1
|
Recuerda M, Montoya JCH, Blanco G, Milá B. Repeated evolution on oceanic islands: comparative genomics reveals species-specific processes in birds. BMC Ecol Evol 2024; 24:140. [PMID: 39516810 PMCID: PMC11545622 DOI: 10.1186/s12862-024-02320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the interplay between genetic drift, natural selection, gene flow, and demographic history in driving phenotypic and genomic differentiation of insular populations can help us gain insight into the speciation process. Comparing patterns across different insular taxa subjected to similar selective pressures upon colonizing oceanic islands provides the opportunity to study repeated evolution and identify shared patterns in their genomic landscapes of differentiation. We selected four species of passerine birds (Common Chaffinch Fringilla coelebs/canariensis, Red-billed Chough Pyrrhocorax pyrrhocorax, House Finch Haemorhous mexicanus and Dark-eyed/island Junco Junco hyemalis/insularis) that have both mainland and insular populations. Changes in body size between island and mainland populations were consistent with the island rule. For each species, we sequenced whole genomes from mainland and insular individuals to infer their demographic history, characterize their genomic differentiation, and identify the factors shaping them. We estimated the relative (Fst) and absolute (dxy) differentiation, nucleotide diversity (π), Tajima's D, gene density and recombination rate. We also searched for selective sweeps and chromosomal inversions along the genome. All species shared a marked reduction in effective population size (Ne) upon island colonization. We found diverse patterns of differentiated genomic regions relative to the genome average in all four species, suggesting the role of selection in island-mainland differentiation, yet the lack of congruence in the location of these regions indicates that each species evolved differently in insular environments. Our results suggest that the genomic mechanisms involved in the divergence upon island colonization-such as chromosomal inversions, and historical factors like recurrent selection-differ in each species, despite the highly conserved structure of avian genomes and the similar selective factors involved. These differences are likely influenced by factors such as genetic drift, the polygenic nature of fitness traits and the action of case-specific selective pressures.
Collapse
Affiliation(s)
- María Recuerda
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Calle José Gutiérrez Abascal 2, Madrid, 28006, Spain.
- Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY, USA.
| | | | - Guillermo Blanco
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Calle José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Borja Milá
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Calle José Gutiérrez Abascal 2, Madrid, 28006, Spain.
| |
Collapse
|
2
|
Day G, Fox G, Hipperson H, Maher K, Tucker R, Horsburgh G, Waters D, Durant K, Burke T, Slate J, Arnold K. Revealing the Demographic History of the European Nightjar ( Caprimulgus europaeus). Ecol Evol 2024; 14:e70460. [PMID: 39463738 PMCID: PMC11512156 DOI: 10.1002/ece3.70460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/29/2024] Open
Abstract
A species' demographic history gives important context to contemporary population genetics and a possible insight into past responses to climate change; with an individual's genome providing a window into the evolutionary history of contemporary populations. Pairwise sequentially Markovian coalescent (PSMC) analysis uses information from a single genome to derive fluctuations in effective population size change over the last ~5 million years. Here, we apply PSMC analysis to two European nightjar (Caprimulgus europaeus) genomes, sampled in Northwest and Southern Europe, with the aim of revealing the demographic history of nightjar in Europe. We successfully reconstructed effective population size over the last 5 million years. Our analysis shows that in response to global climate change, the effective population size of nightjar broadly increased under stable warm periods and decreased during cooler spans and prolonged glacial periods. PSMC analysis on the pseudo-diploid combination of the two genomes revealed fluctuations in gene flow between ancestral populations over time, with gene flow ceasing by the last-glacial period. Our results are tentatively suggestive of divergence in the European nightjar population, with timings consistent with differentiation being driven by restriction to different refugia during periods of glaciation. Finally, our results suggest that migratory behaviour in nightjar likely evolved prior to the last-glacial period, with long-distance migration seemingly persisting throughout the Pleistocene. However, further genetic structure analysis of individuals from known breeding sites across the species' contemporary range is needed to understand the extent and origins of range-wide differentiation in nightjar.
Collapse
Affiliation(s)
- George Day
- Department of Environment and GeographyUniversity of YorkYorkUK
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
- British Antarctic SurveyCambridgeUK
| | - Graeme Fox
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
- University of NottinghamNottinghamUK
| | - Helen Hipperson
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
| | - Kathryn H. Maher
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
| | - Rachel Tucker
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
| | - Gavin J. Horsburgh
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
| | - Dean Waters
- Department of Environment and GeographyUniversity of YorkYorkUK
| | | | - Terry Burke
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
| | - Jon Slate
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
| | | |
Collapse
|
3
|
Canesin LEC, Vilaça ST, Oliveira RRM, Al-Ajli F, Tracey A, Sims Y, Formenti G, Fedrigo O, Banhos A, Sanaiotti TM, Farias IP, Jarvis ED, Oliveira G, Hrbek T, Solferini V, Aleixo A. A reference genome for the Harpy Eagle reveals steady demographic decline and chromosomal rearrangements in the origin of Accipitriformes. Sci Rep 2024; 14:19925. [PMID: 39261501 PMCID: PMC11390914 DOI: 10.1038/s41598-024-70305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
The Harpy Eagle (Harpia harpyja) is an iconic species that inhabits forested landscapes in Neotropical regions, with decreasing population trends mainly due to habitat loss, and currently classified as vulnerable. Here, we report on a chromosome-scale genome assembly for a female individual combining long reads, optical mapping, and chromatin conformation capture reads. The final assembly spans 1.35 Gb, with N50scaffold equal to 58.1 Mb and BUSCO completeness of 99.7%. We built the first extensive transposable element (TE) library for the Accipitridae to date and identified 7,228 intact TEs. We found a burst of an unknown TE ~ 13-22 million years ago (MYA), coincident with the split of the Harpy Eagle from other Harpiinae eagles. We also report a burst of solo-LTRs and CR1 retrotransposons ~ 31-33 MYA, overlapping with the split of the ancestor to all Harpiinae from other Accipitridae subfamilies. Comparative genomics with other Accipitridae, the closely related Cathartidae and Galloanserae revealed major chromosome-level rearrangements at the basal Accipitriformes genome, in contrast to a conserved ancient genome architecture for the latter two groups. A historical demography reconstruction showed a rapid decline in effective population size over the last 20,000 years. This reference genome serves as a crucial resource for future conservation efforts towards the Harpy Eagle.
Collapse
Affiliation(s)
| | - Sibelle T Vilaça
- Instituto Tecnológico Vale - Desenvolvimento Sustentável (ITV-DS), Belém, Brazil
| | - Renato R M Oliveira
- Instituto Tecnológico Vale - Desenvolvimento Sustentável (ITV-DS), Belém, Brazil
| | - Farooq Al-Ajli
- Rockefeller University, New York, USA
- Katara Biodiversity Genomics Program, Katara Cultural Village Foundation, Doha, Qatar
| | | | - Ying Sims
- Rockefeller University, New York, USA
| | | | | | - Aureo Banhos
- Universidade Federal do Espírito Santo (UFES), Alegre, Brazil
| | | | | | - Erich D Jarvis
- Rockefeller University, New York, USA
- Howard Hughes Medical Institute (HHMI), New York, USA
| | - Guilherme Oliveira
- Instituto Tecnológico Vale - Desenvolvimento Sustentável (ITV-DS), Belém, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Trinity University, San Antonio, USA
| | - Vera Solferini
- Universidade Estadual de Campinas (Unicamp), Campinas, Brazil
| | - Alexandre Aleixo
- Instituto Tecnológico Vale - Desenvolvimento Sustentável (ITV-DS), Belém, Brazil.
| |
Collapse
|
4
|
Hansen CCR, Láruson ÁJ, Rasmussen JA, Ballesteros JAC, Sinding MHS, Hallgrimsson GT, von Schmalensee M, Stefansson RA, Skarphédinsson KH, Labansen AL, Leivits M, Sonne C, Dietz R, Skelmose K, Boertmann D, Eulaers I, Martin MD, Helgason AS, Gilbert MTP, Pálsson S. Genomic diversity and differentiation between island and mainland populations of white-tailed eagles (Haliaeetus albicilla). Mol Ecol 2023; 32:1925-1942. [PMID: 36680370 DOI: 10.1111/mec.16858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
Divergence in the face of high dispersal capabilities is a documented but poorly understood phenomenon. The white-tailed eagle (Haliaeetus albicilla) has a large geographic dispersal capability and should theoretically be able to maintain genetic homogeneity across its dispersal range. However, following analysis of the genomic variation of white-tailed eagles, from both historical and contemporary samples, clear signatures of ancient biogeographic substructure across Europe and the North-East Atlantic is observed. The greatest genomic differentiation was observed between island (Greenland and Iceland) and mainland (Denmark, Norway and Estonia) populations. The two island populations share a common ancestry from a single mainland population, distinct from the other sampled mainland populations, and despite the potential for high connectivity between Iceland and Greenland they are well separated from each other and are characterized by inbreeding and little variation. Temporal differences also highlight a pattern of regional populations persisting despite the potential for admixture. All sampled populations generally showed a decline in effective population size over time, which may have been shaped by four historical events: (1) Isolation of refugia during the last glacial period 110-115,000 years ago, (2) population divergence following the colonization of the deglaciated areas ~10,000 years ago, (3) human population expansion, which led to the settlement in Iceland ~1100 years ago, and (4) human persecution and exposure to toxic pollutants during the last two centuries.
Collapse
Affiliation(s)
| | - Áki Jarl Láruson
- Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Jacob Agerbo Rasmussen
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Center for Evolutionary Hologenomics, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesus Adrian Chimal Ballesteros
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Natural History Museum, University of Oslo, Oslo, Norway
| | - Mikkel-Holger S Sinding
- Center for Evolutionary Hologenomics, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar T Hallgrimsson
- Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | - Madis Leivits
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Kim Skelmose
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - David Boertmann
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Igor Eulaers
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Agnar S Helgason
- Department of Anthropology, University of Iceland, Reykjavik, Iceland.,deCODE Genetics, Reykjavik, Iceland
| | - M Thomas P Gilbert
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Center for Evolutionary Hologenomics, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Snaebjörn Pálsson
- Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
5
|
Brown JI, Harrigan RJ, Lavretsky P. Evolutionary and Ecological Drivers of Local Adaptation and Speciation in a North American Avian Species Complex. Mol Ecol 2022; 31:2578-2593. [PMID: 35263000 DOI: 10.1111/mec.16423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 11/26/2022]
Abstract
Throughout the speciation process, genomic divergence can be differentially impacted by selective pressures, as well as gene flow and genetic drift. Disentangling the effects of these evolutionary mechanisms remains challenging, especially for non-model organisms. Accounting for complex evolutionary histories and contemporary population structure often requires sufficient sample sizes, for which the expense of full genomes remains prohibitive. Here, we demonstrate the utility of partial-genome sequence data for range-wide samples to shed light into the divergence process of two closely related ducks, the Mexican duck (Anas diazi) and mallard (A. platyrhynchos). We determine the role of selective and neutral processes during speciation of Mexican ducks by integrating evolutionary and demographic modelling with genotype-environment and genotype-phenotype association testing. First, evolutionary models and demographic analyses support the hypothesis that Mexican ducks originally diverged ~300,000 years ago in a climate refugia arising during a glacial period in in a southwestern North America, and that subsequent environmental selective pressures played a key role in divergence. Mexican ducks then showed cyclical demographic patterns that likely reflected repeated range expansions and contractions, along with bouts of gene flow with mallards during glacial cycles. Finally, we provide evidence that sexual selection acted on several phenotypic traits as a co-evolutionary process, facilitating the development of reproductive barriers that initially arose due to strong ecological selection. More broadly, this work reveals that the genomic and phenotypic patterns observed across species complexes are the result of myriad factors that contribute in dynamic ways to the evolutionary trajectories of a lineage.
Collapse
Affiliation(s)
- Joshua I Brown
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79668, USA
| | - Ryan J Harrigan
- Center for Tropical Research, University of California, Los Angeles, La Kretz Hall, Suite 300, Los Angeles, CA, 90095, U.S.A
| | - Philip Lavretsky
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79668, USA
| |
Collapse
|
6
|
The Darwin Tree of Life Project Consortium. Sequence locally, think globally: The Darwin Tree of Life Project. Proc Natl Acad Sci U S A 2022; 119:e2115642118. [PMID: 35042805 PMCID: PMC8797607 DOI: 10.1073/pnas.2115642118] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The goals of the Earth Biogenome Project-to sequence the genomes of all eukaryotic life on earth-are as daunting as they are ambitious. The Darwin Tree of Life Project was founded to demonstrate the credibility of these goals and to deliver at-scale genome sequences of unprecedented quality for a biogeographic region: the archipelago of islands that constitute Britain and Ireland. The Darwin Tree of Life Project is a collaboration between biodiversity organizations (museums, botanical gardens, and biodiversity institutes) and genomics institutes. Together, we have built a workflow that collects specimens from the field, robustly identifies them, performs sequencing, generates high-quality, curated assemblies, and releases these openly for the global community to use to build future science and conservation efforts.
Collapse
|
7
|
Iannucci A, Benazzo A, Natali C, Arida EA, Zein MSA, Jessop TS, Bertorelle G, Ciofi C. Population structure, genomic diversity and demographic history of Komodo dragons inferred from whole-genome sequencing. Mol Ecol 2021; 30:6309-6324. [PMID: 34390519 PMCID: PMC9292392 DOI: 10.1111/mec.16121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Population and conservation genetics studies have greatly benefited from the development of new techniques and bioinformatic tools associated with next-generation sequencing. Analysis of extensive data sets from whole-genome sequencing of even a few individuals allows the detection of patterns of fine-scale population structure and detailed reconstruction of demographic dynamics through time. In this study, we investigated the population structure, genomic diversity and demographic history of the Komodo dragon (Varanus komodoensis), the world's largest lizard, by sequencing the whole genomes of 24 individuals from the five main Indonesian islands comprising the entire range of the species. Three main genomic groups were observed. The populations of the Island of Komodo and the northern coast of Flores, in particular, were identified as two distinct conservation units. Degrees of genomic divergence among island populations were interpreted as a result of changes in sea level affecting connectivity across islands. Demographic inference suggested that Komodo dragons probably experienced a relatively steep population decline over the last million years, reaching a relatively stable Ne during the Saalian glacial cycle (400-150 thousand years ago) followed by a rapid Ne decrease. Genomic diversity of Komodo dragons was similar to that found in endangered or already extinct reptile species. Overall, this study provides an example of how whole-genome analysis of a few individuals per population can help define population structure and intraspecific demographic dynamics. This is particularly important when applying population genomics data to conservation of rare or elusive endangered species.
Collapse
Affiliation(s)
| | - Andrea Benazzo
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
| | - Chiara Natali
- Department of BiologyUniversity of FlorenceFirenzeItaly
| | - Evy Ayu Arida
- Research Center for BiologyThe Indonesian Institute of Sciences (LIPI)Cibinong Science CenterCibinongIndonesia
| | - Moch Samsul Arifin Zein
- Research Center for BiologyThe Indonesian Institute of Sciences (LIPI)Cibinong Science CenterCibinongIndonesia
| | - Tim S. Jessop
- School of Life and Environmental SciencesDeakin UniversityGeelongVic.Australia
| | - Giorgio Bertorelle
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
| | - Claudio Ciofi
- Department of BiologyUniversity of FlorenceFirenzeItaly
| |
Collapse
|
8
|
Novel genome reveals susceptibility of popular gamebird, the red-legged partridge (Alectoris rufa, Phasianidae), to climate change. Genomics 2021; 113:3430-3438. [PMID: 34400239 DOI: 10.1016/j.ygeno.2021.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 01/15/2023]
Abstract
We produced a high-quality de novo genome assembly of the red-legged partridge A. rufa, the first reference genome of its genus, by utilising novel 10× Chromium technology. The estimated genome size was 1.19 Gb with an overall genome heterozygosity of 0.0022; no runs of homozygosity were observed. In total, 21,589 protein coding genes were identified and assigned to 16,772 orthologs. Of these, 201 emerged as unique to Alectoris and were enriched for positive regulation of epithelial cell migration, viral genome integration and maturation. Using PSMC analysis, we inferred a major demographic decline commencing ~140,000 years ago, consistent with forest expansion and reduction of open habitats during the Eemian interglacial. Present-day populations exhibit the historically lowest genetic diversity. Besides implications for management and conservation, this genome also promises key insights into the physiology of these birds with a view to improving poultry husbandry practices.
Collapse
|
9
|
Naito‐Liederbach AM, Sato Y, Nakajima N, Maeda T, Inoue T, Yamazaki T, Ogden R, Inoue‐Murayama M. Genetic diversity of the endangered Japanese golden eagle at neutral and functional loci. Ecol Res 2021. [DOI: 10.1111/1440-1703.12246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Yu Sato
- Wildlife Research Center Kyoto University Kyoto Japan
- Royal (Dick) School of Veterinary Studies and the Roslin Institute University of Edinburgh Roslin UK
| | - Nobuyoshi Nakajima
- Center for Environmental Biology and Ecosystem Studies National Institute for Environmental Studies Tsukuba Japan
| | - Taku Maeda
- Iwate Prefectural Research Institute for Environmental Sciences and Public Health Morioka Japan
| | - Takehiko Inoue
- Asian Raptor Research and Conservation Network Yasu Japan
| | - Toru Yamazaki
- Asian Raptor Research and Conservation Network Yasu Japan
| | - Rob Ogden
- Royal (Dick) School of Veterinary Studies and the Roslin Institute University of Edinburgh Roslin UK
| | | |
Collapse
|
10
|
García NC, Robinson WD. Current and Forthcoming Approaches for Benchmarking Genetic and Genomic Diversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.622603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The current attrition of biodiversity extends beyond loss of species and unique populations to steady loss of a vast genomic diversity that remains largely undescribed. Yet the accelerating development of new techniques allows us to survey entire genomes ever faster and cheaper, to obtain robust samples from a diversity of sources including degraded DNA and residual DNA in the environment, and to address conservation efforts in new and innovative ways. Here we review recent studies that highlight the importance of carefully considering where to prioritize collection of genetic samples (e.g., organisms in rapidly changing landscapes or along edges of geographic ranges) and what samples to collect and archive (e.g., from individuals of little-known subspecies or populations, even of species not currently considered endangered). Those decisions will provide the sample infrastructure to detect the disappearance of certain genotypes or gene complexes, increases in inbreeding levels, and loss of genomic diversity as environmental conditions change. Obtaining samples from currently endangered, protected, and rare species can be particularly difficult, thus we also focus on studies that use new, non-invasive ways of obtaining genomic samples and analyzing them in these cases where other sampling options are highly constrained. Finally, biological collections archiving such samples face an inherent contradiction: their main goal is to preserve biological material in good shape so it can be used for scientific research for centuries to come, yet the technologies that can make use of such materials are advancing faster than collections can change their standardized practices. Thus, we also discuss current and potential new practices in biological collections that might bolster their usefulness for future biodiversity conservation research.
Collapse
|