1
|
Yilmaz B, Genc GC, Celik SK, Cinar BP, Acikgoz M, Dursun A. PARP-1 gene promoter region may be associated with progression in multiple sclerosis. Clin Chim Acta 2025; 572:120275. [PMID: 40169083 DOI: 10.1016/j.cca.2025.120275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Multiple Sclerosis (MS) is a leading cause of disability among young adults. Most cases begin with relapsing-remitting MS (RRMS) and can transition to secondary progressive MS (SPMS) over time. It is known that the inflammatory status of the central nervous system changes during the progression of MS. Poly (ADP-ribose) polymerase-1 (PARP-1) is an enzyme involved in several cellular processes. Our study aimed to investigate the relationship between MS and the PARP-1 gene. We analyzed the PARP-1 gene's missense polymorphism rs1136410, promoter region polymorphism rs7527192, and 3'UTR polymorphism rs8679 in 123 MS patients and 168 healthy controls using the PCR-RFLP method. We examined genotype and allele frequency distributions among case-control groups and clinical subgroups. We observed that the CC genotype of rs7527192 polymorphism was increased in SPMS patients compared to controls. We also found that the CC genotype and C allele frequency were increased in the EDSS score > 3-6 group compared to healthy controls. The C allele frequency was increased in EDSS score > 3-6 compared to those with ≤ 3 and ≥ 6. When the results observed in our study are evaluated with the known effect of PARP-1 on the inflammasome pathway, we suggest that rs7527192 may be effective in the progression process through the activity of the PARP-1 inflammasome pathway.
Collapse
Affiliation(s)
- Busra Yilmaz
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey.
| | - Gunes Cakmak Genc
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Sevim Karakas Celik
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Bilge Piri Cinar
- Department of Neurology, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Mustafa Acikgoz
- Department of Neurology, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Ahmet Dursun
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
2
|
Mozafari S, Peruzzotti-Jametti L, Pluchino S. Mitochondria transfer for myelin repair. J Cereb Blood Flow Metab 2025:271678X251325805. [PMID: 40079508 PMCID: PMC11907575 DOI: 10.1177/0271678x251325805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/15/2025]
Abstract
Demyelination is a common feature of neuroinflammatory and degenerative diseases of the central nervous system (CNS), such as multiple sclerosis (MS). It is often linked to disruptions in intercellular communication, bioenergetics and metabolic balance accompanied by mitochondrial dysfunction in cells such as oligodendrocytes, neurons, astrocytes, and microglia. Although current MS treatments focus on immunomodulation, they fail to stop or reverse demyelination's progression. Recent advancements highlight intercellular mitochondrial exchange as a promising therapeutic target, with potential to restore metabolic homeostasis, enhance immunomodulation, and promote myelin repair. With this review we will provide insights into the CNS intercellular metabolic decoupling, focusing on the role of mitochondrial dysfunction in neuroinflammatory demyelinating conditions. We will then discuss emerging cell-free biotherapies exploring the therapeutic potential of transferring mitochondria via biogenic carriers like extracellular vesicles (EVs) or synthetic liposomes, aimed at enhancing mitochondrial function and metabolic support for CNS and myelin repair. Lastly, we address the key challenges for the clinical application of these strategies and discuss future directions to optimize mitochondrial biotherapies. The advancements in this field hold promise for restoring metabolic homeostasis, and enhancing myelin repair, potentially transforming the therapeutic landscape for neuroinflammatory and demyelinating diseases.
Collapse
Affiliation(s)
- Sabah Mozafari
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Kadowaki A, Wheeler MA, Li Z, Andersen BM, Lee HG, Illouz T, Lee JH, Ndayisaba A, Zandee SEJ, Basu H, Chao CC, Mahler JV, Klement W, Neel D, Bergstresser M, Rothhammer V, Lipof G, Srun L, Soleimanpour SA, Chiu I, Prat A, Khurana V, Quintana FJ. CLEC16A in astrocytes promotes mitophagy and limits pathology in a multiple sclerosis mouse model. Nat Neurosci 2025; 28:470-486. [PMID: 40033124 PMCID: PMC12039076 DOI: 10.1038/s41593-025-01875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 12/20/2024] [Indexed: 03/05/2025]
Abstract
Astrocytes promote neuroinflammation and neurodegeneration in multiple sclerosis (MS) through cell-intrinsic activities and their ability to recruit and activate other cell types. In a genome-wide CRISPR-based forward genetic screen investigating regulators of astrocyte proinflammatory responses, we identified the C-type lectin domain-containing 16A gene (CLEC16A), linked to MS susceptibility, as a suppressor of nuclear factor-κB (NF-κB) signaling. Gene and small-molecule perturbation studies in mouse primary and human embryonic stem cell-derived astrocytes in combination with multiomic analyses established that CLEC16A promotes mitophagy, limiting mitochondrial dysfunction and the accumulation of mitochondrial products that activate NF-κB, the NLRP3 inflammasome and gasdermin D. Astrocyte-specific Clec16a inactivation increased NF-κB, NLRP3 and gasdermin D activation in vivo, worsening experimental autoimmune encephalomyelitis, a mouse model of MS. Moreover, we detected disrupted mitophagic capacity and gasdermin D activation in astrocytes in samples from individuals with MS. These findings identify CLEC16A as a suppressor of astrocyte pathological responses and a candidate therapeutic target in MS.
Collapse
MESH Headings
- Animals
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mitophagy/physiology
- Mitophagy/genetics
- Astrocytes/metabolism
- Astrocytes/pathology
- Mice
- Multiple Sclerosis/pathology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/genetics
- Humans
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Monosaccharide Transport Proteins/genetics
- Monosaccharide Transport Proteins/metabolism
- Disease Models, Animal
- Mice, Inbred C57BL
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Inflammasomes/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
- NF-kappa B/metabolism
- Mitochondria/metabolism
- Female
Collapse
Affiliation(s)
- Atsushi Kadowaki
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Neurology, Graduate School of Medicine, Faculty of Medicine, The University of Osaka, Suita, Japan
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian M Andersen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, VA Medical Center, Boston, MA, USA
| | - Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomer Illouz
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joon-Hyuk Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alain Ndayisaba
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephanie E J Zandee
- Neuroimmunology Research Laboratory, CRCHUM and Department of Neuroscience, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Himanish Basu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joao V Mahler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wendy Klement
- Neuroimmunology Research Laboratory, CRCHUM and Department of Neuroscience, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Dylan Neel
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriel Lipof
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lena Srun
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Isaac Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, CRCHUM and Department of Neuroscience, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Vikram Khurana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Wang Q, Yang S, Zhang X, Zhang S, Chen L, Wang W, Chen N, Yan J. Inflammasomes in neurodegenerative diseases. Transl Neurodegener 2024; 13:65. [PMID: 39710713 PMCID: PMC11665095 DOI: 10.1186/s40035-024-00459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Inflammasomes represent a crucial component of the innate immune system, which respond to threats by recognizing different molecules. These are known as pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs). In neurodegenerative diseases and neuroinflammation, the accumulation of misfolded proteins, such as beta-amyloid and alpha-synuclein, can lead to inflammasome activation, resulting in the release of interleukin (IL)-1β and IL-18. This activation also induces pyroptosis, the release of inflammatory mediators, and exacerbates neuroinflammation. Increasing evidence suggests that inflammasomes play a pivotal role in neurodegenerative diseases. Therefore, elucidating and investigating the activation and regulation of inflammasomes in these diseases is of paramount importance. This review is primarily focused on evidence indicating that inflammasomes are activated through the canonical pathway in these diseases. Inflammasomes as potential targets for treating neurodegenerative diseases are also discussed.
Collapse
Affiliation(s)
- Qianchen Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shanshan Zhang
- China Three Gorges University College of Medicine and Health Sciences, Yichang, 443002, China
| | - Liping Chen
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Wanxue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiaqing Yan
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Brint A, Greene S, Fennig-Victor AR, Wang S. Multiple sclerosis: the NLRP3 inflammasome, gasdermin D, and therapeutics. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:62. [PMID: 39118955 PMCID: PMC11304424 DOI: 10.21037/atm-23-1960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/26/2024] [Indexed: 08/10/2024]
Abstract
Multiple sclerosis (MS) stands as a chronic inflammatory disease characterized by its neurodegenerative impacts on the central nervous system. The complexity of MS and the significant challenges it poses to patients have made the exploration of effective treatments a crucial area of research. Among the various mechanisms under investigation, the role of inflammation in MS progression is of particular interest. Inflammatory responses within the body are regulated by various cellular mechanisms, one of which involves the nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat (LRR)-, and pyrin domains (PYD)-containing protein 3 (NLRP3). NLRP3 acts as a sensor within cells, playing a pivotal role in controlling the inflammatory response. Its activation is a critical step leading to the assembly of the NLRP3 inflammasome complex, a process that has profound implications for inflammatory diseases like MS. The NLRP3 inflammasome's activation is intricately linked to the subsequent activation of caspase 1 and gasdermin D (GsdmD), signaling pathways that are central to the inflammatory process. GsdmD, a prominent member of the Gasdermin protein family, is particularly noteworthy for its role in pyroptotic cell death, a form of programmed cell death that is distinct from apoptosis and is characterized by its inflammatory nature. This pathway's activation contributes significantly to the pathology of MS by exacerbating inflammatory responses within the nervous system. Given the detrimental effects of unregulated inflammation in MS, therapeutics targeting these inflammatory processes offer a promising avenue for alleviating the symptoms experienced by patients. This review delves into the intricacies of the pyroptotic pathways, highlighting how the formation of the NLRP3 inflammasome induces such pathways and the potential intervention points for therapeutic agents. By inhibiting key steps within these pathways, it is possible to mitigate the inflammatory response, thereby offering relief to those suffering from MS. Understanding these mechanisms not only sheds light on the pathophysiology of MS but also paves the way for the development of novel therapeutic strategies aimed at controlling the disease's progression through the modulation of the body's inflammatory response.
Collapse
Affiliation(s)
- Amie Brint
- Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR, USA
- College of Medicine and Graduate School, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Seth Greene
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, USA
| | - Alyssa R. Fennig-Victor
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, USA
| | - Shanzhi Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, USA
| |
Collapse
|
6
|
Qin P, Sun Y, Li L. Mitochondrial dysfunction in chronic neuroinflammatory diseases (Review). Int J Mol Med 2024; 53:47. [PMID: 38577947 PMCID: PMC10999227 DOI: 10.3892/ijmm.2024.5371] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Chronic neuroinflammation serves a key role in the onset and progression of neurodegenerative disorders. Mitochondria serve as central regulators of neuroinflammation. In addition to providing energy to cells, mitochondria also participate in the immunoinflammatory response of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, multiple sclerosis and epilepsy, by regulating processes such as cell death and inflammasome activation. Under inflammatory conditions, mitochondrial oxidative stress, epigenetics, mitochondrial dynamics and calcium homeostasis imbalance may serve as underlying regulatory mechanisms for these diseases. Therefore, investigating mechanisms related to mitochondrial dysfunction may result in therapeutic strategies against chronic neuroinflammation and neurodegeneration. The present review summarizes the mechanisms of mitochondria in chronic neuroinflammatory diseases and the current treatment approaches that target mitochondrial dysfunction in these diseases.
Collapse
Affiliation(s)
- Pei Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Ye Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Liya Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
7
|
Li Q, Ding X, Chang Z, Fan X, Pan J, Yang Y, Li X, Jiang W, Fan K. Metal-Organic Framework Based Nanozyme System for NLRP3 Inflammasome-Mediated Neuroinflammatory Regulation in Parkinson's Disease. Adv Healthc Mater 2024; 13:e2303454. [PMID: 38031989 DOI: 10.1002/adhm.202303454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Neuroinflammation is associated with a series of pathological symptoms in Parkinson's disease (PD), including α-synuclein aggregation and dopaminergic neuronal death. The NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation at the lesion site and is a promising target for PD treatment. In this study, a nanoscale metal-organic framework (Zr-FeP MOF) based nanozyme is fabricated using Fe-5,10,15,20-tetra (4-carboxyphenyl) porphyrin (Fe-TCPP) and Zr6 cluster as ligands. The Zr-FeP MOF is subsequently encapsulated with mannitol (Man)-liposome, resulting in the formation of Zr-FeP MOF@Man liposome (MOF@Man Liposome) nanozyme system. The in vitro studies show that this nanozyme system is effective in relieving the formation of NLRP3 inflammasome and mitochondrial dysfunction. In mouse models of PD, the nanozyme system demonstrates a significant blood-brain barrier-crossing capability attributed to the Man-mediated brain targeting. Additionally, transcriptomic and biochemical studies show that the nanozyme system effectively inhibits the formation and assembly of inflammasome components, mitigating the activation of glial cells and neuroinflammatory response, and ultimately regulating the pathological symptoms of PD effectively.
Collapse
Affiliation(s)
- Qing Li
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xin Ding
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaohui Chang
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaowan Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiangpeng Pan
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Ying Yang
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin Li
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Wei Jiang
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Kelong Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
8
|
Gao D, Zheng CC, Hao JP, Yang CC, Hu CY. Icariin ameliorates behavioral deficits and neuropathology in a mouse model of multiple sclerosis. Brain Res 2023; 1804:148267. [PMID: 36731819 DOI: 10.1016/j.brainres.2023.148267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Multiple sclerosis (MS) is a systemic inflammatory illness of the central nervous system that involves demyelinating lesions in the myelin-rich white matter and pathology in the grey matter. Despite significant advancements in drug research for MS, the disease's complex pathophysiology makes it difficult to treat the progressive forms of the disease. In this study, we identified a natural flavonoid compound icariin (ICA) as a potent effective agent for MS in ameliorating the deterioration of symptoms including the neurological deficit score and the body weight in a murine experimental autoimmune encephalomyelitis (EAE) model. These improvements were associated with decreased demyelination in the corpus callosum and neuron loss in the hippocampus and cortex confirmed by immunohistochemistry analysis. Meanwhile, it was observed that the activation of microglia in cerebral cortex and hippocampus were inhibited followed by the neuroinflammatory cytokines downregulation such as IL-1β, IL-6 and TNF-α after ICA treatment, which was probably attributable to the suppression of microglial NLRP3 inflammasome activation. Additionally, molecular docking also revealed the binding force of ICA to NLRP3 inflammasome protein complexes in vitro. Taken together, our findings have demonstrated that ICA, as pleiotropic agent, prevents EAE-induced MS by improving demyelination and neuron loss, which interferes with the neuroinflammation via microglial NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Dan Gao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China
| | - Ceng-Ceng Zheng
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China
| | - Jin-Ping Hao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China
| | - Cui-Cui Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China.
| | - Chao-Ying Hu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China; Phase I Clinical Trial Unit, Beijing Ditan Hospital Capital Medical University, Beijing 100015, China.
| |
Collapse
|
9
|
Chiarini A, Gui L, Viviani C, Armato U, Dal Prà I. NLRP3 Inflammasome’s Activation in Acute and Chronic Brain Diseases—An Update on Pathogenetic Mechanisms and Therapeutic Perspectives with Respect to Other Inflammasomes. Biomedicines 2023; 11:biomedicines11040999. [PMID: 37189617 DOI: 10.3390/biomedicines11040999] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Increasingly prevalent acute and chronic human brain diseases are scourges for the elderly. Besides the lack of therapies, these ailments share a neuroinflammation that is triggered/sustained by different innate immunity-related protein oligomers called inflammasomes. Relevant neuroinflammation players such as microglia/monocytes typically exhibit a strong NLRP3 inflammasome activation. Hence the idea that NLRP3 suppression might solve neurodegenerative ailments. Here we review the recent Literature about this topic. First, we update conditions and mechanisms, including RNAs, extracellular vesicles/exosomes, endogenous compounds, and ethnic/pharmacological agents/extracts regulating NLRP3 function. Second, we pinpoint NLRP3-activating mechanisms and known NLRP3 inhibition effects in acute (ischemia, stroke, hemorrhage), chronic (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, MS, ALS), and virus-induced (Zika, SARS-CoV-2, and others) human brain diseases. The available data show that (i) disease-specific divergent mechanisms activate the (mainly animal) brains NLRP3; (ii) no evidence proves that NLRP3 inhibition modifies human brain diseases (yet ad hoc trials are ongoing); and (iii) no findings exclude that concurrently activated other-than-NLRP3 inflammasomes might functionally replace the inhibited NLRP3. Finally, we highlight that among the causes of the persistent lack of therapies are the species difference problem in disease models and a preference for symptomatic over etiologic therapeutic approaches. Therefore, we posit that human neural cell-based disease models could drive etiological, pathogenetic, and therapeutic advances, including NLRP3’s and other inflammasomes’ regulation, while minimizing failure risks in candidate drug trials.
Collapse
|
10
|
Myeloid caspase-8 restricts RIPK3-dependent proinflammatory IL-1β production and CD4 T cell activation in autoimmune demyelination. Proc Natl Acad Sci U S A 2022; 119:e2117636119. [PMID: 35671429 PMCID: PMC9214530 DOI: 10.1073/pnas.2117636119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Caspase-8 functions at the crossroad of programmed cell death and inflammation. Here, using genetic approaches and the experimental autoimmune encephalomyelitis model of inflammatory demyelination, we identified a negative regulatory pathway for caspase-8 in infiltrated macrophages whereby it functions to restrain interleukin (IL)-1β-driven autoimmune inflammation. Caspase-8 is partially activated in macrophages/microglia in active lesions of multiple sclerosis. Selective ablation of Casp8 in myeloid cells, but not microglia, exacerbated autoimmune demyelination. Heightened IL-1β production by caspase-8-deficient macrophages underlies exacerbated activation of encephalitogenic T cells and production of GM-CSF and interferon-γ. Mechanistically, IL-1β overproduction by primed caspase-8-deficient macrophages was mediated by RIPK1/RIPK3 through the engagement of NLRP3 inflammasome and was independent of cell death. When instructed by autoreactive CD4 T cells in the presence of antigen, caspase-8-deficient macrophages, but not their wild-type counterparts, released significant amount of IL-1β that in turn acted through IL-1R to amplify T cell activation. Moreover, the worsened experimental autoimmune encephalomyelitis progression in myeloid Casp8 mutant mice was completely reversed when Ripk3 was simultaneously deleted. Together, these data reveal a functional link between T cell-driven autoimmunity and inflammatory IL-1β that is negatively regulated by caspase-8, and suggest that dysregulation of the pathway may contribute to inflammatory autoimmune diseases, such as multiple sclerosis.
Collapse
|
11
|
Wang G, Yin W, Shin H, Tian Q, Lu W, Hou SX. Neuronal accumulation of peroxidated lipids promotes demyelination and neurodegeneration through the activation of the microglial NLRP3 inflammasome. NATURE AGING 2021; 1:1024-1037. [PMID: 37118341 DOI: 10.1038/s43587-021-00130-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/27/2021] [Indexed: 04/30/2023]
Abstract
Peroxidated lipids accumulate in the presence of reactive oxygen species and are linked to neurodegenerative diseases. Here we find that neuronal ablation of ARF1, a small GTPase important for lipid homeostasis, promoted accumulation of peroxidated lipids, lipid droplets and ATP in the mouse brain and led to neuroinflammation, demyelination and neurodegeneration, mainly in the spinal cord and hindbrain. Ablation of ARF1 in cultured primary neurons led to an increase in peroxidated lipids in co-cultured microglia, activation of the microglial NLRP3 inflammasome and release of inflammatory cytokines in an Apolipoprotein E-dependent manner. Deleting the Nlrp3 gene rescued the neurodegenerative phenotypes in the neuronal Arf1-ablated mice. We also observed a reduction in ARF1 in human brain tissue from patients with amyotrophic lateral sclerosis and multiple sclerosis. Together, our results uncover a previously unrecognized role of peroxidated lipids released from damaged neurons in activation of a neurotoxic microglial NLRP3 pathway that may play a role in human neurodegeneration.
Collapse
Affiliation(s)
- Guohao Wang
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA.
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Weiqin Yin
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hyunhee Shin
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Steven X Hou
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA.
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Wang H, Huang M, Wang W, Zhang Y, Ma X, Luo L, Xu X, Xu L, Shi H, Xu Y, Wang A, Xu T. Microglial TLR4-induced TAK1 phosphorylation and NLRP3 activation mediates neuroinflammation and contributes to chronic morphine-induced antinociceptive tolerance. Pharmacol Res 2021; 165:105482. [PMID: 33549727 DOI: 10.1016/j.phrs.2021.105482] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE The aim of this work was to investigate the role and signal transduction of toll-like receptor 4 (TLR4), TGF-β-activated kinase 1 (TAK1) and nod-like receptor protein 3 (NLRP3) in microglial in the development of morphine-induced antinociceptive tolerance. METHODS TLR4 and NLRP3 knockout mice and 5Z-7-oxozeaeno (a selective inhibitor against TAK1 activity) were used to observe their effect on the development of morphine tolerance. Intrathecal injections of morphine (0.75 mg/kg once daily for 7 days) were used to establish anti-nociceptive tolerance, which was measured by the tail-flick test. Spinal TLR4, TAK1, and NLRP3 expression levels and phosphorylation of TAK1 were evaluated by Western blotting and immunofluorescence. RESULTS Repeated treatment with morphine increased total expression of spinal TLR4, TAK1, and NLRP3 and phosphorylation of TAK1 in wild-type mice. TLR4 knockout attenuated morphine-induced tolerance and inhibited the chronic morphine-induced increase in NLRP3 and phosphorylation of TAK1. Compared with controls, mice that received 5Z-7-oxozeaenol showed decreased development of morphine tolerance and inhibition on repeated morphine-induced increase of NLRP3 but not TLR4. NLRP3 knockout mice showed resistance to morphine-induced analgesic tolerance with no effect on chronic morphine-induced expression of TLR4 and TAK1. TLR4, TAK1, and NLRP3 were collectively co-localized together and with the microglia marker Iba1. CONCLUSIONS Microglial TLR4 regulates TAK1 expression and phosphorylation and results in NLRP3 activation contributes to the development of morphine tolerance through regulating neuroinflammation. Targeting TLR4-TAK1-NLRP3 signaling to regulate neuro-inflammation will be alternative therapeutics and strategies for chronic morphine-induced antinociceptive tolerance.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Anesthesiology, Tongzhou People's Hospital, Nantong 226300, China; Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Min Huang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Wenying Wang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Yu Zhang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Xiaqing Ma
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Limin Luo
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Xiaotao Xu
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Liang Xu
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Haibo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Yongming Xu
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China.
| | - Aizhong Wang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China.
| | - Tao Xu
- Department of Anesthesiology, Tongzhou People's Hospital, Nantong 226300, China; Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China.
| |
Collapse
|