1
|
Acharyya P, Daley KW, Choi JW, Wilkins KB, Karjagi S, Cui C, Seo G, Abay AK, Bronte-Stewart HM. Closing the loop in DBS: A data-driven approach. Parkinsonism Relat Disord 2025; 134:107348. [PMID: 40037940 DOI: 10.1016/j.parkreldis.2025.107348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
Deep brain stimulation (DBS) has transformed the treatment of movement disorders like Parkinson's Disease (PD). Innovations in DBS technology and experimentation have fostered adaptive DBS (aDBS), which employs a closed-loop system that senses physiological biomarkers to inform precise neuromodulation and personalized therapy. This review analyzes several promising advances in aDBS, including biomarker detection, control policies, mechanisms of efficacy, and a data-driven approach using artificial intelligence to decode motor states from neural signals. Investigations into data-driven approaches have expanded biomarker detection beyond subcortical beta oscillations, leveraging other neural and kinematic signals. Future aDBS systems that accommodate multi-modal inputs have the potential to bolster therapeutic efficacy and address symptoms not addressed by beta-driven aDBS. Continuing investigation is necessary to address existing technical and computational challenges for further clinical translation.
Collapse
Affiliation(s)
- Prerana Acharyya
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kerry W Daley
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jin Woo Choi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin B Wilkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Shreesh Karjagi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Chuyi Cui
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gang Seo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Annie K Abay
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Helen M Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Berki ÁJ, Ding H, Palotai M, Halász L, Erőss L, Fekete G, Bognár L, Barsi P, Kelemen A, Jávor-Duray B, Pichner É, Muthuraman M, Tamás G. Subthalamic stimulation evokes hyperdirect high beta interruption and cortical high gamma entrainment in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:95. [PMID: 40287435 PMCID: PMC12033315 DOI: 10.1038/s41531-025-00965-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Compound network dynamics in beta and gamma bands determine the severity of bradykinesia in Parkinson's disease. We explored its subthalamic stimulation related changes parallel with improvement of complex hand movements. Thirty eight patients with Parkinson's disease treated with bilateral stimulation accomplished voluntary and traced spiral drawing with their more affected hand on a digital tablet. A 64 channel electroencephalography was recorded, low and high beta and gamma power was computed in subthalamic and motor cortical sources at four stimulation levels. Subthalamic cortical effective connectivity was calculated, and subnetwork models were created. Beta power decreased, and gamma power increased in sources ipsilateral to stimulation with increasing stimulation intensity. Networks comprising the primary motor cortex played a dominant role in predicting the improvement of voluntary drawing speed. Subthalamic stimulation diminished the hyperdirect high beta information processing and promoted the cortico cortical interactions of the primary motor cortex in the high gamma band.
Collapse
Affiliation(s)
| | - Hao Ding
- Department of Neurology, Julius-Maximilians-Universität of Würzburg, Würzburg, Germany
| | - Marcell Palotai
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - László Halász
- Department of Neurosurgery and Neurointervention, Semmelweis University, Budapest, Hungary
| | - Loránd Erőss
- Department of Neurosurgery and Neurointervention, Semmelweis University, Budapest, Hungary
| | - Gábor Fekete
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - László Bognár
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - Péter Barsi
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Andrea Kelemen
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | | | - Éva Pichner
- Department of Neurology, Bajcsy-Zsilinszky Hospital and Clinic, Budapest, Hungary
| | - Muthuraman Muthuraman
- Department of Neurology, Julius-Maximilians-Universität of Würzburg, Würzburg, Germany
- Informatics for Medical Technology, University of Augsburg, Augsburg, Germany
| | - Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
3
|
Binns TS, Köhler RM, Vanhoecke J, Chikermane M, Gerster M, Merk T, Pellegrini F, Busch JL, Habets JGV, Cavallo A, Beyer JC, Al-Fatly B, Li N, Horn A, Krause P, Faust K, Schneider GH, Haufe S, Kühn AA, Neumann WJ. Shared pathway-specific network mechanisms of dopamine and deep brain stimulation for the treatment of Parkinson's disease. Nat Commun 2025; 16:3587. [PMID: 40234441 PMCID: PMC12000430 DOI: 10.1038/s41467-025-58825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Deep brain stimulation is a brain circuit intervention that can modulate distinct neural pathways for the alleviation of neurological symptoms in patients with brain disorders. In Parkinson's disease, subthalamic deep brain stimulation clinically mimics the effect of dopaminergic drug treatment, but the shared pathway mechanisms on cortex - basal ganglia networks are unknown. To address this critical knowledge gap, we combined fully invasive neural multisite recordings in patients undergoing deep brain stimulation surgery with normative MRI-based whole-brain connectomics. Our findings demonstrate that dopamine and stimulation exert distinct mesoscale effects through modulation of local neural population activity. In contrast, at the macroscale, stimulation mimics dopamine in its suppression of excessive interregional network synchrony associated with indirect and hyperdirect cortex - basal ganglia pathways. Our results provide a better understanding of the circuit mechanisms of dopamine and deep brain stimulation, laying the foundation for advanced closed-loop neurostimulation therapies.
Collapse
Affiliation(s)
- Thomas S Binns
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Richard M Köhler
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jojo Vanhoecke
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Meera Chikermane
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Moritz Gerster
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Research Group Neural Interactions and Dynamics, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Neurophysics Group, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Timon Merk
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Franziska Pellegrini
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Berlin Center for Advanced Neuroimaging, Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Johannes L Busch
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jeroen G V Habets
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessia Cavallo
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Jean-Christin Beyer
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bassam Al-Fatly
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ningfei Li
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Patricia Krause
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Haufe
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Berlin Center for Advanced Neuroimaging, Bernstein Center for Computational Neuroscience, Berlin, Germany
- Technische Universität Berlin, Berlin, Germany
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Berlin, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- NeuroCure Clinical Research Centre, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Bange M, Helmich RCG, Wagle Shukla AA, Deuschl G, Muthuraman M. Non-invasive brain stimulation to modulate neural activity in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:68. [PMID: 40185733 PMCID: PMC11971305 DOI: 10.1038/s41531-025-00908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/26/2025] [Indexed: 04/07/2025] Open
Abstract
Despite its potential to modulate brain and network activity, non-invasive brain stimulation is not yet clinically applied for treating Parkinson's disease. We here review recent findings that illustrate how various non-invasive stimulation techniques can modify pathological and compensatory activities. Due to unavoidable heterogeneities and low effect sizes of the reviewed studies, a deeper understanding of the mechanisms of action will be critical for refining clinical effectiveness and generating consistent results.
Collapse
Affiliation(s)
- Manuel Bange
- Institute of Computer Science, Informatics for Medical Technology, University Augsburg, Augsburg, Germany.
| | - Rick C G Helmich
- Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Radboud University, Nijmegen, The Netherlands
| | - Aparna A Wagle Shukla
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Günther Deuschl
- Department of Neurology, UKSH-Kiel Campus, Christian-Albrechts-University, Kiel, Germany
| | - Muthuraman Muthuraman
- Institute of Computer Science, Informatics for Medical Technology, University Augsburg, Augsburg, Germany
- Department of Neurology, Neural Engineering with Signal Analytics and Artificial Intelligence (NESA-AI), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Herz DM, Frank MJ, Tan H, Groppa S. Subthalamic control of impulsive actions: insights from deep brain stimulation in Parkinson's disease. Brain 2024; 147:3651-3664. [PMID: 38869168 PMCID: PMC11531846 DOI: 10.1093/brain/awae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Control of actions allows adaptive, goal-directed behaviour. The basal ganglia, including the subthalamic nucleus, are thought to play a central role in dynamically controlling actions through recurrent negative feedback loops with the cerebral cortex. Here, we summarize recent translational studies that used deep brain stimulation to record neural activity from and apply electrical stimulation to the subthalamic nucleus in people with Parkinson's disease. These studies have elucidated spatial, spectral and temporal features of the neural mechanisms underlying the controlled delay of actions in cortico-subthalamic networks and demonstrated their causal effects on behaviour in distinct processing windows. While these mechanisms have been conceptualized as control signals for suppressing impulsive response tendencies in conflict tasks and as decision threshold adjustments in value-based and perceptual decisions, we propose a common framework linking decision-making, cognition and movement. Within this framework, subthalamic deep brain stimulation can lead to suboptimal choices by reducing the time that patients take for deliberation before committing to an action. However, clinical studies have consistently shown that the occurrence of impulse control disorders is reduced, not increased, after subthalamic deep brain stimulation surgery. This apparent contradiction can be reconciled when recognizing the multifaceted nature of impulsivity, its underlying mechanisms and modulation by treatment. While subthalamic deep brain stimulation renders patients susceptible to making decisions without proper forethought, this can be disentangled from effects related to dopamine comprising sensitivity to benefits versus costs, reward delay aversion and learning from outcomes. Alterations in these dopamine-mediated mechanisms are thought to underlie the development of impulse control disorders and can be relatively spared with reduced dopaminergic medication after subthalamic deep brain stimulation. Together, results from studies using deep brain stimulation as an experimental tool have improved our understanding of action control in the human brain and have important implications for treatment of patients with neurological disorders.
Collapse
Affiliation(s)
- Damian M Herz
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Michael J Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI 02903, USA
| | - Huiling Tan
- MRC Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, OX1 3TH Oxford, UK
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
6
|
Azgomi HF, Louie KH, Bath JE, Presbrey KN, Balakid JP, Marks JH, Wozny TA, Galifianakis NB, Luciano MS, Little S, Starr PA, Wang DD. Modeling and Optimizing Deep Brain Stimulation to Enhance Gait in Parkinson's Disease: Personalized Treatment with Neurophysiological Insights. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.30.24316305. [PMID: 39574845 PMCID: PMC11581078 DOI: 10.1101/2024.10.30.24316305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Although high-frequency deep brain stimulation (DBS) is effective at relieving many motor symptoms of Parkinson's disease (PD), its effects on gait can be variable and unpredictable. This is due to 1) a lack of standardized and robust metrics for gait assessment in PD patients, 2) the challenges of performing a thorough evaluation of all the stimulation parameters space that can alter gait, and 3) a lack of understanding for impacts of stimulation on the neurophysiological signatures of walking. In this study, our goal was to develop a data-driven approach to identify optimal, personalized DBS stimulation parameters to improve gait in PD patients and identify the neurophysiological signature of improved gait. Local field potentials from the globus pallidus and electrocorticography from the motor cortex of three PD patients were recorded using an implanted bidirectional neural stimulator during overground walking. A walking performance index (WPI) was developed to assess gait metrics with high reliability. DBS frequency, amplitude, and pulse width on the "clinically-optimized" stimulation contact were then systemically changed to study their impacts on gait metrics and underlying neural dynamics. We developed a Gaussian Process Regressor (GPR) model to map the relationship between DBS settings and the WPI. Using this model, we identified and validated personalized DBS settings that significantly improved gait metrics. Linear mixed models were employed to identify neural spectral features associated with enhanced walking performance. We demonstrated that improved walking performance was linked to the modulation of neural activity in specific frequency bands, with reduced beta band power in the pallidum and increased alpha band pallidal-motor cortex coherence synchronization during key moments of the gait cycle. Integrating WPI and GPR to optimize DBS parameters underscores the importance of developing and understanding personalized, data-driven interventions for gait improvement in PD.
Collapse
|
7
|
Ferrea E, Negahbani F, Cebi I, Weiss D, Gharabaghi A. Machine learning explains response variability of deep brain stimulation on Parkinson's disease quality of life. NPJ Digit Med 2024; 7:269. [PMID: 39354049 PMCID: PMC11445542 DOI: 10.1038/s41746-024-01253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/09/2024] [Indexed: 10/03/2024] Open
Abstract
Improving health-related quality of life (QoL) is crucial for managing Parkinson's disease. However, QoL outcomes after deep brain stimulation (DBS) of the subthalamic nucleus (STN) vary considerably. Current approaches lack integration of demographic, patient-reported, neuroimaging, and neurophysiological data to understand this variability. This study used explainable machine learning to analyze multimodal factors affecting QoL changes, measured by the Parkinson's Disease Questionnaire (PDQ-39) in 63 patients, and quantified each variable's contribution. Results showed that preoperative PDQ-39 scores and upper beta band activity (>20 Hz) in the left STN were key predictors of QoL changes. Lower initial QoL burden predicted worsening, while improvement was associated with higher beta activity. Additionally, electrode positions along the superior-inferior axis, especially relative to the z = -7 coordinate in standard space, influenced outcomes, with improved and worsened QoL above and below this marker. This study emphasizes a tailored, data-informed approach to optimize DBS treatment and improve patient QoL.
Collapse
Affiliation(s)
- Enrico Ferrea
- Institute for Neuromodulation and Neurotechnology, University Hospital Tübingen (UKT), Faculty of Medicine, University Tübingen, 72076, Tübingen, Germany
| | - Farzin Negahbani
- Institute for Neuromodulation and Neurotechnology, University Hospital Tübingen (UKT), Faculty of Medicine, University Tübingen, 72076, Tübingen, Germany
| | - Idil Cebi
- Institute for Neuromodulation and Neurotechnology, University Hospital Tübingen (UKT), Faculty of Medicine, University Tübingen, 72076, Tübingen, Germany
- Center for Neurology, Department for Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University Tübingen, 72076, Tübingen, Germany
| | - Daniel Weiss
- Center for Neurology, Department for Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University Tübingen, 72076, Tübingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital Tübingen (UKT), Faculty of Medicine, University Tübingen, 72076, Tübingen, Germany.
- Center for Bionic Intelligence Tübingen Stuttgart (BITS), 72076, Tübingen, Germany.
- German Center for Mental Health (DZPG), 72076, Tübingen, Germany.
| |
Collapse
|
8
|
Stanslaski S, Summers RLS, Tonder L, Tan Y, Case M, Raike RS, Morelli N, Herrington TM, Beudel M, Ostrem JL, Little S, Almeida L, Ramirez-Zamora A, Fasano A, Hassell T, Mitchell KT, Moro E, Gostkowski M, Sarangmat N, Bronte-Stewart H. Sensing data and methodology from the Adaptive DBS Algorithm for Personalized Therapy in Parkinson's Disease (ADAPT-PD) clinical trial. NPJ Parkinsons Dis 2024; 10:174. [PMID: 39289373 PMCID: PMC11408616 DOI: 10.1038/s41531-024-00772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Adaptive deep brain stimulation (aDBS) is an emerging advancement in DBS technology; however, local field potential (LFP) signal rate detection sufficient for aDBS algorithms and the methods to set-up aDBS have yet to be defined. Here we summarize sensing data and aDBS programming steps associated with the ongoing Adaptive DBS Algorithm for Personalized Therapy in Parkinson's Disease (ADAPT-PD) pivotal trial (NCT04547712). Sixty-eight patients were enrolled with either subthalamic nucleus or globus pallidus internus DBS leads connected to a Medtronic PerceptTM PC neurostimulator. During the enrollment and screening procedures, a LFP (8-30 Hz, ≥1.2 µVp) control signal was identified by clinicians in 84.8% of patients on medication (65% bilateral signal), and in 92% of patients off medication (78% bilateral signal). The ADAPT-PD trial sensing data indicate a high LFP signal presence in both on and off medication states of these patients, with bilateral signal in the majority, regardless of PD phenotype.
Collapse
Affiliation(s)
- Scott Stanslaski
- Medtronic Neuromodulation, Medtronic, Minneapolis, Minnesota, USA.
| | | | - Lisa Tonder
- Medtronic Neuromodulation, Medtronic, Minneapolis, Minnesota, USA
| | - Ye Tan
- Medtronic Neuromodulation, Medtronic, Minneapolis, Minnesota, USA
| | - Michelle Case
- Medtronic Neuromodulation, Medtronic, Minneapolis, Minnesota, USA
| | - Robert S Raike
- Medtronic Neuromodulation, Medtronic, Minneapolis, Minnesota, USA
| | - Nathan Morelli
- Medtronic Neuromodulation, Medtronic, Minneapolis, Minnesota, USA
| | | | - Martijn Beudel
- Department of Neurology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jill L Ostrem
- Department of Neurology, University of California San Francisco, San Francisco, USA
| | - Simon Little
- Department of Neurology, University of California San Francisco, San Francisco, USA
| | - Leonardo Almeida
- Department of Neurology, University of Minnesota, Minneapolis, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Shands at University of Florida, University of Florida, Gainesville, USA
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, University of Toronto, Toronto, ON, Canada
| | - Travis Hassell
- Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Kyle T Mitchell
- Duke University Movement Disorders Center, Duke University, Durham, USA
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, Grenoble Institute of Neuroscience, CHU of Grenoble, Grenoble, France
| | - Michal Gostkowski
- Center for Neurological Restoration, Cleveland Clinic Foundation, Cleveland, USA
| | | | - Helen Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, USA
| |
Collapse
|
9
|
Sumarac S, Youn J, Fearon C, Zivkovic L, Keerthi P, Flouty O, Popovic M, Hodaie M, Kalia S, Lozano A, Hutchison W, Fasano A, Milosevic L. Clinico-physiological correlates of Parkinson's disease from multi-resolution basal ganglia recordings. NPJ Parkinsons Dis 2024; 10:175. [PMID: 39261476 PMCID: PMC11391063 DOI: 10.1038/s41531-024-00773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Parkinson's disease (PD) has been associated with pathological neural activity within the basal ganglia. Herein, we analyzed resting-state single-neuron and local field potential (LFP) activities from people with PD who underwent awake deep brain stimulation surgery of the subthalamic nucleus (STN; n = 125) or globus pallidus internus (GPi; n = 44), and correlated rate-based and oscillatory features with UPDRSIII off-medication subscores. Rate-based single-neuron features did not correlate with PD symptoms. STN single-neuron and LFP low-beta (12-21 Hz) power and burst dynamics showed modest correlations with bradykinesia and rigidity severity, while STN spiketrain theta (4-8 Hz) power correlated modestly with tremor severity. GPi low- and high-beta (21-30 Hz) power and burst dynamics correlated moderately with bradykinesia and axial symptom severity. These findings suggest that elevated single-neuron and LFP oscillations may be linked to symptoms, though modest correlations imply that the pathophysiology of PD may extend beyond resting-state beta oscillations.
Collapse
Affiliation(s)
- Srdjan Sumarac
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Jinyoung Youn
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Neurology, University of Toronto, Toronto, ON, Canada
| | - Conor Fearon
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Neurology, University of Toronto, Toronto, ON, Canada
| | - Luka Zivkovic
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Prerana Keerthi
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Oliver Flouty
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Milos Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Mojgan Hodaie
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Suneil Kalia
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Andres Lozano
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - William Hutchison
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Alfonso Fasano
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Neurology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Luka Milosevic
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- KITE, University Health Network, Toronto, ON, Canada.
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada.
| |
Collapse
|
10
|
Trevarrow MP, Munoz MJ, Rivera YM, Arora R, Drane QH, Pal GD, Verhagen Metman L, Goelz LC, Corcos DM, David FJ. Medication improves velocity, reaction time, and movement time but not amplitude or error during memory-guided reaching in Parkinson's disease. Physiol Rep 2024; 12:e16150. [PMID: 39209762 PMCID: PMC11361790 DOI: 10.14814/phy2.16150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
The motor impairments experienced by people with Parkinson's disease (PD) are exacerbated during memory-guided movements. Despite this, the effect of antiparkinson medication on memory-guided movements has not been elucidated. We evaluated the effect of antiparkinson medication on motor control during a memory-guided reaching task with short and long retention delays in participants with PD and compared performance to age-matched healthy control (HC) participants. Thirty-two participants with PD completed the motor section of the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS III) and performed a memory-guided reaching task with two retention delays (0.5 s and 5 s) while on and off medication. Thirteen HC participants completed the MDS-UPDRS III and performed the memory-guided reaching task. In the task, medication increased movement velocity, decreased movement time, and decreased reaction time toward what was seen in the HC. However, movement amplitude and reaching error were unaffected by medication. Shorter retention delays increased movement velocity and amplitude, decreased movement time, and decreased error, but increased reaction times in the participants with PD and HC. Together, these results imply that antiparkinson medication is more effective at altering the neurophysiological mechanisms controlling movement velocity and reaction time compared with other aspects of movement control.
Collapse
Affiliation(s)
- Michael P. Trevarrow
- Department of Physical Therapy and Human Movement SciencesNorthwestern UniversityChicagoIllinoisUSA
| | - Miranda J. Munoz
- Department of Physical Therapy and Human Movement SciencesNorthwestern UniversityChicagoIllinoisUSA
| | - Yessenia M. Rivera
- Department of Physical Therapy and Human Movement SciencesNorthwestern UniversityChicagoIllinoisUSA
| | - Rishabh Arora
- Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Quentin H. Drane
- Department of Physical Therapy and Human Movement SciencesNorthwestern UniversityChicagoIllinoisUSA
| | - Gian D. Pal
- Division of Movement Disorders, Department of NeurologyRutgers – Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Leonard Verhagen Metman
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Lisa C. Goelz
- Department of Kinesiology and NutritionUIC College of Applied Health SciencesChicagoIllinoisUSA
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement SciencesNorthwestern UniversityChicagoIllinoisUSA
- McCormick School of EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | - Fabian J. David
- Department of Physical Therapy and Human Movement SciencesNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
11
|
Fasano A, Mure H, Oyama G, Murase N, Witt T, Higuchi Y, Singer A, Sannelli C, Morelli N. Subthalamic nucleus local field potential stability in patients with Parkinson's disease. Neurobiol Dis 2024; 199:106589. [PMID: 38969232 DOI: 10.1016/j.nbd.2024.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Despite the large body of work on local field potentials (LFPs), a measure of oscillatory activity in patients with Parkinson's disease (PD), the longitudinal evolution of LFPs is less explored. OBJECTIVE To determine LFP fluctuations collected in clinical settings in patients with PD and STN deep brain stimulation (DBS). METHODS Twenty-two STN-DBS patients (age: 67.6 ± 8.3 years; 9 females; disease duration: 10.3 ± 4.5 years) completed bilateral LFP recordings over three visits in the OFF-stimulation setting. Peak and band power measures were calculated from each recording. RESULTS After bilateral LFP recordings, at least one peak was detected in 18 (81.8%), 20 (90.9%), and 22 (100%) patients at visit 1, 2, and 3, respectively. No significant differences were seen in primary peak amplitude (F = 2.91, p = 0.060) over time. Amplitude of the second largest peak (F = 5.49, p = 0.006) and low-beta (F = 6.89, p = 0.002), high-beta (F = 13.23, p < 0.001), and gamma (F = 12.71, p < 0.001) band power demonstrated a significant effect of time. Post hoc comparisons determined low-beta power (Visit 1-Visit 2: t = 3.59, p = 0.002; Visit 1-Visit 3: t = 2.61, p = 0.031), high-beta (Visit 1-Visit 2: t = 4.64, p < 0.001; Visit 1-Visit 3: t = 4.23, p < 0.001) and gamma band power (Visit 1-Visit 2: t = 4.65, p < 0.001; Visit 1-Visit 3: t = 4.00, p < 0.001) were significantly increased from visit 1 recordings to both follow-up visits. CONCLUSION Our results provide substantial evidence that LFP can reliably be detected across multiple real-world clinical visits in patients with STN-DBS for PD. Moreover, it provides insights on the evolution of these LFPs.
Collapse
Affiliation(s)
- Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Canada; Division of Neurology, University of Toronto, Toronto, Canada; Krembil Brain Institute, University Health Network, Toronto, Canada; Center for Advancing Neurotechnological Innovation to Application, Toronto, Canada.
| | - Hideo Mure
- Center for Neuromodulation, Department of Neurosurgery, Kurashiki Heisei Hospital, Kurashiki, Japan
| | - Genko Oyama
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Nagako Murase
- Department of Neurology, National Hospital Organization Nara Medical Center, Nara, Japan
| | - Thomas Witt
- Department of Neurosurgery, Indiana University Medical Center, Indianapolis, IN, USA
| | - Yoshinori Higuchi
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University Hospital, Chiba, Japan
| | - Alexa Singer
- Brain Modulation Business, Neuromodulation Operating Unit, Medtronic PLC, Minneapolis, MN, USA
| | - Claudia Sannelli
- Brain Modulation Business, Neuromodulation Operating Unit, Medtronic PLC, Minneapolis, MN, USA
| | - Nathan Morelli
- Brain Modulation Business, Neuromodulation Operating Unit, Medtronic PLC, Minneapolis, MN, USA
| |
Collapse
|
12
|
Lefaucheur JP, Moro E, Shirota Y, Ugawa Y, Grippe T, Chen R, Benninger DH, Jabbari B, Attaripour S, Hallett M, Paulus W. Clinical neurophysiology in the treatment of movement disorders: IFCN handbook chapter. Clin Neurophysiol 2024; 164:57-99. [PMID: 38852434 PMCID: PMC11418354 DOI: 10.1016/j.clinph.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
In this review, different aspects of the use of clinical neurophysiology techniques for the treatment of movement disorders are addressed. First of all, these techniques can be used to guide neuromodulation techniques or to perform therapeutic neuromodulation as such. Neuromodulation includes invasive techniques based on the surgical implantation of electrodes and a pulse generator, such as deep brain stimulation (DBS) or spinal cord stimulation (SCS) on the one hand, and non-invasive techniques aimed at modulating or even lesioning neural structures by transcranial application. Movement disorders are one of the main areas of indication for the various neuromodulation techniques. This review focuses on the following techniques: DBS, repetitive transcranial magnetic stimulation (rTMS), low-intensity transcranial electrical stimulation, including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), and focused ultrasound (FUS), including high-intensity magnetic resonance-guided FUS (MRgFUS), and pulsed mode low-intensity transcranial FUS stimulation (TUS). The main clinical conditions in which neuromodulation has proven its efficacy are Parkinson's disease, dystonia, and essential tremor, mainly using DBS or MRgFUS. There is also some evidence for Tourette syndrome (DBS), Huntington's disease (DBS), cerebellar ataxia (tDCS), and axial signs (SCS) and depression (rTMS) in PD. The development of non-invasive transcranial neuromodulation techniques is limited by the short-term clinical impact of these techniques, especially rTMS, in the context of very chronic diseases. However, at-home use (tDCS) or current advances in the design of closed-loop stimulation (tACS) may open new perspectives for the application of these techniques in patients, favored by their easier use and lower rate of adverse effects compared to invasive or lesioning methods. Finally, this review summarizes the evidence for keeping the use of electromyography to optimize the identification of muscles to be treated with botulinum toxin injection, which is indicated and widely performed for the treatment of various movement disorders.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Clinical Neurophysiology Unit, Henri Mondor University Hospital, AP-HP, Créteil, France; EA 4391, ENT Team, Paris-Est Créteil University, Créteil, France.
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of Neuroscience, Grenoble, France
| | - Yuichiro Shirota
- Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Talyta Grippe
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil; Krembil Brain Institute, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Sanaz Attaripour
- Department of Neurology, University of California, Irvine, CA, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
13
|
Wilkins KB, Petrucci MN, Lambert EF, Melbourne JA, Gala AS, Akella P, Parisi L, Cui C, Kehnemouyi YM, Hoffman SL, Aditham S, Diep C, Dorris HJ, Parker JE, Herron JA, Bronte-Stewart HM. Beta Burst-Driven Adaptive Deep Brain Stimulation Improves Gait Impairment and Freezing of Gait in Parkinson's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.26.24309418. [PMID: 38978669 PMCID: PMC11230310 DOI: 10.1101/2024.06.26.24309418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Freezing of gait (FOG) is a debilitating symptom of Parkinson's disease (PD) that is often refractory to medication. Pathological prolonged beta bursts within the subthalamic nucleus (STN) are associated with both worse impairment and freezing behavior in PD, which are improved with deep brain stimulation (DBS). The goal of the current study was to investigate the feasibility, safety, and tolerability of beta burst-driven adaptive DBS (aDBS) for FOG in PD. Methods Seven individuals with PD were implanted with the investigational Summit™ RC+S DBS system (Medtronic, PLC) with leads placed bilaterally in the STN. A PC-in-the-loop architecture was used to adjust stimulation amplitude in real-time based on the observed beta burst durations in the STN. Participants performed either a harnessed stepping-in-place task or a free walking turning and barrier course, as well as clinical motor assessments and instrumented measures of bradykinesia, OFF stimulation, on aDBS, continuous DBS (cDBS), or random intermittent DBS (iDBS). Results Beta burst driven aDBS was successfully implemented and deemed safe and tolerable in all seven participants. Gait metrics such as overall percent time freezing and mean peak shank angular velocity improved from OFF to aDBS and showed similar efficacy as cDBS. Similar improvements were also seen for overall clinical motor impairment, including tremor, as well as quantitative metrics of bradykinesia. Conclusion Beta burst driven adaptive DBS was feasible, safe, and tolerable in individuals with PD with gait impairment and FOG.
Collapse
Affiliation(s)
- K B Wilkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - M N Petrucci
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Bioengineering, Stanford Schools of Engineering & Medicine, Stanford, CA, United States
| | - E F Lambert
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - J A Melbourne
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - A S Gala
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - P Akella
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - L Parisi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - C Cui
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Y M Kehnemouyi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Bioengineering, Stanford Schools of Engineering & Medicine, Stanford, CA, United States
| | - S L Hoffman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - S Aditham
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - C Diep
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - H J Dorris
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - J E Parker
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - J A Herron
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - H M Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
14
|
Bange M, Gonzalez-Escamilla G, Herz DM, Tinkhauser G, Glaser M, Ciolac D, Pogosyan A, Kreis SL, Luhmann HJ, Tan H, Groppa S. Subthalamic stimulation modulates context-dependent effects of beta bursts during fine motor control. Nat Commun 2024; 15:3166. [PMID: 38605062 PMCID: PMC11009405 DOI: 10.1038/s41467-024-47555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Increasing evidence suggests a considerable role of pre-movement beta bursts for motor control and its impairment in Parkinson's disease. However, whether beta bursts occur during precise and prolonged movements and if they affect fine motor control remains unclear. To investigate the role of within-movement beta bursts for fine motor control, we here combine invasive electrophysiological recordings and clinical deep brain stimulation in the subthalamic nucleus in 19 patients with Parkinson's disease performing a context-varying task that comprised template-guided and free spiral drawing. We determined beta bursts in narrow frequency bands around patient-specific peaks and assessed burst amplitude, duration, and their immediate impact on drawing speed. We reveal that beta bursts occur during the execution of drawing movements with reduced duration and amplitude in comparison to rest. Exclusively when drawing freely, they parallel reductions in acceleration. Deep brain stimulation increases the acceleration around beta bursts in addition to a general increase in drawing velocity and improvements of clinical function. These results provide evidence for a diverse and task-specific role of subthalamic beta bursts for fine motor control in Parkinson's disease; suggesting that pathological beta bursts act in a context dependent manner, which can be targeted by clinical deep brain stimulation.
Collapse
Affiliation(s)
- Manuel Bange
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Damian M Herz
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Martin Glaser
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Dumitru Ciolac
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alek Pogosyan
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Svenja L Kreis
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Huiling Tan
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
15
|
Cohen J, Mathew A, Dourvetakis KD, Sanchez-Guerrero E, Pangeni RP, Gurusamy N, Aenlle KK, Ravindran G, Twahir A, Isler D, Sosa-Garcia SR, Llizo A, Bested AC, Theoharides TC, Klimas NG, Kempuraj D. Recent Research Trends in Neuroinflammatory and Neurodegenerative Disorders. Cells 2024; 13:511. [PMID: 38534355 PMCID: PMC10969521 DOI: 10.3390/cells13060511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Neuroinflammatory and neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI) and Amyotrophic lateral sclerosis (ALS) are chronic major health disorders. The exact mechanism of the neuroimmune dysfunctions of these disease pathogeneses is currently not clearly understood. These disorders show dysregulated neuroimmune and inflammatory responses, including activation of neurons, glial cells, and neurovascular unit damage associated with excessive release of proinflammatory cytokines, chemokines, neurotoxic mediators, and infiltration of peripheral immune cells into the brain, as well as entry of inflammatory mediators through damaged neurovascular endothelial cells, blood-brain barrier and tight junction proteins. Activation of glial cells and immune cells leads to the release of many inflammatory and neurotoxic molecules that cause neuroinflammation and neurodegeneration. Gulf War Illness (GWI) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are chronic disorders that are also associated with neuroimmune dysfunctions. Currently, there are no effective disease-modifying therapeutic options available for these diseases. Human induced pluripotent stem cell (iPSC)-derived neurons, astrocytes, microglia, endothelial cells and pericytes are currently used for many disease models for drug discovery. This review highlights certain recent trends in neuroinflammatory responses and iPSC-derived brain cell applications in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Jessica Cohen
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Annette Mathew
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Kirk D Dourvetakis
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Estella Sanchez-Guerrero
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Rajendra P Pangeni
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Kristina K Aenlle
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| | - Geeta Ravindran
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Assma Twahir
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Dylan Isler
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Sara Rukmini Sosa-Garcia
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Axel Llizo
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Alison C Bested
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| |
Collapse
|
16
|
Pardo-Valencia J, Fernández-García C, Alonso-Frech F, Foffani G. Oscillatory vs. non-oscillatory subthalamic beta activity in Parkinson's disease. J Physiol 2024; 602:373-395. [PMID: 38084073 DOI: 10.1113/jp284768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024] Open
Abstract
Parkinson's disease is characterized by exaggerated beta activity (13-35 Hz) in cortico-basal ganglia motor loops. Beta activity includes both periodic fluctuations (i.e. oscillatory activity) and aperiodic fluctuations reflecting spiking activity and excitation/inhibition balance (i.e. non-oscillatory activity). However, the relative contribution, dopamine dependency and clinical correlations of oscillatory vs. non-oscillatory beta activity remain unclear. We recorded, modelled and analysed subthalamic local field potentials in parkinsonian patients at rest while off or on medication. Autoregressive modelling with additive 1/f noise clarified the relationships between measures of beta activity in the time domain (i.e. amplitude and duration of beta bursts) or in the frequency domain (i.e. power and sharpness of the spectral peak) and oscillatory vs. non-oscillatory activity: burst duration and spectral sharpness are specifically sensitive to oscillatory activity, whereas burst amplitude and spectral power are ambiguously sensitive to both oscillatory and non-oscillatory activity. Our experimental data confirmed the model predictions and assumptions. We subsequently analysed the effect of levodopa, obtaining strong-to-extreme Bayesian evidence that oscillatory beta activity is reduced in patients on vs. off medication, with moderate evidence for absence of modulation of the non-oscillatory component. Finally, specifically the oscillatory component of beta activity correlated with the rate of motor progression of the disease. Methodologically, these results provide an integrative understanding of beta-based biomarkers relevant for adaptive deep brain stimulation. Biologically, they suggest that primarily the oscillatory component of subthalamic beta activity is dopamine dependent and may play a role not only in the pathophysiology but also in the progression of Parkinson's disease. KEY POINTS: Beta activity in Parkinson's disease includes both true periodic fluctuations (i.e. oscillatory activity) and aperiodic fluctuations reflecting spiking activity and synaptic balance (i.e. non-oscillatory activity). The relative contribution, dopamine dependency and clinical correlations of oscillatory vs. non-oscillatory beta activity remain unclear. Burst duration and spectral sharpness are specifically sensitive to oscillatory activity, while burst amplitude and spectral power are ambiguously sensitive to both oscillatory and non-oscillatory activity. Only the oscillatory component of subthalamic beta activity is dopamine-dependent. Stronger beta oscillatory activity correlates with faster motor progression of the disease.
Collapse
Affiliation(s)
- Jesús Pardo-Valencia
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Carla Fernández-García
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Fernando Alonso-Frech
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Department of Neurology, San Carlos Research Health Intitute (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Instituto de Salud Carlos III, CIBERNED, Madrid, Spain
| |
Collapse
|
17
|
He S, Baig F, Merla A, Torrecillos F, Perera A, Wiest C, Debarros J, Benjaber M, Hart MG, Ricciardi L, Morgante F, Hasegawa H, Samuel M, Edwards M, Denison T, Pogosyan A, Ashkan K, Pereira E, Tan H. Beta-triggered adaptive deep brain stimulation during reaching movement in Parkinson's disease. Brain 2023; 146:5015-5030. [PMID: 37433037 PMCID: PMC10690014 DOI: 10.1093/brain/awad233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Subthalamic nucleus (STN) beta-triggered adaptive deep brain stimulation (ADBS) has been shown to provide clinical improvement comparable to conventional continuous DBS (CDBS) with less energy delivered to the brain and less stimulation induced side effects. However, several questions remain unanswered. First, there is a normal physiological reduction of STN beta band power just prior to and during voluntary movement. ADBS systems will therefore reduce or cease stimulation during movement in people with Parkinson's disease and could therefore compromise motor performance compared to CDBS. Second, beta power was smoothed and estimated over a time period of 400 ms in most previous ADBS studies, but a shorter smoothing period could have the advantage of being more sensitive to changes in beta power, which could enhance motor performance. In this study, we addressed these two questions by evaluating the effectiveness of STN beta-triggered ADBS using a standard 400 ms and a shorter 200 ms smoothing window during reaching movements. Results from 13 people with Parkinson's disease showed that reducing the smoothing window for quantifying beta did lead to shortened beta burst durations by increasing the number of beta bursts shorter than 200 ms and more frequent switching on/off of the stimulator but had no behavioural effects. Both ADBS and CDBS improved motor performance to an equivalent extent compared to no DBS. Secondary analysis revealed that there were independent effects of a decrease in beta power and an increase in gamma power in predicting faster movement speed, while a decrease in beta event related desynchronization (ERD) predicted quicker movement initiation. CDBS suppressed both beta and gamma more than ADBS, whereas beta ERD was reduced to a similar level during CDBS and ADBS compared with no DBS, which together explained the achieved similar performance improvement in reaching movements during CDBS and ADBS. In addition, ADBS significantly improved tremor compared with no DBS but was not as effective as CDBS. These results suggest that STN beta-triggered ADBS is effective in improving motor performance during reaching movements in people with Parkinson's disease, and that shortening of the smoothing window does not result in any additional behavioural benefit. When developing ADBS systems for Parkinson's disease, it might not be necessary to track very fast beta dynamics; combining beta, gamma, and information from motor decoding might be more beneficial with additional biomarkers needed for optimal treatment of tremor.
Collapse
Affiliation(s)
- Shenghong He
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Fahd Baig
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Anca Merla
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Flavie Torrecillos
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Andrea Perera
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Christoph Wiest
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Jean Debarros
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Moaad Benjaber
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Michael G Hart
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Lucia Ricciardi
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Francesca Morgante
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Harutomo Hasegawa
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Michael Samuel
- Department of Neurology, King’s College Hospital NHS Foundation Trust, London, SE5 9RS, UK
| | - Mark Edwards
- Department of Clinical and Basic Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London WC2R 2LS, UK
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Alek Pogosyan
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Erlick Pereira
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Huiling Tan
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
18
|
Busch JL, Kaplan J, Bahners BH, Roediger J, Faust K, Schneider GH, Florin E, Schnitzler A, Krause P, Kühn AA. Local Field Potentials Predict Motor Performance in Deep Brain Stimulation for Parkinson's Disease. Mov Disord 2023; 38:2185-2196. [PMID: 37823518 DOI: 10.1002/mds.29626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/16/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is an effective treatment option for patients with Parkinson's disease (PD). However, clinical programming remains challenging with segmented electrodes. OBJECTIVE Using novel sensing-enabled neurostimulators, we investigated local field potentials (LFPs) and their modulation by DBS to assess whether electrophysiological biomarkers may facilitate clinical programming in chronically implanted patients. METHODS Sixteen patients (31 hemispheres) with PD implanted with segmented electrodes in the subthalamic nucleus and a sensing-enabled neurostimulator were included in this study. Recordings were conducted 3 months after DBS surgery following overnight withdrawal of dopaminergic medication. LFPs were acquired while stimulation was turned OFF and during a monopolar review of both directional and ring contacts. Directional beta power and stimulation-induced beta power suppression were computed. Motor performance, as assessed by a pronation-supination task, clinical programming and electrode placement were correlated to directional beta power and stimulation-induced beta power suppression. RESULTS Better motor performance was associated with stronger beta power suppression at higher stimulation amplitudes. Across directional contacts, differences in directional beta power and the extent of stimulation-induced beta power suppression predicted motor performance. However, within individual hemispheres, beta power suppression was superior to directional beta power in selecting the contact with the best motor performance. Contacts clinically activated for chronic stimulation were associated with stronger beta power suppression than non-activated contacts. CONCLUSIONS Our results suggest that stimulation-induced β power suppression is superior to directional β power in selecting the clinically most effective contact. In sum, electrophysiological biomarkers may guide programming of directional DBS systems in PD patients. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Johannes L Busch
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin, Germany
| | - Jonathan Kaplan
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bahne H Bahners
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jan Roediger
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patricia Krause
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A Kühn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Berlin, Germany
| |
Collapse
|
19
|
Wilkins KB, Melbourne JA, Akella P, Bronte-Stewart HM. Unraveling the complexities of programming neural adaptive deep brain stimulation in Parkinson's disease. Front Hum Neurosci 2023; 17:1310393. [PMID: 38094147 PMCID: PMC10716917 DOI: 10.3389/fnhum.2023.1310393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/09/2023] [Indexed: 02/01/2024] Open
Abstract
Over the past three decades, deep brain stimulation (DBS) for Parkinson's disease (PD) has been applied in a continuous open loop fashion, unresponsive to changes in a given patient's state or symptoms over the course of a day. Advances in recent neurostimulator technology enable the possibility for closed loop adaptive DBS (aDBS) for PD as a treatment option in the near future in which stimulation adjusts in a demand-based manner. Although aDBS offers great clinical potential for treatment of motor symptoms, it also brings with it the need for better understanding how to implement it in order to maximize its benefits. In this perspective, we outline considerations for programing several key parameters for aDBS based on our experience across several aDBS-capable research neurostimulators. At its core, aDBS hinges on successful identification of relevant biomarkers that can be measured reliably in real-time working in cohesion with a control policy that governs stimulation adaption. However, auxiliary parameters such as the window in which stimulation is allowed to adapt, as well as the rate it changes, can be just as impactful on performance and vary depending on the control policy and patient. A standardize protocol for programming aDBS will be crucial to ensuring its effective application in clinical practice.
Collapse
Affiliation(s)
- Kevin B. Wilkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Jillian A. Melbourne
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Pranav Akella
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Helen M. Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
20
|
Neumann WJ, Steiner LA, Milosevic L. Neurophysiological mechanisms of deep brain stimulation across spatiotemporal resolutions. Brain 2023; 146:4456-4468. [PMID: 37450573 PMCID: PMC10629774 DOI: 10.1093/brain/awad239] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/04/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Deep brain stimulation is a neuromodulatory treatment for managing the symptoms of Parkinson's disease and other neurological and psychiatric disorders. Electrodes are chronically implanted in disease-relevant brain regions and pulsatile electrical stimulation delivery is intended to restore neurocircuit function. However, the widespread interest in the application and expansion of this clinical therapy has preceded an overarching understanding of the neurocircuit alterations invoked by deep brain stimulation. Over the years, various forms of neurophysiological evidence have emerged which demonstrate changes to brain activity across spatiotemporal resolutions; from single neuron, to local field potential, to brain-wide cortical network effects. Though fruitful, such studies have often led to debate about a singular putative mechanism. In this Update we aim to produce an integrative account of complementary instead of mutually exclusive neurophysiological effects to derive a generalizable concept of the mechanisms of deep brain stimulation. In particular, we offer a critical review of the most common historical competing theories, an updated discussion on recent literature from animal and human neurophysiological studies, and a synthesis of synaptic and network effects of deep brain stimulation across scales of observation, including micro-, meso- and macroscale circuit alterations.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Leon A Steiner
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Department of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto M5T 1M8, Canada
| | - Luka Milosevic
- Department of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto M5T 1M8, Canada
- Institute of Biomedical Engineering, Institute of Medical Sciences, and CRANIA Neuromodulation Institute, University of Toronto, Toronto M5S 3G9, Canada
| |
Collapse
|
21
|
Fleming JE, Senneff S, Lowery MM. Multivariable closed-loop control of deep brain stimulation for Parkinson's disease. J Neural Eng 2023; 20:056029. [PMID: 37733003 DOI: 10.1088/1741-2552/acfbfa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/21/2023] [Indexed: 09/22/2023]
Abstract
Objective. Closed-loop deep brain stimulation (DBS) methods for Parkinson's disease (PD) to-date modulate either stimulation amplitude or frequency to control a single biomarker. While good performance has been demonstrated for symptoms that are correlated with the chosen biomarker, suboptimal regulation can occur for uncorrelated symptoms or when the relationship between biomarker and symptom varies. Control of stimulation-induced side-effects is typically not considered.Approach.A multivariable control architecture is presented to selectively target suppression of either tremor or subthalamic nucleus beta band oscillations. DBS pulse amplitude and duration are modulated to maintain amplitude below a threshold and avoid stimulation of distal large diameter axons associated with stimulation-induced side effects. A supervisor selects between a bank of controllers which modulate DBS pulse amplitude to control rest tremor or beta activity depending on the level of muscle electromyographic (EMG) activity detected. A secondary controller limits pulse amplitude and modulates pulse duration to target smaller diameter axons lying close to the electrode. The control architecture was investigated in a computational model of the PD motor network which simulated the cortico-basal ganglia network, motoneuron pool, EMG and muscle force signals.Main results.Good control of both rest tremor and beta activity was observed with reduced power delivered when compared with conventional open loop stimulation, The supervisor avoided over- or under-stimulation which occurred when using a single controller tuned to one biomarker. When DBS amplitude was constrained, the secondary controller maintained the efficacy of stimulation by increasing pulse duration to compensate for reduced amplitude. Dual parameter control delivered effective control of the target biomarkers, with additional savings in the power delivered.Significance.Non-linear multivariable control can enable targeted suppression of motor symptoms for PD patients. Moreover, dual parameter control facilitates automatic regulation of the stimulation therapeutic dosage to prevent overstimulation, whilst providing additional power savings.
Collapse
Affiliation(s)
- John E Fleming
- Neuromuscular Systems Laboratory, UCD School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, United Kingdom
| | - Sageanne Senneff
- Neuromuscular Systems Laboratory, UCD School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Madeleine M Lowery
- Neuromuscular Systems Laboratory, UCD School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
22
|
Szul MJ, Papadopoulos S, Alavizadeh S, Daligaut S, Schwartz D, Mattout J, Bonaiuto JJ. Diverse beta burst waveform motifs characterize movement-related cortical dynamics. Prog Neurobiol 2023; 228:102490. [PMID: 37391061 DOI: 10.1016/j.pneurobio.2023.102490] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/03/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Classical analyses of induced, frequency-specific neural activity typically average band-limited power over trials. More recently, it has become widely appreciated that in individual trials, beta band activity occurs as transient bursts rather than amplitude-modulated oscillations. Most studies of beta bursts treat them as unitary, and having a stereotyped waveform. However, we show there is a wide diversity of burst shapes. Using a biophysical model of burst generation, we demonstrate that waveform variability is predicted by variability in the synaptic drives that generate beta bursts. We then use a novel, adaptive burst detection algorithm to identify bursts from human MEG sensor data recorded during a joystick-based reaching task, and apply principal component analysis to burst waveforms to define a set of dimensions, or motifs, that best explain waveform variance. Finally, we show that bursts with a particular range of waveform motifs, ones not fully accounted for by the biophysical model, differentially contribute to movement-related beta dynamics. Sensorimotor beta bursts are therefore not homogeneous events and likely reflect distinct computational processes.
Collapse
Affiliation(s)
- Maciej J Szul
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France.
| | - Sotirios Papadopoulos
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France; Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
| | - Sanaz Alavizadeh
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| | | | - Denis Schwartz
- CERMEP - Imagerie du Vivant, MEG Departement, Lyon, France
| | - Jérémie Mattout
- Université Claude Bernard Lyon 1, Université de Lyon, France; Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
| | - James J Bonaiuto
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| |
Collapse
|
23
|
Gilbert Z, Mason X, Sebastian R, Tang AM, Martin Del Campo-Vera R, Chen KH, Leonor A, Shao A, Tabarsi E, Chung R, Sundaram S, Kammen A, Cavaleri J, Gogia AS, Heck C, Nune G, Liu CY, Kellis SS, Lee B. A review of neurophysiological effects and efficiency of waveform parameters in deep brain stimulation. Clin Neurophysiol 2023; 152:93-111. [PMID: 37208270 DOI: 10.1016/j.clinph.2023.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/09/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
Neurostimulation has diverse clinical applications and potential as a treatment for medically refractory movement disorders, epilepsy, and other neurological disorders. However, the parameters used to program electrodes-polarity, pulse width, amplitude, and frequency-and how they are adjusted have remained largely untouched since the 1970 s. This review summarizes the state-of-the-art in Deep Brain Stimulation (DBS) and highlights the need for further research to uncover the physiological mechanisms of neurostimulation. We focus on studies that reveal the potential for clinicians to use waveform parameters to selectively stimulate neural tissue for therapeutic benefit, while avoiding activating tissue associated with adverse effects. DBS uses cathodic monophasic rectangular pulses with passive recharging in clinical practice to treat neurological conditions such as Parkinson's Disease. However, research has shown that stimulation efficiency can be improved, and side effects reduced, through modulating parameters and adding novel waveform properties. These developments can prolong implantable pulse generator lifespan, reducing costs and surgery-associated risks. Waveform parameters can stimulate neurons based on axon orientation and intrinsic structural properties, providing clinicians with more precise targeting of neural pathways. These findings could expand the spectrum of diseases treatable with neuromodulation and improve patient outcomes.
Collapse
Affiliation(s)
- Zachary Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Rinu Sebastian
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Kuang-Hsuan Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Arthur Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Emiliano Tabarsi
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Ryan Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Jonathan Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Angad S Gogia
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Christi Heck
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - George Nune
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
24
|
Boëx C, Awadhi AA, Tyrand R, Corniola MV, Kibleur A, Fleury V, Burkhard PR, Momjian S. Validation of Lead-DBS β-Oscillation Localization with Directional Electrodes. Bioengineering (Basel) 2023; 10:898. [PMID: 37627782 PMCID: PMC10451384 DOI: 10.3390/bioengineering10080898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
In deep brain stimulation (DBS) studies in patients with Parkinson's disease, the Lead-DBS toolbox allows the reconstruction of the location of β-oscillations in the subthalamic nucleus (STN) using Vercise Cartesia directional electrodes (Boston Scientific). The objective was to compare these probabilistic locations with those of intraoperative monopolar β-oscillations computed from local field potentials (0.5-3 kHz) recorded by using shielded single wires and an extracranial shielded reference electrode. For each electrode contact, power spectral densities of the β-band (13-31 Hz) were compared with those of all eight electrode contacts on the directional electrodes. The DBS Intrinsic Template AtLas (DISTAL), electrophysiological, and DBS target atlases of the Lead-DBS toolbox were applied to the reconstructed electrodes from preoperative MRI and postoperative CT. Thirty-six electrodes (20 patients: 7 females, 13 males; both STN electrodes for 16 of 20 patients; one single STN electrode for 4 of 20 patients) were analyzed. Stimulation sites both dorsal and/or lateral to the sensorimotor STN were the most efficient. In 33 out of 36 electrodes, at least one contact was measured with stronger β-oscillations, including 23 electrodes running through or touching the ventral subpart of the β-oscillations' probabilistic volume, while 10 did not touch it but were adjacent to this volume; in 3 out of 36 electrodes, no contact was found with β-oscillations and all 3 were distant from this volume. Monopolar local field potentials confirmed the ventral subpart of the probabilistic β-oscillations.
Collapse
Affiliation(s)
- Colette Boëx
- Department of Neurosurgery, University Hospitals of Geneva, CH-1205 Geneva, Switzerland (S.M.)
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
| | - Abdullah Al Awadhi
- Department of Neurosurgery, University Hospitals of Geneva, CH-1205 Geneva, Switzerland (S.M.)
| | - Rémi Tyrand
- Department of Neurosurgery, University Hospitals of Geneva, CH-1205 Geneva, Switzerland (S.M.)
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
| | - Marco V. Corniola
- Department of Neurosurgery, Pontchaillou Hospitals, CEDEX 9, F-35033 Rennes, France
| | - Astrid Kibleur
- Centre Hospitalier Universitaire Caen Normandie, F-14000 Caen, France
| | - Vanessa Fleury
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
- Department of Neurosurgery, Pontchaillou Hospitals, CEDEX 9, F-35033 Rennes, France
| | - Pierre R. Burkhard
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
| | - Shahan Momjian
- Department of Neurosurgery, University Hospitals of Geneva, CH-1205 Geneva, Switzerland (S.M.)
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
| |
Collapse
|
25
|
Dwiel LL, Henricks AM, Bragg E, Gui J, Doucette WT. Neural oscillations in the ventral striatum reveal differences between the encoding of palatable food and ethanol consumption. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1327-1340. [PMID: 37166071 PMCID: PMC10601443 DOI: 10.1111/acer.15101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Across multiple levels of investigation, there appear to be convergent neuronal processes underlying substance use and other motivated behaviors (i.e., the pursuit and consumption of rewarding substances). The consumption of alcohol and sweet, high-fat food engages many of the same brain regions, especially, the ventral striatum. In the current study, we hypothesized that ventral striatal local field potentials (LFPs) recorded during self-administration sessions could be used to detect when the consumption of 10% ethanol or sweet-fat food (SF) was occurring compared to all other behaviors, including naturalistic controls (i.e., water or house-chow). METHODS We used an intermittent limited access approach to condition Sprague-Dawley rats to consume either ethanol or SF while we recorded LFPs. We used machine learning and simple logistic regressions to determine whether LFP features could classify when consumption of each substance was occurring, and whether a general model could predict consumption of both substances. We report performance as the average area under the receiver operator characteristic curve (AUROC). RESULTS Consumption of a single substance was differentiable from all other behaviors, as evidenced by the AUROC (ethanol = 0.84 and SF = 0.83, p < 0.01). Models built from the combined dataset (general) did modestly overall (general → general = 0.68, p < 0.05), and did not detect the consumption of the two substances similarly (general → SF = 0.5 and general → ethanol = 0.63, p > 0.05). CONCLUSIONS Models successfully classified ethanol and SF consumption versus all other behavior/naturalistic controls. However, the findings highlight differences in how the ventral striatum represents the consumption of ethanol and SF and show that, although there is potential for finding biomarkers related to substance use, it may be difficult to build a model that performs well detecting multiple substances.
Collapse
Affiliation(s)
- Lucas L. Dwiel
- Department of Psychiatry, Geisel School of Medicine at Dartmouth
| | | | - Elise Bragg
- Department of Psychiatry, Geisel School of Medicine at Dartmouth
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth
| | | |
Collapse
|
26
|
Bronte-Stewart H, Merola A. Hope vs. Hype: Closed loop technology will provide more meaningful improvement vs. directional leads in deep brain stimulation. Parkinsonism Relat Disord 2023:105452. [PMID: 37355400 DOI: 10.1016/j.parkreldis.2023.105452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/26/2023]
Affiliation(s)
- Helen Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford Comprehensive Movement Disorders Center, United States.
| | - Aristide Merola
- Center for Parkinson's Disease and Related Movement Disorders, Wexner Medical Center, The Ohio State University, Columbus, United States.
| |
Collapse
|
27
|
Torrecillos F, He S, Kühn AA, Tan H. Average power and burst analysis revealed complementary information on drug-related changes of motor performance in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:93. [PMID: 37328511 PMCID: PMC10275865 DOI: 10.1038/s41531-023-00540-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 06/05/2023] [Indexed: 06/18/2023] Open
Abstract
In patients with Parkinson's disease (PD), suppression of beta and increase in gamma oscillations in the subthalamic nucleus (STN) have been associated with both levodopa treatment and motor functions. Recent results suggest that modulation of the temporal dynamics of theses oscillations (bursting activity) might contain more information about pathological states and behaviour than their average power. Here we directly compared the information provided by power and burst analyses about the drug-related changes in STN activities and their impact on motor performance within PD patients. STN local field potential (LFP) signals were recorded from externalized patients performing self-paced movements ON and OFF levodopa. When normalised across medication states, both power and burst analyses showed an increase in low-beta oscillations in the dopamine-depleted state during rest. When normalised within-medication state, both analyses revealed that levodopa increased movement-related modulation in the alpha and low-gamma bands, with higher gamma activity around movement predicting faster reaches. Finally, burst analyses helped to reveal opposite drug-related changes in low- and high-beta frequency bands, and identified additional within-patient relationships between high-beta bursting and movement performance. Our findings suggest that although power and burst analyses share a lot in common they also provide complementary information on how STN-LFP activity is associated with motor performance, and how levodopa treatment may modify these relationships in a way that helps explain drug-related changes in motor performance. Different ways of normalisation in the power analysis can reveal different information. Similarly, the burst analysis is sensitive to how the threshold is defined - either for separate medication conditions separately, or across pooled conditions. In addition, the burst interpretation has far-reaching implications about the nature of neural oscillations - whether the oscillations happen as isolated burst-events or are they sustained phenomena with dynamic amplitude variations? This can be different for different frequency bands, and different for different medication states even for the same frequency band.
Collapse
Affiliation(s)
- Flavie Torrecillos
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Shenghong He
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrea A Kühn
- Department of Neurology, Charitè, Universitätsmedizin, Berlin, Germany
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK.
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
28
|
Herz DM, Bange M, Gonzalez-Escamilla G, Auer M, Muthuraman M, Glaser M, Bogacz R, Pogosyan A, Tan H, Groppa S, Brown P. Dynamic modulation of subthalamic nucleus activity facilitates adaptive behavior. PLoS Biol 2023; 21:e3002140. [PMID: 37262014 PMCID: PMC10234560 DOI: 10.1371/journal.pbio.3002140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Adapting actions to changing goals and environments is central to intelligent behavior. There is evidence that the basal ganglia play a crucial role in reinforcing or adapting actions depending on their outcome. However, the corresponding electrophysiological correlates in the basal ganglia and the extent to which these causally contribute to action adaptation in humans is unclear. Here, we recorded electrophysiological activity and applied bursts of electrical stimulation to the subthalamic nucleus, a core area of the basal ganglia, in 16 patients with Parkinson's disease (PD) on medication using temporarily externalized deep brain stimulation (DBS) electrodes. Patients as well as 16 age- and gender-matched healthy participants attempted to produce forces as close as possible to a target force to collect a maximum number of points. The target force changed over trials without being explicitly shown on the screen so that participants had to infer target force based on the feedback they received after each movement. Patients and healthy participants were able to adapt their force according to the feedback they received (P < 0.001). At the neural level, decreases in subthalamic beta (13 to 30 Hz) activity reflected poorer outcomes and stronger action adaptation in 2 distinct time windows (Pcluster-corrected < 0.05). Stimulation of the subthalamic nucleus reduced beta activity and led to stronger action adaptation if applied within the time windows when subthalamic activity reflected action outcomes and adaptation (Pcluster-corrected < 0.05). The more the stimulation volume was connected to motor cortex, the stronger was this behavioral effect (Pcorrected = 0.037). These results suggest that dynamic modulation of the subthalamic nucleus and interconnected cortical areas facilitates adaptive behavior.
Collapse
Affiliation(s)
- Damian M. Herz
- MRC Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Manuel Bange
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Miriam Auer
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Neural Engineering with Signal Analytics and Artificial Intelligence, Department of Neurology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Martin Glaser
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Rafal Bogacz
- MRC Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Alek Pogosyan
- MRC Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Huiling Tan
- MRC Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Peter Brown
- MRC Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Lauro PM, Lee S, Amaya DE, Liu DD, Akbar U, Asaad WF. Concurrent decoding of distinct neurophysiological fingerprints of tremor and bradykinesia in Parkinson's disease. eLife 2023; 12:e84135. [PMID: 37249217 PMCID: PMC10264071 DOI: 10.7554/elife.84135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/26/2023] [Indexed: 05/31/2023] Open
Abstract
Parkinson's disease (PD) is characterized by distinct motor phenomena that are expressed asynchronously. Understanding the neurophysiological correlates of these motor states could facilitate monitoring of disease progression and allow improved assessments of therapeutic efficacy, as well as enable optimal closed-loop neuromodulation. We examined neural activity in the basal ganglia and cortex of 31 subjects with PD during a quantitative motor task to decode tremor and bradykinesia - two cardinal motor signs of PD - and relatively asymptomatic periods of behavior. Support vector regression analysis of microelectrode and electrocorticography recordings revealed that tremor and bradykinesia had nearly opposite neural signatures, while effective motor control displayed unique, differentiating features. The neurophysiological signatures of these motor states depended on the signal type and location. Cortical decoding generally outperformed subcortical decoding. Within the subthalamic nucleus (STN), tremor and bradykinesia were better decoded from distinct subregions. These results demonstrate how to leverage neurophysiology to more precisely treat PD.
Collapse
Affiliation(s)
- Peter M Lauro
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
| | - Shane Lee
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurosurgery, Rhode Island HospitalProvidenceUnited States
| | - Daniel E Amaya
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - David D Liu
- Department of Neurosurgery, Brigham and Women’s HospitalBostonUnited States
| | - Umer Akbar
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurology, Rhode Island HospitalProvidenceUnited States
| | - Wael F Asaad
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurosurgery, Rhode Island HospitalProvidenceUnited States
| |
Collapse
|
30
|
Neumann WJ, Gilron R, Little S, Tinkhauser G. Adaptive Deep Brain Stimulation: From Experimental Evidence Toward Practical Implementation. Mov Disord 2023. [PMID: 37148553 DOI: 10.1002/mds.29415] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/08/2023] Open
Abstract
Closed-loop adaptive deep brain stimulation (aDBS) can deliver individualized therapy at an unprecedented temporal precision for neurological disorders. This has the potential to lead to a breakthrough in neurotechnology, but the translation to clinical practice remains a significant challenge. Via bidirectional implantable brain-computer-interfaces that have become commercially available, aDBS can now sense and selectively modulate pathophysiological brain circuit activity. Pilot studies investigating different aDBS control strategies showed promising results, but the short experimental study designs have not yet supported individualized analyses of patient-specific factors in biomarker and therapeutic response dynamics. Notwithstanding the clear theoretical advantages of a patient-tailored approach, these new stimulation possibilities open a vast and mostly unexplored parameter space, leading to practical hurdles in the implementation and development of clinical trials. Therefore, a thorough understanding of the neurophysiological and neurotechnological aspects related to aDBS is crucial to develop evidence-based treatment regimens for clinical practice. Therapeutic success of aDBS will depend on the integrated development of strategies for feedback signal identification, artifact mitigation, signal processing, and control policy adjustment, for precise stimulation delivery tailored to individual patients. The present review introduces the reader to the neurophysiological foundation of aDBS for Parkinson's disease (PD) and other network disorders, explains currently available aDBS control policies, and highlights practical pitfalls and difficulties to be addressed in the upcoming years. Finally, it highlights the importance of interdisciplinary clinical neurotechnological research within and across DBS centers, toward an individualized patient-centered approach to invasive brain stimulation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Simon Little
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, California, USA
| | - Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Wilkins KB, Kehnemouyi YM, Petrucci MN, Anderson RW, Parker JE, Trager MH, Neuville RS, Koop MM, Velisar A, Blumenfeld Z, Quinn EJ, Bronte-Stewart HM. Bradykinesia and Its Progression Are Related to Interhemispheric Beta Coherence. Ann Neurol 2023; 93:1029-1039. [PMID: 36641645 PMCID: PMC10191890 DOI: 10.1002/ana.26605] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Bradykinesia is the major cardinal motor sign of Parkinson disease (PD), but its neural underpinnings are unclear. The goal of this study was to examine whether changes in bradykinesia following long-term subthalamic nucleus (STN) deep brain stimulation (DBS) are linked to local STN beta (13-30 Hz) dynamics or a wider bilateral network dysfunction. METHODS Twenty-one individuals with PD implanted with sensing neurostimulators (Activa® PC + S, Medtronic, PLC) in the STN participated in a longitudinal 'washout' therapy study every three to 6 months for an average of 3 years. At each visit, participants were withdrawn from medication (12/24/48 hours) and had DBS turned off (>60 minutes) before completing a repetitive wrist-flexion extension task, a validated quantitative assessment of bradykinesia, while local field potentials were recorded. Local STN beta dynamics were investigated via beta power and burst duration, while interhemispheric beta synchrony was assessed with STN-STN beta coherence. RESULTS Higher interhemispheric STN beta coherence, but not contralateral beta power or burst duration, was significantly associated with worse bradykinesia. Bradykinesia worsened off therapy over time. Interhemispheric STN-STN beta coherence also increased over time, whereas beta power and burst duration remained stable. The observed change in bradykinesia was related to the change in interhemispheric beta coherence, with greater increases in synchrony associated with further worsening of bradykinesia. INTERPRETATION Together, these findings implicate interhemispheric beta synchrony as a neural correlate of the progression of bradykinesia following chronic STN DBS. This could imply the existence of a pathological bilateral network contributing to bradykinesia in PD. ANN NEUROL 2023;93:1029-1039.
Collapse
Affiliation(s)
- Kevin B Wilkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Yasmine M Kehnemouyi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Bioengineering, Stanford Schools of Engineering & Medicine, Stanford, CA, United States
| | - Matthew N Petrucci
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Bioengineering, Stanford Schools of Engineering & Medicine, Stanford, CA, United States
| | - Ross W Anderson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Kaiser Permanente, Redwood City, CA, United States
| | - Jordan E Parker
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Psychology, University of California, Los Angeles, CA, United States
| | - Megan H Trager
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Columbia University Irving Medical Center, New York, NY, United States
| | - Raumin S Neuville
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- The University of California School of Medicine, Irvine, CA, United States
| | - Mandy M Koop
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Cleveland Clinic, Cleveland, OH, United States
| | - Anca Velisar
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- The Smith-Kettlewell Eye Research Institute, San Francisco, CA, United States
| | - Zack Blumenfeld
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
- University of Southern California, Keck School of Medicine, Los Angeles, CA, United States
| | - Emma J Quinn
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Credit Karma, San Francisco, CA, United States
| | - Helen M Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Bioengineering, Stanford Schools of Engineering & Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
32
|
Neumann WJ, Horn A, Kühn AA. Insights and opportunities for deep brain stimulation as a brain circuit intervention. Trends Neurosci 2023; 46:472-487. [PMID: 37105806 DOI: 10.1016/j.tins.2023.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023]
Abstract
Deep brain stimulation (DBS) is an effective treatment and has provided unique insights into the dynamic circuit architecture of brain disorders. This Review illustrates our current understanding of the pathophysiology of movement disorders and their underlying brain circuits that are modulated with DBS. It proposes principles of pathological network synchronization patterns like beta activity (13-35 Hz) in Parkinson's disease. We describe alterations from microscale including local synaptic activity via modulation of mesoscale hypersynchronization to changes in whole-brain macroscale connectivity. Finally, an outlook on advances for clinical innovations in next-generation neurotechnology is provided: from preoperative connectomic targeting to feedback controlled closed-loop adaptive DBS as individualized network-specific brain circuit interventions.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA; MGH Neurosurgery & Center for Neurotechnology and Neurorecovery at MGH Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea A Kühn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany; NeuroCure Clinical Research Centre, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; DZNE, German Center for Degenerative Diseases, Berlin, Germany.
| |
Collapse
|
33
|
Kehnemouyi YM, Petrucci MN, Wilkins KB, Melbourne JA, Bronte-Stewart HM. The Sequence Effect Worsens Over Time in Parkinson's Disease and Responds to Open and Closed-Loop Subthalamic Nucleus Deep Brain Stimulation. JOURNAL OF PARKINSON'S DISEASE 2023:JPD223368. [PMID: 37125563 DOI: 10.3233/jpd-223368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND The sequence effect is the progressive deterioration in speech, limb movement, and gait that leads to an inability to communicate, manipulate objects, or walk without freezing of gait. Many studies have demonstrated a lack of improvement of the sequence effect from dopaminergic medication, however few studies have studied the metric over time or investigated the effect of open-loop deep brain stimulation in people with Parkinson's disease (PD). OBJECTIVE To investigate whether the sequence effect worsens over time and/or is improved on clinical (open-loop) deep brain stimulation (DBS). METHODS Twenty-one people with PD with bilateral subthalamic nucleus (STN) DBS performed thirty seconds of instrumented repetitive wrist flexion extension and the MDS-UPDRS III off therapy, prior to activation of DBS and every six months for up to three years. A sub-cohort of ten people performed the task during randomized presentations of different intensities of STN DBS. RESULTS The sequence effect was highly correlated with the overall MDS-UPDRS III score and the bradykinesia sub-score and worsened over three years. Increasing intensities of STN open-loop DBS improved the sequence effect and one subject demonstrated improvement on both open-loop and closed-loop DBS. CONCLUSION Sequence effect in limb bradykinesia worsened over time off therapy due to disease progression but improved on open-loop DBS. These results demonstrate that DBS is a useful treatment of the debilitating effects of the sequence effect in limb bradykinesia and upon further investigation closed-loop DBS may offer added improvement.
Collapse
Affiliation(s)
- Yasmine M Kehnemouyi
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
- Stanford University School of Engineering, Department of Bioengineering, Stanford, CA, USA
| | - Matthew N Petrucci
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
- Stanford University School of Engineering, Department of Bioengineering, Stanford, CA, USA
| | - Kevin B Wilkins
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
| | - Jillian A Melbourne
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
| | - Helen M Bronte-Stewart
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
- Stanford University School of Medicine, Department of Neurosurgery, Stanford, CA, USA
| |
Collapse
|
34
|
Chen M, Zhu Y, Zhang R, Yu R, Hu Y, Wan H, Yao D, Guo D. A model description of beta oscillations in the external globus pallidus. Cogn Neurodyn 2023; 17:477-487. [PMID: 37007193 PMCID: PMC10050307 DOI: 10.1007/s11571-022-09827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 04/22/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
The external globus pallidus (GPe), a subcortical nucleus located in the indirect pathway of the basal ganglia, is widely considered to have tight associations with abnormal beta oscillations (13-30 Hz) observed in Parkinson's disease (PD). Despite that many mechanisms have been put forward to explain the emergence of these beta oscillations, however, it is still unclear the functional contributions of the GPe, especially, whether the GPe itself can generate beta oscillations. To investigate the role played by the GPe in producing beta oscillations, we employ a well described firing rate model of the GPe neural population. Through extensive simulations, we find that the transmission delay within the GPe-GPe pathway contributes significantly to inducing beta oscillations, and the impacts of the time constant and connection strength of the GPe-GPe pathway on generating beta oscillations are non-negligible. Moreover, the GPe firing patterns can be significantly modulated by the time constant and connection strength of the GPe-GPe pathway, as well as the transmission delay within the GPe-GPe pathway. Interestingly, both increasing and decreasing the transmission delay can push the GPe firing pattern from beta oscillations to other firing patterns, including oscillation and non-oscillation firing patterns. These findings suggest that if the transmission delays within the GPe are at least 9.8 ms, beta oscillations can be produced originally in the GPe neural population, which also may be the origin of PD-related beta oscillations and should be regarded as a promising target for treatments for PD.
Collapse
Affiliation(s)
- Mingming Chen
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
| | - Yajie Zhu
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
| | - Rui Zhang
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
| | - Renping Yu
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
| | - Yuxia Hu
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
| | - Hong Wan
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
| | - Dezhong Yao
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| | - Daqing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| |
Collapse
|
35
|
Morelli N, Summers RLS. Association of subthalamic beta frequency sub-bands to symptom severity in patients with Parkinson's disease: A systematic review. Parkinsonism Relat Disord 2023; 110:105364. [PMID: 36997437 DOI: 10.1016/j.parkreldis.2023.105364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Local field potentials (LFP), specifically beta (13-30Hz) frequency measures, have been found to be associated with motor dysfunction in people with Parkinson's disease (PwPD). A consensus on beta subband (low- and high-beta) relationships to clinical state or therapy response has yet to be determined. The objective of this review is to synthesize literature reporting the association of low- and high-beta characteristics to clinical ratings of motor symptoms in PwPD. METHODS A systematic search of existing literature was completed using EMBASE. Articles which collected subthalamic nucleus (STN) LFPs using macroelectrodes in PwPD, analyzed low- (13-20 Hz) and high-beta (21-35 Hz) bands, collected UPDRS-III, and reported correlational strength or predictive capacity of LFPs to UPDRS-III scores. RESULTS The initial search yielded 234 articles, with 11 articles achieving inclusion. Beta measures included power spectral density, peak characteristics, and burst characteristics. High-beta was a significant predictor of UPDRS-III responses to therapy in 5 (100%) articles. Low-beta was significantly associated with UPDRS-III total score in 3 (60%) articles. Low- and high-beta associations to UPDRS-III subscores were mixed. CONCLUSION This systematic review reinforces previous reports that beta band oscillatory measures demonstrate a consistent relationship to Parkinsonian motor symptoms and ability to predict motor response to therapy. Specifically, high-beta, demonstrated a consistent ability to predict UPDRS-III responses to common PD therapies, while low-beta measures were associated with general Parkinsonian symptom severity. Continued research is needed to determine which beta subband demonstrates the greatest association to motor symptom subtypes and potentially offers clinical utility toward LFP-guided DBS programming and adaptive DBS.
Collapse
|
36
|
Darmani G, Drummond NM, Ramezanpour H, Saha U, Hoque T, Udupa K, Sarica C, Zeng K, Cortez Grippe T, Nankoo JF, Bergmann TO, Hodaie M, Kalia SK, Lozano AM, Hutchison WD, Fasano A, Chen R. Long-Term Recording of Subthalamic Aperiodic Activities and Beta Bursts in Parkinson's Disease. Mov Disord 2023; 38:232-243. [PMID: 36424835 DOI: 10.1002/mds.29276] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Local field potentials (LFPs) represent the summation of periodic (oscillations) and aperiodic (fractal) signals. Although previous studies showed changes in beta band oscillations and burst characteristics of the subthalamic nucleus (STN) in Parkinson's disease (PD), how aperiodic activity in the STN is related to PD pathophysiology is unknown. OBJECTIVES The study aimed to characterize the long-term effects of STN-deep brain stimulation (DBS) and dopaminergic medications on aperiodic activities and beta bursts. METHODS A total of 10 patients with PD participated in this longitudinal study. Simultaneous bilateral STN-LFP recordings were conducted in six separate visits during a period of 18 months using the Activa PC + S device in the off and on dopaminergic medication states. We used irregular-resampling auto-spectral analysis to separate oscillations and aperiodic components (exponent and offset) in the power spectrum of STN-LFP signals in beta band. RESULTS Our results revealed a systematic increase in both the exponent and the offset of the aperiodic spectrum over 18 months following the DBS implantation, independent of the dopaminergic medication state of patients with PD. In contrast, beta burst durations and amplitudes were stable over time and were suppressed by dopaminergic medications. CONCLUSIONS These findings indicate that oscillations and aperiodic activities reflect at least partially distinct yet complementary neural mechanisms, which should be considered in the design of robust biomarkers to optimize adaptive DBS. Given the link between increased gamma-aminobutyric acidergic (GABAergic) transmission and higher aperiodic activity, our findings suggest that long-term STN-DBS may relate to increased inhibition in the basal ganglia. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Neil M Drummond
- Krembil Research Institute, University Health Network, Toronto, Canada
| | | | - Utpal Saha
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Tasnuva Hoque
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Kaviraja Udupa
- Department of Neurophysiology, National Institute of Mental Health & Neurosciences, Bengaluru, India
| | - Can Sarica
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Ke Zeng
- Krembil Research Institute, University Health Network, Toronto, Canada
| | | | | | - Til Ole Bergmann
- Neuroimaging Center, Johannes Gutenberg University Medical Center, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Mojgan Hodaie
- Krembil Research Institute, University Health Network, Toronto, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Suneil K Kalia
- Krembil Research Institute, University Health Network, Toronto, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Andres M Lozano
- Krembil Research Institute, University Health Network, Toronto, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - William D Hutchison
- Krembil Research Institute, University Health Network, Toronto, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Canada
| |
Collapse
|
37
|
Feldmann LK, Lofredi R, Al-Fatly B, Busch JL, Mathiopoulou V, Roediger J, Krause P, Schneider GH, Faust K, Horn A, Kühn AA, Neumann WJ. Christmas-Related Reduction in Beta Activity in Parkinson's Disease. Mov Disord 2023; 38:692-697. [PMID: 36718788 DOI: 10.1002/mds.29334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Subthalamic nucleus (STN) beta (13 - 35 Hz) activity is a biomarker reflecting motor state in Parkinson's disease (PD). Adaptive deep brain stimulation (DBS) aims to use beta activity for therapeutic adjustments, but many aspects of beta activity in real-life situations are unknown. OBJECTIVE The aim was to investigate Christmas-related influences on beta activity in PD. METHODS Differences in Christmas Day to nonfestive daily averages in chronic biomarker recordings in 4 PD patients with a sensing-enabled STN DBS implant were retrospectively analyzed. Sweet-spot and whole-brain network connectomic analyses were performed. RESULTS Beta activity was significantly reduced on Christmas Eve in all patients (4.00-9.00 p.m.: -12.30 ± 10.78%, P = 0.015). A sweet spot in the dorsolateral STN connected recording sites to motor, premotor, and supplementary motor cortices. CONCLUSIONS We demonstrate that festive events can reduce beta biomarker activity. We conclude that circadian and holiday-related changes should be considered when tailoring adaptive DBS algorithms to patient demands. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lucia K Feldmann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Roxanne Lofredi
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Bassam Al-Fatly
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes L Busch
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Varvara Mathiopoulou
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Roediger
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Krause
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Horn
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Charité University Medicine, Berlin, Germany.,NeuroCure Clinical Research Centre, Charité University Medicine, Berlin, Germany.,DZNE, German Center for Degenerative Diseases, Berlin, Germany
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
38
|
Subthalamic beta bursts correlate with dopamine-dependent motor symptoms in 106 Parkinson's patients. NPJ Parkinsons Dis 2023; 9:2. [PMID: 36611027 PMCID: PMC9825387 DOI: 10.1038/s41531-022-00443-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Pathologically increased beta power has been described as a biomarker for Parkinson's disease (PD) and related to prolonged bursts of subthalamic beta synchronization. Here, we investigate the association between subthalamic beta dynamics and motor impairment in a cohort of 106 Parkinson's patients in the ON- and OFF-medication state, using two different methods of beta burst determination. We report a frequency-specific correlation of low beta power and burst duration with motor impairment OFF dopaminergic medication. Furthermore, reduction of power and burst duration correlated significantly with symptom alleviation through dopaminergic medication. Importantly, qualitatively similar results were yielded with two different methods of beta burst definition. Our findings validate the robustness of previous results on pathological changes in subcortical oscillations both in the frequency- as well as in the time-domain in the largest cohort of PD patients to date with important implications for next-generation adaptive deep brain stimulation control algorithms.
Collapse
|
39
|
Oppold J, Breu MS, Gharabaghi A, Grimm A, Del Grosso NA, Hormozi M, Kleiser B, Klocke P, Kronlage C, Weiß D, Marquetand J. Ultrasound of the Biceps Muscle in Idiopathic Parkinson's Disease with Deep Brain Stimulation: Rigidity Can Be Quantified by Shear Wave Elastography. Diagnostics (Basel) 2023; 13:diagnostics13020213. [PMID: 36673022 PMCID: PMC9858214 DOI: 10.3390/diagnostics13020213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Rigidity in Parkinson’s disease (PD) is assessed by clinical scales, mostly the Unified Parkinson’s Disease Rating Scale of the Movement Disorders Society (MDS-UPDRS). While the MDS-UPDRS-III ranges on an integer from 0 to 4, we investigated whether muscle ultrasound shear wave elastography (SWE) offers a refined assessment. Ten PD patients (five treated with deep brain stimulation (DBS) and levodopa, five with levodopa only) and ten healthy controls were included. Over a period of 80 min, both the SWE value and the item 22b-c of the MDS-UPDRS-III were measured at 5 min intervals. The measurements were performed bilaterally at the biceps brachii muscle (BB) and flexor digitorum profundus muscle in flexion and passive extension. Rigidity was modified and tracked under various therapeutic conditions (with and without medication/DBS). The feasibility of SWE for objective quantification was evaluated by correlation with the UPDRS-III: considering all positions and muscles, there was already a weak correlation (r = 0.01, p < 0.001)—in a targeted analysis, the BB in passive extension showed a markedly higher correlation (r = 0.494, p < 0.001). The application of dopaminergic medication and DBS resulted in statistically significant short-term changes in both clinical rigidity and SWE measurements in the BB (p < 0.001). We conclude that rigidity is reflected in the SWE measurements, indicating that SWE is a potential non-invasive quantitative assessment tool for PD.
Collapse
Affiliation(s)
- Julia Oppold
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- MEG-Center, University of Tübingen, 72076 Tübingen, Germany
| | - Maria-Sophie Breu
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Alireza Gharabaghi
- Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, University Hospital, University of Tübingen, 72076 Tübingen, Germany
| | - Alexander Grimm
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | | | - Mohammad Hormozi
- Centre for Neurology, Department of Neurodegenerative Diseases, and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Benedict Kleiser
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- Correspondence:
| | - Philipp Klocke
- Centre for Neurology, Department of Neurodegenerative Diseases, and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Cornelius Kronlage
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Daniel Weiß
- Centre for Neurology, Department of Neurodegenerative Diseases, and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Justus Marquetand
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- MEG-Center, University of Tübingen, 72076 Tübingen, Germany
- Department of Neural Dynamics and Magnetoencephalography, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
40
|
Wu D, Zhao B, Xie H, Xu Y, Yin Z, Bai Y, Fan H, Zhang Q, Liu D, Hu T, Jiang Y, An Q, Zhang X, Yang A, Zhang J. Profiling the low-beta characteristics of the subthalamic nucleus in early- and late-onset Parkinson's disease. Front Aging Neurosci 2023; 15:1114466. [PMID: 36875708 PMCID: PMC9978704 DOI: 10.3389/fnagi.2023.1114466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Objectives Low-beta oscillation (13-20 Hz) has rarely been studied in patients with early-onset Parkinson's disease (EOPD, age of onset ≤50 years). We aimed to explore the characteristics of low-beta oscillation in the subthalamic nucleus (STN) of patients with EOPD and investigate the differences between EOPD and late-onset Parkinson's disease (LOPD). Methods We enrolled 31 EOPD and 31 LOPD patients, who were matched using propensity score matching. Patients underwent bilateral STN deep brain stimulation (DBS). Local field potentials were recorded using intraoperative microelectrode recording. We analyzed the low-beta band parameters, including aperiodic/periodic components, beta burst, and phase-amplitude coupling. We compared low-beta band activity between EOPD and LOPD. Correlation analyses were performed between the low-beta parameters and clinical assessment results for each group. Results We found that the EOPD group had lower aperiodic parameters, including offset (p = 0.010) and exponent (p = 0.047). Low-beta burst analysis showed that EOPD patients had significantly higher average burst amplitude (p = 0.016) and longer average burst duration (p = 0.011). Furthermore, EOPD had higher proportion of long burst (500-650 ms, p = 0.008), while LOPD had higher proportion of short burst (200-350 ms, p = 0.007). There was a significant difference in phase-amplitude coupling values between low-beta phase and fast high frequency oscillation (300-460 Hz) amplitude (p = 0.019). Conclusion We found that low-beta activity in the STN of patients with EOPD had characteristics that varied when compared with LOPD, and provided electrophysiological evidence for different pathological mechanisms between the two types of PD. These differences need to be considered when applying adaptive DBS on patients of different ages.
Collapse
Affiliation(s)
- Delong Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Houyou Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Quan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Defeng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianqi Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Jiang
- Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Dynamic control of decision and movement speed in the human basal ganglia. Nat Commun 2022; 13:7530. [PMID: 36476581 PMCID: PMC9729212 DOI: 10.1038/s41467-022-35121-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
To optimally adjust our behavior to changing environments we need to both adjust the speed of our decisions and movements. Yet little is known about the extent to which these processes are controlled by common or separate mechanisms. Furthermore, while previous evidence from computational models and empirical studies suggests that the basal ganglia play an important role during adjustments of decision-making, it remains unclear how this is implemented. Leveraging the opportunity to directly access the subthalamic nucleus of the basal ganglia in humans undergoing deep brain stimulation surgery, we here combine invasive electrophysiological recordings, electrical stimulation and computational modelling of perceptual decision-making. We demonstrate that, while similarities between subthalamic control of decision- and movement speed exist, the causal contribution of the subthalamic nucleus to these processes can be disentangled. Our results show that the basal ganglia independently control the speed of decisions and movement for each hemisphere during adaptive behavior.
Collapse
|
42
|
Lin HC, Wu YH, Huang CW, Ker MD. Verification of the beta oscillations in the subthalamic nucleus of the MPTP-induced parkinsonian minipig model. Brain Res 2022; 1798:148165. [DOI: 10.1016/j.brainres.2022.148165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
|
43
|
Bove F, Genovese D, Moro E. Developments in the mechanistic understanding and clinical application of deep brain stimulation for Parkinson's disease. Expert Rev Neurother 2022; 22:789-803. [PMID: 36228575 DOI: 10.1080/14737175.2022.2136030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION. Deep brain stimulation (DBS) is a life-changing treatment for patients with Parkinson's disease (PD) and gives the unique opportunity to directly explore how basal ganglia work. Despite the rapid technological innovation of the last years, the untapped potential of DBS is still high. AREAS COVERED. This review summarizes the developments in the mechanistic understanding of DBS and the potential clinical applications of cutting-edge technological advances. Rather than a univocal local mechanism, DBS exerts its therapeutic effects through several multimodal mechanisms and involving both local and network-wide structures, although crucial questions remain unexplained. Nonetheless, new insights in mechanistic understanding of DBS in PD have provided solid bases for advances in preoperative selection phase, prediction of motor and non-motor outcomes, leads placement and postoperative stimulation programming. EXPERT OPINION. DBS has not only strong evidence of clinical effectiveness in PD treatment, but technological advancements are revamping its role of neuromodulation of brain circuits and key to better understanding PD pathophysiology. In the next few years, the worldwide use of new technologies in clinical practice will provide large data to elucidate their role and to expand their applications for PD patients, providing useful insights to personalize DBS treatment and follow-up.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Danilo Genovese
- Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, New York University School of Medicine, New York, New York, USA
| | - Elena Moro
- Grenoble Alpes University, CHU of Grenoble, Division of Neurology, Grenoble, France.,Grenoble Institute of Neurosciences, INSERM, U1216, Grenoble, France
| |
Collapse
|
44
|
Chen PL, Chen YC, Tu PH, Liu TC, Chen MC, Wu HT, Yeap MC, Yeh CH, Lu CS, Chen CC. Subthalamic high-beta oscillation informs the outcome of deep brain stimulation in patients with Parkinson's disease. Front Hum Neurosci 2022; 16:958521. [PMID: 36158623 PMCID: PMC9493001 DOI: 10.3389/fnhum.2022.958521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe therapeutic effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease (PD) is related to the modulation of pathological neural activities, particularly the synchronization in the β band (13–35 Hz). However, whether the local β activity in the STN region can directly predict the stimulation outcome remains unclear.ObjectiveWe tested the hypothesis that low-β (13–20 Hz) and/or high-β (20–35 Hz) band activities recorded from the STN region can predict DBS efficacy.MethodsLocal field potentials (LFPs) were recorded in 26 patients undergoing deep brain stimulation surgery in the subthalamic nucleus area. Recordings were made after the implantation of the DBS electrode prior to its connection to a stimulator. The maximum normalized powers in the theta (4–7 Hz), alpha (7–13 Hz), low-β (13–20 Hz), high-β (20–35 Hz), and low-γ (40–55 Hz) subbands in the postoperatively recorded LFP were correlated with the stimulation-induced improvement in contralateral tremor or bradykinesia–rigidity. The distance between the contact selected for stimulation and the contact with the maximum subband power was correlated with the stimulation efficacy. Following the identification of the potential predictors by the significant correlations, a multiple regression analysis was performed to evaluate their effect on the outcome.ResultsThe maximum high-β power was positively correlated with bradykinesia–rigidity improvement (rs = 0.549, p < 0.0001). The distance to the contact with maximum high-β power was negatively correlated with bradykinesia–rigidity improvement (rs = −0.452, p < 0.001). No significant correlation was observed with low-β power. The maximum high-β power and the distance to the contact with maximum high-β power were both significant predictors for bradykinesia–rigidity improvement in the multiple regression analysis, explaining 37.4% of the variance altogether. Tremor improvement was not significantly correlated with any frequency.ConclusionHigh-β oscillations, but not low-β oscillations, recorded from the STN region with the DBS lead can inform stimulation-induced improvement in contralateral bradykinesia–rigidity in patients with PD. High-β oscillations can help refine electrode targeting and inform contact selection for DBS therapy.
Collapse
Affiliation(s)
- Po-Lin Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Chieh Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Hsun Tu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzu-Chi Liu
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Mathematics, National Taiwan University, Taipei, Taiwan
| | - Min-Chi Chen
- Department of Public Health, Biostatistics Consulting Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hau-Tieng Wu
- Department of Mathematics, Duke University, Durham, NC, United States
- Department of Statistical Science, Duke University, Durham, NC, United States
| | - Mun-Chun Yeap
- Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Hua Yeh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neuroradiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chin-Song Lu
- Professor Lu Neurological Clinic, Taoyuan, Taiwan
| | - Chiung-Chu Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Chiung-Chu Chen
| |
Collapse
|
45
|
Single-neuron bursts encode pathological oscillations in subcortical nuclei of patients with Parkinson's disease and essential tremor. Proc Natl Acad Sci U S A 2022; 119:e2205881119. [PMID: 36018837 PMCID: PMC9436336 DOI: 10.1073/pnas.2205881119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deep brain stimulation procedures offer an invaluable opportunity to study disease through intracranial recordings from awake patients. Here, we address the relationship between single-neuron and aggregate-level (local field potential; LFP) activities in the subthalamic nucleus (STN) and thalamic ventral intermediate nucleus (Vim) of patients with Parkinson's disease (n = 19) and essential tremor (n = 16), respectively. Both disorders have been characterized by pathologically elevated LFP oscillations, as well as an increased tendency for neuronal bursting. Our findings suggest that periodic single-neuron bursts encode both pathophysiological beta (13 to 33 Hz; STN) and tremor (4 to 10 Hz; Vim) LFP oscillations, evidenced by strong time-frequency and phase-coupling relationships between the bursting and LFP signals. Spiking activity occurring outside of bursts had no relationship to the LFP. In STN, bursting activity most commonly preceded the LFP oscillation, suggesting that neuronal bursting generated within STN may give rise to an aggregate-level LFP oscillation. In Vim, LFP oscillations most commonly preceded bursting activity, suggesting that neuronal firing may be entrained by periodic afferent inputs. In both STN and Vim, the phase-coupling relationship between LFP and high-frequency oscillation (HFO) signals closely resembled the relationships between the LFP and single-neuron bursting. This suggests that periodic single-neuron bursting is likely representative of a higher spatial and temporal resolution readout of periodic increases in the amplitude of HFOs, which themselves may be a higher resolution readout of aggregate-level LFP oscillations. Overall, our results may reconcile "rate" and "oscillation" models of Parkinson's disease and shed light on the single-neuron basis and origin of pathophysiological oscillations in movement disorders.
Collapse
|
46
|
Cortical beta burst dynamics are altered in Parkinson's disease but normalized by deep brain stimulation. Neuroimage 2022; 257:119308. [PMID: 35569783 DOI: 10.1016/j.neuroimage.2022.119308] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Exaggerated subthalamic beta oscillatory activity and increased beta range cortico-subthalamic synchrony have crystallized as the electrophysiological hallmarks of Parkinson's disease. Beta oscillatory activity is not tonic but occurs in 'bursts' of transient amplitude increases. In Parkinson's disease, the characteristics of these bursts are altered especially in the basal ganglia. However, beta oscillatory dynamics at the cortical level and how they compare with healthy brain activity is less well studied. We used magnetoencephalography (MEG) to study sensorimotor cortical beta bursting and its modulation by subthalamic deep brain stimulation in Parkinson's disease patients and age-matched healthy controls. We show that the changes in beta bursting amplitude and duration typical of Parkinson's disease can also be observed in the sensorimotor cortex, and that they are modulated by chronic subthalamic deep brain stimulation, which, in turn, is reflected in improved motor function at the behavioural level. In addition to the changes in individual beta bursts, their timing relative to each other was altered in patients compared to controls: bursts were more clustered in untreated Parkinson's disease, occurring in 'bursts of bursts', and re-burst probability was higher for longer compared to shorter bursts. During active deep brain stimulation, the beta bursting in patients resembled healthy controls' data. In summary, both individual bursts' characteristics and burst patterning are affected in Parkinson's disease, and subthalamic deep brain stimulation normalizes some of these changes to resemble healthy controls' beta bursting activity, suggesting a non-invasive biomarker for patient and treatment follow-up.
Collapse
|
47
|
Chen R, Berardelli A, Bhattacharya A, Bologna M, Chen KHS, Fasano A, Helmich RC, Hutchison WD, Kamble N, Kühn AA, Macerollo A, Neumann WJ, Pal PK, Paparella G, Suppa A, Udupa K. Clinical neurophysiology of Parkinson's disease and parkinsonism. Clin Neurophysiol Pract 2022; 7:201-227. [PMID: 35899019 PMCID: PMC9309229 DOI: 10.1016/j.cnp.2022.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 01/01/2023] Open
Abstract
This review is part of the series on the clinical neurophysiology of movement disorders and focuses on Parkinson’s disease and parkinsonism. The pathophysiology of cardinal parkinsonian motor symptoms and myoclonus are reviewed. The recordings from microelectrode and deep brain stimulation electrodes are reported in detail.
This review is part of the series on the clinical neurophysiology of movement disorders. It focuses on Parkinson’s disease and parkinsonism. The topics covered include the pathophysiology of tremor, rigidity and bradykinesia, balance and gait disturbance and myoclonus in Parkinson’s disease. The use of electroencephalography, electromyography, long latency reflexes, cutaneous silent period, studies of cortical excitability with single and paired transcranial magnetic stimulation, studies of plasticity, intraoperative microelectrode recordings and recording of local field potentials from deep brain stimulation, and electrocorticography are also reviewed. In addition to advancing knowledge of pathophysiology, neurophysiological studies can be useful in refining the diagnosis, localization of surgical targets, and help to develop novel therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Amitabh Bhattacharya
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Rick C Helmich
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology and Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands
| | - William D Hutchison
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Andrea A Kühn
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Antonella Macerollo
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, United Kingdom
| | - Wolf-Julian Neumann
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | | | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kaviraja Udupa
- Department of Neurophysiology National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
48
|
Rauschenberger L, Güttler C, Volkmann J, Kühn AA, Ip CW, Lofredi R. A translational perspective on pathophysiological changes of oscillatory activity in dystonia and parkinsonism. Exp Neurol 2022; 355:114140. [PMID: 35690132 DOI: 10.1016/j.expneurol.2022.114140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/14/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
Abstract
Intracerebral recordings from movement disorders patients undergoing deep brain stimulation have allowed the identification of pathophysiological patterns in oscillatory activity that correlate with symptom severity. Changes in oscillatory synchrony occur within and across brain areas, matching the classification of movement disorders as network disorders. However, the underlying mechanisms of oscillatory changes are difficult to assess in patients, as experimental interventions are technically limited and ethically problematic. This is why animal models play an important role in neurophysiological research of movement disorders. In this review, we highlight the contributions of translational research to the mechanistic understanding of pathological changes in oscillatory activity, with a focus on parkinsonism and dystonia, while addressing the limitations of current findings and proposing possible future directions.
Collapse
Affiliation(s)
- Lisa Rauschenberger
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Christopher Güttler
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany; NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany; DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Roxanne Lofredi
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
49
|
Merk T, Peterson V, Lipski WJ, Blankertz B, Turner RS, Li N, Horn A, Richardson RM, Neumann WJ. Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's disease. eLife 2022; 11:e75126. [PMID: 35621994 PMCID: PMC9142148 DOI: 10.7554/elife.75126] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/15/2022] [Indexed: 01/07/2023] Open
Abstract
Brain signal decoding promises significant advances in the development of clinical brain computer interfaces (BCI). In Parkinson's disease (PD), first bidirectional BCI implants for adaptive deep brain stimulation (DBS) are now available. Brain signal decoding can extend the clinical utility of adaptive DBS but the impact of neural source, computational methods and PD pathophysiology on decoding performance are unknown. This represents an unmet need for the development of future neurotechnology. To address this, we developed an invasive brain-signal decoding approach based on intraoperative sensorimotor electrocorticography (ECoG) and subthalamic LFP to predict grip-force, a representative movement decoding application, in 11 PD patients undergoing DBS. We demonstrate that ECoG is superior to subthalamic LFP for accurate grip-force decoding. Gradient boosted decision trees (XGBOOST) outperformed other model architectures. ECoG based decoding performance negatively correlated with motor impairment, which could be attributed to subthalamic beta bursts in the motor preparation and movement period. This highlights the impact of PD pathophysiology on the neural capacity to encode movement vigor. Finally, we developed a connectomic analysis that could predict grip-force decoding performance of individual ECoG channels across patients by using their connectomic fingerprints. Our study provides a neurophysiological and computational framework for invasive brain signal decoding to aid the development of an individualized precision-medicine approach to intelligent adaptive DBS.
Collapse
Affiliation(s)
- Timon Merk
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
| | - Victoria Peterson
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General HospitalBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | - Witold J Lipski
- Department of Neurobiology, University of PittsburghPittsburghUnited States
| | - Benjamin Blankertz
- Department of Computer Science, Technische Universität BerlnBerlinGermany
| | - Robert S Turner
- Department of Neurobiology, University of PittsburghPittsburghUnited States
| | - Ningfei Li
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
| | - Robert Mark Richardson
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General HospitalBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
| |
Collapse
|
50
|
Neumann WJ, Köhler RM, Kühn AA. A practical guide to invasive neurophysiology in patients with deep brain stimulation. Clin Neurophysiol 2022; 140:171-180. [PMID: 35659821 DOI: 10.1016/j.clinph.2022.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022]
Abstract
Deep brain stimulation (DBS) offers the unique opportunity to record human neural population activity as multiunit activity and local field potentials (LFP) directly from the target area in the depth of the brain. This has led to important discoveries through characterization of pathological activity patterns and identification of motor and cognitive correlates of basal ganglia function in patients with movement disorders. These findings have been covered extensively in a large body of literature, but the technical aspects of microelectrode and LFP recordings in DBS patients are rarely reported. This review summarizes the experience from invasive neurophysiology experiments in over 500 DBS cases in the last 20 years in a single centre. It introduces the basics of intraoperative microelectrode recordings, discusses the neurophysiological and technical aspects of LFP signals and gives and outlook on current and next-generation developments - from sensing enabled implantable devices to combined electrocorticography and LFP recordings during adaptive DBS.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Richard M Köhler
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Chariteplatz 1, 10117 Berlin, Germany.
| |
Collapse
|