1
|
Shy R, Dragon A, Feely SME, Donlevy G, Cornett K, Mandarakas M, Estilow T, Burns J, Shy ME. Feasibility, Validity, and Reliability of the Virtual CMT Infant Toddler Scale (vCMTInfS): A Remote Evaluation of Infants/Toddlers With CMT. J Peripher Nerv Syst 2025; 30:e70029. [PMID: 40391770 PMCID: PMC12090703 DOI: 10.1111/jns.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/29/2025] [Accepted: 05/01/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND AND AIMS The CMT Infant Scale (CMTInfS) enables evaluation of infants/toddlers in clinic. Our aim was to evaluate the feasibility, reliability, and validity of a virtual version of the CMTInfS (vCMTInfS). METHODS Children aged 55 months or less were evaluated either in clinic using CMTInfS or remotely via telemedicine using the vCMTInfS. A trained clinical evaluator remotely directed activities with assistance from the parent/caregiver. vCMTInfS scores were calculated using the CMTInfS calculator available at www.ClinicalOutcomeMeasures.org. Clinical evaluators also used the Brazelton Neonatal Behavior assessment scale to give insight into the behavior of the child during the exam. RESULTS Twenty children (10 males and 10 females) aged 6-55 months with confirmed or at risk for CMT were evaluated. The mean in person (IP) CMT Infant and Toddler Scale (CMTInfS) raw score (4.11, SD = 2.76) was not significantly different from the mean initial virtual (V1) CMTInfS raw score (3.78, SD = 2.59) using a two-tailed test (t = 1.000, p = 0.347). Differences between the first and second (V2) visits as well as between the IP and V2 visits were also nonsignificant. INTERPRETATION Our data demonstrate that children aged 55 months or less can be effectively evaluated remotely using the vCMTInfS, which will expand the number of very young children who can be evaluated with rare forms of CMT.
Collapse
Affiliation(s)
- Rosemary Shy
- Department of Neurology, Neuromuscular and Neurogenetics DivisionUniversity of Iowa Health Care, Carver College of MedicineIowa CityIowaUSA
| | - Amanda Dragon
- Department of Neurology, Neuromuscular and Neurogenetics DivisionUniversity of Iowa Health Care, Carver College of MedicineIowa CityIowaUSA
| | - Shawna M. E. Feely
- Division of Pediatric Neurology, Seattle Children's HospitalUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Gabrielle Donlevy
- Faculty of Medicine and HealthUniversity of Sydney School of Health Sciences, The Children's Hospital WestmeadWestmeadAustralia
| | - Kayla Cornett
- Sydney Children's Hospitals Network and Discipline of Paediatrics and Child Health, School of Clinical MedicineUniversity of New South WalesSydneyNSWAustralia
| | - Melissa Mandarakas
- Sydney Children's Hospitals Network and Discipline of Paediatrics and Child Health, School of Clinical MedicineUniversity of New South WalesSydneyNSWAustralia
| | - Tim Estilow
- Department of Occupational TherapyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Joshua Burns
- Department of Epidemiology and Cancer ControlSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Michael E. Shy
- Department of Neurology, Neuromuscular and Neurogenetics DivisionUniversity of Iowa Health Care, Carver College of MedicineIowa CityIowaUSA
| |
Collapse
|
2
|
Belančić A, Janković T, Gkrinia EMM, Kristić I, Rajič Bumber J, Rački V, Pilipović K, Vitezić D, Mršić-Pelčić J. Glial Cells in Spinal Muscular Atrophy: Speculations on Non-Cell-Autonomous Mechanisms and Therapeutic Implications. Neurol Int 2025; 17:41. [PMID: 40137462 PMCID: PMC11944370 DOI: 10.3390/neurolint17030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous deletions or mutations in the SMN1 gene, leading to progressive motor neuron degeneration. While SMA has been classically viewed as a motor neuron-autonomous disease, increasing evidence indicates a significant role of glial cells-astrocytes, microglia, oligodendrocytes, and Schwann cells-in the disease pathophysiology. Astrocytic dysfunction contributes to motor neuron vulnerability through impaired calcium homeostasis, disrupted synaptic integrity, and neurotrophic factor deficits. Microglia, through reactive gliosis and complement-mediated synaptic stripping, exacerbate neurodegeneration and neuroinflammation. Oligodendrocytes exhibit impaired differentiation and metabolic support, while Schwann cells display abnormalities in myelination, extracellular matrix composition, and neuromuscular junction maintenance, further compromising motor function. Dysregulation of pathways such as NF-κB, Notch, and JAK/STAT, alongside the upregulation of complement proteins and microRNAs, reinforces the non-cell-autonomous nature of SMA. Despite the advances in SMN-restorative therapies, they do not fully mitigate glial dysfunction. Targeting glial pathology, including modulation of reactive astrogliosis, microglial polarization, and myelination deficits, represents a critical avenue for therapeutic intervention. This review comprehensively examines the multifaceted roles of glial cells in SMA and highlights emerging glia-targeted strategies to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Andrej Belančić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | | | - Iva Kristić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Jelena Rajič Bumber
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Valentino Rački
- Department of Neurology, Clinical Hospital Centre Rijeka, Krešimirova 42, 51000 Rijeka, Croatia;
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Dinko Vitezić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Jasenka Mršić-Pelčić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| |
Collapse
|
3
|
Abi Chahine NH, Mansour VJ, Nemer LI, Najjoum CF, El Asmar EA, Boulos RT. The Regentime stem cell procedure, successful treatment for a Charcot-Marie-Tooth disease case. Clin Case Rep 2024; 12:e8358. [PMID: 38161636 PMCID: PMC10753632 DOI: 10.1002/ccr3.8358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
This report highlights the successful treatment of a Charcot-Marie-Tooth disease case using the Regentime stem cell procedure, suggesting its potential as a promising therapeutic approach for patients suffering from this challenging condition.
Collapse
|
4
|
Libberecht K, Vangansewinkel T, Van Den Bosch L, Lambrichts I, Wolfs E. Proteostasis plays an important role in demyelinating Charcot Marie Tooth disease. Biochem Pharmacol 2023; 216:115760. [PMID: 37604292 DOI: 10.1016/j.bcp.2023.115760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Type 1 Charcot-Marie-Tooth disease (CMT1) is the most common demyelinating peripheral neuropathy. Patients suffer from progressive muscle weakness and sensory problems. The underlying disease mechanisms of CMT1 are still unclear and no therapy is currently available, hence patients completely rely on supportive care. Balancing protein levels is a complex multistep process fundamental to maintain cells in their healthy state and a disrupted proteostasis is a hallmark of several neurodegenerative diseases. When protein misfolding occurs, protein quality control systems are activated such as chaperones, the lysosomal-autophagy system and proteasomal degradation to ensure proper degradation. However, in pathological circumstances, these mechanisms are overloaded and thereby become inefficient to clear the load of misfolded proteins. Recent evidence strongly indicates that a disbalance in proteostasis plays an important role in several forms of CMT1. In this review, we present an overview of the protein quality control systems, their role in CMT1, and potential treatment strategies to restore proteostasis.
Collapse
Affiliation(s)
- Karen Libberecht
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Functional Imaging & Research on Stem Cells (FIERCELab), Diepenbeek, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| | - Tim Vangansewinkel
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Functional Imaging & Research on Stem Cells (FIERCELab), Diepenbeek, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium; UHasselt, Biomedical Research Institute (BIOMED), Lab for Histology and Regeneration (HISTOREGEN Lab), Diepenbeek, Belgium
| | - Ludo Van Den Bosch
- KU Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ivo Lambrichts
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Histology and Regeneration (HISTOREGEN Lab), Diepenbeek, Belgium
| | - Esther Wolfs
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Functional Imaging & Research on Stem Cells (FIERCELab), Diepenbeek, Belgium.
| |
Collapse
|
5
|
Damián JP, Vázquez Alberdi L, Canclini L, Rosso G, Bravo SO, Martínez M, Uriarte N, Ruiz P, Calero M, Di Tomaso MV, Kun A. Central Alteration in Peripheral Neuropathy of Trembler-J Mice: Hippocampal pmp22 Expression and Behavioral Profile in Anxiety Tests. Biomolecules 2021; 11:biom11040601. [PMID: 33921657 PMCID: PMC8074002 DOI: 10.3390/biom11040601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Charcot–Marie–Tooth (CMT) type 1 disease is the most common human hereditary demyelinating neuropathy. Mutations in pmp22 cause about 70% of all CMT1. Trembler-J (TrJ/+) mice are an animal model of CMT1E, having the same spontaneous pmp22 mutation that is found in humans. We compared the behavior profile of TrJ/+ and +/+ (wild-type) in open-field and elevated-plus-maze anxiety tests. In these tests, TrJ/+ showed an exclusive head shake movement, a lower frequency of rearing, but a greater frequency of grooming. In elevated-plus-maze, TrJ/+ defecate more frequently, performed fewer total entries, and have fewer entries to closed arms. These hippocampus-associated behaviors in TrJ/+ are consistent with increased anxiety levels. The expression of pmp22 and soluble PMP22 were evaluated in E17-hippocampal neurons and adult hippocampus by in situ hybridization and successive immunohistochemistry. Likewise, the expression of pmp22 was confirmed by RT-qPCR in the entire isolated hippocampi of both genotypes. Moreover, the presence of aggregated PMP22 was evidenced in unmasked granular hippocampal adult neurons and shows genotypic differences. We showed for the first time a behavior profile trait associated with anxiety and a differential expression of pmp22/PMP22 in hippocampal neurons of TrJ/+ and +/+ mice, demonstrating the involvement at the central level in an animal model of peripheral neuropathy (CMT1E).
Collapse
Affiliation(s)
- Juan Pablo Damián
- Unidad de Bioquímica, Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, 11600 Montevideo, Uruguay;
| | - Lucia Vázquez Alberdi
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.V.A.); (M.M.)
| | - Lucía Canclini
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.C.); (M.V.D.T.)
| | - Gonzalo Rosso
- Max Planck Institute for the Science of Light, Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany;
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Silvia Olivera Bravo
- Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay;
| | - Mariana Martínez
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.V.A.); (M.M.)
| | - Natalia Uriarte
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay;
| | - Paul Ruiz
- Unidad de Biofísica, Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, 11600 Montevideo, Uruguay;
| | - Miguel Calero
- Unidad de Encefalopatías Espongiformes, UFIEC, CIBERNED, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Instituto de Salud Carlos III, 28031 Madrid, Spain;
| | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.C.); (M.V.D.T.)
| | - Alejandra Kun
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.V.A.); (M.M.)
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Correspondence: ; Tel.: +598-2487-1616; Fax: +598-2487-5461
| |
Collapse
|
6
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
7
|
Cisterna BA, Arroyo P, Puebla C. Role of Connexin-Based Gap Junction Channels in Communication of Myelin Sheath in Schwann Cells. Front Cell Neurosci 2019; 13:69. [PMID: 30881289 PMCID: PMC6405416 DOI: 10.3389/fncel.2019.00069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
Peripheral nerves have the capacity to conduct action potentials along great distances and quickly recover following damage which is mainly due to Schwann cells (SCs), the most abundant glial cells of the peripheral nervous system (PNS). SCs wrap around an axonal segment multiple times, forming a myelin sheath, allowing for a significant increase in action potential conduction by insulating the axons. Mature myelin consists of compact and non-compact (or cytoplasmic) myelin zones. Non-compact myelin is found in paranodal loops bordering the nodes of Ranvier, and in the inner and outermost cytoplasmic tongues and is the region in which Schmidt-Lanterman incisures (SLI; continuous spirals of overlapping cytoplasmic expansions within areas of compact myelin) are located. Using different technologies, it was shown that the layers of non-compact myelin could be connected to each other by gap junction channels (GJCs), formed by connexin 32 (Cx32), and their relative abundance allows for the transfer of ions and different small molecules. Likewise, Cx29 is expressed in the innermost layer of the myelin sheath. Here it does not form GJCs but colocalizes with Kv1, which implies that the SCs play an active role in the electrical condition in mammals. The critical role of GJCs in the functioning of myelinating SCs is evident in Charcot-Marie-Tooth disease (CMT), X-linked form 1 (CMTX1), which is caused by mutations in the gap junction protein beta 1 (GJB1) gene that codes for Cx32. Although the management of CMT symptoms is currently supportive, there is a recent method for targeted gene delivery to myelinating cells, which rescues the phenotype in KO-Cx32 mice, a model of CMTX1. In this mini-review article, we discuss the current knowledge on the role of Cxs in myelin-forming SCs and summarize recent discoveries that may become a real treatment possibility for patients with disorders such as CMT.
Collapse
Affiliation(s)
- Bruno A Cisterna
- Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro para el Desarrollo de la Nanociencia y Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Pablo Arroyo
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Puebla
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
8
|
Abdul TY, Schneider AE, Cetta F, Driscoll DJ. Fontan Failure Secondary to Charcot-Marie-Tooth-Induced Phrenic Neuropathy. Tex Heart Inst J 2018; 45:270-272. [PMID: 30374244 DOI: 10.14503/thij-17-6337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Charcot-Marie-Tooth disease comprises a vast array of defects in myelin integrity that causes progressive peripheral sensorimotor neuropathy. It is the most prevalent inherited peripheral neuropathy, and it can affect the management of coexisting medical conditions. We report the case of a 25-year-old woman who had undergone successful Fontan surgery during childhood, but her Fontan circulation failed as a result of diaphragmatic paresis caused by Charcot-Marie-Tooth disease type 1A. This diagnosis precluded cardiac transplantation.
Collapse
|
9
|
Draper ACE, Piercy RJ. Pathological classification of equine recurrent laryngeal neuropathy. J Vet Intern Med 2018; 32:1397-1409. [PMID: 29691904 PMCID: PMC6060325 DOI: 10.1111/jvim.15142] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 12/28/2022] Open
Abstract
Recurrent Laryngeal Neuropathy (RLN) is a highly prevalent and predominantly left-sided, degenerative disorder of the recurrent laryngeal nerves (RLn) of tall horses, that causes inspiratory stridor at exercise because of intrinsic laryngeal muscle paresis. The associated laryngeal dysfunction and exercise intolerance in athletic horses commonly leads to surgical intervention, retirement or euthanasia with associated financial and welfare implications. Despite speculation, there is a lack of consensus and conflicting evidence supporting the primary classification of RLN, as either a distal ("dying back") axonopathy or as a primary myelinopathy and as either a (bilateral) mononeuropathy or a polyneuropathy; this uncertainty hinders etiological and pathophysiological research. In this review, we discuss the neuropathological changes and electrophysiological deficits reported in the RLn of affected horses, and the evidence for correct classification of the disorder. In so doing, we summarize and reveal the limitations of much historical research on RLN and propose future directions that might best help identify the etiology and pathophysiology of this enigmatic disorder.
Collapse
Affiliation(s)
- Alexandra C. E. Draper
- Comparative Neuromuscular Disease LaboratoryDepartment is Clinical Science and Services, Royal Veterinary CollegeLondonUnited Kingdom
| | - Richard J. Piercy
- Comparative Neuromuscular Disease LaboratoryDepartment is Clinical Science and Services, Royal Veterinary CollegeLondonUnited Kingdom
| |
Collapse
|
10
|
Ruskamo S, Nieminen T, Kristiansen CK, Vatne GH, Baumann A, Hallin EI, Raasakka A, Joensuu P, Bergmann U, Vattulainen I, Kursula P. Molecular mechanisms of Charcot-Marie-Tooth neuropathy linked to mutations in human myelin protein P2. Sci Rep 2017; 7:6510. [PMID: 28747762 PMCID: PMC5529448 DOI: 10.1038/s41598-017-06781-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/16/2017] [Indexed: 02/06/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is one of the most common inherited neuropathies. Recently, three CMT1-associated point mutations (I43N, T51P, and I52T) were discovered in the abundant peripheral myelin protein P2. These mutations trigger abnormal myelin structure, leading to reduced nerve conduction velocity, muscle weakness, and distal limb atrophy. P2 is a myelin-specific protein expressed by Schwann cells that binds to fatty acids and membranes, contributing to peripheral myelin lipid homeostasis. We studied the molecular basis of the P2 patient mutations. None of the CMT1-associated mutations alter the overall folding of P2 in the crystal state. P2 disease variants show increased aggregation tendency and remarkably reduced stability, T51P being most severe. In addition, P2 disease mutations affect protein dynamics. Both fatty acid binding by P2 and the kinetics of its membrane interactions are affected by the mutations. Experiments and simulations suggest opening of the β barrel in T51P, possibly representing a general mechanism in fatty acid-binding proteins. Our findings demonstrate that altered biophysical properties and functional dynamics of P2 may cause myelin defects in CMT1 patients. At the molecular level, a few malformed hydrogen bonds lead to structural instability and misregulation of conformational changes related to ligand exchange and membrane binding.
Collapse
Affiliation(s)
- Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Tuomo Nieminen
- Department of Physics, Tampere University of Technology, 33720, Tampere, Finland
| | | | - Guro H Vatne
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Anne Baumann
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, 5021, Bergen, Norway
| | - Erik I Hallin
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Päivi Joensuu
- Department of Sustainable Chemistry, Technical Faculty, University of Oulu, 90570, Oulu, Finland
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, 33720, Tampere, Finland
- Department of Physics, University of Helsinki, 00560, Helsinki, Finland
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland.
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway.
| |
Collapse
|
11
|
Neurophysiological profile of peripheral neuropathy associated with childhood mitochondrial disease. Mitochondrion 2016; 30:162-7. [PMID: 27475922 DOI: 10.1016/j.mito.2016.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Peripheral nerve involvement is common in mitochondrial disease but often unrecognised due to the prominent central nervous system features. Identification of the underlying neuropathy may assist syndrome classification, targeted genetic testing and rehabilitative interventions. METHODS Clinical data and the results of nerve conduction studies were obtained retrospectively from the records of four tertiary children's hospital metabolic disease, neuromuscular or neurophysiology services. Nerve conductions studies were also performed prospectively on children attending a tertiary metabolic disease service. Results were classified and analysed according to the underlying genetic cause. RESULTS Nerve conduction studies from 27 children with mitochondrial disease were included in the study (mitochondrial DNA (mtDNA) - 7, POLG - 7, SURF1 - 10, PDHc deficiency - 3). Four children with mtDNA mutations had a normal study while three had mild abnormalities in the form of an axonal sensorimotor neuropathy when not acutely unwell. One child with MELAS had a severe acute axonal motor neuropathy during an acute stroke-like episode that resolved over 12months. Five children with POLG mutations and disease onset beyond infancy had a sensory ataxic neuropathy with an onset in the second decade of life, while the two infants with POLG mutations had a demyelinating neuropathy. Seven of the 10 children with SURF1 mutations had a demyelinating neuropathy. All three children with PDHc deficiency had an axonal sensorimotor neuropathy. Unlike CMT, the neuropathy associated with mitochondrial disease was not length-dependent. CONCLUSIONS This is the largest study to date of peripheral neuropathy in genetically- classified childhood mitochondrial disease. Characterising the underlying neuropathy may assist with the diagnosis of the mitochondrial syndrome and should be an integral part of the assessment of children with suspected mitochondrial disease.
Collapse
|
12
|
Abstract
Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by recapitulating the various stages of in vivo neural crest formation and SC differentiation. In this review, we survey the cellular and molecular mechanisms underlying these in vivo processes. We then focus on the current in vitro strategies for generating SCs from two sources of pluripotent stem cells, namely embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Different methods for SC engineering from ESCs and iPSCs are reviewed and suggestions are proposed for optimizing the existing protocols. Potential safety issues regarding the clinical application of iPSC-derived SCs are discussed as well. Lastly, we will address future aspects of SC engineering.
Collapse
|
13
|
Nafez S, Oikawa K, Odero GL, Sproule M, Ge N, Schapansky J, Abrenica B, Hatherell A, Cadonic C, Zhang S, Song X, Kauppinen T, Glazner GW, Grilli M, Czubryt MP, Eisenstat DD, Albensi BC. Early growth response 2 (Egr-2) expression is triggered by NF-κB activation. Mol Cell Neurosci 2014; 64:95-103. [PMID: 25553923 DOI: 10.1016/j.mcn.2014.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 11/18/2014] [Accepted: 12/27/2014] [Indexed: 01/31/2023] Open
Abstract
Transcription factors are known to play multiple roles in cellular function. Investigators report that factors such as early growth response (Egr) protein and nuclear factor kappa B (NF-κB) are activated in the brain during cancer, brain injury, inflammation, and/or memory. To explore NF-κB activity further, we investigated the transcriptomes of hippocampal slices following electrical stimulation of NF-κB p50 subunit knockout mice (p50-/-) versus their controls (p50+/+). We found that the early growth response gene Egr-2 was upregulated by NF-κB activation, but only in p50+/+ hippocampal slices. We then stimulated HeLa cells and primary cortical neurons with tumor necrosis factor alpha (TNFα) to activate NF-κB and increase the expression of Egr-2. The Egr-2 promoter sequence was analyzed for NF-κB binding sites and chromatin immunoprecipitation (ChIP) assays were performed to confirm promoter occupancy in vivo. We discovered that NF-κB specifically binds to an NF-κB consensus binding site within the proximal promoter region of Egr-2. Luciferase assay demonstrated that p50 was able to transactivate the Egr-2 promoter in vitro. Small interfering RNA (siRNA)-mediated p50 knockdown corroborated other Egr-2 expression studies. We show for the first time a novel link between NF-κB activation and Egr-2 expression with Egr-2 expression directly controlled by the transcriptional activity of NF-κB.
Collapse
Affiliation(s)
- Solmaz Nafez
- St. Boniface Hospital Research; University of Manitoba, Dept. of Pharmacology & Therapeutics, Winnipeg MB, Canada
| | - Kensuke Oikawa
- St. Boniface Hospital Research; University of Manitoba, Dept. of Pharmacology & Therapeutics, Winnipeg MB, Canada
| | - Gary L Odero
- St. Boniface Hospital Research, Winnipeg MB, Canada
| | | | - Ning Ge
- St. Boniface Hospital Research, Winnipeg MB, Canada
| | - Jason Schapansky
- St. Boniface Hospital Research; University of Manitoba, Dept. of Pharmacology & Therapeutics, Winnipeg MB, Canada
| | | | | | - Chris Cadonic
- St. Boniface Hospital Research; University of Manitoba - Graduate Program in Biomedical Engineering, Winnipeg MB, Canada
| | - Shunzhen Zhang
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg MB, Canada
| | - Xiaohua Song
- Dept. of Medical Genetics, University of Alberta, Edmonton AB, Canada
| | - Tiina Kauppinen
- University of Manitoba, Dept. of Pharmacology & Therapeutics, Winnipeg MB, Canada
| | - Gordon W Glazner
- St. Boniface Hospital Research; University of Manitoba, Dept. of Pharmacology & Therapeutics, Winnipeg MB, Canada
| | - Mariagrazia Grilli
- Dept. Pharmaceutical Sciences, University of Piemonte Orientale, Novara Italy
| | - Michael P Czubryt
- St. Boniface Hospital Research; University of Manitoba, Dept. of Physiology, Winnipeg MB, Canada
| | - David D Eisenstat
- Depts. of Pediatrics, Medical Genetics and Oncology, University of Alberta, Edmonton AB, Canada
| | - Benedict C Albensi
- St. Boniface Hospital Research; University of Manitoba - Graduate Program in Biomedical Engineering; University of Manitoba, Dept. of Pharmacology & Therapeutics, Winnipeg MB, Canada.
| |
Collapse
|
14
|
Alvarez S, Moldovan M, Krarup C. Prolonged high frequency electrical stimulation is lethal to motor axons of mice heterozygously deficient for the myelin protein P0 gene. Exp Neurol 2013; 247:552-61. [DOI: 10.1016/j.expneurol.2013.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/09/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
|
15
|
Siskind CE, Panchal S, Smith CO, Feely SME, Dalton JC, Schindler AB, Krajewski KM. A review of genetic counseling for Charcot Marie Tooth disease (CMT). J Genet Couns 2013; 22:422-36. [PMID: 23604902 DOI: 10.1007/s10897-013-9584-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 03/20/2013] [Indexed: 02/07/2023]
Abstract
Charcot Marie Tooth disease (CMT) encompasses the inherited peripheral neuropathies. While four genes have been found to cause over 90 % of genetically identifiable causes of CMT (PMP22, GJB1, MPZ, MFN2), at least 51 genes and loci have been found to cause CMT when mutated, creating difficulties for clinicians to find a genetic subtype for families. Here, the classic features of CMT as well as characteristic features of the most common subtypes of CMT are described, as well as methods for narrowing down the possible subtypes. Psychosocial concerns particular to the CMT population are identified. This is the most inclusive publication for CMT-specific genetic counseling.
Collapse
Affiliation(s)
- Carly E Siskind
- Neurosciences Department, Stanford Hospital and Clinics, 300 Pasteur Dr., Stanford, CA 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Charcot-Marie-Tooth (CMT) disease is a heterogeneous group of inherited peripheral neuropathies in which the neuropathy is the sole or primary component of the disorder, as opposed to diseases in which the neuropathy is part of a more generalized neurologic or multisystem syndrome. Because of the great genetic heterogeneity of this condition, it can be challenging for the general neurologist to diagnose patients with specific types of CMT. This article reviews the biology of the inherited peripheral neuropathies, delineates major phenotypic features of the CMT subtypes, and suggest strategies for focusing genetic testing.
Collapse
Affiliation(s)
- Mario A Saporta
- National Laboratory of Embryonic Stem Cells, Biomedical Sciences Department, Federal University of Rio de Janeiro, Rua Republica do Peru 362/602, Rio de Janeiro 22021-040, Brazil.
| | | |
Collapse
|
17
|
Saporta MAC, Shy BR, Patzko A, Bai Y, Pennuto M, Ferri C, Tinelli E, Saveri P, Kirschner D, Crowther M, Southwood C, Wu X, Gow A, Feltri ML, Wrabetz L, Shy ME. MpzR98C arrests Schwann cell development in a mouse model of early-onset Charcot-Marie-Tooth disease type 1B. ACTA ACUST UNITED AC 2012; 135:2032-47. [PMID: 22689911 DOI: 10.1093/brain/aws140] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations in myelin protein zero (MPZ) cause Charcot-Marie-Tooth disease type 1B. Many dominant MPZ mutations, including R98C, present as infantile onset dysmyelinating neuropathies. We have generated an R98C 'knock-in' mouse model of Charcot-Marie-Tooth type 1B, where a mutation encoding R98C was targeted to the mouse Mpz gene. Both heterozygous (R98C/+) and homozygous (R98C/R98C) mice develop weakness, abnormal nerve conduction velocities and morphologically abnormal myelin; R98C/R98C mice are more severely affected. MpzR98C is retained in the endoplasmic reticulum of Schwann cells and provokes a transitory, canonical unfolded protein response. Ablation of Chop, a mediator of the protein kinase RNA-like endoplasmic reticulum kinase unfolded protein response pathway restores compound muscle action potential amplitudes of R98C/+ mice but does not alter the reduced conduction velocities, reduced axonal diameters or clinical behaviour of these animals. R98C/R98C Schwann cells are developmentally arrested in the promyelinating stage, whereas development is delayed in R98C/+ mice. The proportion of cells expressing c-Jun, an inhibitor of myelination, is elevated in mutant nerves, whereas the proportion of cells expressing the promyelinating transcription factor Krox-20 is decreased, particularly in R98C/R98C mice. Our results provide a potential link between the accumulation of MpzR98C in the endoplasmic reticulum and a developmental delay in myelination. These mice provide a model by which we can begin to understand the early onset dysmyelination seen in patients with R98C and similar mutations.
Collapse
Affiliation(s)
- Mario A C Saporta
- Department of Neurology, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wilmshurst JM, Ouvrier R. Hereditary peripheral neuropathies of childhood: an overview for clinicians. Neuromuscul Disord 2011; 21:763-75. [PMID: 21741240 DOI: 10.1016/j.nmd.2011.05.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 05/26/2011] [Accepted: 05/30/2011] [Indexed: 12/11/2022]
Abstract
This review focuses on the "pure" hereditary peripheral neuropathies where peripheral nerve disease is the main manifestation and does not address neurodegenerative disorders associated with but not dominated by peripheral neuropathy. Aetiologies of childhood-onset peripheral neuropathies differ from those of adult-onset, with more inherited conditions, especially autosomal recessive. Charcot-Marie-Tooth disease is the commonest neuromuscular disorder. The genetic labels of CMT (Charcot-Marie-Tooth) disease types 1-4 are the preferred sub-type terms. Clinical presentations and molecular genetic heterogeneity of hereditary peripheral neuropathies are diverse. For most patients worldwide, diagnostic studies are limited to clinical assessment. Such markers which could be used to identify specific sub-types include presentation in early childhood, scoliosis, marked sensory involvement, respiratory compromise, upper limb involvement, visual or hearing impairment, pyramidal signs and mental retardation. These key markers may assist targeted genetic testing and aid in diagnosing children where DNA testing is not possible.
Collapse
Affiliation(s)
- Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross Children's Hospital, Kilpfontein Road, Rondebosch, Cape Town, Western Cape 7700, South Africa.
| | | |
Collapse
|
19
|
Taioli F, Cabrini I, Cavallaro T, Simonati A, Testi S, Fabrizi GM. Déjerine-Sottas syndrome with a silent nucleotide change of myelin protein zero gene. J Peripher Nerv Syst 2011; 16:59-64. [DOI: 10.1111/j.1529-8027.2011.00319.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Dacci P, Dina G, Cerri F, Previtali SC, Lopez ID, Lauria G, Feltri ML, Bolino A, Comi G, Wrabetz L, Quattrini A. Foot pad skin biopsy in mouse models of hereditary neuropathy. Glia 2010; 58:2005-16. [PMID: 20878767 PMCID: PMC3034192 DOI: 10.1002/glia.21069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 08/06/2010] [Indexed: 02/05/2023]
Abstract
Numerous transgenic and knockout mouse models of human hereditary neuropathies have become available over the past decade. We describe a simple, reproducible, and safe biopsy of mouse skin for histopathological evaluation of the peripheral nervous system (PNS) in models of hereditary neuropathies. We compared the diagnostic outcome between sciatic nerve and dermal nerves found in skin biopsy (SB) from the hind foot. A total of five animal models of different Charcot-Marie-Tooth neuropathies, and one model of congenital muscular dystrophy associated neuropathy were examined. In wild type mice, dermal nerve fibers were readily identified by immunohistochemistry, light, and electron microscopy and they appeared similar to myelinated fibers in sciatic nerve. In mutant mice, SB manifested myelin abnormalities similar to those observed in sciatic nerves, including hypomyelination, onion bulbs, myelin outfolding, redundant loops, and tomacula. In many strains, however, SB showed additional abnormalities--fiber loss, dense neurofilament packing with lower phosphorylation status, and axonal degeneration-undetected in sciatic nerve, possibly because SB samples distal nerves. SB, a reliable technique to investigate peripheral neuropathies in human beings, is also useful to investigate animal models of hereditary neuropathies. Our data indicate that SB may reveal distal axonal pathology in mouse models and permits sequential follow-up of the neuropathy in an individual mouse, thereby reducing the number of mice necessary to document pathology of the PNS.
Collapse
Affiliation(s)
- Patrizia Dacci
- Department of Neurology, Division of Neuroscience and INSPE, Neuropathology Unit, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Polyneuropathy of Finnish horses characterised by inflammatory demyelination and intracisternal Schwann cell inclusions. Equine Vet J 2010; 40:231-6. [DOI: 10.2746/042516408x257574] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Identification of the variant Ala335Val of MED25 as responsible for CMT2B2: molecular data, functional studies of the SH3 recognition motif and correlation between wild-type MED25 and PMP22 RNA levels in CMT1A animal models. Neurogenetics 2009; 10:275-87. [PMID: 19290556 PMCID: PMC2847151 DOI: 10.1007/s10048-009-0183-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 02/19/2009] [Indexed: 01/30/2023]
Abstract
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous disorder. All mendelian patterns of inheritance have been described. We identified a homozygous p.A335V mutation in the MED25 gene in an extended Costa Rican family with autosomal recessively inherited Charcot-Marie-Tooth neuropathy linked to the CMT2B2 locus in chromosome 19q13.3. MED25, also known as ARC92 and ACID1, is a subunit of the human activator-recruited cofactor (ARC), a family of large transcriptional coactivator complexes related to the yeast Mediator. MED25 was identified by virtue of functional association with the activator domains of multiple cellular and viral transcriptional activators. Its exact physiological function in transcriptional regulation remains obscure. The CMT2B2-associated missense amino acid substitution p.A335V is located in a proline-rich region with high affinity for SH3 domains of the Abelson type. The mutation causes a decrease in binding specificity leading to the recognition of a broader range of SH3 domain proteins. Furthermore, Med25 is coordinately expressed with Pmp22 gene dosage and expression in transgenic mice and rats. These results suggest a potential role of this protein in the molecular etiology of CMT2B2 and suggest a potential, more general role of MED25 in gene dosage sensitive peripheral neuropathy pathogenesis.
Collapse
|
23
|
Kidd GJ, Yadav VK, Huang P, Brand SL, Low SH, Weimbs T, Trapp BD. A dual tyrosine-leucine motif mediates myelin protein P0 targeting in MDCK cells. Glia 2006; 54:135-45. [PMID: 16788992 DOI: 10.1002/glia.20366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Differential targeting of myelin proteins to multiple, biochemically and functionally distinct Schwann cell plasma membrane domains is essential for myelin formation. In this study, we investigated whether the myelin protein P0 contains targeting signals using Madin-Darby canine kidney (MDCK) cells. By confocal microscopy, P0 was localized to MDCK cell basolateral membranes. C-terminal deletion resulted in apical accumulation, and stepwise deletions defined a 15-mer region that was required for basolateral targeting. Alanine substitutions within this region identified the YAML sequence as a functional tyrosine-based targeting signal, with the ML sequence serving as a secondary leucine-based signal. Replacement of the P0 ectodomain with green fluorescent protein altered the distribution of constructs lacking the YAML signal. Coexpression of the myelin-associated glycoprotein did not alter P0 distribution in MDCK cells. The results indicate that P0 contains a hierarchy of targeting signals, which may contribute to P0 localization in myelinating Schwann cells and the pathogenesis in human disease.
Collapse
Affiliation(s)
- Grahame J Kidd
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Massa R, Palumbo C, Cavallaro T, Panico MB, Bei R, Terracciano C, Rizzuto N, Bernardi G, Modesti A. Overexpression of ErbB2 and ErbB3 receptors in Schwann cells of patients with Charcot-Marie-tooth disease type 1A. Muscle Nerve 2006; 33:342-9. [PMID: 16307437 DOI: 10.1002/mus.20460] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Axon-derived neuregulins (NRGs) are a family of growth factors whose binding to ErbB tyrosine kinase receptors promotes the maturation, proliferation and survival of Schwann cells (SCs). Correct NRG/ErbB signaling is essential for the homeostasis of axonal-glial complexes and seems to play a role in peripheral nerve repair. The potential involvement of ErbB receptors in human peripheral neuropathies has not been clarified. Therefore, we assessed the immunoreactivity for EGFR (ErbB1), ErbB2, and ErbB3 in nerve biopsies from patients with different forms of Charcot-Marie-Tooth disease, type 1, (CMT1), as compared to others with inflammatory neuropathies and controls. The most notable changes consisted in the overexpression of ErbB2 and ErbB3 by SCs of nerves from CMT1A patients. These findings are consistent with an impairment of SC differentiation and expand the molecular phenotype of CMT1A. The upregulation of these receptors may play a role in the inhibition of myelination or in the promotion of recurrent demyelination and axonal damage.
Collapse
Affiliation(s)
- Roberto Massa
- Dipartimento di Neuroscienze, Università di Roma Tor Vergata, Via Montpellier 1, I-00133 Roma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Charcot-Marie-Tooth disease type 1B (CMT1B) is caused by mutations in the major PNS myelin protein myelin protein zero (MPZ). MPZ is a member of the immunoglobulin supergene family and functions as an adhesion molecule helping to mediate compaction of PNS myelin. Mutations in MPZ appear to either disrupt myelination during development, leading to severe early onset neuropathies, or to disrupt axo-glial interactions leading to late onset neuropathies in adulthood. Identifying molecular pathways involved in early and late onset CMT1B will be crucial to understand how MPZ mutations cause CMT1B so that rational therapies for both early and late onset neuropathies can be developed.
Collapse
Affiliation(s)
- Michael E Shy
- Wayne State University, Department of Neurology, 421 Ea Canfield, Elliman Bldg 3206, Detroit, MI 48201, USA.
| |
Collapse
|
26
|
Szabo A, Züchner S, Siska E, Mechler F, Molnar MJ. Marked phenotypic variation in a family with a new myelin protein zero mutation. Neuromuscul Disord 2005; 15:760-3. [PMID: 16198109 DOI: 10.1016/j.nmd.2005.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/05/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
Myelin protein zero (MPZ) is a member of the immunoglobulin gene superfamily, which has a role in myelin compaction. MPZ gene mutations cause mostly demyelinating neuropathies of the Charcot-Marie-Tooth 1B type (CMT1B), but axonal CMT have been described as well. There is a broad spectrum of phenotypic manifestation of neuropathies caused by MPZ mutations. Some mutations of MPZ cause severe early-onset neuropathies such as Dejerine-Sottas disease, while others cause the classical CMT phenotype with normal early milestones but development of disability during the first two decades of life. We describe a family in which five members of three consecutive generations had a heterozygous mutation in nucleotide position 143 with a T-C transition in exon 2 of the MPZ gene. The resulting substitution of Leu48 with proline has not been previously described. The age of onset of symptoms varied from 8 months to 41 years. The marked variation of the age of disease onset and clinical phenotype in this one family, related to the same MPZ mutation, suggests that in addition to the type and intragenic location of the mutation, other putative modifying gene(s) are regulating MPZ gene expression, mRNA stability and posttranslational protein modification and may have an important effect on the ultimate clinical phenotype.
Collapse
Affiliation(s)
- A Szabo
- Department of Neurology, University Medical School of Debrecen, Debrecen, Hungary
| | | | | | | | | |
Collapse
|
27
|
Berger P, Sirkowski EE, Scherer SS, Suter U. Expression analysis of the N-Myc downstream-regulated gene 1 indicates that myelinating Schwann cells are the primary disease target in hereditary motor and sensory neuropathy-Lom. Neurobiol Dis 2004; 17:290-9. [PMID: 15474366 DOI: 10.1016/j.nbd.2004.07.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 04/27/2004] [Accepted: 07/09/2004] [Indexed: 11/16/2022] Open
Abstract
Mutations in the gene encoding N-myc downstream-regulated gene-1 (NDRG1) lead to truncations of the encoded protein and are associated with an autosomal recessive demyelinating neuropathy--hereditary motor and sensory neuropathy-Lom. NDRG1 protein is highly expressed in peripheral nerve and is localized in the cytoplasm of myelinating Schwann cells, including the paranodes and Schmidt-Lanterman incisures. In contrast, sensory and motor neurons as well as their axons lack NDRG1. NDRG1 mRNA levels in developing and injured adult sciatic nerves parallel those of myelin-related genes, indicating that the expression of NDRG1 in myelinating Schwann cells is regulated by axonal interactions. Oligodendrocytes also express NDRG1, and the subtle CNS deficits of affected patients may result from a lack of NDRG1 in these cells. Our data predict that the loss of NDRG1 leads to a Schwann cell autonomous phenotype resulting in demyelination, with secondary axonal loss.
Collapse
Affiliation(s)
- Philipp Berger
- Department of Biology, Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
28
|
Edgar JM, Garbern J. The myelinated axon is dependent on the myelinating cell for support and maintenance: molecules involved. J Neurosci Res 2004; 76:593-8. [PMID: 15139018 DOI: 10.1002/jnr.20063] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The myelin-forming cells, oligodendrocytes and Schwann cells, extend processes that spirally wrap axons and provide the insulation that allows rapid saltatory conduction. Recent data suggest a further role for the myelin-forming cells in axonal support and maintenance. This Mini-Review summarises some of the data that support this view and highlights the molecules involved.
Collapse
Affiliation(s)
- J M Edgar
- Applied Neurobiology Group, Institute of Comparative Medicine, University of Glasgow, Bearsden, Glasgow, Scotland.
| | | |
Collapse
|
29
|
Eggers SDZ, Keswani SC, Melli G, Cornblath DR. Clinical and genetic description of a family with Charcot-Marie-Tooth disease type 1B from a transmembrane MPZ mutation. Muscle Nerve 2004; 29:867-9. [PMID: 15170620 DOI: 10.1002/mus.20034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mutations in the myelin protein zero gene (MPZ) are associated with certain demyelinating neuropathies, and in particular with Charcot-Marie-Tooth disease type 1B (CMT1B), Dejerine-Sottas syndrome, and congenital hypomyelination. MPZ mutations affecting the protein's transmembrane domain are generally associated with more severe phenotypes. We describe a family with mild CMT1B associated with a transmembrane MPZ mutation. Sequence analysis identified a G-to-C transversion at nucleotide 1064, predicting a glycine-to-arginine substitution in codon 163 (G163R) of MPZ. This report furthers the understanding of the clinical and electrophysiological manifestations of MPZ mutations.
Collapse
Affiliation(s)
- Scott D Z Eggers
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
30
|
Rünker AE, Kobsar I, Fink T, Loers G, Tilling T, Putthoff P, Wessig C, Martini R, Schachner M. Pathology of a mouse mutation in peripheral myelin protein P0 is characteristic of a severe and early onset form of human Charcot-Marie-Tooth type 1B disorder. ACTA ACUST UNITED AC 2004; 165:565-73. [PMID: 15148307 PMCID: PMC2172360 DOI: 10.1083/jcb.200402087] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in the gene of the peripheral myelin protein zero (P0) give rise to the peripheral neuropathies Charcot-Marie-Tooth type 1B disease (CMT1B), Déjérine-Sottas syndrome, and congenital hypomyelinating neuropathy. To investigate the pathomechanisms of a specific point mutation in the P0 gene, we generated two independent transgenic mouse lines expressing the pathogenic CMT1B missense mutation Ile106Leu (P0sub) under the control of the P0 promoter on a wild-type background. Both P0sub-transgenic mouse lines showed shivering and ultrastructural abnormalities including retarded myelination, onion bulb formation, and dysmyelination seen as aberrantly folded myelin sheaths and tomacula in all nerve fibers. Functionally, the mutation leads to dispersed compound muscle action potentials and severely reduced conduction velocities. Our observations support the view that the Ile106Leu mutation acts by a dominant-negative gain of function and that the P0sub-transgenic mouse represents an animal model for a severe, tomaculous form of CMT1B.
Collapse
Affiliation(s)
- Annette E Rünker
- Center for Molecular Neurobiology, University of Hamburg, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rocha CT, Escolar DM. Update on diagnosis and treatment of hereditary and acquired polyneuropathies in childhood. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2004; 57:255-71. [PMID: 16106624 DOI: 10.1016/s1567-424x(09)70362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Carolina Tesi Rocha
- Department of Neurology, Research Center for Genetic Medicine, MDA Clinic, Children's National Medical Center, George Washington University, Washington, DC 20010, USA
| | | |
Collapse
|
32
|
Melcangi RC, Leonelli E, Magnaghi V, Gherardi G, Nobbio L, Schenone A. Mifepristone (RU 38486) influences expression of glycoprotein Po and morphological parameters at the level of rat sciatic nerve: in vivo observations. Exp Neurol 2003; 184:930-8. [PMID: 14769385 DOI: 10.1016/s0014-4886(03)00338-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Revised: 05/13/2003] [Accepted: 07/01/2003] [Indexed: 10/26/2022]
Abstract
The observations here reported indicate that, in vivo, the expression of an important protein of peripheral myelin, the glycoprotein Po, is influenced by mifespristone (RU 38486), that is, an antagonist of progesterone (PR) and glucocorticoid (GR) receptor. In our experimental model, male rats have been treated at the first day of life with this antagonist and after repeated treatments, we have analyzed in the sciatic nerve of 20- (20d) and 30-day-old rats (30d) the mRNA and protein levels of Po. Moreover, expression of Po has also been analyzed in the sciatic nerve of animals treated during the first 30 days of postnatal life and then sacrificed at 90th day of life (90d). The results obtained have indicated that both mRNA and protein levels of Po decrease at 20d. Apparently, these effects seem to be transient because no changes are evident at the other two times of analysis. As shown by morphometric analysis, the treatment with RU 38486 is also able to induce morphological changes at the level of sciatic nerve. However, at variance to what is expected by an alteration of an important component of the myelin membranes like Po, no changes are evident at the level of the myelin compartment. On the contrary, a significant reduction of axon diameter in parallel to an increase in neurofilament (NF) density occurs since 30d. In conclusion, the present data seem to suggest that progestin and/or glucocorticoid signals are not only involved in the control of myelin compartment but also on the axon maintenance.
Collapse
Affiliation(s)
- R C Melcangi
- Department of Endocrinology and Center of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Since 1886, the year that Charcot and Marie and Tooth described a genetic "peroneal muscular atrophy syndrome," electrophysiological and histological studies of the peripheral nervous system have greatly aided the characterization of this syndrome, which falls among the hereditary sensory-motor neuropathies. Two principal forms of Charcot-Marie-Tooth (CMT) disease have been distinguished: CMT 1, corresponding to a demyelinating type, and CMT 2, corresponding to an axonal type. The modes of transmission of these types are variable, recessive or dominant, autosomal, or X-linked. Our discussion here is confined to the dominant forms. In recent years, advances in molecular biology have greatly modified the approach to CMT disease and related neuropathies (such as hereditary neuropathy with liability to pressure palsies). With increased knowledge of responsible gene mutations and several other loci identified by linkage studies, our understanding of the pathophysiology of these neuropathies is increasing; however, with greater understanding, the classification of these disorders is becoming more complex. In this review we present and discuss the currently characterized subtypes, with emphasis on their known histological aspects. While nerve biopsy has lost its diagnostic importance in certain forms of the disease, such as CMT 1A, CMT 1B, and X-linked CMT (CMT X), it remains important for better characterizing the lesions of CMT 2 and forms of genetic peroneal atrophy in which DNA study is unrevealing.
Collapse
|
34
|
Watabe K, Sakamoto T, Kawazoe Y, Michikawa M, Miyamoto K, Yamamura T, Saya H, Araki N. Tissue culture methods to study neurological disorders: establishment of immortalized Schwann cells from murine disease models. Neuropathology 2003; 23:68-78. [PMID: 12722929 DOI: 10.1046/j.1440-1789.2003.00478.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, the authors have established spontaneously immortalized cell lines from long-term cultures of normal adult mouse Schwann cells. Establishment of such Schwann cell lines derived from murine disease models may greatly facilitate studies of the cellular mechanisms of their peripheral nervous system lesions in the relevant diseases. Recently, the authors have established immortalized Schwann cell lines derived from Niemann-Pick disease type C mice (NPC; spm/spm) and globoid cell leukodystrophy mice (twitcher). In the present study, long-term cultures were maintained of Schwann cells derived from dorsal root ganglia and consecutive peripheral nerves of another NPC mouse (npc(nih)/npc(nih), npc(nih)/+), myelin P0 protein-deficient mice (P0-/-, P0+/-) with their wild-type littermates (P0+/+), and neurofibromatosis type 1 gene (NF1)-deficient mice (Nf1(FCr)/+) for 8-10 months, and immortalized cell lines from all these animals established spontaneously. These cell lines had spindle-shaped Schwann cell morphology and distinct Schwann cell phenotypes and retained genomic and biochemical abnormalities, sufficiently representing the in vivo pathological features of the mutant mice. These immortalized Schwann cell lines can be useful in studies of nervous system lesions in these mutant mice and relevant human disorders.
Collapse
Affiliation(s)
- Kazuhiko Watabe
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hattori N, Yamamoto M, Yoshihara T, Koike H, Nakagawa M, Yoshikawa H, Ohnishi A, Hayasaka K, Onodera O, Baba M, Yasuda H, Saito T, Nakashima K, Kira JI, Kaji R, Oka N, Sobue G. Demyelinating and axonal features of Charcot-Marie-Tooth disease with mutations of myelin-related proteins (PMP22, MPZ and Cx32): a clinicopathological study of 205 Japanese patients. Brain 2003; 126:134-51. [PMID: 12477701 DOI: 10.1093/brain/awg012] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Three genes commonly causing Charcot-Marie-Tooth disease (CMT) encode myelin-related proteins: peripheral myelin protein 22 (PMP22), myelin protein zero (MPZ) and connexin 32 (Cx32). Demyelinating versus axonal phenotypes are major issues in CMT associated with mutations of these genes. We electrophysiologically, pathologically and genetically evaluated demyelinating and axonal features of 205 Japanese patients with PMP22 duplication, MPZ mutations or Cx32 mutations. PMP22 duplication caused mainly demyelinating phenotypes with slowed motor nerve conduction velocity (MCV) and demyelinating histopathology, while axonal features were variably present. Two distinctive phenotypic subgroups were present in patients with MPZ mutations: one showed preserved MCV and exclusively axonal pathological features, while the other was exclusively demyelinating. These axonal and demyelinating phenotypes were well concordant among siblings in individual families, and MPZ mutations did not overlap among these two subgroups, suggesting that the nature and position of the MPZ mutations mainly determine the axonal and demyelinating phenotypes. Patients with Cx32 mutations showed intermediate slowing of MCV, predominantly axonal features and relatively mild demyelinating pathology. These axonal and demyelinating features were present concomitantly in individual patients to a variable extent. The relative severity of axonal and demyelinating features was not associated with particular Cx32 mutations. Median nerve MCV and overall histopathological phenotype changed little with disease advancement. Axonal features of diminished amplitudes of compound muscle action potentials (CMAPs), axonal loss, axonal sprouting and neuropathic muscle wasting all changed as disease advanced, especially in PMP22 duplication and Cx32 mutations. Median nerve MCVs were well maintained independently of age, disease duration and the severity of clinical and pathological abnormalities, confirming that median nerve MCV is an excellent marker for the genetically determined neuropathic phenotypes. Amplitude of CMAPs was correlated significantly with distal muscle strength in PMP22 duplication, MPZ mutations and Cx32 mutations, while MCV slowing was not, indicating that clinical weakness results from reduced numbers of functional large axons, not from demyelination. Thus, the three major myelin-related protein mutations induced varied degrees of axonal and demyelinating phenotypic features according to the specific gene mutation as well as the stage of disease advancement, while clinically evident muscle wasting was attributable to loss of functioning large axons.
Collapse
Affiliation(s)
- Naoki Hattori
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Street VA, Meekins G, Lipe HP, Seltzer WK, Carter GT, Kraft GH, Bird TD. Charcot-Marie-Tooth neuropathy: clinical phenotypes of four novel mutations in the MPZ and Cx 32 genes. Neuromuscul Disord 2002; 12:643-50. [PMID: 12207932 DOI: 10.1016/s0960-8966(02)00021-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Charcot-Marie-Tooth Hereditary Neuropathy is a heterogeneous syndrome associated with mutations in several different genes including peripheral myelin protein 22, myelin P0, connexin 32, and early growth response 2. There is considerable variability in the phenotypic expression of this syndrome and the relationship of this variability to mutation genotypes requires extensive analysis. Here we describe the phenotypes and genotypes of four new mutations underlying the Charcot-Marie-Tooth syndrome and document segregation with disease. Four families with Charcot-Marie-Tooth were ascertained, examined, and evaluated electrophysiologically. Each family had peripheral blood DNA screened for mutations in myelin protein 22, myelin P0, and connexin 32. Two families were found with new mutations in the myelin P0 gene: S140T in the extracellular domain and K236del in the cytoplasmic domain. All families showed segregation of the mutations with the Charcot-Marie-Tooth phenotype as did a new family with the rare G163R mutation in the membrane domain. A 49-year-old man with the S140T mutation demonstrated conduction block on electrophysiological testing. A family with a novel S49P mutation in the connexin 32 gene had a neuropathy with very slow nerve conduction. These new mutations in the myelin P0 and connexin 32 genes help to clarify the pathophysiology of the clinical Charcot-Marie-Tooth syndrome. The S140T mutation in myelin P0 can be associated with conduction block and Charcot-Marie-Tooth should be part of the differential diagnosis of that phenomenon. Mutations in the cytoplasmic domain of myelin P0 can cause clinical neuropathy. The S49P mutation in the connexin 32 gene can produce aspects of a demyelinating type of X-linked hereditary neuropathy.
Collapse
Affiliation(s)
- V A Street
- Bloedel Hearing Center, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Li J, Krajewski K, Shy ME, Lewis RA. Hereditary neuropathy with liability to pressure palsy: the electrophysiology fits the name. Neurology 2002; 58:1769-73. [PMID: 12084875 DOI: 10.1212/wnl.58.12.1769] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Studies of patients with hereditary neuropathy with liability to pressure palsies (HNPP) have shown accentuated distal slowing along with nonuniform conduction abnormalities at segments liable to compression, suggesting a distal myelinopathy as an underlying pathophysiological mechanism. METHODS We evaluated 12 patients with HNPP by standard nerve conduction studies and by conduction to more proximal muscles in the arm and leg. Three CMT1A patients and six healthy subjects also were evaluated as controls. RESULTS Median and peroneal motor nerves in all HNPP patients showed prolonged distal motor latencies (DML) (mean +/- SE, 5.9 +/- 0.41 and 8.63 +/- 0.58 milliseconds), but the ulnar and tibial DML were minimally prolonged or normal (mean +/- SE, 3.87 +/- 0.16 and 5.66 +/- 0.24 milliseconds). DML to forearm flexor (median and ulnar nerves) or anterior tibial muscles (peroneal nerve) were also normal. CONCLUSION Accentuated distal slowing is found primarily in median and peroneal nerve segments liable to pressure palsies or repetitive trauma. However, the ulnar and tibial nerves, which are less liable to compression, have minimal changes. In addition, distal latencies to more proximal muscles in the arm and leg do not have distal slowing. These findings do not support a distal myelinopathy as a determinant of the conduction abnormalities in HNPP.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
Mutations in genes expressed in Schwann cells and the axons they ensheath cause the hereditary motor and sensory neuropathies known as Charcot-Marie-Tooth (CMT) disease. At present, mutations in ten different genes have been identified, chromosomal localisation of many other distinct inherited neuropathies has been mapped, and new genetic causes for inherited neuropathies continue to be discovered. How to keep track of these mutations is a challenge for any neurologist, partly because the mutations are commonly presented as an expanding list to be memorised without a biological context of how the encoded proteins behave in the cell. A further challenge for investigators studying diseases of the peripheral nervous system is the increasing complexity of myelination, axonal function, and interactions between Schwann cells and axons. To address these concerns, we present the mutated genes causing these inherited neuropathies in the context of the cell biology of the Schwann cell and axon, and we begin to develop a model of how the various genes may interact in the pathogenesis of CMT disease.
Collapse
Affiliation(s)
- Michael E Shy
- Department of Neurology and the Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
39
|
Maier M, Berger P, Suter U. Understanding Schwann cell-neurone interactions: the key to Charcot-Marie-Tooth disease? J Anat 2002; 200:357-66. [PMID: 12090402 PMCID: PMC1570699 DOI: 10.1046/j.1469-7580.2002.00044.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) comprises a heterogeneous group of disorders. The most frequent subtype is caused by increased PMP22 gene dosage or missense point mutations affecting the PMP22 gene (CMT type 1A; CMT1A). Animal models in rat and mouse with the corresponding PMP22 alterations are available and mimic many aspects of the human diseases. Detailed examinations of the animal mutants, together with complementary data from patients, point towards altered Schwann cell-neurone interactions as a major underlying mechanism of CMT1A and related hereditary neuropathies. This is evident from the finding that mutated proteins affecting either Schwann cells or neurones have a profound influence on their partner cells. Recently, a number of novel genes causing various forms of CMT have been identified which are expressed either mainly by Schwann cells and/or by the accompanying neurones. These genes can be viewed, in analogy to classic experiments routinely performed in lower vertebrates, as the result of a 'functional screen' revealing crucial players in the interactions between Schwann cells and neurones. Studying how Schwann cell and axon-encoded proteins are functionally interconnected will be an exciting task for the future. It will not only yield insights into the molecular and cellular basis of neuropathies but also provide crucial information about the interplay between Schwann cells and neurones in general.
Collapse
Affiliation(s)
- Marcel Maier
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, Zurich
| | | | | |
Collapse
|
40
|
Awatramani R, Shumas S, Kamholz J, Scherer SS. TGFbeta1 modulates the phenotype of Schwann cells at the transcriptional level. Mol Cell Neurosci 2002; 19:307-19. [PMID: 11906205 DOI: 10.1006/mcne.2001.1094] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have examined the effects of transforming growth factor beta1 (TGFbeta1) on gene expression in cultured rat Schwann cells (SCs). TGFbeta1 decreased the steady-state mRNA levels of several genes that are expressed by myelinating SCs but had varied effects on the mRNA levels of NCAM, L1, GAP-43, and p75-genes that are expressed by denervated and nonmyelinating SCs. TGFbeta1 antagonized the effects of forskolin on the mRNA levels of the transcription factors Oct-6/tst-1/SCIP and Krox20. Transcriptional run-off analysis demonstrated that the effects of TGFbeta1 on gene expression occur at least in part at the level of transcription. Thus, TGFbeta1 suppresses the expression of genes that characterize the different phenotypes of SCs, and these changes occur at least in part at a transcriptional level.
Collapse
Affiliation(s)
- Rajeshwar Awatramani
- Department of Neurology, Wayne State University, Elliman Building 3206, 421 East Canfield, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
41
|
Menichella DM, Arroyo EJ, Awatramani R, Xu T, Baron P, Vallat JM, Balsamo J, Lilien J, Scarlato G, Kamholz J, Scherer SS, Shy ME. Protein zero is necessary for E-cadherin-mediated adherens junction formation in Schwann cells. Mol Cell Neurosci 2001; 18:606-18. [PMID: 11749037 DOI: 10.1006/mcne.2001.1041] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein Zero (P0), the major structural protein in the peripheral nervous system (PNS) myelin, acts as a homotypic adhesion molecule and is thought to mediate compaction of adjacent wraps of myelin membrane. E-Cadherin, a calcium-dependent adhesion molecule, is also expressed in myelinating Schwann cells in the PNS and is involved in forming adherens junctions between adjacent loops of membrane at the paranode. To determine the relationship, if any, between P0-mediated and cadherin-mediated adhesion during myelination, we investigated the expression of E-cadherin and its binding partner, beta-catenin, in sciatic nerve of mice lacking P0 (P0(-/-)). We find that in P0(-/-) peripheral myelin neither E-cadherin nor beta-catenin are localized to paranodes, but are instead found in small puncta throughout the Schwann cell. In addition, only occasional, often rudimentary, adherens junctions are formed. Analysis of E-cadherin and beta-catenin expression during nerve development demonstrates that E-cadherin and beta-catenin are localized to the paranodal region after the onset of myelin compaction. Interestingly, axoglial junction formation is normal in P0(-/-) nerve. Taken together, these data demonstrate that P0 is necessary for the formation of adherens junctions but not axoglial junctions in myelinating Schwann cells.
Collapse
Affiliation(s)
- D M Menichella
- Institute of Neurology, IRCCS Ospedale Maggiore, Centro Dino Ferrari, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gemignani F, Marbini A. Charcot-Marie-Tooth disease (CMT): distinctive phenotypic and genotypic features in CMT type 2. J Neurol Sci 2001; 184:1-9. [PMID: 11231025 DOI: 10.1016/s0022-510x(00)00497-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charcot-Marie-Tooth disease (CMT), or hereditary motor and sensory neuropathy (HMSN), includes two main subtypes of CMT1/HMSN I (demyelinating), and CMT2/HMSN II (axonal). Further heterogeneity has been demonstrated by genetic molecular studies, with at least four responsible genes for CMT1. As for CMT2, a mutation in the neurofilament-light (NF-L) gene has been identified in a single family, and other CMT2 loci have been mapped. We propose a clinical classification of the CMT2 phenotypes, and review the features of the identified CMT2 genotypes. The following main subtypes of CMT2 are considered in the phenotype classification: classical CMT2, the variants of CMT2 showing atypical features that may represent either variance in the classical CMT2 phenotype or separate entities; CMT2 plus, i.e. complex forms with involvement of additional neural structures. The recognized CMT2 genotypes include: CMT2A (mapped to chromosome 1p35-36); CMT2B (3q13-22); CMT2C (with vocal cord paresis); CMT2D (7p14); CMT2E, related to a mutation in the NF-L gene on chromosome 8p21; proximal CMT2, or HMSN P (3q13.1); CMT2 with MPZ mutations; autosomal recessive CMT2 (1q21.2-q21.3); agenesis of the corpus callosum with sensorimotor neuronopathy (15q13-q15); CMT2 X-linked with deafness and mental retardation (Xq24-q26). The identified genotypes may correspond to previously described clinical subtypes of CMT2. In particular, classical CMT2 presents in association with NF-L gene mutation, in the only CMT2 family with known gene mutation, and in CMT2A patients. However, the features of classical CMT2 have been paradoxically reported also in families with MPZ mutation, and conversely several CMT2 families are not linked to the known CMT2 loci. Further cloning of the CMT2 genes will ultimately shed light on the pathogenic mechanism(s) implicated in the process of axonal degeneration, shared by the different CMT2 genotypes.
Collapse
Affiliation(s)
- F Gemignani
- Institute of Neurology, University of Parma, via del Quartiere 4, I-43100 Parma, Italy.
| | | |
Collapse
|
43
|
Dematteis M, Pépin JL, Jeanmart M, Deschaux C, Labarre-Vila A, Lévy P. Charcot-Marie-Tooth disease and sleep apnoea syndrome: a family study. Lancet 2001; 357:267-72. [PMID: 11214130 DOI: 10.1016/s0140-6736(00)03614-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Charcot-Marie-Tooth (CMT) disease is a genetically heterogeneous group of hereditary motor and sensory polyneuropathies in which sleep apnoea has rarely been reported and no causal relation shown. We looked for an association between the most common subtype of CMT disease (CMT1A) and sleep apnoea syndrome. METHODS Having diagnosed sleep apnoea and CMT in one family member (index case), we prospectively investigated 13 further members not previously suspected of having neuropathy or apnoeas. All had a neurological examination, electroneuromyography, polysomnography, and genetic testing for CMT disease. FINDINGS 11 of the 14 family members had the autosomal dominant demyelinating form of CMT disease with PMP22 gene duplication on chromosome 17. Whatever their neurological disability, all 11 individuals had sleep apnoea syndrome with a mean (SD) apnoea-hypopnoea index of 46.6/h (28.5) of sleep (normal value <15/h). The remaining three family members were free from neuropathy and sleep apnoea syndrome. Sleep apnoea and neuropathy severity were highly correlated; the compound muscle action potential (CMAP) amplitude of the median nerve was inversely correlated with the apnoea-hypopnoea index (r=-0.69, p=0.029). The severity of neuropathy and sleep apnoea were higher in male CMT individuals and were correlated with age and body mass index. No wake or sleep diaphragmatic dysfunction was shown. INTERPRETATION We think that sleep apnoea syndrome is related to a pharyngeal neuropathy. Upper airway dysfunction, previously described in the CMT2C subtype, might be a clinical expression of the CMT1A subtype, to which familial susceptibility could predispose.
Collapse
Affiliation(s)
- M Dematteis
- Sleep and Physiologie Respiratoire Expérimentale Théorique et Appliquée Laboratory, University Hospital, Grenoble, France
| | | | | | | | | | | |
Collapse
|