1
|
Nagappa M, Mondal S, Rajeevan S, Pradeepkumar B, Chalasani V, Dey S, Babu GS, Sarkar A, Viswanathan LG, Seshagiri DV, Binu VS, Debnath M. Exploring the role of altered oxi-inflammasome activity in the immunobiology of inflammatory neuropathies. J Neuroimmunol 2025; 401:578556. [PMID: 39987753 DOI: 10.1016/j.jneuroim.2025.578556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/28/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
OBJECTIVES Inflammasome plays a significant role in inflammatory responses. The role of inflammasome and its interactions with oxidative stress markers has not been examined in inflammatory neuropathies like Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). This study aims to explore the roles of inflammasome and oxidative stress pathways in inflammatory neuropathies. METHODS This case-controlled study comprised patients with inflammatory neuropathies (n = 60, GBS = 44, CIDP = 16) and age- and gender-matched healthy controls (n = 60). The expressions of inflammasome-related genes (Nlrp3, Casp1, and Il1b) were quantified along with the plasma levels of malondialdehyde (MDA), the end product of lipid peroxidation in all study participants. RESULTS The expressions of Nlrp3 (p = 0.0083) and Casp1 (p = 0.0007) genes were significantly up-regulated in GBS patients compared to controls. The plasma MDA levels were also markedly higher in GBS patients than in controls (p = 0.029). The gene expression levels of Nlrp3, Casp1, and Il1b and plasma MDA levels were comparable between CIDP patients and healthy controls. There were no correlations between the expressions of the studied genes and MDA levels with the clinical scores of GBS. CONCLUSION The up-regulated expression of Nlrp3 and Casp1 genes and increased levels of MDA suggest the presence of an activated oxi-inflammatory pathway in GBS. These findings provide a new dimension to the current understanding of the immuno-pathogenesis of GBS.
Collapse
Affiliation(s)
- Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sandipan Mondal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Srinath Rajeevan
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - B Pradeepkumar
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Vamsi Chalasani
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Saikat Dey
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Gopika Suresh Babu
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Aritrani Sarkar
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Doniparthi V Seshagiri
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - V S Binu
- Department of Biostatistics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| |
Collapse
|
2
|
Miclea A, Zurawski J, Healy BC, Saxena S, Lokhande H, Quattrucci M, Chu R, Weiner HL, Bakshi R, Chitnis T. Novel serum biomarker associations with 7 Tesla MRI-defined cortical lesions, leptomeningeal enhancement, and deep gray matter volume in early multiple sclerosis. Sci Rep 2025; 15:12032. [PMID: 40200016 PMCID: PMC11978968 DOI: 10.1038/s41598-025-95229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/19/2025] [Indexed: 04/10/2025] Open
Abstract
Gray matter demyelinating lesions, brain atrophy and meningeal inflammation are hypothesized to be relevant in multiple sclerosis (MS) disease pathogenesis, though their relationship to immune alterations in early MS is not well characterized. This study aims to investigate correlations between the concentrations of 112 serum proteins and 7 Tesla MRI-defined measures of disease severity in patients with early MS. In this analysis, patients with CIS or MS having a 7 Tesla brain MRI and blood sample both within five years of MS diagnosis were included (n = 57). Correlational analysis was adjusted for sex, age, and disease duration. Correlation between serum proteins and MRI-defined cortical and thalamic gray matter lesions, leptomeningeal enhancement (presence and foci number), deep gray matter (DGM) structure volumes, whole brain parenchymal volume and total T2 white matter lesion volume was assessed. In this study, cortical lesions were associated with higher IL-15, TNF-alpha, and BAFF levels, and lower levels of FcRL2. Leptomeningeal enhancement was associated with higher levels of PLXNB3 and lower levels of nCDase and CNTN5. Higher IL-1B levels correlated with lower DGM volume while higher levels of CDH6, SIGLEC9, and HAGH correlated with higher DGM volume. These novel associations between serum immune proteins and 7 T MRI outcomes may have relevance as disease biomarkers in early stages of MS.
Collapse
Affiliation(s)
- Andrei Miclea
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Jonathan Zurawski
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Brian C Healy
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Biostatistics Center, Massachusetts General Hospital, 60 Fenwood Rd, Boston, MA, 02115, USA
| | - Shrishti Saxena
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Hrishikesh Lokhande
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Molly Quattrucci
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Renxin Chu
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Howard L Weiner
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Rohit Bakshi
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Tanuja Chitnis
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Zhang WG, Zheng XR, Yao Y, Sun WJ, Shao BZ. The role of NLRP3 inflammasome in multiple sclerosis: pathogenesis and pharmacological application. Front Immunol 2025; 16:1572140. [PMID: 40242770 PMCID: PMC11999851 DOI: 10.3389/fimmu.2025.1572140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Multiple sclerosis (MS) is widely acknowledged as a chronic inflammatory autoimmune disorder characterized by central nervous system (CNS) demyelination and neurodegeneration. The hyperactivation of immune and inflammatory responses is recognized as a pivotal factor contributing to the pathogenesis and progression of MS. Among various immune and inflammatory reactions, researchers have increasingly focused on the inflammasome, a complex of proteins. The initiation and activation of the inflammasome are intricately involved in the onset of MS. Notably, the NLRP3 inflammasome, the most extensively studied member of the inflammasome complex, is closely linked with MS. This review will delve into the roles of the NLRP3 inflammasome in the pathogenesis and progression of MS. Additionally, therapeutic strategies targeting the NLRP3 inflammasome for the treatment of MS, including natural compounds, autophagy regulators, and other small molecular compounds, will be detailed in this review.
Collapse
Affiliation(s)
- Wen-Gang Zhang
- The First Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Xiao-Rui Zheng
- Medical Supplies Center, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Yi Yao
- The First Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Wei-Jia Sun
- Medical Supplies Center, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Bo-Zong Shao
- The First Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
4
|
Xu W, Huang Y, Zhou R. NLRP3 inflammasome in neuroinflammation and central nervous system diseases. Cell Mol Immunol 2025; 22:341-355. [PMID: 40075143 PMCID: PMC11955557 DOI: 10.1038/s41423-025-01275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Neuroinflammation plays an important role in the pathogenesis of various central nervous system (CNS) diseases. The NLRP3 inflammasome is an important intracellular multiprotein complex composed of the innate immune receptor NLRP3, the adaptor protein ASC, and the protease caspase-1. The activation of the NLRP3 inflammasome can induce pyroptosis and the release of the proinflammatory cytokines IL-1β and IL-18, thus playing a central role in immune and inflammatory responses. Recent studies have revealed that the NLRP3 inflammasome is activated in the brain to induce neuroinflammation, leading to further neuronal damage and functional impairment, and contributes to the pathological process of various neurological diseases, such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, and stroke. In this review, we summarize the important role of the NLRP3 inflammasome in the pathogenesis of neuroinflammation and the pathological course of CNS diseases and discuss potential approaches to target the NLRP3 inflammasome for the treatment of CNS diseases.
Collapse
Grants
- 81821001, 82130107, 82330052, 82202038, U20A20359 National Natural Science Foundation of China (National Science Foundation of China)
- National Key research and development program of China (grant number (2020YFA0509101), The Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0940000),
- MEXT | JST | Strategic Promotion of Innovative R and D (Strategic Promotion of Innovative R&D)
- the CAS Project for Young Scientists in Basic Research (YSBR-074) and the Fundamental Research Funds for the Central Universities, the outstanding Youth Project of Anhui Provincial Natural Science Foundation (2408085Y049), the Research Start-up Funding of the Institute of Health and Medicine, Hefei Comprehensive National Science Center (2024KYQD004), the Natural Science Foundation of Jiangsu Province (BK20221085),
- The key project of Anhui Provincial Department of Education Fund (2024AH052060).
Collapse
Affiliation(s)
- Wen Xu
- Neurology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Yi Huang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China.
| | - Rongbin Zhou
- National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
5
|
Fahey DL, Patel N, Watford WT. TPL2 kinase activity is required for Il1b transcription during LPS priming but dispensable for NLRP3 inflammasome activation. Front Immunol 2025; 16:1496613. [PMID: 40170849 PMCID: PMC11958189 DOI: 10.3389/fimmu.2025.1496613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025] Open
Abstract
The NLRP3 inflammasome complex is an important mechanism for regulating the release of pro-inflammatory cytokines, IL-1β and IL-18, in response to harmful pathogens. Overproduction of pro-inflammatory cytokines has been linked to cryopyrin-associated periodic syndrome, arthritis, and other inflammatory conditions. It has been previously shown that tumor progression locus 2, a serine-threonine kinase, promotes IL-1β synthesis in response to LPS stimulation; however, whether TPL2 kinase activity is required during inflammasome priming to promote Il1b mRNA transcription and/or during inflammasome activation for IL-1β secretion remained unknown. In addition, whether elevated type I interferons, a consequence of either Tpl2 genetic ablation or inhibition of TPL2 kinase activity, decreases IL-1β expression or inflammasome function has not been explored. Using LPS-stimulated primary murine bone marrow-derived macrophages, we determined that TPL2 kinase activity is required for transcription of Il1b, but not Nlrp3, Il18, caspase-1 (Casp1), or gasdermin-D (Gsdmd) during inflammasome priming. Both Casp1 and Gsdmd mRNA synthesis decreased in the absence of type I interferon signaling, evidence of crosstalk between type I interferons and the inflammasome. Our results demonstrate that TPL2 kinase activity is differentially required for the expression of inflammasome precursor cytokines and components but is dispensable for inflammasome activation. These data provide the foundation for the further exploration of TPL2 kinase inhibitor as a potential therapeutic in inflammatory diseases.
Collapse
Affiliation(s)
- Denise L. Fahey
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Niki Patel
- College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Wendy T. Watford
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
6
|
Kadowaki A, Wheeler MA, Li Z, Andersen BM, Lee HG, Illouz T, Lee JH, Ndayisaba A, Zandee SEJ, Basu H, Chao CC, Mahler JV, Klement W, Neel D, Bergstresser M, Rothhammer V, Lipof G, Srun L, Soleimanpour SA, Chiu I, Prat A, Khurana V, Quintana FJ. CLEC16A in astrocytes promotes mitophagy and limits pathology in a multiple sclerosis mouse model. Nat Neurosci 2025; 28:470-486. [PMID: 40033124 PMCID: PMC12039076 DOI: 10.1038/s41593-025-01875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 12/20/2024] [Indexed: 03/05/2025]
Abstract
Astrocytes promote neuroinflammation and neurodegeneration in multiple sclerosis (MS) through cell-intrinsic activities and their ability to recruit and activate other cell types. In a genome-wide CRISPR-based forward genetic screen investigating regulators of astrocyte proinflammatory responses, we identified the C-type lectin domain-containing 16A gene (CLEC16A), linked to MS susceptibility, as a suppressor of nuclear factor-κB (NF-κB) signaling. Gene and small-molecule perturbation studies in mouse primary and human embryonic stem cell-derived astrocytes in combination with multiomic analyses established that CLEC16A promotes mitophagy, limiting mitochondrial dysfunction and the accumulation of mitochondrial products that activate NF-κB, the NLRP3 inflammasome and gasdermin D. Astrocyte-specific Clec16a inactivation increased NF-κB, NLRP3 and gasdermin D activation in vivo, worsening experimental autoimmune encephalomyelitis, a mouse model of MS. Moreover, we detected disrupted mitophagic capacity and gasdermin D activation in astrocytes in samples from individuals with MS. These findings identify CLEC16A as a suppressor of astrocyte pathological responses and a candidate therapeutic target in MS.
Collapse
MESH Headings
- Animals
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mitophagy/physiology
- Mitophagy/genetics
- Astrocytes/metabolism
- Astrocytes/pathology
- Mice
- Multiple Sclerosis/pathology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/genetics
- Humans
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Monosaccharide Transport Proteins/genetics
- Monosaccharide Transport Proteins/metabolism
- Disease Models, Animal
- Mice, Inbred C57BL
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Inflammasomes/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
- NF-kappa B/metabolism
- Mitochondria/metabolism
- Female
Collapse
Affiliation(s)
- Atsushi Kadowaki
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Neurology, Graduate School of Medicine, Faculty of Medicine, The University of Osaka, Suita, Japan
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian M Andersen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, VA Medical Center, Boston, MA, USA
| | - Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomer Illouz
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joon-Hyuk Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alain Ndayisaba
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephanie E J Zandee
- Neuroimmunology Research Laboratory, CRCHUM and Department of Neuroscience, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Himanish Basu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joao V Mahler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wendy Klement
- Neuroimmunology Research Laboratory, CRCHUM and Department of Neuroscience, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Dylan Neel
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriel Lipof
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lena Srun
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Isaac Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, CRCHUM and Department of Neuroscience, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Vikram Khurana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Denaro S, D’Aprile S, Vicario N, Parenti R. Mechanistic insights into connexin-mediated neuroglia crosstalk in neurodegenerative diseases. Front Cell Neurosci 2025; 19:1532960. [PMID: 40007760 PMCID: PMC11850338 DOI: 10.3389/fncel.2025.1532960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Multiple Sclerosis (MS), and Huntington's disease (HD), although distinct in their clinical manifestations, share a common hallmark: a disrupted neuroinflammatory environment orchestrated by dysregulation of neuroglial intercellular communication. Neuroglial crosstalk is physiologically ensured by extracellular mediators and by the activity of connexins (Cxs), the forming proteins of gap junctions (Gjs) and hemichannels (HCs), which maintain intracellular and extracellular homeostasis. However, accumulating evidence suggests that Cxs can also act as pathological pore in neuroinflammatory conditions, thereby contributing to neurodegenerative phenomena such as synaptic dysfunction, oxidative stress, and ultimately cell death. This review explores mechanistic insights of Cxs-mediated intercellular communication in the progression of neurodegenerative diseases and discusses the therapeutic potential of targeting Cxs to restore cellular homeostasis.
Collapse
Affiliation(s)
| | | | | | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
8
|
Otálora-Alcaraz A, Reilly T, Oró-Nolla M, Sun MC, Costelloe L, Kearney H, Patra PH, Downer EJ. The NLRP3 inflammasome: A central player in multiple sclerosis. Biochem Pharmacol 2025; 232:116667. [PMID: 39647604 DOI: 10.1016/j.bcp.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
Multiple sclerosis (MS) is a neurological autoimmune condition associated with many symptoms including spasticity, pain, limb numbness and weakness. It is characterised by inflammatory demyelination and axonal degeneration of the brain and spinal cord. A range of disease-modifying therapies (DMTs) are available to suppress inflammatory disease activity in MS, however, there is a pressing need for new therapeutic avenues as DMTs have a limited ability to suppress confirmed disability progression. A body of literature indicates that innate immune inflammation is linked to MS progression. The nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome has a well-established function in innate immunity which is closely associated with the pathogenesis of neuroinflammatory conditions. Evidence suggests that the inflammasome may be a therapeutic target in disorders such as MS and at present, inhibitors of the NLRP3 inflammasome are in pre-clinical development. Therefore, this review systematically highlights the pathogenic role of inflammasomes in MS, presenting an overview of research evidence linking inflammasome-related polymorphisms to MS susceptibility, and gathering evidence investigating NLRP3 biomarkers in MS. The role of the NLRP3 inflammasome in murine models of MS is furthermore discussed. Finally, a significant component of this review focuses on evidence that NLRP3 signalling components are novel drug targets in MS. Overall this review defines the role of the inflammasome in MS pathogenesis and identifies inflammasome inhibitor targets that warrant full investigation in MS and related disorders.
Collapse
Affiliation(s)
- Almudena Otálora-Alcaraz
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Thomas Reilly
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Martí Oró-Nolla
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Melody Cui Sun
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Lisa Costelloe
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Hugh Kearney
- MS Unit, Department of Neurology, St. James's Hospital, Dublin, Ireland; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Pabitra H Patra
- Transpharmation Ltd., London Biosciences Innovation Centre, London, United Kingdom
| | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
9
|
Wang Q, Yang S, Zhang X, Zhang S, Chen L, Wang W, Chen N, Yan J. Inflammasomes in neurodegenerative diseases. Transl Neurodegener 2024; 13:65. [PMID: 39710713 PMCID: PMC11665095 DOI: 10.1186/s40035-024-00459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Inflammasomes represent a crucial component of the innate immune system, which respond to threats by recognizing different molecules. These are known as pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs). In neurodegenerative diseases and neuroinflammation, the accumulation of misfolded proteins, such as beta-amyloid and alpha-synuclein, can lead to inflammasome activation, resulting in the release of interleukin (IL)-1β and IL-18. This activation also induces pyroptosis, the release of inflammatory mediators, and exacerbates neuroinflammation. Increasing evidence suggests that inflammasomes play a pivotal role in neurodegenerative diseases. Therefore, elucidating and investigating the activation and regulation of inflammasomes in these diseases is of paramount importance. This review is primarily focused on evidence indicating that inflammasomes are activated through the canonical pathway in these diseases. Inflammasomes as potential targets for treating neurodegenerative diseases are also discussed.
Collapse
Affiliation(s)
- Qianchen Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shanshan Zhang
- China Three Gorges University College of Medicine and Health Sciences, Yichang, 443002, China
| | - Liping Chen
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Wanxue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiaqing Yan
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
10
|
Fan H, Fu Q, Du G, Qin L, Shi X, Wang D, Yang Y. Microglial Mayhem NLRP3 Inflammasome's Role in Multiple Sclerosis Pathology. CNS Neurosci Ther 2024; 30:e70135. [PMID: 39690733 DOI: 10.1111/cns.70135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/29/2024] [Accepted: 11/05/2024] [Indexed: 12/19/2024] Open
Abstract
INTRODUCTION This review delves into the intricate relationship between NLR inflammasomes, particularly the NLRP3 inflammasome, and the immune-mediated neurodegenerative disease, multiple sclerosis (MS). While the precise etiology of MS remains elusive, compelling research underscores the pivotal role of the immune response in disease progression. Notably, recent investigations highlight the significant involvement of NLRP3 inflammasomes in various autoimmune diseases, prompting an in-depth exploration of their impact on MS. METHOD The review focuses on elucidating the activation mechanism of NLRP3 inflammasomes within microglia/macrophages (MG/MФ), examining how this activation promotes an inflammatory response that exacerbates neuronal damage in MS. A comprehensive analysis of existing literature and research findings forms the basis for understanding the intricate interplay between NLRP3 inflammasomes and MS pathogenesis. RESULTS Synthesizing current research, the review provides insight into the pivotal role played by NLR inflammasomes, specifically NLRP3, in MS. Emphasis is placed on the inflammatory response orchestrated by activated MG/MФ, elucidating the cascade that perpetuates neuronal damage in the disease. CONCLUSIONS This review concludes by consolidating key findings and offering a nuanced perspective on the role of NLRP3 inflammasomes in MS pathogenesis. The detailed exploration of the activation process within MG/MФ provides a foundation for understanding the disease's underlying mechanisms. Furthermore, the review sets the stage for potential therapeutic strategies targeting NLRP3 inflammasomes in the pursuit of MS treatment.
Collapse
Affiliation(s)
- Hua Fan
- Office of Research & Innovation, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Qizhi Fu
- Department of Intensive Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ganqin Du
- Department of Neurology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ling Qin
- Department of Hematology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Dongmei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Yanhui Yang
- Department of Emergency Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
11
|
Yang F, Zhao LY, Yang WQ, Chao S, Ling ZX, Sun BY, Wei LP, Zhang LJ, Yu LM, Cai GY. Quantitative proteomics and multi-omics analysis identifies potential biomarkers and the underlying pathological molecular networks in Chinese patients with multiple sclerosis. BMC Neurol 2024; 24:423. [PMID: 39478468 PMCID: PMC11526627 DOI: 10.1186/s12883-024-03926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder caused by chronic inflammatory reactions in the central nervous system. Currently, little is known about the changes of plasma proteomic profiles in Chinese patients with MS (CpwMS) and its relationship with the altered profiles of multi-omics such as metabolomics and gut microbiome, as well as potential molecular networks that underlie the etiology of MS. To uncover the characteristics of proteomics landscape and potential multi-omics interaction networks in CpwMS, Plasma samples were collected from 22 CpwMS and 22 healthy controls (HCs) and analyzed using a Tandem Mass Tag (TMT)-based quantitative proteomics approach. Our results showed that the plasma proteomics pattern was significantly different in CpwMS compared to HCs. A total of 90 differentially expressed proteins (DEPs), such as LAMP1 and FCG2A, were identified in CpwMS plasma comparing to HCs. Furthermore, we also observed extensive and significant correlations between the altered proteomic profiles and the changes of metabolome, gut microbiome, as well as altered immunoinflammatory responses in MS-affected patients. For instance, the level of LAMP1 and ERN1 were significantly and positively correlated with the concentrations of metabolite L-glutamic acid and pro-inflammatory factor IL-17 (Padj < 0.05). However, they were negatively correlated with the amounts of other metabolites such as L-tyrosine and sphingosine 1-phosphate, as well as the concentrations of IL-8 and MIP-1α. This study outlined the underlying multi-omics integrated mechanisms that might regulate peripheral immunoinflammatory responses and MS progression. These findings are potentially helpful for developing new assisting diagnostic biomarker and therapeutic strategies for MS.
Collapse
Affiliation(s)
- Fan Yang
- Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Department of Rehabilitation & Clinical Laboratory, Lishui Second People's Hospital, Lishui, China.
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| | - Long-You Zhao
- Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Department of Rehabilitation & Clinical Laboratory, Lishui Second People's Hospital, Lishui, China
| | - Wen-Qi Yang
- Department of Clinical Laboratory & Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shan Chao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Xin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo-Yao Sun
- Department of Clinical Laboratory & Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Li-Ping Wei
- Department of Clinical Laboratory & Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Li-Juan Zhang
- Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Department of Rehabilitation & Clinical Laboratory, Lishui Second People's Hospital, Lishui, China
| | - Li-Mei Yu
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Guang-Yong Cai
- Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Department of Rehabilitation & Clinical Laboratory, Lishui Second People's Hospital, Lishui, China.
| |
Collapse
|
12
|
Zgutka K, Tkacz M, Tomasiak P, Piotrowska K, Ustianowski P, Pawlik A, Tarnowski M. Gestational Diabetes Mellitus-Induced Inflammation in the Placenta via IL-1β and Toll-like Receptor Pathways. Int J Mol Sci 2024; 25:11409. [PMID: 39518962 PMCID: PMC11546908 DOI: 10.3390/ijms252111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Gestational diabetes mellitus is characterised by an insufficient insulin response to hyperglycaemia and the development of insulin resistance. This state has adverse effects on the health outcomes of the mother and child. Existing hyperglycaemia triggers a state of inflammation that involves several tissues, including the placenta. In this study, we analysed the putative pathomechanism of GDM, with special emphasis on the role of chronic, sterile, pro-inflammatory pathways. The expression and regulation of the elements of IL-1β and Toll-like receptor (TLR) pathways in GDM maternal blood plasma, healthy placental explants and a choriocarcinoma cell line (BeWo cell line) stimulated with pro-inflammatory factors was evaluated. Our results indicate elevated expression of the IL-1β and TLR pathways in GDM patients. After stimulation with IL-1β or LPS, the placental explants and BeWo cell line showed increased production of pro-inflammatory IL-6, TNFa and IL-1β together with increased expression of the elements of the signalling pathways. The application of selected inhibitors of NF-ĸB, MAPK and recombinant interleukin 1 receptor antagonist (IL1RA) proved the key involvement of the IL-1β pathway and TLRs in the pathogenesis of GDM. Our results show the possible existence of loops of autocrine stimulation and a possible inflammatory pathomechanism in placentas affected by GDM.
Collapse
Affiliation(s)
- Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Przemysław Ustianowski
- Department of Nursing, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 70-210 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| |
Collapse
|
13
|
Hoffmann A, Miron VE. CNS macrophage contributions to myelin health. Immunol Rev 2024; 327:53-70. [PMID: 39484853 DOI: 10.1111/imr.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Myelin is the membrane surrounding neuronal axons in the central nervous system (CNS), produced by oligodendrocytes to provide insulation for electrical impulse conduction and trophic/metabolic support. CNS dysfunction occurs following poor development of myelin in infancy, myelin damage in neurological diseases, and impaired regeneration of myelin with disease progression in aging. The lack of approved therapies aimed at supporting myelin health highlights the critical need to identify the cellular and molecular influences on oligodendrocytes. CNS macrophages have been shown to influence the development, maintenance, damage and regeneration of myelin, revealing critical interactions with oligodendrocyte lineage cells. CNS macrophages are comprised of distinct populations, including CNS-resident microglia and cells associated with CNS border regions (the meninges, vasculature, and choroid plexus), in addition to macrophages derived from monocytes infiltrating from the blood. Importantly, the distinct contribution of these macrophage populations to oligodendrocyte lineage responses and myelin health are only just beginning to be uncovered, with the advent of new tools to specifically identify, track, and target macrophage subsets. Here, we summarize the current state of knowledge on the roles of CNS macrophages in myelin health, and recent developments in distinguishing the roles of macrophage populations in development, homeostasis, and disease.
Collapse
Affiliation(s)
- Alana Hoffmann
- BARLO Multiple Sclerosis Centre and Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Veronique E Miron
- BARLO Multiple Sclerosis Centre and Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Chen S, Yu Z, Wen W, Chen J, Lu K. NLRP3 Expression and Its Predictive Role in Heart Failure with Preserved Ejection Fraction among Non-Valvular Atrial Fibrillation Patients. Cardiology 2024; 150:72-78. [PMID: 38964309 DOI: 10.1159/000540204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION The aim of this study was to investigate the expression and predictive value of NOD-like receptor thermal protein domain-related protein 3 (NLRP3) in patients with non-valvular atrial fibrillation (NVAF) with heart failure with preserved ejection fraction (HFpEF). METHODS This was a retrospective analysis of 121 patients diagnosed with NVAF. According to the occurrence of HFpEF, 81 patients were assigned to the NVAF group and 40 patients to the NVAF/HFpEF group. The levels of NLRP3, B natriuretic peptide (BNP), and interleukin-1β (IL-1β) were determined using ELISA. Independent predictors for HFpEF in NVAF were determined using logistic regression. The receiver operating characteristic (ROC) curve was used to evaluate the predictive value of each factor. RESULTS Expression levels of NLRP3, BNP, and IL-1β in the NVAF/HFpEF group, as well as the H2FPEF score were significantly higher than those in the NVAF group. Pearson analysis showed that NLRP3, BNP, and IL-1β expression levels in NVAF patients and the H2FPEF score was positively correlated (r = 0.409, r = 0.244, r = 0.299, p < 0.001). Multivariate logistic regression analysis showed that the NLRP3, BNP, or H2FPEF score can be used as independent factor for predicting the occurrence of HFpEF in NVAF. ROC curves showed that the areas under the curve of NLRP3, BNP, and H2FPEF scores for predicting the occurrence of HFpEF in NVAF patients were 0.856, 0.831, and 0.811, respectively. CONCLUSION The NLRP3 level is elevated in the peripheral blood of NVAF patients with HFpEF and is positively correlated with the H2FPEF score. NLRP3 may serve as a potential predictor of HFpEF in patients with NVAF.
Collapse
Affiliation(s)
- Shijian Chen
- Department of Cardiovascular Medicine, Huzhou Central Hospital, Huzhou, China
| | - Ziheng Yu
- Department of Cardiovascular Medicine, Huzhou Central Hospital, Huzhou, China
| | - Wen Wen
- Department of Cardiovascular Medicine, Huzhou Central Hospital, Huzhou, China
| | - Jiming Chen
- Department of Cardiovascular Medicine, Huzhou Central Hospital, Huzhou, China
| | - Kongjie Lu
- Department of Cardiovascular Medicine, Huzhou Central Hospital, Huzhou, China
| |
Collapse
|
15
|
Wang Z, Xu J, Mo L, Zhan R, Zhang J, Liu L, Jiang J, Zhang Y, Bai Y. The Application Potential of the Regulation of Tregs Function by Irisin in the Prevention and Treatment of Immune-Related Diseases. Drug Des Devel Ther 2024; 18:3005-3023. [PMID: 39050796 PMCID: PMC11268596 DOI: 10.2147/dddt.s465713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Irisin is a muscle factor induced by exercise, generated through the proteolytic cleavage of the membrane protein fibronectin type III domain-containing protein 5 (FNDC-5). Numerous studies have shown that irisin plays a significant role in regulating glucose and lipid metabolism, inhibiting oxidative stress, reducing systemic inflammatory responses, and providing neuroprotection. Additionally, irisin can exert immunomodulatory functions by regulating regulatory T cells (Tregs). Tregs are a highly differentiated subset of mature T cells that play a key role in maintaining self-immune homeostasis and are closely related to infections, inflammation, immune-related diseases, and tumors. Irisin exerts persistent positive effects on Treg cell functions through various mechanisms, including regulating Treg cell differentiation and proliferation, improving their function, modulating the balance of immune cells, increasing the production of anti-inflammatory cytokines, and enhancing metabolic functions, thereby helping to maintain immune homeostasis and prevent immune-related diseases. As an important myokine, irisin interacts with receptors on the cell membrane, activating multiple intracellular signaling pathways to regulate cell metabolism, proliferation, and function. Although the specific receptor for irisin has not been fully identified, integrins are considered potential receptors. Irisin activates various signaling pathways, including AMPK, MAPK, and PI3K/Akt, through integrin receptors, thereby exerting multiple biological effects. These research findings provide important clues for understanding the mechanisms of irisin's action and theoretical basis for its potential applications in metabolic diseases and immunomodulation. This article reviews the relationship between irisin and Tregs, as well as the research progress of irisin in immune-related diseases such as multiple sclerosis, myasthenia gravis, acquired immune deficiency syndrome, type 1 diabetes, sepsis, and rheumatoid arthritis. Studies have revealed that irisin plays an important role in immune regulation by improving the function of Tregs, suggesting its potential application value in the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Zhengjiang Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Jiaqi Xu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Liqun Mo
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Renshu Zhan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Yingying Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Yiping Bai
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| |
Collapse
|
16
|
Lunemann JD, Hegen H, Villar LM, Rejdak K, Sao-Aviles A, Carbonell-Mirabent P, Sastre-Garriga J, Mongay-Ochoa N, Berek K, Martínez-Yélamos S, Pérez-Miralles F, Abdelhak A, Bachhuber F, Tumani H, Lycke JN, Rosenstein I, Alvarez-Lafuente R, Castillo-Trivino T, Otaegui D, Llufriu S, Blanco Y, Sánchez López AJ, Garcia Merino JA, Fissolo N, Gutierrez L, Villacieros-Álvarez J, Monreal E, Valls-Carbó A, Wiendl H, Montalban X, Comabella M. Association of Complement Factors With Disability Progression in Primary Progressive Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200270. [PMID: 38912898 PMCID: PMC11226316 DOI: 10.1212/nxi.0000000000200270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/26/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND OBJECTIVES The complement system is known to play a role in multiple sclerosis (MS) pathogenesis. However, its contribution to disease progression remains elusive. The study investigated the role of the complement system in disability progression of patients with primary progressive MS (PPMS). METHODS Sixty-eight patients with PPMS from 12 European MS centers were included in the study. Serum and CSF levels of a panel of complement components (CCs) were measured by multiplex enzyme-linked immunosorbent assay at a baseline time point (i.e., sampling). Mean (SD) follow-up time from baseline was 9.6 (4.8) years. Only one patient (1.5%) was treated during follow-up. Univariable and multivariable logistic regressions adjusted for age, sex, and albumin quotient were performed to assess the association between baseline CC levels and disability progression in short term (2 years), medium term (6 years), and long term (at the time of the last follow-up). RESULTS In short term, CC played little or no role in disability progression. In medium term, an elevated serum C3a/C3 ratio was associated with a higher risk of disability progression (adjusted OR 2.30; 95% CI 1.17-6.03; p = 0.040). By contrast, increased CSF C1q levels were associated with a trend toward reduced risk of disability progression (adjusted OR 0.43; 95% CI 0.17-0.98; p = 0.054). Similarly, in long term, an elevated serum C3a/C3 ratio was associated with higher risk of disability progression (adjusted OR 1.81; 95% CI 1.09-3.40; p = 0.037), and increased CSF C1q levels predicted lower disability progression (adjusted OR 0.41; 95% CI 0.17-0.86; p = 0.025). DISCUSSION Proteins involved in the activation of early complement cascades play a role in disability progression as risk (elevated serum C3a/C3 ratio) or protective (elevated CSF C1q) factors after 6 or more years of follow-up in patients with PPMS. The protective effects associated with C1q levels in CSF may be related to its neuroprotective and anti-inflammatory properties.
Collapse
Affiliation(s)
- Jan D Lunemann
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Harald Hegen
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Luisa María Villar
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Konrad Rejdak
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Augusto Sao-Aviles
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Pere Carbonell-Mirabent
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Jaume Sastre-Garriga
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Neus Mongay-Ochoa
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Klaus Berek
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Sergio Martínez-Yélamos
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Francisco Pérez-Miralles
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Ahmed Abdelhak
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Franziska Bachhuber
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Hayrettin Tumani
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Jan N Lycke
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Igal Rosenstein
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Roberto Alvarez-Lafuente
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Tamara Castillo-Trivino
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - David Otaegui
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Sara Llufriu
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Yolanda Blanco
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Antonio J Sánchez López
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Juan Antonio Garcia Merino
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Nicolas Fissolo
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Lucia Gutierrez
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Javier Villacieros-Álvarez
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Enric Monreal
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Adrián Valls-Carbó
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Heinz Wiendl
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Xavier Montalban
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Manuel Comabella
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| |
Collapse
|
17
|
Zhang L, Tang Y, Huang P, Luo S, She Z, Peng H, Chen Y, Luo J, Duan W, Xiong J, Liu L, Liu L. Role of NLRP3 inflammasome in central nervous system diseases. Cell Biosci 2024; 14:75. [PMID: 38849934 PMCID: PMC11162045 DOI: 10.1186/s13578-024-01256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
The central nervous system (CNS) is the most delicate system in human body, with the most complex structure and function. It is vulnerable to trauma, infection, neurodegeneration and autoimmune diseases, and activates the immune system. An appropriate inflammatory response contributes to defence against invading microbes, whereas an excessive inflammatory response can aggravate tissue damage. The NLRP3 inflammasome was the first one studied in the brain. Once primed and activated, it completes the assembly of inflammasome (sensor NLRP3, adaptor ASC, and effector caspase-1), leading to caspase-1 activation and increased release of downstream inflammatory cytokines, as well as to pyroptosis. Cumulative studies have confirmed that NLRP3 plays an important role in regulating innate immunity and autoimmune diseases, and its inhibitors have shown good efficacy in animal models of various inflammatory diseases. In this review, we will briefly discuss the biological characteristics of NLRP3 inflammasome, summarize the recent advances and clinical impact of the NLRP3 inflammasome in infectious, inflammatory, immune, degenerative, genetic, and vascular diseases of CNS, and discuss the potential and challenges of NLRP3 as a therapeutic target for CNS diseases.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China.
| |
Collapse
|
18
|
Sharma S, Risen S, Gilberto VS, Boland S, Chatterjee A, Moreno JA, Nagpal P. Targeted-Neuroinflammation Mitigation Using Inflammasome-Inhibiting Nanoligomers is Therapeutic in an Experimental Autoimmune Encephalomyelitis Mouse Model. ACS Chem Neurosci 2024; 15:1596-1608. [PMID: 38526238 DOI: 10.1021/acschemneuro.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Multiple sclerosis (MS) is a debilitating autoimmune disease that impacts millions of patients worldwide, disproportionately impacting women (4:1), and often presenting at highly productive stages of life. This disease affects the spinal cord and brain and is characterized by severe neuroinflammation, demyelination, and subsequent neuronal damage, resulting in symptoms like loss of mobility. While untargeted and pan-immunosuppressive therapies have proven to be disease-modifying and manage (or prolong the time between) symptoms in many patients, a significant fraction are unable to achieve remission. Recent work has suggested that targeted neuroinflammation mitigation through selective inflammasome inhibition can offer relief to patients while preserving key components of immune function. Here, we show a screening of potential therapeutic targets using inflammasome-inhibiting Nanoligomers (NF-κB1, TNFR1, TNF-α, IL-6) that meet or far-exceed commercially available small-molecule counterparts like ruxolitinib, MCC950, and deucravacitinib. Using the human brain organoid model, top Nanoligomer combinations (NF-κB1 + TNFR1: NI111, and NF-κB1 + NLRP3: NI112) were shown to significantly reduce neuroinflammation without any observable negative impact on organoid function. Further testing of these top Nanoligomer combinations in an aggressive experimental autoimmune encephalomyelitis (EAE) mouse model for MS using intraperitoneal (IP) injections showed that NF-κB1 and NLRP3 targeting Nanoligomer combination NI112 rescues mice without observable loss of mobility or disability, minimal inflammation in brain and spinal cord histology, and minimal to no immune cell infiltration of the spinal cord and no demyelination, similar to or at par with mice that received no EAE injections (negative control). Mice receiving NI111 (NF-κB1 + TNFR1) also showed reduced neuroinflammation compared to saline (sham)-treated EAE mice and at par/similar to other inflammasome-inhibiting small molecule treatments, although it was significantly higher than NI112 leading to subsequent worsening clinical outcomes. Furthermore, treatment with an oral formulation of NI112 at lower doses showed a significant reduction in EAE severity, albeit with higher variance owing to administration and formulation/fill-and-finish variability. Overall, these results point to the potential of further development and testing of these inflammasome-targeting Nanoliogmers as an effective neuroinflammation treatment for multiple neurodegenerative diseases and potentially benefit several patients suffering from such debilitating autoimmune diseases like MS.
Collapse
Affiliation(s)
- Sadhana Sharma
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 80027, United States
| | - Sydney Risen
- Environmental & Radiological Health Sciences, and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Vincenzo S Gilberto
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 80027, United States
| | - Sean Boland
- Environmental & Radiological Health Sciences, and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anushree Chatterjee
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 80027, United States
| | - Julie A Moreno
- Environmental & Radiological Health Sciences, and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Prashant Nagpal
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 80027, United States
| |
Collapse
|
19
|
Zack SR, Venkatesan M, Nikolaienko R, Cook B, Melki R, Zima AV, Campbell EM. Altered vacuole membrane protein 1 (VMP1) expression is associated with increased NLRP3 inflammasome activation and mitochondrial dysfunction. Inflamm Res 2024; 73:563-580. [PMID: 38411635 DOI: 10.1007/s00011-024-01856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 12/26/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Altered expression of vacuole membrane protein 1 (VMP1) has recently been observed in the context of multiple sclerosis and Parkinson's disease (PD). However, how changes in VMP1 expression may impact pathogenesis has not been explored. OBJECTIVE This study aimed to characterize how altered VMP1 expression affects NLRP3 inflammasome activation and mitochondrial function. METHODS VMP1 expression was depleted in a monocytic cell line using CRISPR-Cas9. The effect of VMP1 on NLRP3 inflammasome activation was examined by stimulating cells with LPS and ATP or α-synuclein fibrils. Inflammasome activation was determined by caspase-1 activation using both a FLICA assay and a biosensor as well as by the release of proinflammatory molecules measured by ELISA. RNA-sequencing was utilized to define global gene expression changes resulting from VMP1 deletion. SERCA activity and mitochondrial function were investigated using various fluorescence microscopy-based approaches including a novel method that assesses the function of individual mitochondria in a cell. RESULTS Here, we report that genetic deletion of VMP1 from a monocytic cell line resulted in increased NLRP3 inflammasome activation and release of proinflammatory molecules. Examination of the VMP1-dependent changes in these cells revealed that VMP1 deficiency led to decreased SERCA activity and increased intracellular [Ca2+]. We also observed calcium overload in mitochondria in VMP1 depleted cells, which was associated with mitochondrial dysfunction and release of mitochondrial DNA into the cytoplasm and the extracellular environment. CONCLUSIONS Collectively, these studies reveal VMP1 as a negative regulator of inflammatory responses, and we postulate that decreased expression of VMP1 can aggravate the inflammatory sequelae associated with neurodegenerative diseases like PD.
Collapse
Affiliation(s)
- Stephanie R Zack
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Meghana Venkatesan
- Department of Integrative Cell Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Roman Nikolaienko
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Ben Cook
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA, CNRS, 92260, Fontenay-Aux-Roses, France
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
- Department of Integrative Cell Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
- Department of Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
| |
Collapse
|
20
|
Oppong AE, Coelewij L, Robertson G, Martin-Gutierrez L, Waddington KE, Dönnes P, Nytrova P, Farrell R, Pineda-Torra I, Jury EC. Blood metabolomic and transcriptomic signatures stratify patient subgroups in multiple sclerosis according to disease severity. iScience 2024; 27:109225. [PMID: 38433900 PMCID: PMC10907838 DOI: 10.1016/j.isci.2024.109225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
There are no blood-based biomarkers distinguishing patients with relapsing-remitting (RRMS) from secondary progressive multiple sclerosis (SPMS) although evidence supports metabolomic changes according to MS disease severity. Here machine learning analysis of serum metabolomic data stratified patients with RRMS from SPMS with high accuracy and a putative score was developed that stratified MS patient subsets. The top differentially expressed metabolites between SPMS versus patients with RRMS included lipids and fatty acids, metabolites enriched in pathways related to cellular respiration, notably, elevated lactate and glutamine (gluconeogenesis-related) and acetoacetate and bOHbutyrate (ketone bodies), and reduced alanine and pyruvate (glycolysis-related). Serum metabolomic changes were recapitulated in the whole blood transcriptome, whereby differentially expressed genes were also enriched in cellular respiration pathways in patients with SPMS. The final gene-metabolite interaction network demonstrated a potential metabolic shift from glycolysis toward increased gluconeogenesis and ketogenesis in SPMS, indicating metabolic stress which may trigger stress response pathways and subsequent neurodegeneration.
Collapse
Affiliation(s)
- Alexandra E. Oppong
- Division of Medicine, Department of Inflammation, University College London, London WC1E 6JF, UK
| | - Leda Coelewij
- Division of Medicine, Department of Inflammation, University College London, London WC1E 6JF, UK
| | - Georgia Robertson
- Division of Medicine, Department of Inflammation, University College London, London WC1E 6JF, UK
| | - Lucia Martin-Gutierrez
- Division of Medicine, Department of Inflammation, University College London, London WC1E 6JF, UK
| | - Kirsty E. Waddington
- Division of Medicine, Department of Inflammation, University College London, London WC1E 6JF, UK
| | - Pierre Dönnes
- Division of Medicine, Department of Inflammation, University College London, London WC1E 6JF, UK
- Scicross AB, Skövde, Sweden
| | - Petra Nytrova
- Department of Neurology and Centre of Clinical, Neuroscience, First Faculty of Medicine, General University Hospital and First Faculty of Medicine, Charles University in Prague, 500 03 Prague, Czech Republic
| | - Rachel Farrell
- Department of Neuroinflammation, University College London and Institute of Neurology and National Hospital of Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Inés Pineda-Torra
- Division of Medicine, Department of Inflammation, University College London, London WC1E 6JF, UK
| | - Elizabeth C. Jury
- Division of Medicine, Department of Inflammation, University College London, London WC1E 6JF, UK
| |
Collapse
|
21
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Oladapo A, Jackson T, Menolascino J, Periyasamy P. Role of pyroptosis in the pathogenesis of various neurological diseases. Brain Behav Immun 2024; 117:428-446. [PMID: 38336022 PMCID: PMC10911058 DOI: 10.1016/j.bbi.2024.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Pyroptosis, an inflammatory programmed cell death process, has recently garnered significant attention due to its pivotal role in various neurological diseases. This review delves into the intricate molecular signaling pathways governing pyroptosis, encompassing both caspase-1 dependent and caspase-1 independent routes, while emphasizing the critical role played by the inflammasome machinery in initiating cell death. Notably, we explore the Nucleotide-binding domain leucine-rich repeat (NLR) containing protein family, the Absent in melanoma 2-like receptor family, and the Pyrin receptor family as essential activators of pyroptosis. Additionally, we comprehensively examine the Gasdermin family, renowned for their role as executioner proteins in pyroptosis. Central to our review is the interplay between pyroptosis and various central nervous system (CNS) cell types, including astrocytes, microglia, neurons, and the blood-brain barrier (BBB). Pyroptosis emerges as a significant factor in the pathophysiology of each cell type, highlighting its far-reaching impact on neurological diseases. This review also thoroughly addresses the involvement of pyroptosis in specific neurological conditions, such as HIV infection, drug abuse-mediated pathologies, Alzheimer's disease, and Parkinson's disease. These discussions illuminate the intricate connections between pyroptosis, chronic inflammation, and cell death in the development of these disorders. We also conducted a comparative analysis, contrasting pyroptosis with other cell death mechanisms, thereby shedding light on their unique aspects. This approach helps clarify the distinct contributions of pyroptosis to neuroinflammatory processes. In conclusion, this review offers a comprehensive exploration of the role of pyroptosis in various neurological diseases, emphasizing its multifaceted molecular mechanisms within various CNS cell types. By elucidating the link between pyroptosis and chronic inflammation in the context of neurodegenerative disorders and infections, it provides valuable insights into potential therapeutic targets for mitigating these conditions.
Collapse
Affiliation(s)
- Abiola Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Thomas Jackson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Jueliet Menolascino
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
23
|
Chiarini A, Armato U, Gui L, Dal Prà I. "Other Than NLRP3" Inflammasomes: Multiple Roles in Brain Disease. Neuroscientist 2024; 30:23-48. [PMID: 35815856 DOI: 10.1177/10738584221106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human neuroinflammatory and neurodegenerative diseases, whose prevalence keeps rising, are still unsolved pathobiological/therapeutical problems. Among others, recent etiology hypotheses stressed as their main driver a chronic neuroinflammation, which is mediated by innate immunity-related protein oligomers: the inflammasomes. A panoply of exogenous and/or endogenous harmful agents activates inflammasomes' assembly, signaling, and IL-1β/IL-18 production and neural cells' pyroptotic death. The underlying concept is that inflammasomes' chronic activation advances neurodegeneration while their short-lasting operation restores tissue homeostasis. Hence, from a therapeutic standpoint, it is crucial to understand inflammasomes' regulatory mechanisms. About this, a deluge of recent studies focused on the NLRP3 inflammasome with suggestions that its pharmacologic block would hinder neurodegeneration. Yet hitherto no evidence proves this view. Moreover, known inflammasomes are numerous, and the mechanisms regulating their expression and function may vary with the involved animal species and strains, as well as organs and cells, and the harmful factors triggered as a result. Therefore, while presently leaving out some little-studied inflammasomes, this review focuses on the "other than NLRP3" inflammasomes that participate in neuroinflammation's complex mechanisms: NLRP1, NLRP2, NLRC4, and AIM2. Although human-specific data about them are relatively scant, we stress that only a holistic view including several human brain inflammasomes and other potential pathogenetic drivers will lead to successful therapies for neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Chiarini
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Li Gui
- Department of Neurology, Southwest Hospital, Chongqing, China
| | - Ilaria Dal Prà
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| |
Collapse
|
24
|
Ravichandran KA, Heneka MT. Inflammasomes in neurological disorders - mechanisms and therapeutic potential. Nat Rev Neurol 2024; 20:67-83. [PMID: 38195712 DOI: 10.1038/s41582-023-00915-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Inflammasomes are molecular scaffolds that are activated by damage-associated and pathogen-associated molecular patterns and form a key element of innate immune responses. Consequently, the involvement of inflammasomes in several diseases that are characterized by inflammatory processes, such as multiple sclerosis, is widely appreciated. However, many other neurological conditions, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, stroke, epilepsy, traumatic brain injury, sepsis-associated encephalopathy and neurological sequelae of COVID-19, all involve persistent inflammation in the brain, and increasing evidence suggests that inflammasome activation contributes to disease progression in these conditions. Understanding the biology and mechanisms of inflammasome activation is, therefore, crucial for the development of inflammasome-targeted therapies for neurological conditions. In this Review, we present the current evidence for and understanding of inflammasome activation in neurological diseases and discuss current and potential interventional strategies that target inflammasome activation to mitigate its pathological consequences.
Collapse
Affiliation(s)
- Kishore Aravind Ravichandran
- Department of Neuroinflammation, Institute of innate immunity, University of Bonn Medical Center Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Esch-sur-Alzette, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, MA, USA.
| |
Collapse
|
25
|
Ghaffaripour Jahromi G, Razi S, Rezaei N. NLRP3 inflammatory pathway. Can we unlock depression? Brain Res 2024; 1822:148644. [PMID: 37871673 DOI: 10.1016/j.brainres.2023.148644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Depression holds the title of the largest contributor to worldwide disability, with the numbers expected to continue growing. Currently, there are neither reliable biomarkers for the diagnosis of the disease nor are the current medications sufficient for a lasting response in nearly half of patients. In this comprehensive review, we analyze the previously established pathophysiological models of the disease and how the interplay between NLRP3 inflammasome activation and depression might offer a unifying perspective. Adopting this inflammatory theory, we explain how NLRP3 inflammasome activation emerges as a pivotal contributor to depressive inflammation, substantiated by compelling evidence from both human studies and animal models. This inflammation is found in the central nervous system (CNS) neurons, astrocytes, and microglial cells. Remarkably, dysregulation of the NLRP3 inflammasome extends beyond the CNS boundaries and permeates into the enteric and peripheral immune systems, thereby altering the microbiota-gut-brain axis. The integrity of the brain blood barrier (BBB) and intestinal epithelial barrier (IEB) is also compromised by this inflammation. By emphasizing the central role of NLRP3 inflammasome activation in depression and its far-reaching implications, we go over each area with potential modulating mechanisms within the inflammasome pathway in hopes of finding new targets for more effective management of this debilitating condition.
Collapse
Affiliation(s)
- Ghazaleh Ghaffaripour Jahromi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
26
|
Tan Y, Qiao J, Yang S, Wang Q, Liu H, Liu Q, Feng W, Yang B, Li Z, Cui L. ARID5B-mediated LINC01128 epigenetically activated pyroptosis and apoptosis by promoting the formation of the BTF3/STAT3 complex in β2GPI/anti-β2GPI-treated monocytes. Clin Transl Med 2024; 14:e1539. [PMID: 38224186 PMCID: PMC10788880 DOI: 10.1002/ctm2.1539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Alterations of the trimethylation of histone 3 lysine 4 (H3K4me3) mark in monocytes are implicated in the development of autoimmune diseases. Therefore, the purpose of our study was to elucidate the role of H3K4me3-mediated epigenetics in the pathogenesis of antiphospholipid syndrome (APS). METHODS H3K4me3 Cleavage Under Targets and Tagmentation and Assay for Transposase-Accessible Chromatin were performed to determine the epigenetic profiles. Luciferase reporter assay, RNA immunoprecipitation, RNA pull-down, co-immunoprecipitation and chromatin immunoprecipitation were performed for mechanistic studies. Transmission electron microscopy and propidium iodide staining confirmed cell pyroptosis. Primary monocytes from patients with primary APS (PAPS) and healthy donors were utilised to test the levels of key molecules. A mouse model mimicked APS was constructed with beta2-glycoprotein I (β2GPI) injection. Blood velocity was detected using murine Doppler ultrasound. RESULTS H3K4me3 signal and open chromatin at the ARID5B promoter were increased in an in vitro model of APS. The epigenetic factor ARID5B directly activated LINC01128 transcription at its promoter. LINC01128 promoted the formation of the BTF3/STAT3 complex to enhance STAT3 phosphorylation. Activated STAT3 interacted with the NLRP3 promoter and subsequently stimulated pyroptosis and apoptosis. ARID5B or BTF3 depletion compensated for LINC01128-induced pyroptosis and apoptosis by inhibiting STAT3 phosphorylation. In mice with APS, β2GPI exposure elevated the levels of key proteins of pyroptosis and apoptosis pathways in bone marrow-derived monocytes, reduced the blood velocity of the ascending aorta, increased the thrombus size of the carotid artery, and promoted the release of interleukin (IL)-18, IL-1β and tissue factor. Patients with PAPS had the high-expressed ARID5B and LINC01128, especially those with triple positivity for antiphospholipid antibodies. Moreover, there was a positive correlation between ARID5B and LINC01128 expression. CONCLUSION This study indicated that ARID5B/LINC01128 was synergistically upregulated in APS, and they aggravated disease pathogenesis by enhancing the formation of the BTF3/STAT3 complex and boosting p-STAT3-mediated pyroptosis and apoptosis, thereby providing candidate therapeutic targets for APS. HIGHLIGHTS The H3K4me3 mark and chromatin accessibility at the ARID5B promoter are increased in vitro model mimicked APS. ARID5B-mediated LINC01128 induces pyroptosis and apoptosis via p-STAT3 by binding to BTF3. ARID5B is high- expressed in patients with primary APS and positively correlated with LINC01128 expression. OICR-9429 treatment mitigates pyroptosis and related inflammation in vivo and in vitro models mimicked APS.
Collapse
Affiliation(s)
- Yuan Tan
- Institute of Medical TechnologyPeking University Health Science CenterBeijingChina
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Jiao Qiao
- Institute of Medical TechnologyPeking University Health Science CenterBeijingChina
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Shuo Yang
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Qingchen Wang
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Hongchao Liu
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Qi Liu
- Institute of Medical TechnologyPeking University Health Science CenterBeijingChina
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Weimin Feng
- Institute of Medical TechnologyPeking University Health Science CenterBeijingChina
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Boxin Yang
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Zhongxin Li
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Liyan Cui
- Institute of Medical TechnologyPeking University Health Science CenterBeijingChina
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| |
Collapse
|
27
|
Vande Walle L, Lamkanfi M. Drugging the NLRP3 inflammasome: from signalling mechanisms to therapeutic targets. Nat Rev Drug Discov 2024; 23:43-66. [PMID: 38030687 DOI: 10.1038/s41573-023-00822-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Diseases associated with chronic inflammation constitute a major health burden across the world. As central instigators of the inflammatory response to infection and tissue damage, inflammasomes - and the NACHT, LRR and PYD domain-containing protein 3 (NLRP3) inflammasome in particular - have emerged as key regulators in diverse rheumatic, metabolic and neurodegenerative diseases. Similarly to other inflammasome sensors, NLRP3 assembles a cytosolic innate immune complex that activates the cysteine protease caspase-1, which in turn cleaves gasdermin D (GSDMD) to induce pyroptosis, a regulated mode of lytic cell death. Pyroptosis is highly inflammatory, partly because of the concomitant extracellular release of the inflammasome-dependent cytokines IL-1β and IL-18 along with a myriad of additional danger signals and intracellular antigens. Here, we discuss how NLRP3 and downstream inflammasome effectors such as GSDMD, apoptosis-associated speck-like protein containing a CARD (ASC) and nerve injury-induced protein 1 (NINJ1) have gained significant traction as therapeutic targets. We highlight the recent progress in developing small-molecule and biologic inhibitors that are advancing into the clinic and serving to harness the broad therapeutic potential of modulating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Lieselotte Vande Walle
- Laboratory of Medical Immunology, Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Mohamed Lamkanfi
- Laboratory of Medical Immunology, Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
28
|
Zhang Z, Zhang Y, Zhang M, Yu C, Yang P, Xu M, Ling J, Wu Y, Zhu Z, Chen Y, Shi A, Liu X, Zhang J, Yu P, Zhang D. Food-derived peptides as novel therapeutic strategies for NLRP3 inflammasome-related diseases: a systematic review. Crit Rev Food Sci Nutr 2023; 65:1433-1464. [PMID: 38153262 DOI: 10.1080/10408398.2023.2294164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), a member of the nucleotide-binding domain (NOD) and leucine-rich repeat sequence (LRR) protein (NLR) family, plays an essential role in the inflammation initiation and inflammatory mediator secretion, and thus is also associated with many disease progressions. Food-derived bioactive peptides (FDBP) exhibit excellent anti-inflammatory activity in both in vivo and in vitro models. They are encrypted in plant, meat, and milk proteins and can be released under enzymatic hydrolysis or fermentation conditions, thereby hindering the progression of hyperuricemia, inflammatory bowel disease, chronic liver disease, neurological disorders, lung injury and periodontitis by inactivating the NLRP3. However, there is a lack of systematic review around FDBP, NLRP3, and NLRP3-related diseases. Therefore, this review summarized FDBP that exert inhibiting effects on NLRP3 inflammasome from different protein sources and detailed their preparation and purification methods. Additionally, this paper also compiled the possible inhibitory mechanisms of FDBP on NLRP3 inflammasomes and its regulatory role in NLRP3 inflammasome-related diseases. Finally, the progress of cutting-edge technologies, including nanoparticle, computer-aided screening strategy and recombinant DNA technology, in the acquisition or encapsulation of NLRP3 inhibitory FDBP was discussed. This review provides a scientific basis for understanding the anti-inflammatory mechanism of FDBP through the regulation of the NLRP3 inflammasome and also provides guidance for the development of therapeutic adjuvants or functional foods enriched with these FDBP.
Collapse
Affiliation(s)
- Ziqi Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Zhang
- School of Public Health, Nanchang University, Jiangxi, China
| | - Meiying Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Chenfeng Yu
- Huankui College, Nanchang University, Jiangxi, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Deju Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
29
|
Kwakowsky A, Chawdhary B, de Souza A, Meyer E, Kaye AH, Green CR, Stylli SS, Danesh-Meyer H. Tonabersat Significantly Reduces Disease Progression in an Experimental Mouse Model of Multiple Sclerosis. Int J Mol Sci 2023; 24:17454. [PMID: 38139284 PMCID: PMC10744318 DOI: 10.3390/ijms242417454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease marked by chronic neuroinflammation thought to be mediated by the inflammasome pathway. Connexin 43 (Cx43) hemichannels contribute to the activation of the inflammasome through the release of adenosine triphosphate (ATP) inflammasome activation signals. The objective of the study was to evaluate if the Cx43 hemichannel blocker, tonabersat, is effective in modulating the inflammatory response and reducing disability in the myelin oligodendrocyte glycoprotein 35-55-induced experimental autoimmune encephalomyelitis (MOG35-55 EAE) model of MS. Here, we show that the Cx43 hemichannel blocking drug, tonabersat, significantly reduced expression of neuroinflammatory markers for microglial activation (ionized calcium-binding adapter molecule 1 (Iba1)) and astrogliosis (glial fibrillary acidic protein (GFAP)) while preserving myelin basic protein (MBP) expression levels in the corpus callosum, motor cortex, and striatum regions of the brain in MOG35-55 EAE mice. Reduced NOD-like receptor protein 3 (NLRP3) inflammasome complex assembly and Caspase-1 activation confirmed the drug's mode of action. MOG35-55 EAE mice showed clinical signs of MS, but MOG35-55 EAE mice treated with tonabersat retained behavior closer to normal. These data suggest that clinical trial phase IIb-ready tonabersat may merit further investigation as a promising candidate for MS treatment.
Collapse
Affiliation(s)
- Andrea Kwakowsky
- Department of Anatomy and Medical Imaging, Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland 1023, New Zealand; (B.C.); (A.d.S.); (E.M.)
- Pharmacology and Therapeutics, Galway Neuroscience Centre, School of Medicine, Ollscoil na Gaillimhe—University of Galway, H91 W5P7 Galway, Ireland
| | - Bhavya Chawdhary
- Department of Anatomy and Medical Imaging, Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland 1023, New Zealand; (B.C.); (A.d.S.); (E.M.)
- Department of Opthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (C.R.G.); (H.D.-M.)
| | - Antonio de Souza
- Department of Anatomy and Medical Imaging, Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland 1023, New Zealand; (B.C.); (A.d.S.); (E.M.)
- Department of Opthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (C.R.G.); (H.D.-M.)
| | - Emily Meyer
- Department of Anatomy and Medical Imaging, Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland 1023, New Zealand; (B.C.); (A.d.S.); (E.M.)
- Department of Opthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (C.R.G.); (H.D.-M.)
| | - Andrew H. Kaye
- Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia; (A.H.K.); (S.S.S.)
- Department of Neurosurgery, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Colin R. Green
- Department of Opthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (C.R.G.); (H.D.-M.)
| | - Stanley S. Stylli
- Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia; (A.H.K.); (S.S.S.)
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC 3052, Australia
| | - Helen Danesh-Meyer
- Department of Opthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (C.R.G.); (H.D.-M.)
| |
Collapse
|
30
|
Khajavi L, Nguyen XH, Queriault C, Chabod M, Barateau L, Dauvilliers Y, Zytnicki M, Liblau R. The transcriptomics profiling of blood CD4 and CD8 T-cells in narcolepsy type I. Front Immunol 2023; 14:1249405. [PMID: 38077397 PMCID: PMC10702585 DOI: 10.3389/fimmu.2023.1249405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Background Narcolepsy Type I (NT1) is a rare, life-long sleep disorder arising as a consequence of the extensive destruction of orexin-producing hypothalamic neurons. The mechanisms involved in the destruction of orexin neurons are not yet elucidated but the association of narcolepsy with environmental triggers and genetic susceptibility (strong association with the HLA, TCRs and other immunologically-relevant loci) implicates an immuno-pathological process. Several studies in animal models and on human samples have suggested that T-cells are the main pathogenic culprits. Methods RNA sequencing was performed on four CD4 and CD8 T-cell subsets (naive, effector, effector memory and central memory) sorted by flow cytometry from peripheral blood mononuclear cells (PBMCs) of NT1 patients and HLA-matched healthy donors as well as (age- and sex-) matched individuals suffering from other sleep disorders (OSD). The RNAseq analysis was conducted by comparing the transcriptome of NT1 patients to that of healthy donors and other sleep disorder patients (collectively referred to as the non-narcolepsy controls) in order to identify NT1-specific genes and pathways. Results We determined NT1-specific differentially expressed genes, several of which are involved in tubulin arrangement found in CD4 (TBCB, CCT5, EML4, TPGS1, TPGS2) and CD8 (TTLL7) T cell subsets, which play a role in the immune synapse formation and TCR signaling. Furthermore, we identified genes (GZMB, LTB in CD4 T-cells and NLRP3, TRADD, IL6, CXCR1, FOXO3, FOXP3 in CD8 T-cells) and pathways involved in various aspects of inflammation and inflammatory response. More specifically, the inflammatory profile was identified in the "naive" subset of CD4 and CD8 T-cell. Conclusion We identified NT1-specific differentially expressed genes, providing a cell-type and subset specific catalog describing their functions in T-cells as well as their potential involvement in NT1. Several genes and pathways identified are involved in the formation of the immune synapse and TCR activation as well as inflammation and the inflammatory response. An inflammatory transcriptomic profile was detected in both "naive" CD4 and CD8 T-cell subsets suggesting their possible involvement in the development or progression of the narcoleptic process.
Collapse
Affiliation(s)
- Leila Khajavi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Applied Mathematics and Informatics Unit of Toulouse (MIAT), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Xuan-Hung Nguyen
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Healthcare System and College of Health Sciences, VinUniveristy, Hanoi, Vietnam
| | - Clémence Queriault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
| | - Marianne Chabod
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
| | - Lucie Barateau
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, Centre Hospitalier Universitaire (CHU) de Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Montpellier, France
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, Centre Hospitalier Universitaire (CHU) de Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Montpellier, France
| | - Matthias Zytnicki
- Applied Mathematics and Informatics Unit of Toulouse (MIAT), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Department of Immunology, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
31
|
Yao J, Wang Z, Song W, Zhang Y. Targeting NLRP3 inflammasome for neurodegenerative disorders. Mol Psychiatry 2023; 28:4512-4527. [PMID: 37670126 DOI: 10.1038/s41380-023-02239-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Neuroinflammation is a key pathological feature in neurological diseases, including Alzheimer's disease (AD). The nucleotide-binding domain leucine-rich repeat-containing proteins (NLRs) belong to the pattern recognition receptors (PRRs) family that sense stress signals, which play an important role in inflammation. As a member of NLRs, the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) is predominantly expressed in microglia, the principal innate immune cells in the central nervous system (CNS). Microglia release proinflammatory cytokines to cause pyroptosis through activating NLRP3 inflammasome. The active NLRP3 inflammasome is involved in a variety of neurodegenerative diseases (NDs). Recent studies also indicate the key role of neuronal NLRP3 in the pathogenesis of neurological disorders. In this article, we reviewed the mechanisms of NLRP3 expression and activation and discussed the role of active NLRP3 inflammasome in the pathogenesis of NDs, particularly focusing on AD. The studies suggest that targeting NLRP3 inflammasome could be a novel approach for the disease modification.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, Zhejiang, China.
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
| |
Collapse
|
32
|
Hamzeh O, Rabiei F, Shakeri M, Parsian H, Saadat P, Rostami-Mansoor S. Mitochondrial dysfunction and inflammasome activation in neurodegenerative diseases: Mechanisms and therapeutic implications. Mitochondrion 2023; 73:S1567-7249(23)00087-9. [PMID: 39492438 DOI: 10.1016/j.mito.2023.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/28/2023] [Indexed: 11/05/2024]
Abstract
Impaired mitochondrial function is crucial to the pathogenesis of several neurodegenerative diseases. It causes the release of mitochondrial DNA (mtDNA), mitochondrial reactive oxygen species (mtROS), ATP, and cardiolipin, which activate the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. NLRP3 inflammasome is an important innate immune system element contributing to neuroinflammation and neurodegeneration. Therefore, targeting the NLRP3 inflammasome has become an interesting therapeutic approach for treating neurodegenerative diseases. This review describes the role of mitochondrial abnormalities and over-activated inflammasomes in the progression of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Friedrich ataxia (FRDA). We also discuss the therapeutic strategies focusing on signaling pathways associated with inflammasome activation, which potentially alleviate neurodegenerative symptoms and impede disease progression.
Collapse
Affiliation(s)
- Olia Hamzeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Shakeri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Rostami-Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
33
|
Kolypetri P, Weiner HL. Monocyte regulation by gut microbial signals. Trends Microbiol 2023; 31:1044-1057. [PMID: 37271658 PMCID: PMC10524398 DOI: 10.1016/j.tim.2023.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023]
Abstract
Monocytes are innate immune cells that sense environmental changes and participate in the immunoregulation of autoimmune, neurologic, cardiovascular, and metabolic diseases as well as cancer. Recent studies have suggested that the gut microbiome shapes the biology of monocytes via microbial signals at extraintestinal sites. Interestingly, in chronic diseases, communication between microbial signals and monocytes can either promote or inhibit disease activity, suggesting that some of these pathways can be harnessed for clinical therapies. In this review, we discuss the newer concepts of regulation of monocyte homeostasis and function by gut microbial signals during steady state and inflammation. We also highlight the therapeutic potential of microbial signal-based approaches for modulation in the context of various diseases.
Collapse
Affiliation(s)
- Panayota Kolypetri
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Howard L Weiner
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Basu P, Maier C, Averitt DL, Basu A. NLR family pyrin domain containing 3 (NLRP3) inflammasomes and peripheral neuropathic pain - Emphasis on microRNAs (miRNAs) as important regulators. Eur J Pharmacol 2023; 955:175901. [PMID: 37451423 DOI: 10.1016/j.ejphar.2023.175901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Neuropathic pain is caused by the lesion or disease of the somatosensory system and can be initiated and/or maintained by both central and peripheral mechanisms. Nerve injury leads to neuronal damage and apoptosis associated with the release of an array of pathogen- or damage-associated molecular patterns to activate inflammasomes. The activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome contributes to neuropathic pain and may represent a novel target for pain therapeutic development. In the current review, we provide an up-to-date summary of the recent findings on the involvement of NLRP3 inflammasome in modulating neuropathic pain development and maintenance, focusing on peripheral neuropathic conditions. Here we provide a detailed review of the mechanisms whereby NLRP3 inflammasomes contribute to neuropathic pain via (1) neuroinflammation, (2) apoptosis, (3) pyroptosis, (4) proinflammatory cytokine release, (5) mitochondrial dysfunction, and (6) oxidative stress. We then present the current research literature reporting on the antinociceptive effects of several natural products and pharmacological interventions that target activation, expression, and/or regulation of NLRP3 inflammasome. Furthermore, we emphasize the effects of microRNAs as another regulator of NLRP3 inflammasome. In conclusion, we summarize the possible caveats and future perspectives that might provide successful therapeutic approaches against NLRP3 inflammasome for treating or preventing neuropathic pain conditions.
Collapse
Affiliation(s)
- Paramita Basu
- Pittsburgh Center for Pain Research, The Pittsburgh Project to End Opioid Misuse, Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Camelia Maier
- Division of Biology, School of the Sciences, Texas Woman's University, Denton, TX, 76204-5799, USA.
| | - Dayna L Averitt
- Division of Biology, School of the Sciences, Texas Woman's University, Denton, TX, 76204-5799, USA.
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV, 89154, USA.
| |
Collapse
|
35
|
Seyedsadr M, Wang Y, Elzoheiry M, Shree Gopal S, Jang S, Duran G, Chervoneva I, Kasimoglou E, Wrobel JA, Hwang D, Garifallou J, Zhang X, Khan TH, Lorenz U, Su M, Ting JP, Broux B, Rostami A, Miskin D, Markovic-Plese S. IL-11 induces NLRP3 inflammasome activation in monocytes and inflammatory cell migration to the central nervous system. Proc Natl Acad Sci U S A 2023; 120:e2221007120. [PMID: 37339207 PMCID: PMC10293805 DOI: 10.1073/pnas.2221007120] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/26/2023] [Indexed: 06/22/2023] Open
Abstract
The objective of this study is to examine IL-11-induced mechanisms of inflammatory cell migration to the central nervous system (CNS). We report that IL-11 is produced at highest frequency by myeloid cells among the peripheral blood mononuclear cell (PBMC) subsets. Patients with relapsing-remitting multiple sclerosis (RRMS) have an increased frequency of IL-11+ monocytes, IL-11+ and IL-11R+ CD4+ lymphocytes, and IL-11R+ neutrophils in comparison to matched healthy controls. IL-11+ and granulocyte-macrophage colony-stimulating factor (GM-CSF)+ monocytes, CD4+ lymphocytes, and neutrophils accumulate in the cerebrospinal fluid (CSF). The effect of IL-11 in-vitro stimulation, examined using single-cell RNA sequencing, revealed the highest number of differentially expressed genes in classical monocytes, including up-regulated NFKB1, NLRP3, and IL1B. All CD4+ cell subsets had increased expression of S100A8/9 alarmin genes involved in NLRP3 inflammasome activation. In IL-11R+-sorted cells from the CSF, classical and intermediate monocytes significantly up-regulated the expression of multiple NLRP3 inflammasome-related genes, including complement, IL18, and migratory genes (VEGFA/B) in comparison to blood-derived cells. Therapeutic targeting of this pathway with αIL-11 mAb in mice with RR experimental autoimmune encephalomyelitis (EAE) decreased clinical scores, CNS inflammatory infiltrates, and demyelination. αIL-11 mAb treatment decreased the numbers of NFκBp65+, NLRP3+, and IL-1β+ monocytes in the CNS of mice with EAE. The results suggest that IL-11/IL-11R signaling in monocytes represents a therapeutic target in RRMS.
Collapse
Affiliation(s)
- Maryamsadat Seyedsadr
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Yan Wang
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
| | - Manal Elzoheiry
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
| | - Sowmya Shree Gopal
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
| | - Soohwa Jang
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
| | - Gayel Duran
- Biomedical Research Institute, Department of Immunology, Hasselt University, Hasselt 3590, Belgium
| | - Inna Chervoneva
- Department of Pharmacology, Biostatistics, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA19107
| | - Ezgi Kasimoglou
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
| | - John A. Wrobel
- Linberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC27599
| | - Daniel Hwang
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
| | - James Garifallou
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Xin Zhang
- Department of Orthopedic Surgery, Duke University, Durham, NC27599
| | - Tabish H. Khan
- Divison of Laboratory and Genomic Medicine, Department of Pathology, Washington University School of Medicine, St. Louis, MO63110
| | - Ulrike Lorenz
- Divison of Laboratory and Genomic Medicine, Department of Pathology, Washington University School of Medicine, St. Louis, MO63110
| | - Maureen Su
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Jenny P. Ting
- Linberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC27599
| | - Bieke Broux
- Biomedical Research Institute, Department of Immunology, Hasselt University, Hasselt 3590, Belgium
| | - Abdolmohamad Rostami
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
| | - Dhanashri Miskin
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
| | - Silva Markovic-Plese
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
36
|
Boraschi D, Italiani P, Migliorini P, Bossù P. Cause or consequence? The role of IL-1 family cytokines and receptors in neuroinflammatory and neurodegenerative diseases. Front Immunol 2023; 14:1128190. [PMID: 37223102 PMCID: PMC10200871 DOI: 10.3389/fimmu.2023.1128190] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/11/2023] [Indexed: 05/25/2023] Open
Abstract
Cytokines and receptors of the IL-1 family are key mediators in innate immune and inflammatory reactions in physiological defensive conditions, but are also significantly involved in immune-mediated inflammatory diseases. Here, we will address the role of cytokines of the IL-1 superfamily and their receptors in neuroinflammatory and neurodegenerative diseases, in particular Multiple Sclerosis and Alzheimer's disease. Notably, several members of the IL-1 family are present in the brain as tissue-specific splice variants. Attention will be devoted to understanding whether these molecules are involved in the disease onset or are effectors of the downstream degenerative events. We will focus on the balance between the inflammatory cytokines IL-1β and IL-18 and inhibitory cytokines and receptors, in view of future therapeutic approaches.
Collapse
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
| | - Paola Migliorini
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Bossù
- Laboratory of Experimental Neuro-psychobiology, Department of Clinical and Behavioral Neurology, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
37
|
He W, Hu Z, Zhong Y, Wu C, Li J. The Potential of NLRP3 Inflammasome as a Therapeutic Target in Neurological Diseases. Mol Neurobiol 2023; 60:2520-2538. [PMID: 36680735 DOI: 10.1007/s12035-023-03229-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
NLRP3 (NLRP3: NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is the best-described inflammasome that plays a crucial role in the innate immune system and a wide range of diseases. The intimate association of NLRP3 with neurological disorders, including neurodegenerative diseases and strokes, further emphasizes its prominence as a clinical target for pharmacological intervention. However, after decades of exploration, the mechanism of NLRP3 activation remains indefinite. This review highlights recent advances and gaps in our insights into the regulation of NLRP3 inflammasome. Furthermore, we present several emerging pharmacological approaches of clinical translational potential targeting the NLRP3 inflammasome in neurological diseases. More importantly, despite small-molecule inhibitors of the NLRP3 inflammasome, we have focused explicitly on Chinese herbal medicine and botanical ingredients, which may be splendid therapeutics by inhibiting NLRP3 inflammasome for central nervous system disorders. We expect that we can contribute new perspectives to the treatment of neurological diseases.
Collapse
Affiliation(s)
- Wenfang He
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenfang Wu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
38
|
Trageser KJ, Yang EJ, Smith C, Iban-Arias R, Oguchi T, Sebastian-Valverde M, Iqbal UH, Wu H, Estill M, Al Rahim M, Raval U, Herman FJ, Zhang YJ, Petrucelli L, Pasinetti GM. Inflammasome-Mediated Neuronal-Microglial Crosstalk: a Therapeutic Substrate for the Familial C9orf72 Variant of Frontotemporal Dementia/Amyotrophic Lateral Sclerosis. Mol Neurobiol 2023; 60:4004-4016. [PMID: 37010807 DOI: 10.1007/s12035-023-03315-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/12/2023] [Indexed: 04/04/2023]
Abstract
Intronic G4C2 hexanucleotide repeat expansions (HRE) of C9orf72 are the most common cause of familial variants of frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS). G4C2 HREs in C9orf72 undergo non-canonical repeat-associated translation, producing dipeptide repeat (DPR) proteins, with various deleterious impacts on cellular homeostasis. While five different DPRs are produced, poly(glycine-arginine) (GR) is amongst the most toxic and is the only DPR to accumulate in the associated clinically relevant anatomical locations of the brain. Previous work has demonstrated the profound effects of a poly (GR) model of C9orf72 FTD/ALS, including motor impairment, memory deficits, neurodegeneration, and neuroinflammation. Neuroinflammation is hypothesized to be a driving factor in the disease course; microglia activation is present prior to symptom onset and persists throughout the disease. Here, using an established mouse model of C9orf72 FTD/ALS, we investigate the contributions of the nod-like receptor pyrin-containing 3 (NLRP3) inflammasome in the pathogenesis of FTD/ALS. We find that inflammasome-mediated neuroinflammation is increased with microglial activation, cleavage of caspase-1, production of IL-1β, and upregulation of Cxcl10 in the brain of C9orf72 FTD/ALS mice. Excitingly, we find that genetic ablation of Nlrp3 significantly improved survival, protected behavioral deficits, and prevented neurodegeneration suggesting a novel mechanism involving HRE-mediated induction of innate immunity. The findings provide experimental evidence of the integral role of HRE in inflammasome-mediated innate immunity in the C9orf72 variant of FTD/ALS pathogenesis and suggest the NLRP3 inflammasome as a therapeutic target.
Collapse
Affiliation(s)
- Kyle J Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chad Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ruth Iban-Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tatsunori Oguchi
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Umar Haris Iqbal
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Henry Wu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Molly Estill
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Md Al Rahim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Urdhva Raval
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Francis J Herman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yong Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, 10468, USA.
| |
Collapse
|
39
|
Chiarini A, Gui L, Viviani C, Armato U, Dal Prà I. NLRP3 Inflammasome’s Activation in Acute and Chronic Brain Diseases—An Update on Pathogenetic Mechanisms and Therapeutic Perspectives with Respect to Other Inflammasomes. Biomedicines 2023; 11:biomedicines11040999. [PMID: 37189617 DOI: 10.3390/biomedicines11040999] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Increasingly prevalent acute and chronic human brain diseases are scourges for the elderly. Besides the lack of therapies, these ailments share a neuroinflammation that is triggered/sustained by different innate immunity-related protein oligomers called inflammasomes. Relevant neuroinflammation players such as microglia/monocytes typically exhibit a strong NLRP3 inflammasome activation. Hence the idea that NLRP3 suppression might solve neurodegenerative ailments. Here we review the recent Literature about this topic. First, we update conditions and mechanisms, including RNAs, extracellular vesicles/exosomes, endogenous compounds, and ethnic/pharmacological agents/extracts regulating NLRP3 function. Second, we pinpoint NLRP3-activating mechanisms and known NLRP3 inhibition effects in acute (ischemia, stroke, hemorrhage), chronic (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, MS, ALS), and virus-induced (Zika, SARS-CoV-2, and others) human brain diseases. The available data show that (i) disease-specific divergent mechanisms activate the (mainly animal) brains NLRP3; (ii) no evidence proves that NLRP3 inhibition modifies human brain diseases (yet ad hoc trials are ongoing); and (iii) no findings exclude that concurrently activated other-than-NLRP3 inflammasomes might functionally replace the inhibited NLRP3. Finally, we highlight that among the causes of the persistent lack of therapies are the species difference problem in disease models and a preference for symptomatic over etiologic therapeutic approaches. Therefore, we posit that human neural cell-based disease models could drive etiological, pathogenetic, and therapeutic advances, including NLRP3’s and other inflammasomes’ regulation, while minimizing failure risks in candidate drug trials.
Collapse
|
40
|
Motawi TK, El-Maraghy SA, Kamel AS, Said SE, Kortam MA. Modulation of p38 MAPK and Nrf2/HO-1/NLRP3 inflammasome signaling and pyroptosis outline the anti-neuroinflammatory and remyelinating characters of Clemastine in EAE rat model. Biochem Pharmacol 2023; 209:115435. [PMID: 36720356 DOI: 10.1016/j.bcp.2023.115435] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
There is vast evidence for the effect of NOD-like receptor protein-3 (NLRP3) inflammasome on multiple sclerosis (MS) pathogenesis. Clemastine (CLM) targets NLRP3 in hypoxic brain injury and promotes oligodendrocyte differentiation. However, no previous study pointed to the link of CLM with inflammasome components in MS. Herein, the study aimed to verify the action of CLM on NLRP3 signaling in experimental autoimmune encephalomyelitis (EAE) as an MS rat model. Homogenate of spinal cord with complete Freund's adjuvant was administered on days 0 and 7 to induce EAE. Rats received either CLM (5 mg/kg/day; p.o.) or MCC950 (2.5 mg/kg/day; i.p) for 15 days starting from the first immunization day. In EAEs' brains, NLRP3 pathway components; total and phosphorylated p38 mitogen-activated protein kinase (MAPK), apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, interleukins 1β and -18 along with pyroptotic marker; gasdermin D (GSDMD) were upregulated. These were accompanied with diminished nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and total antioxidant capacity levels. CLM improved these perturbations as well as signs of MS; weight loss, clinical scores, and motor disorders observed in the open field, hanging wire and rotarod tests. Histopathological examinations revealed improvement in H&E abnormalities and axonal demyelination as shown by luxol fast blue stain in lumbar sections of spinal cord. These CLM's actions were studied in comparison to MCC950 as a well-established selective blocker of the NLRP3 inflammasome. Conclusively, CLM has a protective role against neuroinflammation and demyelination in EAE via its anti-inflammatory and anti-pyroptotic actions.
Collapse
Affiliation(s)
- Tarek K Motawi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Ainy st., 11562 Cairo, Egypt.
| | - Shohda A El-Maraghy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Ainy st., 11562 Cairo, Egypt.
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Ainy st., 11562 Cairo, Egypt.
| | - Salma E Said
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Ainy st., 11562 Cairo, Egypt.
| | - Mona A Kortam
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Ainy st., 11562 Cairo, Egypt.
| |
Collapse
|
41
|
Bhaskaran S, Kumar G, Thadathil N, Piekarz KM, Mohammed S, Lopez SD, Qaisar R, Walton D, Brown JL, Murphy A, Smith N, Saunders D, Beckstead MJ, Plafker S, Lewis TL, Towner R, Deepa SS, Richardson A, Axtell RC, Van Remmen H. Neuronal deletion of MnSOD in mice leads to demyelination, inflammation and progressive paralysis that mimics phenotypes associated with progressive multiple sclerosis. Redox Biol 2023; 59:102550. [PMID: 36470129 PMCID: PMC9720104 DOI: 10.1016/j.redox.2022.102550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Neuronal oxidative stress has been implicated in aging and neurodegenerative disease. Here we investigated the impact of elevated oxidative stress induced in mouse spinal cord by deletion of Mn-Superoxide dismutase (MnSOD) using a neuron specific Cre recombinase in Sod2 floxed mice (i-mn-Sod2 KO). Sod2 deletion in spinal cord neurons was associated with mitochondrial alterations and peroxide generation. Phenotypically, i-mn-Sod2 KO mice experienced hindlimb paralysis and clasping behavior associated with extensive demyelination and reduced nerve conduction velocity, axonal degeneration, enhanced blood brain barrier permeability, elevated inflammatory cytokines, microglia activation, infiltration of neutrophils and necroptosis in spinal cord. In contrast, spinal cord motor neuron number, innervation of neuromuscular junctions, muscle mass, and contractile function were not altered. Overall, our findings show that loss of MnSOD in spinal cord promotes a phenotype of demyelination, inflammation and progressive paralysis that mimics phenotypes associated with progressive multiple sclerosis.
Collapse
Affiliation(s)
- Shylesh Bhaskaran
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Gaurav Kumar
- Arthritis & Clinical Immunology, Oklahoma Medical Research Foundation, OK, USA
| | - Nidheesh Thadathil
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, OK, USA
| | - Katarzyna M Piekarz
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Sabira Mohammed
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Rizwan Qaisar
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Dorothy Walton
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Jacob L Brown
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Ashley Murphy
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, OK, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, OK, USA
| | - Michael J Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Scott Plafker
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Tommy L Lewis
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Rheal Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, OK, USA
| | - Sathyaseelan S Deepa
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Arlan Richardson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Robert C Axtell
- Arthritis & Clinical Immunology, Oklahoma Medical Research Foundation, OK, USA.
| | - Holly Van Remmen
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
42
|
Anderson FL, Biggs KE, Rankin BE, Havrda MC. NLRP3 inflammasome in neurodegenerative disease. Transl Res 2023; 252:21-33. [PMID: 35952982 PMCID: PMC10614656 DOI: 10.1016/j.trsl.2022.08.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/14/2023]
Abstract
Neurodegenerative diseases are characterized by a dysregulated neuro-glial microenvironment, culminating in functional deficits resulting from neuronal cell death. Inflammation is a hallmark of the neurodegenerative microenvironment and despite a critical role in tissue homeostasis, increasing evidence suggests that chronic inflammatory insult can contribute to progressive neuronal loss. Inflammation has been studied in the context of neurodegenerative disorders for decades but few anti-inflammatory treatments have advanced to clinical use. This is likely due to the related challenges of predicting and mitigating off-target effects impacting the normal immune response while detecting inflammatory signatures that are specific to the progression of neurological disorders. Inflammasomes are pro-inflammatory cytosolic pattern recognition receptors functioning in the innate immune system. Compelling pre-clinical data has prompted an intense interest in the role of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in neurodegenerative disease. NLRP3 is typically inactive but can respond to sterile triggers commonly associated with neurodegenerative disorders including protein misfolding and aggregation, mitochondrial and oxidative stress, and exposure to disease-associated environmental toxicants. Clear evidence of enhanced NLRP3 inflammasome activity in common neurodegenerative diseases has coincided with rapid advancement of novel small molecule therapeutics making the NLRP3 inflammasome an attractive target for near-term interventional studies. In this review, we highlight evidence from model systems and patients indicating inflammasome activity in neurodegenerative disease associated with the NLRP3 inflammasome's ability to recognize pathologic forms of amyloid-β, tau, and α-synuclein. We discuss inflammasome-driven pyroptotic processes highlighting the potential utility of evaluating extracellular inflammasome-related proteins in the context of biomarker discovery. We complete the report by pointing out gaps in our understanding of intracellular modifiers of inflammasome activity and mechanisms regulating the resolution of inflammasome activation. The literature review and perspectives provide a conceptual platform for continued analysis of inflammation in neurodegenerative diseases through the study of inflammasomes and pyroptosis, mechanisms of inflammation and cell death now recognized to function in multiple highly prevalent neurological disorders.
Collapse
Affiliation(s)
- Faith L Anderson
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Karl E Biggs
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Brynn E Rankin
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Matthew C Havrda
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire.
| |
Collapse
|
43
|
Wood SJ, Goldufsky JW, Seu MY, Dorafshar AH, Shafikhani SH. Pseudomonas aeruginosa Cytotoxins: Mechanisms of Cytotoxicity and Impact on Inflammatory Responses. Cells 2023; 12:cells12010195. [PMID: 36611990 PMCID: PMC9818787 DOI: 10.3390/cells12010195] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most virulent opportunistic Gram-negative bacterial pathogens in humans. It causes many acute and chronic infections with morbidity and mortality rates as high as 40%. P. aeruginosa owes its pathogenic versatility to a large arsenal of cell-associated and secreted virulence factors which enable this pathogen to colonize various niches within hosts and protect it from host innate immune defenses. Induction of cytotoxicity in target host cells is a major virulence strategy for P. aeruginosa during the course of infection. P. aeruginosa has invested heavily in this strategy, as manifested by a plethora of cytotoxins that can induce various forms of cell death in target host cells. In this review, we provide an in-depth review of P. aeruginosa cytotoxins based on their mechanisms of cytotoxicity and the possible consequences of their cytotoxicity on host immune responses.
Collapse
Affiliation(s)
- Stephen J. Wood
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Josef W. Goldufsky
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michelle Y. Seu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amir H. Dorafshar
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
44
|
Liu XL, Sun DD, Zheng MT, Li XT, Niu HH, Zhang L, Zhou ZW, Rong HT, Wang Y, Wang JW, Yang GL, Liu X, Chen FL, Zhou Y, Zhang S, Zhang JN. Maraviroc promotes recovery from traumatic brain injury in mice by suppression of neuroinflammation and activation of neurotoxic reactive astrocytes. Neural Regen Res 2023; 18:141-149. [PMID: 35799534 PMCID: PMC9241405 DOI: 10.4103/1673-5374.344829] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Neuroinflammation and the NACHT, LRR, and PYD domains-containing protein 3 inflammasome play crucial roles in secondary tissue damage following an initial insult in patients with traumatic brain injury (TBI). Maraviroc, a C-C chemokine receptor type 5 antagonist, has been viewed as a new therapeutic strategy for many neuroinflammatory diseases. We studied the effect of maraviroc on TBI-induced neuroinflammation. A moderate-TBI mouse model was subjected to a controlled cortical impact device. Maraviroc or vehicle was injected intraperitoneally 1 hour after TBI and then once per day for 3 consecutive days. Western blot, immunohistochemistry, and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) analyses were performed to evaluate the molecular mechanisms of maraviroc at 3 days post-TBI. Our results suggest that maraviroc administration reduced NACHT, LRR, and PYD domains-containing protein 3 inflammasome activation, modulated microglial polarization from M1 to M2, decreased neutrophil and macrophage infiltration, and inhibited the release of inflammatory factors after TBI. Moreover, maraviroc treatment decreased the activation of neurotoxic reactive astrocytes, which, in turn, exacerbated neuronal cell death. Additionally, we confirmed the neuroprotective effect of maraviroc using the modified neurological severity score, rotarod test, Morris water maze test, and lesion volume measurements. In summary, our findings indicate that maraviroc might be a desirable pharmacotherapeutic strategy for TBI, and C-C chemokine receptor type 5 might be a promising pharmacotherapeutic target to improve recovery after TBI.
Collapse
|
45
|
Panda C, Mahapatra RK. Bi-Directional Relationship Between Autophagy and Inflammasomes in Neurodegenerative Disorders. Cell Mol Neurobiol 2023; 43:115-137. [PMID: 35066716 PMCID: PMC11415217 DOI: 10.1007/s10571-021-01184-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/12/2021] [Indexed: 01/18/2023]
Abstract
The innate immune system, as the first line of cellular defense, triggers a protective response called inflammation when encountered with invading pathogens. Inflammasome is a multi-protein cytosolic signaling complex that induces inflammation and is critical for inflammation-induced pyroptotic cell death. Inflammasome activation has been found associated with neurodegenerative disorders (NDs), inflammatory diseases, and cancer. Autophagy is a crucial intracellular quality control and homeostasis process which removes the dysfunctional organelles, damaged proteins, and pathogens by sequestering the cytosolic components in a double-membrane vesicle, which eventually fuses with lysosome resulting in cargo degradation. Autophagy disruption has been observed in many NDs presented with persistent neuroinflammation and excessive inflammasome activation. An interplay between inflammation activation and the autophagy process has been realized over the last decade. In the case of NDs, autophagy regulates neuroinflammation load and cellular damage either by engulfing the misfolded protein deposits, dysfunctional mitochondria, or the inflammasome complex itself. A healthy two-way regulation between both cellular processes has been realized for cell survival and cell defense during inflammatory conditions. Therefore, clinical interest in the modulation of inflammasome activation by autophagy inducers is rapidly growing. In this review, we discuss the structural basis of inflammasome activation and the mechanistic ideas of the autophagy process in NDs. Along with comments on multiple ways of neuroinflammation regulation by microglial autophagy, we also present a perspective on pharmacological opportunities in this molecular interplay pertaining to NDs.
Collapse
Affiliation(s)
- Chinmaya Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Rajani Kanta Mahapatra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
46
|
Li Y, Jiang Q. Uncoupled pyroptosis and IL-1β secretion downstream of inflammasome signaling. Front Immunol 2023; 14:1128358. [PMID: 37090724 PMCID: PMC10117957 DOI: 10.3389/fimmu.2023.1128358] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Inflammasomes are supramolecular platforms that organize in response to various damage-associated molecular patterns and pathogen-associated molecular patterns. Upon activation, inflammasome sensors (with or without the help of ASC) activate caspase-1 and other inflammatory caspases that cleave gasdermin D and pro-IL-1β/pro-IL-18, leading to pyroptosis and mature cytokine secretion. Pyroptosis enables intracellular pathogen niche disruption and intracellular content release at the cost of cell death, inducing pro-inflammatory responses in the neighboring cells. IL-1β is a potent pro-inflammatory regulator for neutrophil recruitment, macrophage activation, and T-cell expansion. Thus, pyroptosis and cytokine secretion are the two main mechanisms that occur downstream of inflammasome signaling; they maintain homeostasis, drive the innate immune response, and shape adaptive immunity. This review aims to discuss the possible mechanisms, timing, consequences, and significance of the two uncoupling preferences downstream of inflammasome signaling. While pyroptosis and cytokine secretion may be usually coupled, pyroptosis-predominant and cytokine-predominant uncoupling are also observed in a stimulus-, cell type-, or context-dependent manner, contributing to the pathogenesis and development of numerous pathological conditions such as cryopyrin-associated periodic syndromes, LPS-induced sepsis, and Salmonella enterica serovar Typhimurium infection. Hyperactive cells consistently release IL-1β without LDH leakage and pyroptotic death, thereby leading to prolonged inflammation, expanding the lifespans of pyroptosis-resistant neutrophils, and hyperactivating stimuli-challenged macrophages, dendritic cells, monocytes, and specific nonimmune cells. Death inflammasome activation also induces GSDMD-mediated pyroptosis with no IL-1β secretion, which may increase lethality in vivo. The sublytic GSDMD pore formation associated with lower expressions of pyroptotic components, GSDMD-mediated extracellular vesicles, or other GSDMD-independent pathways that involve unconventional secretion could contribute to the cytokine-predominant uncoupling; the regulation of caspase-1 dynamics, which may generate various active species with different activities in terms of GSDMD or pro-IL-1β, could lead to pyroptosis-predominant uncoupling. These uncoupling preferences enable precise reactions to different stimuli of different intensities under specific conditions at the single-cell level, promoting cooperative cell and host fate decisions and participating in the pathogen "game". Appropriate decisions in terms of coupling and uncoupling are required to heal tissues and eliminate threats, and further studies exploring the inflammasome tilt toward pyroptosis or cytokine secretion may be helpful.
Collapse
|
47
|
Compan V, Pelegrín P. Measuring IL-1β Processing by Bioluminescence Sensors: Using a Bioluminescence Resonance Energy Transfer Biosensor. Methods Mol Biol 2023; 2696:47-53. [PMID: 37578714 DOI: 10.1007/978-1-0716-3350-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
IL-1β processing is one of the hallmarks of inflammasome activation and drives the initiation of the inflammatory response. For decades, Western blot or ELISA has been extensively used to study this inflammatory event. Here, we describe the use of a bioluminescence resonance energy transfer (BRET) biosensor to monitor IL-1β processing in real time and in living macrophages either using a plate reader or a microscope.
Collapse
Affiliation(s)
- Vincent Compan
- Institut de Génomique Fonctionnelle, Labex ICST, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Université Montpellier, Montpellier, France
- Institut National de la Santé et de la Recherche Médicale Unité 1191, Montpellier, France
| | - Pablo Pelegrín
- Department of Bioquimestry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.
- Biomedical Research Institute of Murcia, Murcia, Spain.
| |
Collapse
|
48
|
Plastini MJ, Desu HL, Ascona MC, Lang AL, Saporta MA, Brambilla R. Transcriptional abnormalities in induced pluripotent stem cell-derived oligodendrocytes of individuals with primary progressive multiple sclerosis. Front Cell Neurosci 2022; 16:972144. [PMID: 36246526 PMCID: PMC9554611 DOI: 10.3389/fncel.2022.972144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is the most common neurological disorder in young adults and is classically defined as a chronic inflammatory demyelinating disease of the central nervous system (CNS). Although MS affects millions of people worldwide, its underlying cause remains unknown making discovery of effective treatments challenging. Whether intrinsic or extrinsic factors contribute to MS initiation and progression is still unclear. This is especially true for primary progressive MS (PPMS), the rarest form of the disease, in which progressive and irreversible loss of neurological function is often observed in the absence of an overt immune-inflammatory response. To test the hypothesis that intrinsic dysfunction in oligodendrocytes (OLs), the primary targets of damage in MS, may contribute to PPMS etiopathology, we differentiated human induced pluripotent stem cell (hiPSC) lines derived from PPMS and healthy individuals into mature OLs to compare their transcriptional profile. PPMS derived OLs displayed hundreds of differentially expressed genes compared to control OLs, many associated with cell adhesion, apoptosis and inflammation, including the inflammasome component Nlrp2, which was highly upregulated. NLRP2 immunoreactivity in OLs was confirmed in post-mortem PPMS brain tissues, with higher expression than in control tissues. Altogether, our findings suggest that mature OLs in PPMS affected individuals carry intrinsic abnormalities that could contribute, at least in part, to the pathophysiology of this form of the disease.
Collapse
Affiliation(s)
- Melanie J. Plastini
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- The Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Haritha L. Desu
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- The Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Maureen C. Ascona
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- The Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anna L. Lang
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Mario A. Saporta
- The Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- The Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIDGE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- *Correspondence: Roberta Brambilla,
| |
Collapse
|
49
|
Itaconate Attenuates Neuroinflammation and Exerts Dopamine Neuroprotection in Parkinson's Disease through Inhibiting NLRP3 Inflammasome. Brain Sci 2022; 12:brainsci12091255. [PMID: 36138991 PMCID: PMC9496935 DOI: 10.3390/brainsci12091255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is a common age-associated neurodegenerative motor disorder, which is mainly caused by dopaminergic neuron loss in the substantia nigra. This study aimed to evaluate the function and the underlying molecular mechanism of itaconate in PD. PD models were established in vivo and in vitro using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP+), respectively. Pole and rotarod tests were applied to evaluate the motor coordination of mice. The expression of tyrosine hydroxylase (TH) in MPTP-induced mice and the MPP+ revulsive PD cell model were detected using Western blotting and immunofluorescence. The inflammatory factors level was detected by quantitative real-time polymerase chain reaction. The content of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) in substantia nigra, striatum, and SH-SY5Y cells were analyzed. Moreover, the apoptosis of MPP+ revulsive SH-SY5Y cells was determined using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) staining and flow cytometry. The expression of apoptosis- and Nod-like receptor family protein 3 (NLRP3) inflammasome-associated proteins was measured using Western blotting and immunofluorescence. Itaconate attenuated motor deficits of MPTP-induced PD mice. Itaconate inhibited dopamine neuronal damage, inflammatory response, oxidative stress, and neuronal apoptosis in MPTP-caused PD mice and the MPP+ revulsive PD cell model. Additionally, itaconate notably repressed the activation of NLRP3 inflammasome. This research demonstrated that itaconate could attenuate neuroinflammation and exert dopamine neuroprotection in PD through inhibiting NLRP3 inflammasome.
Collapse
|
50
|
Koca-Ünsal RB, Şehirli AÖ, Sayıner S, Aksoy U. Relationship of NLRP3 inflammasome with periodontal, endodontic and related systemic diseases. Mol Biol Rep 2022; 49:11123-11132. [DOI: 10.1007/s11033-022-07894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
|