and Additives for Protein Stabilization by Thermal Shift Assay: A Practical Approach. Methods Mol Biol 2023; 2652:199-213. [PMID: 37093477 DOI: 10.1007/978-1-0716-3147-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Thermal shift assay (TSA), also commonly designed by differential scanning fluorimetry (DSF) or ThermoFluor, is a technique relatively easy to implement and perform, useful in a myriad of applications. In addition to versatility, it is also rather inexpensive, making it suitable for high-throughput approaches. TSA uses a fluorescent dye to monitor the thermal denaturation of the protein under study and determine its melting temperature (Tm). One of its main applications is to identify the best buffers and additives that enhance protein stability.Understanding the TSA operating mode and the main methodological steps is a central key to designing effective experiments and retrieving meaningful conclusions. This chapter intends to present a straightforward TSA protocol, with different troubleshooting tips, to screen effective protein stabilizers such as buffers and additives, as well as data treatment and analysis. TSA results provide conditions in which the protein of interest is stable and therefore suitable to carry out further biophysical and structural characterization.
Collapse
Affiliation(s)
- Filipa S S Engrola
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - João Paquete-Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Teresa Santos-Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Márcia A S Correia
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| | - Francisco Leisico
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, Grenoble, France.
| | - Marino F A Santos
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| |
Collapse
|
43
|
Ali N, Aiman A, Shamsi A, Hassan I, Shahid M, Gaur NA, Islam A. Identification of Thermostable Xylose Reductase from Thermothelomyces thermophilus: A Biochemical Characterization Approach to Meet Biofuel Challenges. ACS OMEGA 2022; 7:44241-44250. [PMID: 36506193 PMCID: PMC9730754 DOI: 10.1021/acsomega.2c05690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
The constant rise in energy demands, costs, and concerns about global warming has created a demand for new renewable alternative fuels that can be produced sustainably. Lignocellulose biomass can act as an excellent energy source and various value-added compounds like xylitol. In this research study, we have explored the xylose reductase that was obtained from the genome of a thermophilic fungus Thermothelomyces thermophilus while searching for an enzyme to convert xylose to xylitol at higher temperatures. The recombinant thermostable TtXR histidine-tagged fusion protein was expressed in Escherichia coli and successfully purified for the first time. Further, it was characterized for its function and novel structure at varying temperatures and pH. The enzyme showed maximal activity at 7.0 pH and favored d-xylose over other pentoses and hexoses. Biophysical approaches such as ultraviolet-visible (UV-visible), fluorescence spectrometry, and far-UV circular dichroism (CD) spectroscopy were used to investigate the structural integrity of pure TtXR. This research highlights the potential application of uncharacterized xylose reductase as an alternate source for the effective utilization of lignocellulose in fermentation industries at elevated temperatures. Moreover, this research would give environment-friendly and long-term value-added products, like xylitol, from lignocellulosic feedstock for both scientific and commercial purposes.
Collapse
Affiliation(s)
- Nabeel Ali
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi110025, India
| | - Ayesha Aiman
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi110025, India
| | - Anas Shamsi
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi110025, India
| | - Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi110025, India
| | - Mohammad Shahid
- Department
of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box: 173, Al Kharj11942, Kingdom of Saudi Arabia
| | - Naseem A. Gaur
- International
Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi110067, India
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi110025, India
| |
Collapse
|
44
|
Agapova YK, Petrenko DE, Timofeev VI, Rakitina TV. Comparative Analysis of the Interfaces between Monomers in the Dimers of Bacterial Histone-Like HU Proteins by the MM-GBSA Method. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522060025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: multi spectroscopic, molecular dynamic and cellular approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Kruglikov A, Wei Y, Xia X. Proteins from Thermophilic Thermus thermophilus Often Do Not Fold Correctly in a Mesophilic Expression System Such as Escherichia coli. ACS OMEGA 2022; 7:37797-37806. [PMID: 36312379 PMCID: PMC9608423 DOI: 10.1021/acsomega.2c04786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Majority of protein structure studies use Escherichia coli (E. coli) and other model organisms as expression systems for other species' genes. However, protein folding depends on cellular environment factors, such as chaperone proteins, cytoplasmic pH, temperature, and ionic concentrations. Because of differences in these factors, especially temperature and chaperones, native proteins in organisms such as extremophiles may fold improperly when they are expressed in mesophilic model organisms. Here we present a methodology of assessing the effects of using E. coli as the expression system on protein structures. We compare these effects between eight mesophilic bacteria and Thermus thermophilus (T. thermophilus), a thermophile, and found that differences are significantly larger for T. thermophilus. More specifically, helical secondary structures in T. thermophilus proteins are often replaced by coil structures in E. coli. Our results show unique directionality in misfolding when proteins in thermophiles are expressed in mesophiles. This indicates that extremophiles, such as thermophiles, require unique protein expression systems in protein folding studies.
Collapse
Affiliation(s)
- Alibek Kruglikov
- Department
of Biology, University of Ottawa, Ottawa, Canada K1N 6N5
| | - Yulong Wei
- Department
of Biology, University of Ottawa, Ottawa, Canada K1N 6N5
| | - Xuhua Xia
- Department
of Biology, University of Ottawa, Ottawa, Canada K1N 6N5
- Ottawa
Institute of Systems Biology, University
of Ottawa, Ottawa, Canada K1N 6N5
| |
Collapse
|
47
|
Rahban M, Zolghadri S, Salehi N, Ahmad F, Haertlé T, Rezaei-Ghaleh N, Sawyer L, Saboury AA. Thermal stability enhancement: Fundamental concepts of protein engineering strategies to manipulate the flexible structure. Int J Biol Macromol 2022; 214:642-654. [DOI: 10.1016/j.ijbiomac.2022.06.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/28/2023]
|
48
|
Desantis F, Miotto M, Di Rienzo L, Milanetti E, Ruocco G. Spatial organization of hydrophobic and charged residues affects protein thermal stability and binding affinity. Sci Rep 2022; 12:12087. [PMID: 35840609 PMCID: PMC9287411 DOI: 10.1038/s41598-022-16338-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
What are the molecular determinants of protein–protein binding affinity and whether they are similar to those regulating fold stability are two major questions of molecular biology, whose answers bring important implications both from a theoretical and applicative point of view. Here, we analyze chemical and physical features on a large dataset of protein–protein complexes with reliable experimental binding affinity data and compare them with a set of monomeric proteins for which melting temperature data was available. In particular, we probed the spatial organization of protein (1) intramolecular and intermolecular interaction energies among residues, (2) amino acidic composition, and (3) their hydropathy features. Analyzing the interaction energies, we found that strong Coulombic interactions are preferentially associated with a high protein thermal stability, while strong intermolecular van der Waals energies correlate with stronger protein–protein binding affinity. Statistical analysis of amino acids abundances, exposed to the molecular surface and/or in interaction with the molecular partner, confirmed that hydrophobic residues present on the protein surfaces are preferentially located in the binding regions, while charged residues behave oppositely. Leveraging on the important role of van der Waals interface interactions in binding affinity, we focused on the molecular surfaces in the binding regions and evaluated their shape complementarity, decomposing the molecular patches in the 2D Zernike basis. For the first time, we quantified the correlation between local shape complementarity and binding affinity via the Zernike formalism. In addition, considering the solvent interactions via the residue hydropathy, we found that the hydrophobicity of the binding regions dictates their shape complementary as much as the correlation between van der Waals energy and binding affinity. In turn, these relationships pave the way to the fast and accurate prediction and design of optimal binding regions as the 2D Zernike formalism allows a rapid and superposition-free comparison between possible binding surfaces.
Collapse
Affiliation(s)
- Fausta Desantis
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Viale Regina Elena 291, 00161, Rome, Italy.,The Open University Affiliated Research Centre at Istituto Italiano di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Mattia Miotto
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Viale Regina Elena 291, 00161, Rome, Italy.
| | - Lorenzo Di Rienzo
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Viale Regina Elena 291, 00161, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Viale Regina Elena 291, 00161, Rome, Italy.,Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Viale Regina Elena 291, 00161, Rome, Italy.,Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| |
Collapse
|
49
|
Investigating binding dynamics of trans resveratrol to HSA for an efficient displacement of aflatoxin B1 using spectroscopy and molecular simulation. Sci Rep 2022; 12:2400. [PMID: 35165338 PMCID: PMC8844415 DOI: 10.1038/s41598-022-06375-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/19/2022] [Indexed: 01/22/2023] Open
Abstract
Resveratrol is a polyphenol belonging to the class stilbenes. The active and stable form of resveratrol is trans-resveratrol. This polyphenol is bestowed with numerous biological properties. Aflatoxin B1 is a hepato-carcinogen and mutagen that is produced by Aspergillus species. In this study, the interaction of trans-resveratrol with HSA followed by competitive dislodging of AFB1 from HSA by trans-resveratrol has been investigated using spectroscopic studies. The UV-absorption studies revealed ground state complex formation between HSA and trans-resveratrol. Trans-resveratrol binds strongly to HSA with the binding constant of ~ 107 M−1 to a single binding site (n = 1.58), at 298.15 K. The Stern–Volmer quenching constant was calculated as 7.83 × 104 M−1 at 298.15 K, suggesting strong fluorescence quenching ability of trans-resveratrol. Site markers displacement assay projected subdomain IIA as the binding site of trans-resveratrol to HSA. The molecular docking approach envisages the amino acid residues involved in the formation of the binding pocket. As confirmed from the site marker displacement assays, both trans-resveratrol and AFB1 binds to HSA in the same binding site, subdomain IIA. The study explores the ability of trans-resveratrol to displace AFB1 from the HSA-AFB1 complex, thereby affecting the toxicokinetic behavior of AFB1 associated with AFB1 exposure.
Collapse
|
50
|
Puglisi R. Protein Mutations and Stability, a Link with Disease: The Case Study of Frataxin. Biomedicines 2022; 10:biomedicines10020425. [PMID: 35203634 PMCID: PMC8962269 DOI: 10.3390/biomedicines10020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Protein mutations may lead to pathologies by causing protein misfunction or propensity to degradation. For this reason, several studies have been performed over the years to determine the capability of proteins to retain their native conformation under stress condition as well as factors to explain protein stabilization and the mechanisms behind unfolding. In this review, we explore the paradigmatic example of frataxin, an iron binding protein involved in Fe–S cluster biogenesis, and whose impairment causes a neurodegenerative disease called Friedreich’s Ataxia (FRDA). We summarize what is known about most common point mutations identified so far in heterozygous FRDA patients, their effects on frataxin structure and function and the consequences of its binding with partners.
Collapse
Affiliation(s)
- Rita Puglisi
- UK Dementia Research Institute at the Wohl Institute of King's College London, London SE59RT, UK
| |
Collapse
|