1
|
Brandl SJ, Yan HF, Casey JM, Schiettekatte NMD, Renzi JJ, Mercière A, Morat F, Côté IM, Parravicini V. A seascape dichotomy in the role of small consumers for coral reef energy fluxes. Ecology 2025; 106:e70065. [PMID: 40125610 DOI: 10.1002/ecy.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/09/2025] [Accepted: 02/05/2025] [Indexed: 03/25/2025]
Abstract
Biogeochemical fluxes through ecological communities underpin the functioning of ecosystems worldwide. These fluxes are often heavily influenced by small-bodied consumers, such as insects, worms, mollusks, or small vertebrates, which transfer energy and nutrients from autotrophic sources to larger animals. Although coral reefs are one of the most productive ecosystems in the world, we know relatively little about how small consumers make energy available to larger predators and how their roles may vary across reefs. Here, we use community-scale collections of small, bottom-dwelling ("cryptobenthic") reef fishes along with size spectrum analyses, stable isotopes, and demographic modeling to examine their role in harnessing and transferring carbon in two distinct coral reef habitats. Using a comprehensive dataset from Mo'orea (French Polynesia), we demonstrate that, despite only being separated by a narrow reef crest, forereef and backreef habitats harbor distinct communities of cryptobenthic fishes that play vastly divergent roles in carbon transfer. Forereef communities in Mo'orea are depauperate, largely consisting of predatory and planktivorous species that have comparatively high standing biomass (both individually and collectively). In these communities, the combination of size spectra and isotope values suggests important contributions of pelagic subsidies, but the rate of biomass production and turnover (i.e., the rate at which biomass is replenished) is relatively low. In contrast, cryptobenthic fish communities in the backreef are characterized by high abundances of the smallest bodied species, forming a traditional bottom-heavy trophic pyramid that is fueled by benthic autotrophs. In these communities, benthic productivity fuels rapid production and turnover of fish biomass, while pelagic energy channels are notably less productive. Our integrative approach demonstrates the utility of combining multiple methods (e.g., isotopically informed demographic models) to trace energy fluxes through small consumer communities in complex ecosystems. Furthermore, our results highlight that coral reef productivity dynamics are highly habitat-dependent and the role of the smallest coral reef consumers may be most pronounced in shallow systems with limited connectivity to the open ocean.
Collapse
Affiliation(s)
- Simon J Brandl
- Department of Marine Science, The University of Texas at Austin, Marine Science Institute, Port Aransas, Texas, USA
| | - Helen F Yan
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Jordan M Casey
- Department of Marine Science, The University of Texas at Austin, Marine Science Institute, Port Aransas, Texas, USA
| | - Nina M D Schiettekatte
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawaii, USA
| | - Julianna J Renzi
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Alexandre Mercière
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, Pyrénées-Orientales, France
| | - Fabien Morat
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, Pyrénées-Orientales, France
| | - Isabelle M Côté
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Valeriano Parravicini
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, Pyrénées-Orientales, France
| |
Collapse
|
2
|
Neves MP, Hugi A, Chan H, Arnold K, Titus K, Westneat MW, Zelditch ML, Brandl S, Evans KM. Ecological shifts underlie parallels between ontogenetic and evolutionary allometries in parrotfishes. Proc Biol Sci 2024; 291:20241897. [PMID: 39471865 PMCID: PMC11521625 DOI: 10.1098/rspb.2024.1897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 11/01/2024] Open
Abstract
During ontogeny, animals often undergo significant shape and size changes, coinciding with ecological shifts. This is evident in parrotfishes (Eupercaria: Labridae), which experience notable ecological shifts during development, transitioning from carnivorous diets as larvae and juveniles to herbivorous and omnivorous diets as adults, using robust beaks and skulls for feeding on coral skeletons and other hard substrates. These ontogenetic shifts mirror their evolutionary history, as parrotfishes are known to have evolved from carnivorous wrasse ancestors. Parallel shifts at ontogenetic and phylogenetic levels may have resulted in similar evolutionary and ontogenetic allometric trajectories within parrotfishes. To test this hypothesis, using micro-computed tomography (μCT) scanning and three-dimensional geometric morphometrics, we analyse the effects of size on the skull shape of the striped parrotfish Scarus iseri and compare its ontogenetic allometry to the evolutionary allometries of 57 parrotfishes and 162 non-parrotfish wrasses. The young S. iseri have skull shapes resembling non-parrotfish wrasses and grow towards typical adult parrotfish forms as they mature. There was a significant relationship between size and skull shapes and strong evidence for parallel ontogenetic and evolutionary slopes in parrotfishes. Our findings suggest that morphological changes associated with the ecological shift characterizing interspecific parrotfish evolution are conserved in their intraspecific ontogenies.
Collapse
Affiliation(s)
- Mayara P. Neves
- Department of Biosciences, Rice University, Houston, TX, USA
| | - April Hugi
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Howan Chan
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Kaleigh Arnold
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Kara Titus
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Mark W. Westneat
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | | | - Simon Brandl
- Department of Marine Science, The University of Texas at Austin, Marine Science Institute, Port Aransas, TX78373, USA
| | - Kory M. Evans
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
3
|
Duque-Correa MJ, Clements KD, Meloro C, Ronco F, Boila A, Indermaur A, Salzburger W, Clauss M. Diet and habitat as determinants of intestine length in fishes. REVIEWS IN FISH BIOLOGY AND FISHERIES 2024; 34:1017-1034. [PMID: 39104557 PMCID: PMC11297901 DOI: 10.1007/s11160-024-09853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/19/2024] [Indexed: 08/07/2024]
Abstract
Fish biologists have long assumed a link between intestinal length and diet, and relative gut length or Zihler's index are often used to classify species into trophic groups. This has been done for specific fish taxa or specific ecosystems, but not for a global fish dataset. Here, we assess these relationships across a dataset of 468 fish species (254 marine, 191 freshwater, and 23 that occupy both habitats) in relation to body mass and fish length. Herbivores had significantly relatively stouter bodies and longer intestines than omni- and faunivores. Among faunivores, corallivores had longer intestines than invertivores, with piscivores having the shortest. There were no detectable differences between herbivore groups, possibly due to insufficient understanding of herbivorous fish diets. We propose that reasons for long intestines in fish include (i) difficult-to-digest items that require a symbiotic microbiome, and (ii) the dilution of easily digestible compounds with indigestible material (e.g., sand, wood, exoskeleton). Intestinal indices differed significantly between dietary groups, but there was substantial group overlap. Counter-intuitively, in the largest dataset, marine species had significantly shorter intestines than freshwater fish. These results put fish together with mammals as vertebrate taxa with clear convergence in intestine length in association with trophic level, in contrast to reptiles and birds, even if the peculiar feeding ecology of herbivorous fish is probably more varied than that of mammalian herbivores. Supplementary Information The online version contains supplementary material available at 10.1007/s11160-024-09853-3.
Collapse
Affiliation(s)
- Maria J. Duque-Correa
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse, 260, 8057 Zurich, Switzerland
| | - Kendall D. Clements
- School of Biological Sciences, University of Auckland, Private Bag, 92019 Auckland, New Zealand
| | - Carlo Meloro
- Research Center in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF UK
| | - Fabrizia Ronco
- Department of Environmental Sciences, Zoological Institute, University of Basel, 4051 Basel, Switzerland
- Natural History Museum Oslo, 0562 Oslo, Norway
| | - Anna Boila
- Department of Environmental Sciences, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Adrian Indermaur
- Department of Environmental Sciences, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Walter Salzburger
- Department of Environmental Sciences, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse, 260, 8057 Zurich, Switzerland
| |
Collapse
|
4
|
Mihalitsis M, Wainwright PC. Feeding kinematics of a surgeonfish reveal novel functions and relationships to reef substrata. Commun Biol 2024; 7:13. [PMID: 38172236 PMCID: PMC10764775 DOI: 10.1038/s42003-023-05696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Biting to obtain attached benthic prey characterizes a large number of fish species on coral reefs, and is a feeding mode that contributes to important ecosystem functions. We use high-speed video to reveal the mechanisms used by a surgeonfish, Acanthurus leucosternon, to detach algae. After gripping algae in its jaws, the species pulls it by ventrally rotating both the head and the closed jaws, in a novel use of the intra-mandibular joint. These motions remain in the plane of the fish, reducing the use of a lateral head flick to detach the algae. The novel ability to bite and pull algae off the substrate without bending the body laterally minimizes exposure to high water flows, and may be an adaptation to feeding in challenging reef habitats such as the crest and flat. Therefore, our results could potentially represent a key milestone in the evolutionary history of coral reef trophodynamics.
Collapse
Affiliation(s)
- Michalis Mihalitsis
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA.
| | - Peter C Wainwright
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
5
|
Rankins DR, Herrera MJ, Christensen MP, Chen A, Hood NZ, Heras J, German DP. When digestive physiology doesn't match "diet": Lumpenus sagitta (Stichaeidae) is an "omnivore" with a carnivorous gut. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111508. [PMID: 37625480 DOI: 10.1016/j.cbpa.2023.111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
What an animal ingests and what it digests can be different. Thus, we examined the nutritional physiology of Lumpenus sagitta, a member of the family Stichaeidae, to better understand whether it could digest algal components like its better studied algivorous relatives. Although L. sagitta ingests considerable algal content, we found little evidence of algal digestion. This fish species has a short gut that doesn't show positive allometry with body size, low amylolytic activity that actually decreases as the fish grow, no ontogenetic changes in digestive enzyme gene expression, elevated N-acetyl-glucosaminidase activity (indicative of chitin breakdown), and an enteric microbial community that is consistent with carnivory and differs from members of its family that consume and digest algae. Hence, we are left concluding that L. sagitta is not capable of digesting the algae it consumes, and instead, are likely targeting epibionts on the algae itself, and other invertebrates consumed with the algae. Our study expands the coverage of dietary and digestive information for the family Stichaeidae, which is becoming a model for fish digestive physiology and genomics, and shows the power of moving beyond gut content analyses to better understand what an animal can actually digest and use metabolically.
Collapse
Affiliation(s)
- Daniel R Rankins
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA.
| | - Michelle J Herrera
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA
| | - Michelle P Christensen
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA
| | - Alisa Chen
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA
| | - Newton Z Hood
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA
| | - Joseph Heras
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA
| | - Donovan P German
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA
| |
Collapse
|
6
|
Evans KM, Larouche O, Gartner SM, Faucher RE, Dee SG, Westneat MW. Beaks promote rapid morphological diversification along distinct evolutionary trajectories in labrid fishes (Eupercaria: Labridae). Evolution 2023; 77:2000-2014. [PMID: 37345732 DOI: 10.1093/evolut/qpad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023]
Abstract
The upper and lower jaws of some wrasses (Eupercaria: Labridae) possess teeth that have been coalesced into a strong durable beak that they use to graze on hard coral skeletons, hard-shelled prey, and algae, allowing many of these species to function as important ecosystem engineers in their respective marine habitats. While the ecological impact of the beak is well understood, questions remain about its evolutionary history and the effects of this innovation on the downstream patterns of morphological evolution. Here we analyze 3D cranial shape data in a phylogenetic comparative framework and use paleoclimate modeling to reconstruct the evolution of the labrid beak across 205 species. We find that wrasses evolved beaks three times independently, once within odacines and twice within parrotfishes in the Pacific and Atlantic Oceans. We find an increase in the rate of shape evolution in the Scarus+Chlorurus+Hipposcarus (SCH) clade of parrotfishes likely driven by the evolution of the intramandibular joint. Paleoclimate modeling shows that the SCH clade of parrotfishes rapidly morphologically diversified during the middle Miocene. We hypothesize that possession of a beak in the SCH clade coupled with favorable environmental conditions allowed these species to rapidly morphologically diversify.
Collapse
Affiliation(s)
- Kory M Evans
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Olivier Larouche
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Samantha M Gartner
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States
| | - Rose E Faucher
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Sylvia G Dee
- Department of Earth, Environmental, and Planetary Sciences, Rice University, Houston, TX, United States
| | - Mark W Westneat
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Manning JC, McCoy SJ. Territoriality drives patterns of fixed space use in Caribbean parrotfishes. Ecol Evol 2023; 13:e9833. [PMID: 36789348 PMCID: PMC9919477 DOI: 10.1002/ece3.9833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/13/2023] Open
Abstract
Animals often occupy home ranges where they conduct daily activities. In many parrotfishes, large terminal phase (TP) males defend their diurnal (i.e., daytime) home ranges as intraspecific territories occupied by harems of initial phase (IP) females. However, we know relatively little about the exclusivity and spatial stability of these territories. We investigated diurnal home range behavior in several TPs and IPs of five common Caribbean parrotfish species on the fringing coral reefs of Bonaire, Caribbean Netherlands. We computed parrotfish home ranges to investigate differences in space use and then quantified spatial overlap of home ranges between spatially co-occurring TPs to investigate exclusivity. We also quantified the spatial overlap of home ranges estimated from repeat tracks of a few TPs to investigate their spatial stability. We then discussed these results in the context of parrotfish social behavior. Home range sizes differed significantly among species. Spatial overlap between home ranges was lower for intraspecific than interspecific pairs of TPs. Focal TPs frequently engaged in agonistic interactions with intraspecific parrotfish and interacted longest with intraspecific TP parrotfish. This behavior suggests that exclusionary agonistic interactions may contribute to the observed patterns of low spatial overlap between home ranges. The spatial overlap of home ranges estimated from repeated tracks of several TPs of three study species was high, suggesting that home ranges were spatially stable for at least 1 month. Taken together, our results provide strong evidence that daytime parrotfish space use is constrained within fixed intraspecific territories in which territory holders have nearly exclusive access to resources. Grazing by parrotfishes maintains benthic reef substrates in early successional states that are conducive to coral larval settlement and recruitment. Behavioral constraints on parrotfish space use may drive spatial heterogeneity in grazing pressure and affect local patterns of benthic community assembly. A thorough understanding of the spatial ecology of parrotfishes is, therefore, necessary to elucidate their functional roles on coral reefs.
Collapse
Affiliation(s)
- Joshua C. Manning
- Department of Earth, Ocean, and Atmospheric SciencesFlorida State UniversityTallahasseeFloridaUSA
| | - Sophie J. McCoy
- Department of BiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
8
|
Burkepile DE, Adam TC, Allgeier JE, Shantz AA. Functional diversity in herbivorous fishes on Caribbean reefs: The role of macroalgal traits in driving interspecific differences in feeding behavior. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
The rise of biting during the Cenozoic fueled reef fish body shape diversification. Proc Natl Acad Sci U S A 2022; 119:e2119828119. [PMID: 35881791 PMCID: PMC9351382 DOI: 10.1073/pnas.2119828119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We demonstrate that the stunning trophic diversity of modern reef fishes is a relatively recent state driven by a dramatic transformation in representation of major feeding modes. Since the Early Cenozoic, when over 95% of teleost lineages were suction feeders, there has been a steady increase in direct biting feeding modes. A variety of novelties and jaw modifications permitted reef fishes to feed on substrate-bound prey using direct biting and grazing behaviors and opened this rich adaptive zone, which we show elevated rates of body shape evolution. Taken together, our results indicate that recent diversification of the feeding mechanism played a major role in ecologically and phenotypically shaping the modern fauna of reef fishes. Diversity of feeding mechanisms is a hallmark of reef fishes, but the history of this variation is not fully understood. Here, we explore the emergence and proliferation of a biting mode of feeding, which enables fishes to feed on attached benthic prey. We find that feeding modes other than suction, including biting, ram biting, and an intermediate group that uses both biting and suction, were nearly absent among the lineages of teleost fishes inhabiting reefs prior to the end-Cretaceous mass extinction, but benthic biting has rapidly increased in frequency since then, accounting for about 40% of reef species today. Further, we measured the impact of feeding mode on body shape diversification in reef fishes. We fit a model of multivariate character evolution to a dataset comprising three-dimensional body shape of 1,530 species of teleost reef fishes across 111 families. Dedicated biters have accumulated over half of the body shape variation that suction feeders have in just 18% of the evolutionary time by evolving body shape ∼1.7 times faster than suction feeders. As a possible response to the ecological and functional diversity of attached prey, biters have dynamically evolved both into shapes that resemble suction feeders as well as novel body forms characterized by lateral compression and small jaws. The ascendance of species that use biting mechanisms to feed on attached prey reshaped modern reef fish assemblages and has been a major contributor to their ecological and phenotypic diversification.
Collapse
|
10
|
Yarlett RT, Perry CT, Wilson RW. Quantifying production rates and size fractions of parrotfish-derived sediment: A key functional role on Maldivian coral reefs. Ecol Evol 2021; 11:16250-16265. [PMID: 34824825 PMCID: PMC8601892 DOI: 10.1002/ece3.8306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/13/2021] [Accepted: 10/15/2021] [Indexed: 11/11/2022] Open
Abstract
Coral reef fish perform numerous important functional roles on coral reefs. Of these, carbonate sediment production, as a by-product of parrotfish feeding, is especially important for contributing to reef framework construction and reef-associated landform development. However, only limited data exist on: (i) how production rates vary among reef habitats as a function of parrotfish assemblages, (ii) the relative importance of sediment produced from eroded, reworked, and endogenous sources, or (iii) the size fractions of sediment generated by different parrotfish species and size classes. These parameters influence not only overall reef-derived sediment supply, but also influence the transport potential and depositional fate of this sedimentary material. Here, we show that parrotfish sediment production varies significantly between reef-platform habitats on an atoll-margin Maldivian reef. Highest rates of production (over 0.8 kg m-2 year-1) were calculated in three of the eight platform habitats; a rubble-dominated zone, an Acropora spp. dominated zone, and a patch reef zone. Habitat spatial extent and differences in associated parrotfish assemblages strongly influenced the total quantities of sediment generated within each habitat. Nearly half of total parrotfish sediment production occurred in the rubble habitat, which comprised only 8% of the total platform area. Over 90% of this sedimentary material originated from eroded reef framework as opposed to being reworked existing or endogenously produced sediment, and comprised predominantly coral sands (predominantly 125-1000 µm in diameter). This is comparable to the dominant sand types and size fractions found on Maldivian reef islands. By contrast, nearly half of the sediment egested by parrotfish in the Acropora spp. dominated and patch reef habitats resulted from reworked existing sediments. These differences between habitats are a result of the different parrotfish assemblages supported. Endogenous carbonate production was found to be insignificant compared to the quantity of eroded and reworked material. Our findings have important implications for identifying key habitats and species which act as major sources of sediment for reef-island systems.
Collapse
Affiliation(s)
- Robert T. Yarlett
- GeographyCollege of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Chris T. Perry
- GeographyCollege of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Rod W. Wilson
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterExeterUK
| |
Collapse
|
11
|
Bauman AG, Hoey AS, Dunshea G, Fong J, Chan IZW, Todd PA. Fear effects and group size interact to shape herbivory on coral reefs. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Andrew G. Bauman
- Department of Biological Sciences National University of Singapore Singapore City Singapore
| | - Andrew S. Hoey
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville QLD Australia
| | - Glenn Dunshea
- Institute of Natural History Norwegian University of Science and Technology MuseumErling Skakkes Trondheim Norway
- Ecological Marine Services Pty. Ltd. Millbank QLD Australia
| | - Jenny Fong
- Department of Biological Sciences National University of Singapore Singapore City Singapore
| | - Ian Z. W. Chan
- Department of Biological Sciences National University of Singapore Singapore City Singapore
| | - Peter A. Todd
- Department of Biological Sciences National University of Singapore Singapore City Singapore
| |
Collapse
|