1
|
Sanzà P, van der Beek J, Draper D, de Heus C, Veenendaal T, Brink CT, Farías GG, Liv N, Klumperman J. VPS41 recruits biosynthetic LAMP-positive vesicles through interaction with Arl8b. J Cell Biol 2025; 224:e202405002. [PMID: 39907656 PMCID: PMC11809577 DOI: 10.1083/jcb.202405002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/29/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Vacuolar protein sorting 41 (VPS41), a component of the homotypic fusion and protein sorting (HOPS) complex for lysosomal fusion, is essential for the trafficking of lysosomal membrane proteins via lysosome-associated membrane protein (LAMP) carriers from the trans-Golgi network (TGN) to endo/lysosomes. However, the molecular mechanisms underlying this pathway and VPS41's role herein remain poorly understood. Here, we investigated the effects of ectopically localizing VPS41 to mitochondria on LAMP distribution. Using electron microscopy, we identified that mitochondrial-localized VPS41 recruited LAMP1- and LAMP2A-positive vesicles resembling LAMP carriers. The retention using selective hooks (RUSH) system further revealed that newly synthesized LAMPs were specifically recruited by mitochondrial VPS41, a function not shared by other HOPS subunits. Notably, we identified the small GTPase Arl8b as a critical factor for LAMP carrier trafficking. Arl8b was present on LAMP carriers and bound to the WD40 domain of VPS41, enabling their recruitment. These findings reveal a unique role of VPS41 in recruiting TGN-derived LAMP carriers and expand our understanding of VPS41-Arl8b interactions beyond endosome-lysosome fusion, providing new insights into lysosomal trafficking mechanisms.
Collapse
Affiliation(s)
- Paolo Sanzà
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jan van der Beek
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Derk Draper
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Cecilia de Heus
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Tineke Veenendaal
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Corlinda ten Brink
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ginny G. Farías
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nalan Liv
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
2
|
Yau B, An Y, Germanos M, Schwarzkopf P, van der Kraan AG, Larance M, Webster H, Burns C, Asensio CS, Kebede MA. VPS41 deletion triggers progressive loss of insulin stores and downregulation of β-cell identity. Am J Physiol Endocrinol Metab 2025; 328:E457-E469. [PMID: 39716868 DOI: 10.1152/ajpendo.00389.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024]
Abstract
Vacuolar protein sorting-associated protein 41 (VPS41) has been established as a requirement for normal insulin secretory function in pancreatic β cells. Genetic deletion of VPS41 in mouse pancreatic β cells results in diabetes, although the mechanisms are not understood. Presently, we show that VPS41 deletion results in rapid mature insulin degradation and downregulation of β-cell identity. This phenotype is observed in vivo, with VPS41KO mice displaying progressive loss of insulin content and β-cell function with age. In acute VPS41 depletion in vitro, the loss of insulin is associated with increased degradative pathway activity, increased Adapter Protein 3 complex colocalization with lysosomes, increased nuclear localization of transcription factor E3, and downregulation of PDX1 and INS mRNA expression. Inhibition of lysosomal degradation rescues the rapidly depleted insulin content. These data evidence a VPS41-dependent mechanism for both insulin content degradation and loss of β-cell identity in β cells.NEW & NOTEWORTHY In this study, we show that acute VPS41 deletion results in rapid degradation of insulin, whereas chronic VPS41 deletion results in downregulation of β-cell identity. In acute VPS41 depletion in vitro, the loss of insulin is associated with increased degradative pathway activity, increased Adapter Protein 3 complex colocalization with lysosomes, increased nuclear localization of transcription factor E3, and downregulation of PDX1 and INS mRNA expression. Inhibition of lysosomal degradation rescues the rapidly depleted insulin content.
Collapse
Affiliation(s)
- Belinda Yau
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Yousun An
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Mark Germanos
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Patricia Schwarzkopf
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - A Gabrielle van der Kraan
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Mark Larance
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Hayley Webster
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Christian Burns
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States
| | - Melkam A Kebede
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
3
|
Dang Y, Zhao Z, Wang B, Du A, Li S, Yuan G, Pan Y. Polymeric Polylactic Acid-Glycolic Acid-Based Nanoparticles Deliver Nintedanib Across the Blood-Brain Barrier to Inhibit Glioblastoma Growth. Int J Mol Sci 2025; 26:443. [PMID: 39859159 PMCID: PMC11765036 DOI: 10.3390/ijms26020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
The aim of this study was to investigate the inhibitory effect of nintedanib (BIBF) on glioblastoma (GBM) cells and its mechanism of action and to optimize a drug delivery strategy to overcome the limitations posed by the blood-brain barrier (BBB). We analyzed the inhibition of GBM cell lines following BIBF treatment and explored its effect on the autophagy pathway. The cytotoxicity of BIBF was assessed using the CCK-8 assay, and further techniques such as transmission electron microscopy, Western blotting (WB), and flow cytometry were employed to demonstrate that BIBF could block the autophagic pathway by inhibiting the fusion of autophagosomes and lysosomes, ultimately limiting the proliferation of GBM cells. Molecular docking and surface plasmon resonance (SPR) experiments indicated that BIBF specifically binds to the autophagy-associated protein VPS18, interfering with its function and inhibiting the normal progression of autophagy. However, the application of BIBF in GBM therapy is limited due to restricted drug penetration across the BBB. Therefore, this study utilized poly-lactic-co-glycolic acid (PLGA) nanocarriers as a drug delivery system to significantly enhance the delivery efficiency of BIBF in vivo. In vitro cellular experiments and in vivo animal model validation demonstrated that PLGA-BIBF NPs effectively overcame the limitations of the BBB, significantly enhanced the antitumor activity of BIBF, and improved therapeutic efficacy in a GBM BALB/c-Nude model. This study demonstrated that BIBF exerted significant inhibitory effects on GBM cells by binding to VPS18 and inhibiting the autophagy pathway. Combined with the PLGA nanocarrier delivery system, the blood-brain barrier permeability and anti-tumor effect of BIBF were significantly enhanced. Targeting the BIBF-VPS18 pathway and optimizing drug delivery through nanotechnology may represent a new strategy for GBM treatment, providing innovative clinical treatment ideas and a theoretical basis for patients with GBM.
Collapse
Affiliation(s)
- Ying Dang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (Y.D.); (B.W.); (A.D.); (S.L.)
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Zhiwen Zhao
- The College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730030, China;
| | - Bo Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (Y.D.); (B.W.); (A.D.); (S.L.)
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Aichao Du
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (Y.D.); (B.W.); (A.D.); (S.L.)
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Shuangyi Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (Y.D.); (B.W.); (A.D.); (S.L.)
| | - Guoqiang Yuan
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (Y.D.); (B.W.); (A.D.); (S.L.)
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Yawen Pan
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (Y.D.); (B.W.); (A.D.); (S.L.)
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
4
|
Calakos N, Zech M. Emerging Molecular-Genetic Families in Dystonia: Endosome-Autophagosome-Lysosome and Integrated Stress Response Pathways. Mov Disord 2025; 40:7-21. [PMID: 39467044 PMCID: PMC11752985 DOI: 10.1002/mds.30037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024] Open
Abstract
Advances in genetic technologies and disease modeling have greatly accelerated the pace of introducing and validating molecular-genetic contributors to disease. In dystonia, there is a growing convergence across multiple distinct forms of the disease onto core biological processes. Here, we discuss two of these, the endosome-autophagosome-lysosome pathway and the integrated stress response, to highlight recent advances in the field. Using these two pathomechanisms as examples, we further discuss the opportunities that molecular-genetic grouping of dystonias present to transform dystonia care. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nicole Calakos
- Department of NeurologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of NeurobiologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of Cell BiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Michael Zech
- Institute of Human GeneticsTechnical University of Munich, School of Medicine and HealthMunichGermany
- Institute of NeurogenomicsHelmholtz MunichNeuherbergGermany
- Institute for Advanced StudyTechnical University of MunichGarchingGermany
| |
Collapse
|
5
|
Li H, Gong W, Sun W, Yao Y, Han Y. Role of VPS39, a key tethering protein for endolysosomal trafficking and mitochondria-lysosome crosstalk, in health and disease. J Cell Biochem 2024; 125:e30396. [PMID: 36924104 DOI: 10.1002/jcb.30396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
The coordinated interaction between mitochondria and lysosomes, mainly manifested by mitophagy, mitochondria-derived vesicles, and direct physical contact, is essential for maintaining cellular life activities. The VPS39 subunit of the homotypic fusion and protein sorting complex could play a key role in the regulation of organelle dynamics, such as endolysosomal trafficking and mitochondria-vacuole/lysosome crosstalk, thus contributing to a variety of physiological functions. The abnormalities of VPS39 and related subunits have been reported to be involved in the pathological process of some diseases. Here, we analyze the potential mechanisms and the existing problems of VPS39 in regulating organelle dynamics, which, in turn, regulate physiological functions and disease pathogenesis, so as to provide new clues for facilitating the discovery of therapeutic targets for mitochondrial and lysosomal diseases.
Collapse
Affiliation(s)
- Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenwen Gong
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Weiyun Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yuanfa Yao
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Wisner SR, Chlebowski M, Mandal A, Mai D, Stein C, Petralia RS, Wang YX, Drerup CM. An initial HOPS-mediated fusion event is critical for autophagosome transport initiation from the axon terminal. Autophagy 2024; 20:2275-2296. [PMID: 38899385 PMCID: PMC11423661 DOI: 10.1080/15548627.2024.2366122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
In neurons, macroautophagy/autophagy is a frequent and critical process. In the axon, autophagy begins in the axon terminal, where most nascent autophagosomes form. After formation, autophagosomes must initiate transport to exit the axon terminal and move toward the cell body via retrograde transport. During retrograde transport these autophagosomes mature through repetitive fusion events. Complete lysosomal cargo degradation occurs largely in the cell body. The precipitating events to stimulate retrograde autophagosome transport have been debated but their importance is clear: disrupting neuronal autophagy or autophagosome transport is detrimental to neuronal health and function. We have identified the HOPS complex as essential for early autophagosome maturation and consequent initiation of retrograde transport from the axon terminal. In yeast and mammalian cells, HOPS controls fusion between autophagosomes and late endosomes with lysosomes. Using zebrafish strains with loss-of-function mutations in vps18 and vps41, core components of the HOPS complex, we found that disruption of HOPS eliminates autophagosome maturation and disrupts retrograde autophagosome transport initiation from the axon terminal. We confirmed this phenotype was due to loss of HOPS complex formation using an endogenous deletion of the HOPS binding domain in Vps18. Finally, using pharmacological inhibition of lysosomal proteases, we show that initiation of autophagosome retrograde transport requires autophagosome maturation. Together, our data demonstrate that HOPS-mediated fusion events are critical for retrograde autophagosome transport initiation through promoting autophagosome maturation. This reveals critical roles for the HOPS complex in neuronal autophagy which deepens our understanding of the cellular pathology of HOPS-complex linked neurodegenerative diseases.Abbreviations: CORVET: Class C core vacuole/endosome tethering; gRNA: guide RNA; HOPS: homotypic fusion and protein sorting; pLL: posterior lateral line; Vps18: VPS18 core subunit of CORVET and HOPS complexes; Vps41: VPS41 subunit of HOPS complex.
Collapse
Affiliation(s)
- Serena R. Wisner
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Madison Chlebowski
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Amrita Mandal
- National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Don Mai
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Chris Stein
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ronald S. Petralia
- Advanced Imaging Core, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Catherine M. Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Wang D, Zhao X, Wang P, Liu JJ. SNX32 Regulates Sorting and Trafficking of Activated EGFR to the Lysosomal Degradation Pathway. Traffic 2024; 25:e12952. [PMID: 39073202 DOI: 10.1111/tra.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
SNX32 is a member of the evolutionarily conserved Phox (PX) homology domain- and Bin/Amphiphysin/Rvs (BAR) domain- containing sorting nexin (SNX-BAR) family of proteins, which play important roles in sorting and membrane trafficking of endosomal cargoes. Although SNX32 shares the highest amino acid sequence homology with SNX6, and has been believed to function redundantly with SNX5 and SNX6 in retrieval of the cation-independent mannose-6-phosphate receptor (CI-MPR) from endosomes to the trans-Golgi network (TGN), its role(s) in intracellular protein trafficking remains largely unexplored. Here, we report that it functions in parallel with SNX1 in mediating epidermal growth factor (EGF)-stimulated postendocytic trafficking of the epidermal growth factor receptor (EGFR). Moreover, SNX32 interacts directly with EGFR, and recruits SNX5 to promote sorting of EGF-EGFR into multivesicular bodies (MVBs) for lysosomal degradation. Thus, SNX32 functions distinctively from other SNX-BAR proteins to mediate signaling-coupled endolysosomal trafficking of EGFR.
Collapse
Affiliation(s)
- Dou Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xia Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Panpan Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Wu S, Jiang Q, Xia Z, Sun Z, Mu Q, Huang C, Song F, Yin M, Shen J, Li H, Yan S. Perfect cooperative pest control via nano-pesticide and natural predator: High predation selectivity and negligible toxicity toward predatory stinkbug. CHEMOSPHERE 2024; 355:141784. [PMID: 38537714 DOI: 10.1016/j.chemosphere.2024.141784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
The improper use of synthetic pesticides has caused adverse effects on global ecosystems and human health. As a part of sustainable pest management strategy, natural predators, along with nano-pesticides, have made significant contributions to ecological agriculture. The cooperative application of both approaches may overcome their limitations, substantially reducing pesticide application while controlling insect pests efficiently. Herein, the current study introduced a cationic star polymer (SPc) to prepare two types of nano-pesticides, which were co-applied with predatory stinkbugs Picromerus lewisi to achieve perfect cooperative pest control. The SPc exhibited nearly no toxicity against predatory stinkbugs at the working concentration, but it led to the death of predatory stinkbugs at extremely high concentration with the lethal concentration 50 (LC50) value of 13.57 mg/mL through oral feeding method. RNA-seq analysis revealed that the oral feeding of SPc could induce obvious stress responses, leading to stronger phagocytosis, exocytosis, and energy synthesis to ultimately result in the death of predatory stinkbugs. Then, the broflanilide and chlorobenzuron were employed to prepare the self-assembled nano-pesticides via hydrogen bond and Van der Waals force, and the complexation with SPc broke the self-aggregated structures of pesticides and reduced their particle sizes down to nanoscale. The bioactivities of prepared nano-pesticides were significantly improved toward common cutworm Spodoptera litura with the corrected mortality increase by approximately 30%. Importantly, predatory stinkbugs exhibited a strong predation selectivity for alive common cutworms to reduce the exposure risk of nano-pesticides, and the nano-pesticides showed negligible toxicity against predators. Thus, the nano-pesticides and predatory stinkbugs could be applied simultaneously for efficient and sustainable pest management. The current study provides an excellent precedent for perfect cooperative pest control via nano-pesticide and natural predator.
Collapse
Affiliation(s)
- Shangyuan Wu
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Qinhong Jiang
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Zhilin Xia
- Guizhou Provincial Tobacco Company, Qianxinan Branch, Xingyi, 562400, PR China
| | - Zhirong Sun
- Guizhou Provincial Tobacco Company, Qianxinan Branch, Xingyi, 562400, PR China
| | - Qing Mu
- Guizhou Provincial Tobacco Company, Qianxinan Branch, Xingyi, 562400, PR China
| | - Chunyang Huang
- Guizhou Provincial Tobacco Company, Zunyi Branch, Zunyi, 563000, PR China
| | - Fan Song
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jie Shen
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Hu Li
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China.
| | - Shuo Yan
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
9
|
Browning JL, Wilson KA, Shandra O, Wei X, Mahmutovic D, Maharathi B, Robel S, VandeVord PJ, Olsen ML. Applying Proteomics and Computational Approaches to Identify Novel Targets in Blast-Associated Post-Traumatic Epilepsy. Int J Mol Sci 2024; 25:2880. [PMID: 38474127 DOI: 10.3390/ijms25052880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Traumatic brain injury (TBI) can lead to post-traumatic epilepsy (PTE). Blast TBI (bTBI) found in Veterans presents with several complications, including cognitive and behavioral disturbances and PTE; however, the underlying mechanisms that drive the long-term sequelae are not well understood. Using an unbiased proteomics approach in a mouse model of repeated bTBI (rbTBI), this study addresses this gap in the knowledge. After rbTBI, mice were monitored using continuous, uninterrupted video-EEG for up to four months. Following this period, we collected cortex and hippocampus tissues from three groups of mice: those with post-traumatic epilepsy (PTE+), those without epilepsy (PTE-), and the control group (sham). Hundreds of differentially expressed proteins were identified in the cortex and hippocampus of PTE+ and PTE- relative to sham. Focusing on protein pathways unique to PTE+, pathways related to mitochondrial function, post-translational modifications, and transport were disrupted. Computational metabolic modeling using dysregulated protein expression predicted mitochondrial proton pump dysregulation, suggesting electron transport chain dysregulation in the epileptic tissue relative to PTE-. Finally, data mining enabled the identification of several novel and previously validated TBI and epilepsy biomarkers in our data set, many of which were found to already be targeted by drugs in various phases of clinical testing. These findings highlight novel proteins and protein pathways that may drive the chronic PTE sequelae following rbTBI.
Collapse
Affiliation(s)
- Jack L Browning
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kelsey A Wilson
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Oleksii Shandra
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Xiaoran Wei
- Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Dzenis Mahmutovic
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Biswajit Maharathi
- Neurology & Rehabilitation, University of Illinois, Chicago, IL 60612, USA
| | - Stefanie Robel
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pamela J VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Salem Veteran Affairs Medical Center, Salem, VA 24153, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
10
|
Hoffman HK, Prekeris R. HOPS-dependent lysosomal fusion controls Rab19 availability for ciliogenesis in polarized epithelial cells. J Cell Sci 2024; 137:jcs261047. [PMID: 37665101 PMCID: PMC10499034 DOI: 10.1242/jcs.261047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
Primary cilia are sensory cellular organelles crucial for organ development and homeostasis. Ciliogenesis in polarized epithelial cells requires Rab19-mediated clearing of apical cortical actin to allow the cilium to grow from the apically docked basal body into the extracellular space. Loss of the lysosomal membrane-tethering homotypic fusion and protein sorting (HOPS) complex disrupts this actin clearing and ciliogenesis, but it remains unclear how the ciliary function of HOPS relates to its canonical function in regulating late endosome-lysosome fusion. Here, we show that disruption of HOPS-dependent lysosomal fusion indirectly impairs actin clearing and ciliogenesis by disrupting the targeting of Rab19 to the basal body, and that this effect is specific to polarized epithelial cells. We also find that Rab19 functions in endolysosomal cargo trafficking in addition to having its previously identified role in ciliogenesis. In summary, we show that inhibition of lysosomal fusion leads to the abnormal accumulation of Rab19 on late endosomes, thus depleting Rab19 from the basal body and thereby disrupting Rab19-mediated actin clearing and ciliogenesis in polarized epithelial cells.
Collapse
Affiliation(s)
- Huxley K. Hoffman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Zadka Ł, Sochocka M, Hachiya N, Chojdak-Łukasiewicz J, Dzięgiel P, Piasecki E, Leszek J. Endocytosis and Alzheimer's disease. GeroScience 2024; 46:71-85. [PMID: 37646904 PMCID: PMC10828383 DOI: 10.1007/s11357-023-00923-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common cause of dementia. The pathogenesis of AD still remains unclear, including two main hypotheses: amyloid cascade and tau hyperphosphorylation. The hallmark neuropathological changes of AD are extracellular deposits of amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). Endocytosis plays an important role in a number of cellular processes including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. Based on the results of genetic and biochemical studies, there is a link between neuronal endosomal function and AD pathology. Taking this into account, we can state that in the results of previous research, endolysosomal abnormality is an important cause of neuronal lesions in the brain. Endocytosis is a central pathway involved in the regulation of the degradation of amyloidogenic components. The results of the studies suggest that a correlation between alteration in the endocytosis process and associated protein expression progresses AD. In this article, we discuss the current knowledge about endosomal abnormalities in AD.
Collapse
Affiliation(s)
- Łukasz Zadka
- Division of Ultrastructural Research, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Marta Sochocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland.
| | - Naomi Hachiya
- Shonan Research Center, Central Glass Co., Ltd, Shonan Health Innovation Park 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | | | - Piotr Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, Chałubińskiego 6a, 50-368, Wroclaw, Poland
| | - Egbert Piasecki
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wybrzeże L. Pasteura 10, 50-367, Wroclaw, Poland
| |
Collapse
|
12
|
Abstract
Dystonia is a clinically and genetically highly heterogeneous neurological disorder characterized by abnormal movements and postures caused by involuntary sustained or intermittent muscle contractions. A number of groundbreaking genetic and molecular insights have recently been gained. While they enable genetic testing and counseling, their translation into new therapies is still limited. However, we are beginning to understand shared pathophysiological pathways and molecular mechanisms. It has become clear that dystonia results from a dysfunctional network involving the basal ganglia, cerebellum, thalamus, and cortex. On the molecular level, more than a handful of, often intertwined, pathways have been linked to pathogenic variants in dystonia genes, including gene transcription during neurodevelopment (e.g., KMT2B, THAP1), calcium homeostasis (e.g., ANO3, HPCA), striatal dopamine signaling (e.g., GNAL), endoplasmic reticulum stress response (e.g., EIF2AK2, PRKRA, TOR1A), autophagy (e.g., VPS16), and others. Thus, different forms of dystonia can be molecularly grouped, which may facilitate treatment development in the future.
Collapse
Affiliation(s)
- Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| |
Collapse
|
13
|
Huang J, Gan J, Wang J, Zheng M, Xiao H. VPS72, a member of VPS protein family, can be used as a new prognostic marker for hepatocellular carcinoma. Immun Inflamm Dis 2023; 11:e856. [PMID: 37249275 PMCID: PMC10201960 DOI: 10.1002/iid3.856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Vacuolar protein sorting (VPS) plays a crucial role in intracellular molecular transport between organelles. However, studies have indicated a correlation between VPSs and tumorigenesis and the development of several cancers. Nevertheless, the association between VPSs and hepatocellular carcinoma (HCC) remains unclear. METHODS By analyzing databases such as The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC), we investigated the differences in VPSs expression between normal tissue and HCC transcriptomes. Furthermore, we examined the relationship between VPSs expression and overall survival (OS) in patients with HCC. Univariate and multivariate Cox analyses were employed to assess the prognostic value of VPS72 as an independent factor, and the correlation between VPS72 and the tumor immune microenvironment was also analyzed. RESULTS We observed significant overexpression of 28 VPSs in HCC tissues compared to normal tissues. The mRNA expression of VPSs displayed a negative correlation with OS, while exhibiting a positive correlation with tumor grade and stage. Additionally, both univariate and multivariate Cox analyses identified VPS72 as a potential independent risk factor for HCC prognosis. Overexpression of VPS72 demonstrated a positive correlation with various clinicopathological factors associated with poor prognosis, as well as the infiltration levels of immune cells. CONCLUSION Therefore, our research shows that VPSs participate in HCC occurrence and development, especially VPS72, which may act as a potential target for HCC treatment and prognosis biomarker.
Collapse
Affiliation(s)
- Jian Huang
- Department of General surgeryJiujiang First People's HospitalJiujiangChina
| | - Jin Gan
- Department of General surgeryJiujiang First People's HospitalJiujiangChina
| | - Jian Wang
- Department of Hepato‐Biliary‐Pancreatic SurgeryPingxiang People's HospitalPingxiangChina
| | - Min Zheng
- Department of rehabilitationLushan People's HospitalJiujiangChina
| | - Han Xiao
- Department of General surgeryJiujiang First People's HospitalJiujiangChina
- Department of Hepato‐Biliary‐Pancreatic SurgeryJiujiang First People's HospitalJiujiangChina
| |
Collapse
|
14
|
Gai Y, Qian L, Jiang S, Li J, Zhang X, Yang X, Pan H, Liao Y, Wang H, Huang S, Zhang S, Nie H, Ma M, Li H. Vacuolar protein sorting 35 (VPS35) acts as a tumor promoter via facilitating cell cycle progression in pancreatic ductal adenocarcinoma. Funct Integr Genomics 2023; 23:90. [PMID: 36933061 DOI: 10.1007/s10142-023-01020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is insidious and highly malignant with extremely poor prognosis and drug resistance to current chemotherapies. Therefore, there is a critical need to investigate the molecular mechanism underlying PDAC progression to develop promising diagnostic and therapeutic interventions. In parallel, vacuolar protein sorting (VPS) proteins, involved in the sorting, transportation, and localization of membrane proteins, have gradually attracted the attention of researchers in the development of cancers. Although VPS35 has been reported to promote carcinoma progression, the specific molecular mechanism is still unclear. Here, we determined the impact of VPS35 on the tumorigenesis of PDAC and explored the underlying molecular mechanism. We performed a pan-cancer analysis of 46 VPS genes using RNAseq data from GTEx (control) and TCGA (tumor) and predicted potential functions of VPS35 in PDAC by enrichment analysis. Furthermore, cell cloning experiments, gene knockout, cell cycle analysis, immunohistochemistry, and other molecular and biochemical experiments were used to validate the function of VPS35. Consequently, VPS35 was found overexpressed in multiple cancers and correlated with the poor prognosis of PDAC. Meanwhile, we verified that VPS35 could modulate the cell cycle and promote tumor cell growth in PDAC. Collectively, we provide solid evidence that VPS35 facilitates the cell cycle progression as a critical novel target in PDAC clinical therapy.
Collapse
Affiliation(s)
- Yanzhi Gai
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Liheng Qian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xueli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaomei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hong Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yingna Liao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Huiling Wang
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Shan Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Huizhen Nie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Mingze Ma
- Department of Infectious Diseases, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China.
| | - Hui Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
15
|
Real N, Villar I, Serrano I, Guiu-Aragonés C, Martín-Hernández AM. Mutations in CmVPS41 controlling resistance to cucumber mosaic virus display specific subcellular localization. PLANT PHYSIOLOGY 2023; 191:1596-1611. [PMID: 36527697 PMCID: PMC10022621 DOI: 10.1093/plphys/kiac583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Resistance to cucumber mosaic virus (CMV) in melon (Cucumis melo L.) has been described in several exotic accessions and is controlled by a recessive resistance gene, cmv1, that encodes a vacuolar protein sorting 41 (CmVPS41). cmv1 prevents systemic infection by restricting the virus to the bundle sheath cells, preventing viral phloem entry. CmVPS41 from different resistant accessions carries two causal mutations, either a G85E change, found in Pat-81 and Freeman's cucumber, or L348R, found in PI161375, cultivar Songwhan Charmi (SC). Here, we analyzed the subcellular localization of CmVPS41 in Nicotiana benthamiana and found differential structures in resistant and susceptible accessions. Susceptible accessions showed nuclear and membrane spots and many transvacuolar strands, whereas the resistant accessions showed many intravacuolar invaginations. These specific structures colocalized with late endosomes. Artificial CmVPS41 carrying individual mutations causing resistance in the genetic background of CmVPS41 from the susceptible variety Piel de Sapo (PS) revealed that the structure most correlated with resistance was the absence of transvacuolar strands. Coexpression of CmVPS41 with viral movement proteins, the determinant of virulence, did not change these localizations; however, infiltration of CmVPS41 from either SC or PS accessions in CMV-infected N. benthamiana leaves showed a localization pattern closer to each other, with up to 30% cells showing some membrane spots in the CmVPS41SC and fewer transvacuolar strands (reduced from a mean of 4 to 1-2) with CmVPS41PS. Our results suggest that the distribution of CmVPS41PS in late endosomes includes transvacuolar strands that facilitate CMV infection and that CmVPS41 re-localizes during viral infection.
Collapse
Affiliation(s)
- Núria Real
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Irene Villar
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
- Universidad de Zaragoza, Calle Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| | - Irene Serrano
- Laboratoire des Interactions des Plantes et Microorganismes, CNRS, 31326 Toulouse, France
| | - Cèlia Guiu-Aragonés
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, C/ Vall Moronta, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| |
Collapse
|
16
|
Targeting VPS41 induces methuosis and inhibits autophagy in cancer cells. Cell Chem Biol 2023; 30:130-143.e5. [PMID: 36708709 DOI: 10.1016/j.chembiol.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
The homotypic fusion and vacuole protein sorting (HOPS) complex mediates membrane trafficking involved in endocytosis, autophagy, lysosome biogenesis, and phagocytosis. Defects in HOPS subunits are associated with various forms of cancer, but their potential as drug targets has rarely been examined. Here, we identified vacuolar protein sorting-associated protein 41 homolog (VPS41), a subunit of the HOPS complex, as a target of methyl 2,4-dihydroxy-3-(3-methyl-2-butenyl)-6-phenethylbenzoate (DMBP), a natural small molecule with preferable anticancer activity. DMBP induced methuosis and inhibited autophagic flux in cancer cells by inhibiting the function of VPS41, leading to the restrained fusion of late endosomes and autophagosomes with lysosomes. Moreover, DMBP effectively inhibited metastasis in a mouse metastatic melanoma model. Collectively, the current work revealed that targeting VPS41 would provide a valuable method of inhibiting cancer proliferation through methuosis.
Collapse
|
17
|
Hoffman HK, Prekeris R. HOPS-dependent lysosomal fusion controls Rab19 availability for ciliogenesis in polarized epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527563. [PMID: 36798155 PMCID: PMC9934645 DOI: 10.1101/2023.02.07.527563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Primary cilia are sensory cellular organelles crucial for organ development and homeostasis. Ciliogenesis in polarized epithelial cells requires Rab19-mediated clearing of apical cortical actin to allow the cilium to grow from the apically-docked basal body into the extracellular space. Loss of the lysosomal membrane-tethering HOPS complex disrupts this actin-clearing and ciliogenesis, but it remains unclear how ciliary function of HOPS relates to its canonical function in regulating late endosome-lysosome fusion. Here, we show that disruption of HOPS-dependent lysosomal fusion indirectly impairs actin-clearing and ciliogenesis by disrupting the targeting of Rab19 to the basal body. We also find that Rab19 functions in endolysosomal cargo trafficking apart from its previously-identified role in ciliogenesis. In summary, we show that inhibition of lysosomal fusion abnormally accumulates Rab19 on late endosomes, thus depleting Rab19 from the basal body and thereby disrupting Rab19-mediated actin-clearing and ciliogenesis. Summary statement Loss of HOPS-mediated lysosomal fusion indirectly blocks apical actin clearing and ciliogenesis in polarized epithelia by trapping Rab19 on late endosomes and depleting Rab19 from the basal body.
Collapse
Affiliation(s)
- Huxley K. Hoffman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Smits DJ, Dekker J, Schot R, Tabarki B, Alhashem A, Demmers JAA, Dekkers DHW, Romito A, van der Spek PJ, van Ham TJ, Bertoli-Avella AM, Mancini GMS. CLEC16A interacts with retromer and TRIM27, and its loss impairs endosomal trafficking and neurodevelopment. Hum Genet 2023; 142:379-397. [PMID: 36538041 PMCID: PMC9950183 DOI: 10.1007/s00439-022-02511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
CLEC16A is a membrane-associated C-type lectin protein that functions as a E3-ubiquitin ligase. CLEC16A regulates autophagy and mitophagy, and reportedly localizes to late endosomes. GWAS studies have associated CLEC16A SNPs to various auto-immune and neurological disorders, including multiple sclerosis and Parkinson disease. Studies in mouse models imply a role for CLEC16A in neurodegeneration. We identified bi-allelic CLEC16A truncating variants in siblings from unrelated families presenting with a severe neurodevelopmental disorder including microcephaly, brain atrophy, corpus callosum dysgenesis, and growth retardation. To understand the function of CLEC16A in neurodevelopment we used in vitro models and zebrafish embryos. We observed CLEC16A localization to early endosomes in HEK293T cells. Mass spectrometry of human CLEC16A showed interaction with endosomal retromer complex subunits and the endosomal ubiquitin ligase TRIM27. Expression of the human variant leading to C-terminal truncated CLEC16A, abolishes both its endosomal localization and interaction with TRIM27, suggesting a loss-of-function effect. CLEC16A knockdown increased TRIM27 adhesion to early endosomes and abnormal accumulation of endosomal F-actin, a sign of disrupted vesicle sorting. Mutagenesis of clec16a by CRISPR-Cas9 in zebrafish embryos resulted in accumulated acidic/phagolysosome compartments, in neurons and microglia, and dysregulated mitophagy. The autophagocytic phenotype was rescued by wild-type human CLEC16A but not the C-terminal truncated CLEC16A. Our results demonstrate that CLEC16A closely interacts with retromer components and regulates endosomal fate by fine-tuning levels of TRIM27 and polymerized F-actin on the endosome surface. Dysregulation of CLEC16A-mediated endosomal sorting is associated with neurodegeneration, but it also causes accumulation of autophagosomes and unhealthy mitochondria during brain development.
Collapse
Affiliation(s)
- Daphne J Smits
- Department of Clinical Genetics, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands.
| | - Jordy Dekker
- Department of Clinical Genetics, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands.
| | - Rachel Schot
- Department of Clinical Genetics, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands
| | - Brahim Tabarki
- Division of Pediatric Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, 12233, Saudi Arabia
| | - Amal Alhashem
- Division of Pediatric Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, 12233, Saudi Arabia
| | - Jeroen A A Demmers
- Department of Molecular Genetics, Proteomics Center, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands
| | - Dick H W Dekkers
- Department of Molecular Genetics, Proteomics Center, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands
| | | | - Peter J van der Spek
- Department of Pathology, Clinical Bioinformatics, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands
| | - Tjakko J van Ham
- Department of Clinical Genetics, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands
| | | | - Grazia M S Mancini
- Department of Clinical Genetics, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands
| |
Collapse
|
19
|
Pavlova EV, Lev D, Michelson M, Yosovich K, Michaeli HG, Bright NA, Manna PT, Dickson VK, Tylee KL, Church HJ, Luzio JP, Cox TM. Juvenile mucopolysaccharidosis plus disease caused by a missense mutation in VPS33A. Hum Mutat 2022; 43:2265-2278. [PMID: 36153662 PMCID: PMC10091966 DOI: 10.1002/humu.24479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 01/25/2023]
Abstract
A rare and fatal disease resembling mucopolysaccharidosis in infants, is caused by impaired intracellular endocytic trafficking due to deficiency of core components of the intracellular membrane-tethering protein complexes, HOPS, and CORVET. Whole exome sequencing identified a novel VPS33A mutation in a patient suffering from a variant form of mucopolysaccharidosis. Electron and confocal microscopy, immunoblotting, and glycosphingolipid trafficking experiments were undertaken to investigate the effects of the mutant VPS33A in patient-derived skin fibroblasts. We describe an attenuated juvenile form of VPS33A-related syndrome-mucopolysaccharidosis plus in a man who is homozygous for a hitherto unknown missense mutation (NM_022916.4: c.599 G>C; NP_075067.2:p. Arg200Pro) in a conserved region of the VPS33A gene. Urinary glycosaminoglycan (GAG) analysis revealed increased heparan, dermatan sulphates, and hyaluronic acid. We showed decreased abundance of VPS33A in patient derived fibroblasts and provided evidence that the p.Arg200Pro mutation leads to destablization of the protein and proteasomal degradation. As in the infantile form of mucopolysaccharidosis plus, the endocytic compartment in the fibroblasts also expanded-a phenomenon accompanied by increased endolysosomal acidification and impaired intracellular glycosphingolipid trafficking. Experimental treatment of the patient's cultured fibroblasts with the proteasome inhibitor, bortezomib, or exposure to an inhibitor of glucosylceramide synthesis, eliglustat, improved glycosphingolipid trafficking. To our knowledge this is the first report of an attenuated juvenile form of VPS33A insufficiency characterized by appreciable residual endosomal-lysosomal trafficking and a milder mucopolysaccharidosis plus than the disease in infants. Our findings expand the proof of concept of redeploying clinically approved drugs for therapeutic exploitation in patients with juvenile as well as infantile forms of mucopolysaccharidosis plus disease.
Collapse
Affiliation(s)
- Elena V Pavlova
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Dorit Lev
- Wolfson Medical Centre, Institute of Medical Genetics, Holon, Israel.,The Rina Mor Institute of Medical Genetics, Holon, Israel.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Michelson
- Wolfson Medical Centre, Institute of Medical Genetics, Holon, Israel
| | - Keren Yosovich
- Wolfson Medical Centre, Institute of Medical Genetics, Holon, Israel
| | - Hila Gur Michaeli
- Wolfson Medical Centre, Institute of Medical Genetics, Holon, Israel
| | - Nicholas A Bright
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK
| | - Paul T Manna
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK.,Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Veronica Kane Dickson
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK
| | - Karen L Tylee
- Willink Biochemical Genetics Unit, Genomic Diagnostics Laboratory, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust St Mary's Hospital, Manchester, UK
| | - Heather J Church
- Willink Biochemical Genetics Unit, Genomic Diagnostics Laboratory, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust St Mary's Hospital, Manchester, UK
| | - J Paul Luzio
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK
| | - Timothy M Cox
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Aldosary M, Alsagob M, AlQudairy H, González-Álvarez AC, Arold ST, Dababo MA, Alharbi OA, Almass R, AlBakheet A, AlSarar D, Qari A, Al-Ansari MM, Oláhová M, Al-Shahrani SA, AlSayed M, Colak D, Taylor RW, AlOwain M, Kaya N. A Novel Homozygous Founder Variant of RTN4IP1 in Two Consanguineous Saudi Families. Cells 2022; 11:3154. [PMID: 36231115 PMCID: PMC9563936 DOI: 10.3390/cells11193154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022] Open
Abstract
The genetic architecture of mitochondrial disease continues to expand and currently exceeds more than 350 disease-causing genes. Bi-allelic variants in RTN4IP1, also known as Optic Atrophy-10 (OPA10), lead to early-onset recessive optic neuropathy, atrophy, and encephalopathy in the afflicted patients. The gene is known to encode a mitochondrial ubiquinol oxidoreductase that interacts with reticulon 4 and is thought to be a mitochondrial antioxidant NADPH oxidoreductase. Here, we describe two unrelated consanguineous families from the northern region of Saudi Arabia harboring a missense variant (RTN4IP1:NM_032730.5; c.475G
Collapse
Affiliation(s)
- Mazhor Aldosary
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Maysoon Alsagob
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
- Center of Excellence for Biomedicine, Joint Centers for Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Hanan AlQudairy
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Ana C. González-Álvarez
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Stefan T. Arold
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université de Montpellier, F-34090 Montpellier, France
| | - Mohammad Anas Dababo
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Omar A. Alharbi
- Radiology Department, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Rawan Almass
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - AlBandary AlBakheet
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Dalia AlSarar
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alya Qari
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Mysoon M. Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Monika Oláhová
- Welcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Saif A. Al-Shahrani
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Moeenaldeen AlSayed
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Dilek Colak
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Robert W. Taylor
- Welcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialized Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Mohammed AlOwain
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Namik Kaya
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
21
|
Di Fonzo A, Albanese A, Jinnah HH. The apparent paradox of phenotypic diversity and shared mechanisms across dystonia syndromes. Curr Opin Neurol 2022; 35:502-509. [PMID: 35856917 PMCID: PMC9309988 DOI: 10.1097/wco.0000000000001076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW We describe here how such mechanisms shared by different genetic forms can give rise to motor performance dysfunctions with a clinical aspect of dystonia. RECENT FINDINGS The continuing discoveries of genetic causes for dystonia syndromes are transforming our view of these disorders. They share unexpectedly common underlying mechanisms, including dysregulation in neurotransmitter signaling, gene transcription, and quality control machinery. The field has further expanded to include forms recently associated with endolysosomal dysfunction. SUMMARY The discovery of biological pathways shared between different monogenic dystonias is an important conceptual advance in the understanding of the underlying mechanisms, with a significant impact on the pathophysiological understanding of clinical phenomenology. The functional relationship between dystonia genes could revolutionize current dystonia classification systems, classifying patients with different monogenic forms based on common pathways. The most promising effect of these advances is on future mechanism-based therapeutic approaches.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neurology Unit, Milan, Italy
| | - Alberto Albanese
- Department of Neurology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Hyder H. Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Emory University School of Medicine, Atlanta GA, 30322, USA
| |
Collapse
|
22
|
Dzinovic I, Winkelmann J, Zech M. Genetic intersection between dystonia and neurodevelopmental disorders: Insights from genomic sequencing. Parkinsonism Relat Disord 2022; 102:131-140. [DOI: 10.1016/j.parkreldis.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
|
23
|
Dafsari HS, Pemberton JG, Ferrer EA, Yammine T, Farra C, Mohammadi MH, Ghayoor Karimiani E, Hashemi N, Souaid M, Sabbagh S, Najarzadeh Torbati P, Khan S, Roze E, Moreno‐De‐Luca A, Bertoli‐Avella AM, Houlden H, Balla T, Maroofian R. PI4K2A deficiency causes innate error in intracellular trafficking with developmental and epileptic-dyskinetic encephalopathy. Ann Clin Transl Neurol 2022; 9:1345-1358. [PMID: 35880319 PMCID: PMC9463957 DOI: 10.1002/acn3.51634] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Intracellular signaling networks rely on proper membrane organization to control an array of cellular processes such as metabolism, proliferation, apoptosis, and macroautophagy in eukaryotic cells and organisms. Phosphatidylinositol 4-phosphate (PI4P) emerged as an essential regulatory lipid within organelle membranes that defines their lipid composition and signaling properties. PI4P is generated by four distinct phosphatidylinositol 4-kinases (PI4K) in mammalian cells: PI4KA, PI4KB, PI4K2A, PI4K2B. Animal models and human genetic studies suggest vital roles of PI4K enzymes in development and function of various organs, including the nervous system. Bi-allelic variants in PI4KA were recently associated with neurodevelopmental disorders (NDD), brain malformations, leukodystrophy, primary immunodeficiency, and inflammatory bowel disease. Here, we describe patients from two unrelated consanguineous families with PI4K2A deficiency and functionally explored the pathogenic mechanism. METHODS Two patients with PI4K2A deficiency were identified by exome sequencing, presenting with developmental and epileptic-dyskinetic encephalopathy. Neuroimaging showed corpus callosum dysgenesis, diffuse white matter volume loss, and hypoplastic vermis. In addition to NDD, we observed recurrent infections and death at toddler age. We further explored identified variants with cellular assays. RESULTS This clinical presentation overlaps with what was previously reported in two affected siblings with homozygous nonsense PI4K2A variant. Cellular studies analyzing these human variants confirmed their deleterious effect on PI4K2A activity and, together with the central role of PI4K2A in Rab7-associated vesicular trafficking, establish a link between late endosome-lysosome defects and NDD. INTERPRETATION Our study establishes the genotype-phenotype spectrum of PI4K-associated NDD and highlights several commonalities with other innate errors of intracellular trafficking.
Collapse
Affiliation(s)
- Hormos Salimi Dafsari
- Department of PediatricsFaculty of Medicine and University Hospital Cologne, University of CologneKerpener Str. 6250937KölnGermany,Max‐Planck‐Institute for Biology of Ageing and CECADCologneGermany,Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation TrustLondonUK
| | - Joshua G. Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHDNational Institutes of HealthBethesdaMarylandUSA
| | - Elizabeth A. Ferrer
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHDNational Institutes of HealthBethesdaMarylandUSA
| | - Tony Yammine
- Medical Genetics UnitSaint Joseph UniversityBeirutLebanon
| | - Chantal Farra
- Medical Genetics UnitSaint Joseph UniversityBeirutLebanon,Department of GeneticsHotel Dieu de France Medical CenterBeirutLebanon
| | | | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences InstituteSt. George's, University of LondonCranmer TerraceLondonUK,Department of Medical GeneticsNext Generation Genetic PolyclinicMashhadIran
| | - Narges Hashemi
- Department of Pediatric Neurology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mirna Souaid
- Medical Genetics UnitSaint Joseph UniversityBeirutLebanon
| | - Sandra Sabbagh
- Department of GeneticsHotel Dieu de France Medical CenterBeirutLebanon
| | | | | | - Emmanuel Roze
- CNRS, INSERM, Institut du Cerveau (ICM)Sorbonne UniversitéParis75013France,DMU NeurosciencesHôpital de la Pitié‐Salpêtrière, Assistance Publique‐Hôpitaux de ParisParis75013France
| | - Andres Moreno‐De‐Luca
- Department of Radiology, Diagnostic Medicine InstituteAutism & Developmental Medicine Institute, Genomic Medicine Institute, GeisingerDanvillePennsylvaniaUSA
| | | | - Henry Houlden
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyQueen SquareLondonUK
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHDNational Institutes of HealthBethesdaMarylandUSA
| | - Reza Maroofian
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyQueen SquareLondonUK
| |
Collapse
|
24
|
Aboheimed GI, AlRasheed MM, Almudimeegh S, Peña-Guerra KA, Cardona-Londoño KJ, Salih MA, Seidahmed MZ, Al-Mohanna F, Colak D, Harvey RJ, Harvey K, Arold ST, Kaya N, Ruiz AJ. Clinical, genetic, and functional characterization of the glycine receptor β-subunit A455P variant in a family affected by hyperekplexia syndrome. J Biol Chem 2022; 298:102018. [PMID: 35526563 PMCID: PMC9241032 DOI: 10.1016/j.jbc.2022.102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 12/01/2022] Open
Abstract
Hyperekplexia is a rare neurological disorder characterized by exaggerated startle responses affecting newborns with the hallmark characteristics of hypertonia, apnea, and noise or touch-induced nonepileptic seizures. The genetic causes of the disease can vary, and several associated genes and mutations have been reported to affect glycine receptors (GlyRs); however, the mechanistic links between GlyRs and hyperekplexia are not yet understood. Here, we describe a patient with hyperekplexia from a consanguineous family. Extensive genetic screening using exome sequencing coupled with autozygome analysis and iterative filtering supplemented by in silico prediction identified that the patient carries the homozygous missense mutation A455P in GLRB, which encodes the GlyR β-subunit. To unravel the physiological and molecular effects of A455P on GlyRs, we used electrophysiology in a heterologous system as well as immunocytochemistry, confocal microscopy, and cellular biochemistry. We found a reduction in glycine-evoked currents in N2A cells expressing the mutation compared to WT cells. Western blot analysis also revealed a reduced amount of GlyR β protein both in cell lysates and isolated membrane fractions. In line with the above observations, coimmunoprecipitation assays suggested that the GlyR α1-subunit retained coassembly with βA455P to form membrane-bound heteromeric receptors. Finally, structural modeling showed that the A455P mutation affected the interaction between the GlyR β-subunit transmembrane domain 4 and the other helices of the subunit. Taken together, our study identifies and validates a novel loss-of-function mutation in GlyRs whose pathogenicity is likely to cause hyperekplexia in the affected individual.
Collapse
Affiliation(s)
- Ghada I Aboheimed
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia; Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia; Department of Pharmacology, The School of Pharmacy, University College London, London, United Kingdom
| | - Maha M AlRasheed
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology, The School of Pharmacy, University College London, London, United Kingdom; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Karla A Peña-Guerra
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Kelly J Cardona-Londoño
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Mustafa A Salih
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Z Seidahmed
- Department of Pediatrics, Security Forces Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Futwan Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Dilek Colak
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Robert J Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Kirsten Harvey
- Department of Pharmacology, The School of Pharmacy, University College London, London, United Kingdom
| | - Stefan T Arold
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia; Centre de Biologie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Namik Kaya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.
| | - Arnaud J Ruiz
- Department of Pharmacology, The School of Pharmacy, University College London, London, United Kingdom.
| |
Collapse
|
25
|
Zebrafish Syndromic Albinism Models as Tools for Understanding and Treating Pigment Cell Disease in Humans. Cancers (Basel) 2022; 14:cancers14071752. [PMID: 35406524 PMCID: PMC8997128 DOI: 10.3390/cancers14071752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Zebrafish (Danio rerio) is an emerging model for studying many diseases, including disorders originating in black pigment cells, melanocytes. In this review of the melanocyte literature, we discuss the current knowledge of melanocyte biology relevant to understanding different forms of albinism and the potential of the zebrafish model system for finding novel mechanisms and treatments. Abstract Melanin is the pigment that protects DNA from ultraviolet (UV) damage by absorbing excess energy. Melanin is produced in a process called melanogenesis. When melanogenesis is altered, diseases such as albinism result. Albinism can result in an increased skin cancer risk. Conversely, black pigment cell (melanocyte) development pathways can be misregulated, causing excessive melanocyte growth that leads to melanoma (cancer of melanocytes). Zebrafish is an emerging model organism used to study pigment disorders due to their high fecundity, visible melanin development in melanophores (melanocytes in mammals) from 24 h post-fertilization, and conserved melanogenesis pathways. Here, we reviewed the conserved developmental pathways in zebrafish melanophores and mammalian melanocytes. Additionally, we summarized the progress made in understanding pigment cell disease and evidence supporting the strong potential for using zebrafish to find novel treatment options for albinism.
Collapse
|
26
|
Genetic disorders of cellular trafficking. Trends Genet 2022; 38:724-751. [DOI: 10.1016/j.tig.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
|
27
|
AlQudairy H, AlDhalaan H, AlRuways S, AlMutairi N, AlNakiyah M, AlGhofaili R, AlBakheet A, Alomrani A, Alharbi OA, Tous E, AlSayed M, AlZaidan H, AlRasheed MM, AlOdaib A, Kaya N. Clinical, radiological, and genetic characterization of SLC13A5 variants in Saudi families: Genotype phenotype correlation and brief review of the literature. Front Pediatr 2022; 10:1051534. [PMID: 36923948 PMCID: PMC10008858 DOI: 10.3389/fped.2022.1051534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/14/2022] [Indexed: 03/03/2023] Open
Abstract
Background SLC13A5 (solute carrier family 13, member 5) encodes sodium/citrate cotransporter, which mainly localizes in cellular plasma membranes in the frontal cortex, retina, and liver. Pathogenic variants of the gene cause an autosomal recessive syndrome known as "developmental and epileptic encephalopathy 25 with amelogenesis imperfecta." Results Here, we have investigated six patients from three different consanguineous Saudi families. The affected individuals presented with neonatal seizures, developmental delay, and significant defects in tooth development. Some patients showed other clinical features such as muscle weakness, motor difficulties, intellectual disability, microcephaly, and speech problems in addition to additional abnormalities revealed by electroencephalography (EEGs) and magnetic resonance imaging (MRI). One of the MRI findings was related to cortical thickening in the frontal lobe. To diagnose and study the genetic defects of the patients, whole exome sequencing (WES) coupled with confirmatory Sanger sequencing was utilized. Iterative filtering identified two variants of SLC13A5, one of which is novel, in the families. Families 1 and 2 had the same insertion (a previously reported mutation), leading to a frameshift and premature stop codon. The third family had a novel splice site variant. Confirmatory Sanger sequencing corroborated WES results and indicated full segregation of the variants in the corresponding families. The patients' conditions were poorly controlled by multiple antiepileptics as they needed constant care. Conclusion Considering that recessive mutations are common in the Arab population, SLC13A5 screening should be prioritized in future patients harboring similar symptoms including defects in molar development.
Collapse
Affiliation(s)
- Hanan AlQudairy
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital, and Research Centre (KFSHRC), Riyadh, Saudi Arabia
| | | | - Sarah AlRuways
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital, and Research Centre (KFSHRC), Riyadh, Saudi Arabia.,College of Pharmacy, King Saud University (KSU), Riyadh, Saudi Arabia
| | - Nouf AlMutairi
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital, and Research Centre (KFSHRC), Riyadh, Saudi Arabia.,College of Pharmacy, King Saud University (KSU), Riyadh, Saudi Arabia
| | - Maha AlNakiyah
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital, and Research Centre (KFSHRC), Riyadh, Saudi Arabia.,College of Pharmacy, King Saud University (KSU), Riyadh, Saudi Arabia
| | - Reema AlGhofaili
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital, and Research Centre (KFSHRC), Riyadh, Saudi Arabia.,College of Pharmacy, King Saud University (KSU), Riyadh, Saudi Arabia
| | | | | | - Omar A Alharbi
- Department of Neurosciences, KFSHRC, Riyadh, Saudi Arabia
| | - Ehab Tous
- Department of Neurosciences, KFSHRC, Riyadh, Saudi Arabia
| | - Moeen AlSayed
- Department of Medical Genomics, Center for Genomic Medicine, KFSHRC, Riyadh, Saudi Arabia
| | - Hamad AlZaidan
- Department of Medical Genomics, Center for Genomic Medicine, KFSHRC, Riyadh, Saudi Arabia
| | - Maha M AlRasheed
- College of Pharmacy, King Saud University (KSU), Riyadh, Saudi Arabia.,Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali AlOdaib
- Training and Education Department, Research Centre, KFSHRC, Riyadh, Saudi Arabia
| | - Namik Kaya
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital, and Research Centre (KFSHRC), Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Aldhalaan H, AlBakheet A, AlRuways S, AlMutairi N, AlNakiyah M, AlGhofaili R, Cardona-Londoño KJ, Alahmadi KO, AlQudairy H, AlRasheed MM, Colak D, Arold ST, Kaya N. A Novel GEMIN4 Variant in a Consanguineous Family Leads to Neurodevelopmental Impairment with Severe Microcephaly, Spastic Quadriplegia, Epilepsy, and Cataracts. Genes (Basel) 2021; 13:genes13010092. [PMID: 35052432 PMCID: PMC8774908 DOI: 10.3390/genes13010092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/24/2022] Open
Abstract
Pathogenic variants in GEMIN4 contribute to a hereditary disorder characterized by neurodevelopmental features, microcephaly, cataracts, and renal abnormalities (known as NEDMCR). To date, only two homoallelic variations have been linked to the disease. Moreover, clinical features associated with the variants have not been fully elucidated yet. Here, we identified a novel variant in GEMIN4 (NM_015721:exon2:c.440A>G:p.His147Arg) in two siblings from a consanguineous Saudi family by using whole exome sequencing followed by Sanger sequence verification. We comprehensively investigated the patients’ clinical features, including brain imaging and electroencephalogram findings, and compared their phenotypic characteristics with those of previously reported cases. In silico prediction and structural modeling support that the p.His147Arg variant is pathogenic.
Collapse
Affiliation(s)
- Hesham Aldhalaan
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Albandary AlBakheet
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
| | - Sarah AlRuways
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Nouf AlMutairi
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Maha AlNakiyah
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Reema AlGhofaili
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Kelly J. Cardona-Londoño
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.J.C.-L.); (S.T.A.)
| | - Khalid Omar Alahmadi
- Department of Radiology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Hanan AlQudairy
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
| | - Maha M. AlRasheed
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Stefan T. Arold
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.J.C.-L.); (S.T.A.)
| | - Namik Kaya
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Correspondence: ; Tel.: +966-11-4647272 (ext. 39612)
| |
Collapse
|
29
|
Medico Salsench E, Maroofian R, Deng R, Lanko K, Nikoncuk A, Pérez B, Sánchez-Lijarcio O, Ibáñez-Mico S, Wojcik A, Vargas M, Abbas Al-Sannaa N, Girgis MY, Silveira TRD, Bauer P, Schroeder A, Fong CT, Begtrup A, Babaei M, Toosi MB, Ashrafzadeh F, Imannezhad S, Doosti M, Ahangari N, Najarzadeh Torbati P, Ghayoor Karimiani E, Murphy D, Cali E, Kaya IH, AlMuhaizea M, Colak D, Cardona-Londoño KJ, Arold ST, Houlden H, Bertoli-Avella A, Kaya N, Barakat TS. Expanding the mutational landscape and clinical phenotype of the YIF1B related brain disorder. Brain 2021; 144:e85. [PMID: 34373908 PMCID: PMC8634087 DOI: 10.1093/brain/awab297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/27/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Eva Medico Salsench
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ruizhi Deng
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Kristina Lanko
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anita Nikoncuk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares. Centro de Biología Molecular, Universidad Autonoma de Madrid, CIBER Enfermedades Raras, IdiPAZ, Madrid, Spain
| | - Obdulia Sánchez-Lijarcio
- Centro de Diagnóstico de Enfermedades Moleculares. Centro de Biología Molecular, Universidad Autonoma de Madrid, CIBER Enfermedades Raras, IdiPAZ, Madrid, Spain
| | | | - Antonina Wojcik
- Gillette Children's Specialty Healthcare, St. Paul, MN 55101, USA
| | - Marcelo Vargas
- Gillette Children's Specialty Healthcare, St. Paul, MN 55101, USA
| | | | - Marian Y Girgis
- Pediatric Department, Children's Hospital, Cairo University, Cairo, Egypt
| | | | | | - Audrey Schroeder
- Division of Medical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Chin-To Fong
- Departments of Pediatrics and of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehran Beiraghi Toosi
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farah Ashrafzadeh
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Imannezhad
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Doosti
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Najmeh Ahangari
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | | | - Ehsan Ghayoor Karimiani
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
- Molecular and Clinical Sciences Institute, St. George’s, University of London, London SW17 0RE, UK
- Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, UK
| | - Elisa Cali
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ibrahim H Kaya
- College of Medicine, AlFaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad AlMuhaizea
- College of Medicine, AlFaisal University, Riyadh, Kingdom of Saudi Arabia
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Kingdom of Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, KFSHRC, Riyadh, Kingdom of Saudi Arabia
| | - Kelly J Cardona-Londoño
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
- Centre de Biologie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | | | - Namik Kaya
- Department of Translational Genomics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Kingdom of Saudi Arabia
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Berdowski WM, Sanderson LE, van Ham TJ. The multicellular interplay of microglia in health and disease: lessons from leukodystrophy. Dis Model Mech 2021; 14:dmm048925. [PMID: 34282843 PMCID: PMC8319551 DOI: 10.1242/dmm.048925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Microglia are highly dynamic cells crucial for developing and maintaining lifelong brain function and health through their many interactions with essentially all cellular components of the central nervous system. The frequent connection of microglia to leukodystrophies, genetic disorders of the white matter, has highlighted their involvement in the maintenance of white matter integrity. However, the mechanisms that underlie their putative roles in these processes remain largely uncharacterized. Microglia have also been gaining attention as possible therapeutic targets for many neurological conditions, increasing the demand to understand their broad spectrum of functions and the impact of their dysregulation. In this Review, we compare the pathological features of two groups of genetic leukodystrophies: those in which microglial dysfunction holds a central role, termed 'microgliopathies', and those in which lysosomal or peroxisomal defects are considered to be the primary driver. The latter are suspected to have notable microglia involvement, as some affected individuals benefit from microglia-replenishing therapy. Based on overlapping pathology, we discuss multiple ways through which aberrant microglia could lead to white matter defects and brain dysfunction. We propose that the study of leukodystrophies, and their extensively multicellular pathology, will benefit from complementing analyses of human patient material with the examination of cellular dynamics in vivo using animal models, such as zebrafish. Together, this will yield important insight into the cell biological mechanisms of microglial impact in the central nervous system, particularly in the development and maintenance of myelin, that will facilitate the development of new, and refinement of existing, therapeutic options for a range of brain diseases.
Collapse
Affiliation(s)
| | | | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Wang X, Zhang JB, He KJ, Wang F, Liu CF. Advances of Zebrafish in Neurodegenerative Disease: From Models to Drug Discovery. Front Pharmacol 2021; 12:713963. [PMID: 34335276 PMCID: PMC8317260 DOI: 10.3389/fphar.2021.713963] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disease (NDD), including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, are characterized by the progressive loss of neurons which leads to the decline of motor and/or cognitive function. Currently, the prevalence of NDD is rapidly increasing in the aging population. However, valid drugs or treatment for NDD are still lacking. The clinical heterogeneity and complex pathogenesis of NDD pose a great challenge for the development of disease-modifying therapies. Numerous animal models have been generated to mimic the pathological conditions of these diseases for drug discovery. Among them, zebrafish (Danio rerio) models are progressively emerging and becoming a powerful tool for in vivo study of NDD. Extensive use of zebrafish in pharmacology research or drug screening is due to the high conserved evolution and 87% homology to humans. In this review, we summarize the zebrafish models used in NDD studies, and highlight the recent findings on pharmacological targets for NDD treatment. As high-throughput platforms in zebrafish research have rapidly developed in recent years, we also discuss the application prospects of these new technologies in future NDD research.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jin-Bao Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Kai-Jie He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology, Suqian First Hospital, Suqian, China
| |
Collapse
|
32
|
Toupenet Marchesi L, Leblanc M, Stevanin G. Current Knowledge of Endolysosomal and Autophagy Defects in Hereditary Spastic Paraplegia. Cells 2021; 10:cells10071678. [PMID: 34359848 PMCID: PMC8307360 DOI: 10.3390/cells10071678] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) refers to a group of neurological disorders involving the degeneration of motor neurons. Due to their clinical and genetic heterogeneity, finding common effective therapeutics is difficult. Therefore, a better understanding of the common pathological mechanisms is necessary. The role of several HSP genes/proteins is linked to the endolysosomal and autophagic pathways, suggesting a functional convergence. Furthermore, impairment of these pathways is particularly interesting since it has been linked to other neurodegenerative diseases, which would suggest that the nervous system is particularly sensitive to the disruption of the endolysosomal and autophagic systems. In this review, we will summarize the involvement of HSP proteins in the endolysosomal and autophagic pathways in order to clarify their functioning and decipher some of the pathological mechanisms leading to HSP.
Collapse
Affiliation(s)
- Liriopé Toupenet Marchesi
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, CNRS, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.T.M.); (M.L.)
- Neurogenetics Team, EPHE, Paris Sciences Lettres Research University, 75000 Paris, France
| | - Marion Leblanc
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, CNRS, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.T.M.); (M.L.)
- Neurogenetics Team, EPHE, Paris Sciences Lettres Research University, 75000 Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, CNRS, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.T.M.); (M.L.)
- Neurogenetics Team, EPHE, Paris Sciences Lettres Research University, 75000 Paris, France
- Correspondence:
| |
Collapse
|
33
|
Monfrini E, Zech M, Steel D, Kurian MA, Winkelmann J, Di Fonzo A. HOPS-associated neurological disorders (HOPSANDs): linking endolysosomal dysfunction to the pathogenesis of dystonia. Brain 2021; 144:2610-2615. [PMID: 33871597 DOI: 10.1093/brain/awab161] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022] Open
Abstract
The "homotypic fusion and protein sorting" (HOPS) complex is the structural bridge necessary for the fusion of late endosomes and autophagosomes with lysosomes. Recent publications linked mutations in genes encoding HOPS complex proteins with the etiopathogenesis of inherited dystonias (i.e., VPS16, VPS41, and VPS11). Functional and microstructural studies conducted on patient-derived fibroblasts carrying mutations of HOPS complex subunits displayed clear abnormalities of the lysosomal and autophagic compartments. We propose to name HOPS-associated Neurological Disorders (HOPSANDs) this group of diseases, which are mainly characterized by dystonic presentations. The delineation of HOPSANDs further confirms the connection of lysosomal and autophagic dysfunction with the pathogenesis of dystonia, prompting researchers to find innovative therapies targeting this pathway.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Dora Steel
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A Kurian
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany.,Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| |
Collapse
|